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Ontologies have long been employed in the life sciences to formally represent and rea-
son over domain knowledge, and they are employed in almost every major biological
database. Recently, ontologies are increasingly being used to provide background knowl-
edge in similarity-based analysis and machine learning models. The methods employed
to combine ontologies and machine learning are still novel and actively being developed.
We provide an overview over the methods that use ontologies to compute similarity and
incorporate them in machine learning methods; in particular, we outline how semantic
similarity measures and ontology embeddings can exploit the background knowledge in
biomedical ontologies, and how ontologies can provide constraints that improve machine
learning models. The methods and experiments we describe are available as a set of exe-
cutable notebooks, and we also provide a set of slides and additional resources at https:

//github.com/bio-ontology-research-group/machine-learning-with-ontologies.

Key points

• Ontologies provide background knowledge that can be exploited in machine learning
models.

• Ontology embeddings are structure-preserving maps from ontologies into vector spaces
and provide an important method for utilizing ontologies in machine learning. Embed-
dings can preserve different structures in ontologies, including their graph structures,
syntactic regularities, or their model-theoretic semantics.

• Axioms in ontologies, in particular those involving negation, can be used as constraints
in optimization and machine learning to reduce the search space.
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1 Introduction

Machine learning methods are now applied widely across life sciences to develop predictive
models [1]. These models commonly solve an optimization problem, i.e., they perform
search for an optimal solution to a function in a continuous or discrete space. Domain-
specific knowledge can be used to constrain search and find optimal or near-optimal so-
lutions faster, or to find better solutions; this observation has led Feigenbaum in 1977 to
suggest that the power of Artificial Intelligence systems lies in the domain-specific knowl-
edge they encode and are able to exploit, leading to the paradigm that “in the knowledge
lies the power” [2].

In the life sciences, domain-specific knowledge is often encoded in ontologies and in the
data- and knowledge-bases that use ontologies for annotation. Hundreds of ontologies have
been developed, spanning almost all domains of biological and biomedical research. The
main features biomedical ontologies provide are controlled vocabularies for characterizing
biological phenomena, and as formalized knowledge bases that formally describe the phe-
nomena within a domain and link them to other related domains. For example, phenotype
ontologies are used for characterizing the phenotypes observed in a variety of model or-
ganism databases [3–6] as well as in human genetics [7, 8], and these ontologies provide
a controlled set of classes, their labels, and definitions for the purpose of annotating the
phenotypes observed in conditions recorded in databases. Moreover, phenotype ontologies
are also interlinked with other ontologies through the use of formal axioms and can be
used to relate the phenotype observations to biological functions, anatomical locations,
developmental stages, or chemical substances [9, 10]. The majority of biomedical ontolo-
gies are formalized using the Web Ontology Language (OWL) [11], a language based on
Description Logic (a decidable fragment of first order predicate logic). OWL comes with
an explicit semantics that defines how statements made in OWL constrain the world in
which these statements are interpreted – the “models” in which these statements are true.

The background knowledge contained in ontologies can be used in machine learning
models for at least two different purposes: to expand or enrich features to be used, and to
constraint the search for an optimal solution to a learning problem. Expanding or enriching
features may make information available to a machine learning model that it would not
be able to access without relying on ontologies. For example, linking phenotypes such as
cardiomyopathy to the anatomical structures that are affected (i.e., the heart) can create
novel and direct associations with other datasets that do not otherwise exist. In the
example of cardiomyopathy, the link to heart as the anatomical structure can be used to
relate the phenotype to gene expression in heart tissue or in cardiomyocytes; this constrain
is given a priori through the axioms in phenotype, anatomy, and celltype ontology, and
does not need to be discovered.

A second application of the knowledge in ontologies is to constrain the search for solutions
to an optimization problem, and thereby finding a solution faster, finding a better solution,
or finding a solution that is generalized better. One example of such a constraint is the
true path rule that was originally proposed in the Gene Ontology [12], which states that if
a gene product G has the potential to be involved in a process P1, and every process P1 is
a part of another process P2, then G must also be involved in P2. This constraint is ‘hard’
in that it is not an empirical law or observation, but should hold in virtue of the definition
of P1 and P2 – it is impossible for G to participate in P1 but not P2. For example, a
gene product involved in developmental cell growth (GO:0048588) must be involved in cell
development (GO:0048468) simply based on the definition of the two classes in the Gene
Ontology.

It is now a challenge to identify general ways in which ontologies, and their underlying
formalisms based on first order logic, can be combined with the modern machine learning
models that are becoming so widespread. This challenge is not only one of research in
Artificial Intelligence but exists throughout the life sciences due to the widespread use of
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Type Method/Tool Description URL

Processing and
preprocessing
ontologies

OWLAPI Reference library to process OWL ontologies, sup-
ports most OWL reasoners [13]

https://github.com/owlcs/owlapi

funowl Python library to process OWL ontologies https://github.com/hsolbrig/funowl

owlready2 Python library to process OWL ontologies https://pypi.org/project/Owlready2/

Apache Jena RDF library with OWL support https://jena.apache.org/

rdflib Python RDF library with OWL support https://github.com/RDFLib/rdflib

Protégé Ontology editor and knowledge engineering environ-
ment [14]

https://protege.stanford.edu/

Computing
entailments,
reasoning

ELK Very fast reasoner for the OWL 2 EL profile with
polynomial worst-case time complexity [15]

https://github.com/liveontologies/elk-reasoner

HermiT Automated reasoner supporting most of OWL axioms
with exponential worst-case complexity [16]

http://www.hermit-reasoner.com/

Pellet OWL reasoner supporting most of the OWL con-
structs and supporting several additional features [17]

https://github.com/stardog-union/pellet

Generating
graphs from
ontologies

OBOGraphs Syntactic conversion of ontologies to graphs, targeted
at OBO ontologies

https://github.com/geneontology/obographs

Onto2Graph Semantic conversion of OWL ontologies to graphs, fol-
lowing the axiom patterns of the OBO Relation On-
tology [18]

https://github.com/bio-ontology-research-group/Onto2Graph

Computing Se-
mantic Similarity

Semantic
Measures
Library

Comprehensive Java library to compute semantic sim-
ilarity measures over ontologies [19]

http://www.semantic-measures-library.org/sml/

sematch Python library to compute semantic similarity on
knowledge graphs [20]

https://github.com/gsi-upm/sematch

DiShIn Python library for semantic similarity on ontologies
[21]

https://github.com/lasigeBioTM/DiShIn

Embedding
graphs

OWL2Vec Method that combines generation of graphs from on-
tologies, random walks on the generated graphs, and
generation of embeddings using Word2Vec. Syntacti-
cally processes most OWL axioms [22]

https://github.com/oholter/matcher-with-word-embedings

DL2Vec Method that combines generation of graphs from on-
tologies, random walks on the generated graphs, and
generation of embeddings using Word2Vec. Syntacti-
cally processes most OWL axioms [23]

https://github.com/bio-ontology-research-group/DL2Vec

Walking
RDF&OWL

Method that combines generation of graphs from on-
tologies, random walks on the generated graphs, and
generation of embeddings using Word2Vec. Only con-
siders the ontology taxonomy. [24]

https://github.com/bio-ontology-research-group/

walking-rdf-and-owl

RDF2Vec Method to embed RDF graphs [25] https://github.com/IBCNServices/pyRDF2Vec, https://github.com/

dwslab/jRDF2Vec

Node2Vec Method to embed graphs using biased random walks
[26]

http://snap.stanford.edu/node2vec/

PyKEEN,
BioKEEN

Toolkit for generating knowledge graph embeddings
using several different approaches [27, 28]

https://github.com/SmartDataAnalytics/PyKEEN

OpenKE Library and toolkit for generating knowledge graph
embeddings

https://github.com/thunlp/OpenKE

PyTorch Ge-
ometric

Library for graph neural networks which can be used
to generate graph embeddings [29]

https://github.com/rusty1s/pytorch_geometric

Embedding ax-
ioms

Onto2Vec Embeddings based on treating logical axioms as a text
corpus [30]

https://github.com/bio-ontology-research-group/onto2vec

OPA2Vec Embeddings that combine logical axioms with anno-
tation properties and the literature [31]

https://github.com/bio-ontology-research-group/opa2vec

EL Embed-
dings

Embeddings that approximate the interpretation
function and preserve semantics for intersection, ex-
istential quantifiers, and bottom [32]

https://github.com/bio-ontology-research-group/el-embeddings

Ontology-based
constrained
learning

DeepGO Implements an ontology-based hierarchical classifier
for function prediction. The hierarchical classifica-
tion module is generic and can be used with other
ontologies and applications [33]

https://github.com/bio-ontology-research-group/deepgo

DEEPred Automated Protein Function Prediction with Multi-
task Feed-forward Deep Neural Networks [34]

https://github.com/cansyl/DEEPred

DeepMiR2GO Inferring Functions of Human MicroRNAs Using a
Deep Multi-Label Classification Model [35]

https://github.com/JChander/DeepMiR2GO

Table 1: An overview of software tools and applications involved in machine learning with biomedical
ontologies.

ontologies and formalized knowledge bases in biology and biomedicine.
Here, we describe and review the state-of-the-art and recent advances in machine learning

with biomedical ontologies. We use as a starting point in our review more traditional se-
manic similarity measures applied to ontologies; semantic similarity measures are a method
from Artificial Intelligence that can determine the similarity between two or more entities
using formalized background knowledge. We continue to introduce unsupervised, deep
learning methods on ontologies that generate ‘embeddings’ for entities in ontologies, and
we show that these embeddings can be used like semantic similarity measures while ad-
ditionally allowing to overcome some of their limitations. Third, we highlight methods
that use ontologies as constraints in optimization problems. We summarize the meth-
ods and tools we introduce in Table 1. We continue by introducing a novel benchmark
dataset for machine learning with ontologies and demonstrating the methods we discuss
on this dataset; we also make all experiments available as executable notebooks which can
be adopted to other use cases. We finish by reviewing some of the main limitations and
future research directions for the combination of ontologies and machine learning.
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Name Syntax Semantics

top > ∆I

bottom ⊥ ∅
nominal {a} {aI}
conjunction C uD CI ∩DI
existential restriction ∃r.C {x ∈ ∆I |∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}
generalized concept in-
clusion

C v D CI ⊆ DI

role inclusion r1 ◦ ... ◦ rn v r rI1 ◦ ... ◦ rIn ⊆ rI

Table 2: Description Logic EL

2 Axioms, graphs, and knowledge graphs

An ontology is an “explicit specification of a conceptualization of a domain” [36], i.e., an
ontology is an artifact used to formally specify the intended meaning of a vocabulary within
a domain. Ontologies contain domain knowledge, encoded in the form of axioms, natural
language labels, synonyms, definitions, and other types of annotation properties. The
majority of ontologies in the life sciences are encoded using the Web Ontology Language
(OWL) [11], a language that is a part of the Semantic Web stack [37] and based on
Description Logics [38]. Description Logics enable a formal, machine-readable description
of the types of entities within a domain and the relations in which they stand [38]. Table 2
illustrates how the semantics of such a formal language (in this case, the Description Logic
EL) is specified; syntactic constructs are assigned an interpretation in a mathematical
structure that resembles a world in which these constructs are true. For example, C v D
will be true in those structures in which all entities that are in the interpretation of C are
also in the interpretation of D.

The semantics of logical languages gives rise to entailment; a statement φ is logically
entailed by a set of statements O if all the structures in which all statements in O are true
also make φ true. For example, the two statements {C v D,D v E} entail the statement
C v E. The process of computing entailments – deduction or logical inference – plays a
crucial role in using ontologies because it allows to automatically derive statements that
are not explicitly asserted in a knowledge base, and can also be used to detect whether a
set of statements is contradictory.

Many analysis methods that rely on ontologies, including machine learning methods and
semantic similarity measures, rely on generating some form of graph structures from the
axioms in an ontology. There are several ways in which axioms can be used to generate
a graph structure, and many can be formulated as computing entailments. An important
ontology for generating graphs from biomedical ontologies is the OBO Relation Ontology
[39] which provides a set of axiom patterns that must hold true for two classes if an
edge between them should be created. An axiom pattern is an axiom with variables
for classes or individuals; X v Y is an axiom pattern in which X and Y are variables
and if this statement is true for two classes X and Y , an edge labels is-a should be

created between them: X
is-a−−→ Y . More complex axiom patterns involve quantifiers, such

as X v ∃part-of.Y which gives rise to the edge X
part-of−−−−→ Y . Axioms can also express

disjointness between two classes such as X u Y v ⊥ based on which a disjoint edge
can be created (X ↔ disjointY ). To be generally applicable, these patterns must also be
able to utilize entailments; for example, if X v ∃part-of.Y and Y v ∃part-of.Z are a part
of an ontology, and the relation part-of is transitive (part-of ◦ part-of ⊆ part-of), then
X v ∃part-of.Z would be entailed and consequently a part-of edge between X and Z

created (X
part-of−−−−→ Y ). Depending on the algorithm that uses the graph, inferred edges

can be added or not; for some relations, this amounts to adding their transitive closure,
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Condition 1 Condition 2 Edge

A v QRo.D or QRo.D v A D ≡ B|B1 u ... u Bn|B1 t ... t Bn A
Ro−−→ B or A

Ro−−→ Bi for i ∈ 1...n

Domain(Ro) = A Range(Ro) = B A
Ro−−→ B

A v ∃Ro.{b} b : B A
Ro−−→ B

Ro = R− A
R−→ B in the graph B

Ro−−→ A

S1 ◦ ... ◦ Sn ⊆ Ro A
S1−−→ C1, ..., Cn

Sn−−→ B in the
graph

A
Ro−−→ B

B v A B
is−a−−−−→ A, A

is−a−
−−−−−→ B

Table 3: OWL2Vec rules for the projection of OWL axioms into an RDF graph. Q is any quantifier
(∃, ∀, ≤ n, ≥ n, = n). A, B, Bi and Ci are named classes, Si, Ro, and R− are object
properties, b an individual name.

FOXP2 MET

ST7

MAPK3

GO:0071625

GO:0044708

TBR1

NKX2-1 activates

hasFunction

hasFunctionv

binds

binds

coex

coex

coex coex

coex

hf

Figure 1: A knowledge graph centered around protein–protein interactions and functions of FOXP2.

or, alternatively, transitive reduction [18].
The types and complexity of axiom patterns giving rise to edges is an active research

area. For example, OWL2Vec [22] uses the set of transformation rules shown in Table 3
to transform syntactic axiom patterns into edges.

The graphs generated from ontologies also interact with graph-based representations
of data, in particular using the Resource Description Framework (RDF) [40]. Graphs in
which nodes represent entities within a domain and edges represent the relations between
the nodes are sometimes called knowledge graphs, and they correspond to a subset of
the formalism underlying OWL in which only relations between individuals, and possibly
certain axioms for relations, are considered. However, graph-based representations of the
axioms in ontologies can also be considered knowledge graphs, in particular when both
individuals and classes are included in the graph. For example, Figure 1 shows a graph in
which interactions between proteins, the associations between proteins and their functions,
and some axioms from the Gene Ontology are included. There are several ways in which
such a graph could have been represented in OWL and then converted into such a graph
representation using axiom patterns [41, 42]; for example, the edge between MET and
MAPK3 could arise from an axiom MET v ∃ activates .MAPK3 and the edge between
FOXP2 and GO:0071625 from the axiom FOXP2 v ∃ hasFunction .GO:0071625. The
dashed edge between FOXP2 and GO:0044708 is an edge that would be generated through
entailment based on these axioms.
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(a)

Thing
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2.0
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isa isa
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(b)

Thing

0.0

Color

1.0

Shape 1.0

Red 2.0 Green

2.0

Orange

3.0

Round

2.0

Square

2.0

isa isa

isa isa

isa

isa

isa

(c)

Thing

0.0

Color

1.0

Shape 1.0

Red 2.0 Green

2.0

Orange

3.0

Round

2.0

Square

2.0

isa isa

isa isa

isa

isa

isa

(d)

Figure 2: A fragment of the PATO ontology focusing on colors and shapes. Numbers near classes
indicate specificity and information content of the classes.

3 Semantic similarity

Semantic similarity measures are widely used in biomedical domain. They are used to
compare words, terms and ontology classes based on the background knowledge in the on-
tologies, annotations and large text corpora. Similarity measures are mostly hand-crafted
and can be used as unsupervised classifiers for association prediction or as features in
supervised learning models or a clustering algorithms. They can be applied to a vari-
ety of tasks such as predicting protein–protein interactions [43], gene–disease associations
[44, 45], diagnosing patients [46, 47], determining sequence similarity [48], or evaluating
computational methods which predict ontology class annotations [49].

We can compute semantic similarity measures between classes, class instances and an-
notated entities. A function sim : D×D is a similarity on a domain D if it is non-negative
(sim(x, y) ≤ 0), symmetric (sim(x, y) = sim(y, x)), and if self-similarity yields the highest
similarity values within the domain (sim(x, x) = maxD), or – as a weaker version – if
self-similarity is higher than similarity to any other domain entity (sim(x, x) > sim(x, y)).

A simple similarity measure, simRada, can be based on the shortest path between two
nodes in the graph [50]. It can be defined as:

simRada(x, y) =
1

distSP (x, y) + 1
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This similarity measure is useful when edges in a graph correspond mostly uniformly to
some kind of semantic distance. However, when comparing ontology classes, edges repre-
sent axioms involving two classes which may not correspond to this assumption. For exam-
ple, is-a edges order classes from general to more specific, such as in the ontology in Figure
2a. In this figure, simRada(Color, Shape) will have the same value as simRada(Red,Green)
since these two classes have the same distance in the graph. However, in many applica-
tions Red and Green should be more similar than Color and Shape because they are both
colors. In this case, distance based similarities might not be very intuitive and a measure
of node specificity needs to be considered.

There are many ways to compute class specificity. For instance, we can consider speci-
ficity as a function of the depth, number of children, or the information content of a class.
Formally, class specificity is a function σ : C 7→ R which meets the condition that for all
x, y ∈ C, if x v y then σ(x) ≥ σ(y) [51]. The specificity measure can be defined using only
the classes within an ontology (such as measures that consider the number of super-classes
a class has, or the distance of a class to the root), or using information such as the number
of instances of a class, or the number of annotations of a class within a database.

One of the most widely used methods to determine class specificity is the Resnik measure
[52], which defines the specificity of a class as its information content:

ICResnik(x) = − log p(x)

where

p(x) =
|I(x)|
|I(>)|

and I(x) is the set of instances of x (or the set of annotations of a class within a database).
A large number of semantic similarity measures have been developed [51]. Pairwise

similarity measures compute the similarity value between two classes. Examples of pairwise
similarities used in the biomedical field include Resnik’s [52], Lin’s [53], Jiang & Conrath’s
[54] and Schlicker’s [44] similarity measures. Many of these measures are variations of the
Resnik measure which defines the similarity between classes x and y as the information
content of their most informative common ancestor (MICA):

SimResnik(x, y) = IC(MICA(x, y))

In the example in Figure 2a, SimResnik(Red,Green) is equal to 1.0 and SimResnik(Color, Shape)
is equal to 0.0 although they have the same distance. The downside of this similarity mea-
sure is that it does not take into account the specificity of the compared classes and all
classes under the same MICA will have the same similarity value. For instance, in Figure
2b SimResnik(Green, Square) is equal to 0.0 which is the same as SimResnik(Color, Shape)
and in Figure 2c SimResnik(Red,Green) and SimResnik(Orange,Green) are both equal
to 1.0. To solve this issue, Lin’s measure [53] also considers information content of the
compared classes:

SimLin(x, y) =
2 · IC(MICA(x, y))

IC(x) + IC(y)

With this measure, SimLin(Red,Green) is equal to 0.5 whereas SimLin(Orange,Green)
is equal to 0.4 which is more intuitive.

When comparing two instances of ontology classes, or two entities annotated with classes
in an ontology, we usually need to compare sets of classes. For example, we would have
to compute the similarity of the set of all Gene Ontology annotations of one protein with
the set of all Gene Ontology annotations of a second protein. There are two ways of
determining the similarity between two sets of classes A and B. First, we can compute the
pairwise similarities between all pairs of classes (a, b) such that a ∈ A and b ∈ B, and then
combine similarity values according to some combination strategy (such as computing the
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average). Second, we can directly define a similarity measure between the two sets A and
B using a set similarity measure. For instance, we can use the Jaccard index between the
two sets:

SimJaccard(X,Y ) =
|X ∩ Y |
|X ∪ Y |

To make this a semantic similarity, we would at least close each of the sets X and Y with
respect to superclass axioms, i.e., if C v D and C ∈ X then D ∈ X. Figure 2d depicts the
propagation of ontology classes for computing the similarity between a square-and-orange
thing and a round-and-red thing. Set similarity can also incorporate class specificity, such
as the weighted Jaccard index in the SimGIC [55] measure.

Semantic similarity measures have a variety of applications and a large number of soft-
ware packages have been developed to ease their use. One prominent example is the Se-
mantic Measures Library [19] which is a comprehensive Java library that allows to compute
hundreds of different semantic similarity measures.

A common problem of semantic similarity measures is that it is difficult to choose one
for a particular application. Similarity measures behave differently depending on their
applications. For example, predicting protein–protein interactions may result in different
performance [55, 56] with similarity measures depending on the organisms. They are not
immune to biases in data and different similarities may react to the biases differently [57].
Furthermore, they are hand-crafted measures that are not able to adapt to the underlying
data or application.

4 Embedding ontologies

Another option to define similarity measures on ontologies is through the use of embed-
dings. An embedding is a structure-preserving map from one mathematical structure to
another. We can use embeddings to project the elements of one structure into a second
one. The idea behind using embeddings is that the second structure may enable different
or additional operations which are not possible in the first structure. For example, if we
take ontologies or graphs that are discrete entities and map them into a continuous space
(or real-valued vector space), we can apply machine learning or continuous optimization
algorithms which operate on continuous data; there are also ‘natural’ similarity measures
between real-valued vectors such as the cosine similarity or other distance measures and
metrics.

In the context of machine learning in most cases, we aim to embed ontologies within real-
valued vector spaces. The key question when embedding ontologies is which structure (of
the ontology) to preserve within Rn and under which operations in Rn this structure is pre-
served. We classify approaches of embedding ontologies in three main types based on what
aspect of the ontologies is preserved in Rn. First, there are graph-based approaches which
treat ontologies as graphs similar to how ontologies are treated by many semantic similarity
measures, and the embeddings preserve this graph structure within Rn. Second, syntactic
approaches treat axioms similar to “sentences” and preserve syntactic regularities (such as
frequencies of co-occurrences) in Rn. Third, we consider model-theoretic approaches which
preserve model-theoretic properties within Rn as a part of the embedding.

4.1 Graph-based ontology embeddings

Graph-based embedding methods preserve a graph structure within Rn. One form of
graph embeddings is based on random walks. In these methods, graphs are generated
from ontologies using the methods we described, then random walks are used to explore
the neighborhood of each node in the graph, and finally the set of walks is used as the
basis of the embeddings.
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One of the first methods for learning graph embeddings through random walks was
DeepWalk [58] which generates a ‘corpus’ of sentences (i.e., sequences of nodes in the graph)
through random walks starting from each node in the graph, and then applies Word2Vec
[59] on the resulting corpus to obtain embedding vectors; the embeddings generated by
Word2Vec preserve co-occurrence relations within a context window. DeepWalk can also
be extended to include labeled edges [22, 24, 25].

For example, for the graph in Figure 1, the random walks can generate sentences such
as

• FOXP2 cooex ST7 hasFunction GO:0044708 ...

• FOXP2 hasFunction GO:0071625 is-a GO:0044708 ...

and Word2Vec will then embed each node and edge label while preserving co-occurrence
relations within this corpus [60]. Node2Vec [26] is a modified model that does explore
the original graph through ‘biased’ random walks and therefore can force walks to remain
within a certain distance of the origin node or explore further away.

Random walks have long been used as a model that simulates diffusion of information
within a network [61–63] and can be used to identify and score node importance. In graph
embeddings, these walks explore node neighborhood and generate a ‘linear’ representation
(i.e., sequences of symbols) in which nodes that are reached more often also occur more
often (and co-occur more often with the original node). Word2Vec, as a model that embeds
sequences of symbols while maintaining this co-occurrence, generates embeddings that
maintain this syntactic structure within the walks, and therefore aspects of the graph
structure as well. Furthermore, some of the semantics of the axioms in the ontology can
be encoded as constraints on the random walks or encoded in the graph; for example,
symmetry can be modeled as a bi-directional edge, disjointness as a ‘barrier’ preventing
a walk’s transition, etc. It is obvious that the graph that is generated from the ontology
axioms, and the information it captures, is crucial for generating useful embeddings; this
is also an active research area [22].

Translational embeddings methods are a family of representation learning methods on
knowledge graphs which model relations in the knowledge graph as translation operations
between graph node embeddings. The methods have been successfully applied for several
tasks such as link prediction, knowledge-graph completion and others. The methods repre-
sent knowledge graphs as a set of edges (s, p, o) (triples) and define a translation operation
which translates fη(s) to fη(o) depending on the relation p. Here, fη is a graph embedding.

TransE [64] was the first translational embedding method. It uses a vector representation
for relations that have the same dimensions as vectors representing nodes, and defines the
translation operation as the addition of the relation vector to the node vector:

fη(s) + fη(p) ≈ fη(o)

and further defines a scoring function for an edge based on the translation operation:

fsc(s, p, o) = ‖fη(s) + fη(p)− fη(o)‖

Then, it minimizes the following loss function to learn fη:∑
(s,p,o)∈KG

∑
(s′,p,o′)∈KG′

[
γ + fsc(s, p, o)− fsc(s′, p, o′)

]
+

where KG′ is a set of negative or corrupted triples that are not in the graph,
[
x
]
+

indicates
the positive part of x, and γ is a hyperparameter. This model can only accurately represent
one-to-one relations and it is not suitable for one-to-many and many-to-many relations; in
graphs generated from ontologies, even when focusing only on the subclass hierarchy, there
are many such relations. Furthermore, TransE does not support transitive, symmetric or
reflexive relations which are all important for faithfully embedding ontologies.
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Many TransE successors have been developed to overcome the original model’s limita-
tions. For example, TransH [65] extended TransE by moving the translation operation to
a relation-specific hyperplane. TransH represents each relation by two embedding vectors,
the norm vector of the hyperplane (denoted as a function wη) and a translation vector
(denoted as a function dη). The scoring function is then defined as:

fsc(s, p, o) =‖(fη(s)− w>η (p)fη(s)wη(p)) + dη(p)−
(fη(o)− w>η (p)fη(o)wη(p))‖

With an additional vector, TransH performs translation operation on an augmented hy-
perplane and can therefore model one-to-many and many-to-many relations better than
TransE. There are also many other models with various advantages and disadvantages [66,
67].

Translational embeddings are able to explicitly capture the graph structure and pre-
serve some interpretability through the use of vector operations; however, they cannot
easily capture even simple axioms such as transitivity, symmetry, or reflexivity of rela-
tions. Furthermore, any graph-based method will focus on a small set of graph patterns
and lose some information about the ontology axioms, while many ontological axioms such
as disjointness and axioms involving combinations of different logical operators cannot be
fully converted to a graph.

4.2 Syntactic approaches

Ontologies provide a structured representation of biological knowledge in the form of logical
axioms, and not all the axioms in an ontology can be represented naturally in a graph;
this limits the ability of these methods to utilize all information encoded in the ontology.
Syntactic embeddings embed ontologies in Rn considering only the set of axioms without
creating an intermediate graph-based representation.

Onto2Vec [30] is a method that generates embeddings for ontology classes and in-
stances taking into account the logical axioms that define the semantics of ontology classes.
Onto2Vec takes an ontology O as input, uses a reasoner to infer additional logical axioms,
mainly subclass axioms between named classes; it then treats each asserted or inferred
axiom as a sentence and embeds the set of axioms using the Word2Vec language model.
This allows Onto2Vec to embed ontologies directly based on their axioms while considering
all axiom types, no matter how complex they are.

OPA2Vec [31] extends Onto2Vec to not only include logical axioms but annotation
properties as well. Annotation properties in biomedical ontologies provide labels, syn-
onyms, definitions, and other types of information about classes and instances in ontologies.
OPA2Vec combines the corpus generated from the asserted and inferred logical axioms in
Onto2Vec with a corpus generated from all or selected annotation properties. For example,
from the annotation assertion that an OWL class C has a label L (using the rdfs:label

annotation property in the OWL annotation axiom), OPA2Vec generates the statement
C rdfs:label L, using the complete identifier for C and rdfs:label, and expressing L
as a string literal; for instance, the annotation assertion of the class Nuclear periphery
(GO:0034399) and its label is expressed as the sentence <http://purl.obolibrary.org/

obo/GO 0034399> <http://www.w3.org/2000/01/rdf-schema#label> nuclear periphery.
The identifier for the class C occurs within the ontology axioms and obtains parts of its
meaning through the axioms; to ensure that the natural language terms used in the anno-
tation properties have their ‘natural’ meaning as used in biomedical texts, OPA2Vec uses
transfer learning and pre-trains a Word2Vec language model on biomedical literature texts,
and then tunes it to generate the embeddings from the axioms plus annotation properties.

11

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.07.082164doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.07.082164
http://creativecommons.org/licenses/by/4.0/


4.3 Model-theoretic or semantic

None of the embedding methods discussed so far are ‘semantic’ in the sense that they
use the semantics of the underlying logic (as, for example, shown in Table 2). Instead,
the models are based on syntactic co-occurences or preserving certain graph properties.
However, the main advantage of using languages with an explicit semantics is that it
provides constrains on how symbols should be interpreted.

EL Embeddings [32] aim to embed ontologies by mapping the symbols in the ontology
into one specific interpretation, i.e., the embedding is identical to, or approximates, the
interpretation function I in Table 2. EL Embeedings find an embedding that maps the
class, relation, and instance symbols Σ(O) into Rn, fe : Σ(O) 7→ Rn such that fe(Σ(O))
is a model of O (fe(Σ(O)) |= O). Such an embedding yields a faithful representation of
logical operators and quantifiers.

Formally, EL Embeddings embed classes as n-balls in n-dimensional space and relations
as n-dimensional vectors. The correspondence with the semantics of the axioms in the
ontology is established by setting the domain of discourse to Rn and the following condition:
for all classes C ∈ Σ(T ) and relations r ∈ Σ(T ) it defines fe(C) = CI :

CI = {x ∈ Rn| ‖fe(C)− x‖ < re(C)}

where re(C) is the radius of the n-ball that corresponds to C, and fe(r) = rI :

rI = {(x, y)|x+ fe(r) = y}

The latter condition is similar to the TransE translation operation only applied to instances.
The embeddings are generated through optimization using a set of loss functions that

correspond to different normal forms of the axioms in ontologies. Using these embeddings
it is possible to approximate the intended semantics of the language within the embed-
ding space. In particular, it can be shown that if the loss can be reduced to zero, the
resulting embedding corresponds to a model of the ontology [32]. Similar approaches to
EL Embeddings are also investigated for querying knowledge graphs using logic formulas
[68].

4.4 Using embeddings as semantic similarity measures and for machine
learning

Embeddings can generate distributed representations of the symbols in ontologies while
preserving syntactic or semantic properties. These representations – vectors in Rn can be
visualized using dimensionality reduction techniques such as principal component analysis
or tSNE [69]. They can also be used to compute similarity using any kind of similarity
or distance measure applicable to real-valued vectors, in particular the cosine similarity
or the Euclidean distance. However, these similarity measures are still generic and do not
adapt to particular applications.

One of the most useful applications of ontology embeddings is as a part of machine
learning models in which either a single embedding is used as input or multiple embeddings
are used as input. Single embeddings can be used in classification and related tasks while
multiple embeddings are often used to predict relations between the entities which were
embedded [67]. Such an application is similar to using a semantic similarity measure with
the key difference that the actual function that computes the similarity can be ‘trained’ in
a task-specific way using supervised learning. For example, if the similarity between two
protein embeddings is supposed to be a measure of whether or not they interact, using a
set of proteins that interact can be used to design a customized, task-specific function that
predicts, given two embeddings as an input, whether the proteins they represent should
interact. Many neural network architectures and other machine learning models can be
used for this task, but architectures that are used for similarity learning, such as Siamese
neural networks, seem to perform well in practice [23].
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5 Ontologies as constraints

Ontologies embeddings are a useful technique to make information in ontologies available as
background knowledge to define similarity measures or use as features in machine learning
models. In these cases, ontologies are used as the input of a similarity function or a model.
However, ontologies can also be used as an output of a machine learning model and the
axioms in the ontology used to constrain the output of a function, such as in the case when
determining if the predictions of a machine learning model are consistent with the axioms
in the ontology.

Ontologies are used as structured output in many domains in which the primary task
is to predict whether some entity has a relation with one or more ontology classes, such
as predicting genotype–phenotype relations (using phenotype ontologies as output), pre-
dicting gene–disease or drug–disease associations (using disease ontologies as output), or
predicting protein functions (using the Gene Ontology as output). At the very least, these
tasks need to satisfy the hierarchical constraints imposed by the ontologies in the output
space: if an entity e is predicted to be associated with a class C, and that class C is a
subclass of D, then e must also be associated with D. Similar constraints arise from other
axioms in the ontology.

In general, there are at least five different approaches to using hierarchical relationships
as constraints in classification models: flat, local per node, local per parent, local per level,
and global hierarchical classification [70]. Flat classification is when the hierarchical con-
straints are not used during the prediction or training and the classification is done only
using individual classes, and the consistency with the hierarchical constraints is enforced
by propagating scores along the hierarchy only after predictions are made. This approach
employs the constraints imposed by the ontology independently from the training or pre-
diction process. In a local per node setting, a binary classifier is built for every class
and predictions are made starting from the most general classes first and then moving
to more specific ones, and stopping the prediction process once classes are predicted as
negative. In a local per parent and local per level setting, multi-class classifiers are used
for children classes of a parent or classes at the same level, respectively. Similarly to local
per node classifiers, the prediction is performed in a step-wise manner from the most gen-
eral class to more specific ones, and terminated once predictions are negative. The main
drawback of local classifiers is that all classification models are trained independently from
each other, and during the prediction process errors will propagate from general classes
to more specific ones. Global hierarchical classifiers include the hierarchical constraints
during training of a machine learning model, either as soft constraints or hard constraints,
and also during prediction so that the output labels are forced to be consistent with the
ontology axioms. The advantages of these models are that they take the semantics into
account during training and therefore potentially reduce the search space; and that they
can exploit dependencies between classes during training and prediction; the disadvantage
is often the increased complexity of these classifiers [70].

While hierarchical machine learning models are used across many different application
domains, life science ontologies are standing out with their large size and complex set of
axioms; it is no surprise that constrained optimization methods applicable to large ontolo-
gies have emerged from research in bioinformatics. In particular prediction of functions
and phenotypes benefits from machine learning models that are constrained by ontologies,
and the established evaluation measures for predictive performance of models in these do-
mains are also ontology-based [71]. A large number of ontology-based prediction models
have been developed in these domains, using hierarchical top-down phenotype prediction
[72], using structured support vector machines for predicting functions [73] and phenotypes
[74], and several methods that incorporate ontology-based constraints in artificial neural
networks [35, 75, 76].
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6 Use case and application

Ontologies are used in almost every major biological database. There are more than 800 on-
tologies in ontology repositories such as BioPortal [77] which are used to describe different
biological and biomedical entities. Consequently, ontologies play a role in many different
biomedical machine learning tasks such as genotype–phenotype association prediction [46,
47], protein function prediction [49], drug–target prediction [78, 79], protein–protein inter-
action prediction [21, 48, 56], gene–disease association prediction [80], and many others.

Here, we evaluate ontology embedding methods on the task of predicting interactions
between proteins based on the hypothesis that functionally related proteins are more
likely to interact. We demonstrate how different ontology embedding methods can be
applied, and we provide Jupyter Notebooks for all our experiments at https://github.

com/bio-ontology-research-group/machine-learning-with-ontologies.
Proteins do not function in isolation, and many biological processes and functions are

regulated by multiple proteins and their interactions. Databases such as String [81] collect
information about protein–protein interactions (PPIs) from different sources with exper-
imental evidence as well as PPIs that are computationally inferred and automatically
assigned, and the functions of proteins are described using the Gene Ontology [12].

Organism Proteins Total Training Validation Testing

Yeast 6,157 119,051 76,193 19,048 23,810

Human 17,185 420,534 269,143 67,285 84,106

Table 4: The total number of proteins and number of unique interaction pairs in training, testing, and
validation datasets

We created two PPI datasets, one for interactions occurring in humans and one for yeast,
based on data from the String database [81]. We filtered out interactions with a confidence
score less than 700 to retain only high confidence interactions. Table 4 provides the total
number of proteins and interactions in each dataset. We split the two datasets consisting
of interaction pairs into train and test sets, with a ratio of 80% and 20%, respectively,
and we used 20% of the training set as a validation set. We used these two datasets as
benchmark sets for evaluating ontology embedding and semantic similarity methods, and
we made the datasets with documentation publicly available for download and provided
the links in our public repository so that anybody can use the same data to benchmark and
compare ontology-based prediction methods. The training and validation sets should be
used to train and tune model parameters and select the best models, while the evaluation
results and comparisons should be reported using the test set.

We predicted PPIs based on the associations of proteins with their functions and cel-
lular locations represented in the GO, known interactions between proteins, and the in-
formation contained in the GO. One key question is how to represent these three types
of knowledge as axioms in an ontology or knowledge base. We adopted a representation
scheme in which all entities (proteins, functions, cellular locations) are classes and the
relations between the entities are expressed as axioms [41, 42]. Specifically, if there is an
interaction between proteins P1 and P2, we asserted the axioms P1 v ∃interacts-with.P2

and P2 v ∃interacts-with.P1; if protein P is associated with a GO class C, we asserted the
axiom P v ∃has-function.C. We combined this set of axioms with the GO (released on 22
February 2020) to form our knowledge base.

For graph-based embedding methods, we generated a graph by creating an edge for
existential restrictions in subclass axioms: if X v ∃R.Y is an (asserted) axiom in the
knowledge base (consisting of GO together with the axioms we added), we created nodes
X and Y , and an edge from X to Y labeled R. For the Onto2Vec and OPA2Vec embed-
ding methods, we only inputted GO together with the set of protein-to-GO associations.
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Method Raw
Hits@10

Filtered
Hits@10

Raw
Hits@10

Filtered
Hits@100

Raw
Mean
Rank

Filtered
Mean
Rank

Raw
AUC

Filtered
AUC

TransE 0.06 0.13 0.32 0.40 1125.4 1074.8 0.82 0.83

SimResnik 0.09 0.17 0.38 0.48 757.8 706.9 0.86 0.87

SimLin 0.08 0.15 0.33 0.41 875.4 824.5 0.84 0.85

EL Em-
beddings

0.08 0.17 0.44 0.62 451.29 394.04 0.92 0.93

Onto2Vec 0.08 0.15 0.35 0.48 641.1 587.9 0.79 0.80

OPA2Vec 0.06 0.13 0.39 0.58 523.3 466.6 0.87 0.88

Random
walk

0.06 0.13 0.31 0.40 612.6 587.4 0.87 0.88

Node2Vec 0.07 0.15 0.36 0.46 589.1 522.4 0.87 0.88

Table 5: Prediction performance for yeast protein–protein interactions.

Method Raw
Hits@10

Filtered
Hits@10

Raw
Hits@10

Filtered
Hits@100

Raw
Mean
Rank

Filtered
Mean
Rank

Raw
AUC

Filtered
AUC

TransE 0.05 0.11 0.24 0.29 3960.4 3890.6 0.78 0.79

SimResnik 0.05 0.09 0.25 0.30 1933.6 1864.4 0.88 0.89

SimLin 0.04 0.08 0.20 0.23 2287.9 2218.7 0.86 0.87

EL Em-
beddings

0.01 0.02 0.22 0.26 1679.72 1637.65 0.90 0.90

Onto2Vec 0.05 0.08 0.24 0.31 2434.6 2391.2 0.77 0.77

OPA2Vec 0.03 0.07 0.23 0.26 1809.7 1767.6 0.86 0.88

Random
walk

0.04 0.10 0.28 0.34 1942.6 1958.6 0.85 0.86

Node2Vec 0.03 0.07 0.22 0.28 1860.5 1813.1 0.86 0.87

Table 6: Prediction performance for human protein–protein interactions.

The Jupyter Notebook data.ipynb in our repository provides source code to generate the
datasets, the splits, and the input files for the different embedding methods.

We then generated ontology embeddings using EL Embeddings, Onto2Vec, OPA2Vec,
and used the generated graph to produce embeddings through random walks, biased ran-
dom walks (Node2Vec), and TransE. We then use these embeddings, as well as two semantic
similarity measures (Resnik’s and Lin’s), to predict protein–protein interactions. For em-
beddings based on random walks, Onto2Vec, and OPA2Vec, we use cosine similarity to
compute the pairwise similarity of all pairs of proteins in our dataset, including the pro-
teins in the training, test, and validation sets; for TransE embeddings and EL Embeddings
we use the prediction function for interacts-with edges and compute a prediction score
for all pairs of proteins in our dataset; and we use the semantic similarity measures to
compute the similarity between all pairs of proteins.

In the evaluation, for each protein p we rank all other proteins pi based on their similarity
to p. We then consider positives as pairs (p, pk) which are PPIs included in our test set,
and we report hits (recall) at ranks 10 and 100, mean rank at which the PPIs are found,
and the ROCAUC (using micro-averages per protein). Results are separated in Raw and
Filtered; Raw results evaluate all pairs of proteins while Filtered results evaluate all pairs
of proteins except the pairs that are included in the training or validation sets. Filtered
results are usually better since training pairs are not considered in the evaluation. We
made Jupyter Notebooks available for all our experiments, and Table 5 summarizes the
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results for yeast and Table 6 for human; all results in these tables can be reproduced using
the Jupyter Notebooks.

Overall, while our results are by no means a comprehensive evaluation and are limited
to the task of predicting PPIs, we can obtain some information from our experiments.
Traditional semantic similarity measures, in particular Resnik’s measure [52], performs
well across many evaluations, in particular in recall at the first ranks, and often has better
performance than ontology embedding methods; this property is also of importance in
other applications where Resnik’s measure performs better than most other measures [30,
57]. Moreover, exploiting more of the axioms generally yields better results as can be
seen when comparing EL Embeddings with most other methods. Furthermore, exploiting
longer, or more indirect, relations, either through random walks or through utilizing the
semantics, usually improves results over methods that are based on local properties or
simply adjacency.

One experiment we did not perform here is to use the embeddings as part of a supervised
machine learning model to predict the associations; such an approach has the potential to
drastically improve the predictive performance results [30, 31], depending on the chosen
machine learning model [23]. While we do not report on the use of embeddings for super-
vised learning here, we include an example of using the ontology embeddings in a Siamese
neural network within the executable notebooks we provide.

7 Limitations and future work

Machine learning using ontologies involves a set of emerging techniques that have their
roots in computer science and major applications in the life sciences where a large amount
of ontologies have been developed and are applied to characterize data. Currently, several
methods that allow background knowledge to be used by machine learning models are
based on knowledge graphs and graph embeddings, and while these methods can be very
successful, they lack the ability to utilize the model-theoretic semantics underlying ontolo-
gies. Ontologies, and representation artifacts based on similar formalisms, have the ability
to represent more complex forms of knowledge, including using quantifiers, intersection,
negation, and the ability to represent inconsistent knowledge. Strong negation, for exam-
ple, is crucial in constraining search and cannot be substituted with the limited form of
negation that is sometimes applied in knowledge graphs (i.e., the closed world assumption).
However, while ontologies are able to express strong negation and other complex facts or
rules, most ontology embedding methods are not yet able to adequately utilize them. Most
syntactic and graph-based approaches do not interpret negation as constraints, or use any
of the semantics associated with it, and can therefore not use negation to restrict search;
and while model-based embeddings can utilize negation as part of the embedding they do
not interact with the similarity measures or machine learning models that utilize them.

Several approaches aim to systematically integrate symbolic representations and machine
learning are not yet widely applied to life science data and knowledge. Neuro-symbolic
systems and neuro-symbolic integration [82, 83] provide a framework in which machine
learning is integrated with symbolic representations; in the neuro-symbolic cycle, deduc-
tive inference is applied on the symbolic representations; embeddings project these rep-
resentations into some space where they can be combined with data and where machine
learning and optimization methods can be applied; and a knowledge extraction process
maps the results back into the symbolic space. How to implement either of these projec-
tions is an active research area several of which we have reviewed here, and neuro-symbolic
systems will put them together into a single framework. There is also recent interest in
implementing the entire neuro-symbolic cycle, for example in vision [84]; however, with the
rich set of formalized knowledge bases and the large amounts of data produced in the life
sciences, we expect these systems to have major impact on how AI is applied in biology
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and biomedicine in the future.
Approaches to improve learning with ontologies while preserving and exploiting their

semantics do not only include investigating embeddings into vector spaces (which, arguably,
are mainly inspired by the needs of modern machine learning systems) but also approaches
based on formal languages and logic, including Markov logic [85] and probabilistic inference
[86]. Similarly, for extracting knowledge from data, new paradigms such as ‘reinforcement
learning as inference’ [87] are increasingly being applied to generate explanations and
representations that can be verified for consistency with background knowledge [88–90].

One main limitation of all the approaches we discussed here is their inability to con-
sider quantitative information or data. In all cases, ontologies are used to model quali-
tative information and then possibly combined with other quantitative information after
an embedding is generated; methods that can jointly learn on ontologies and quantitative
information mapped to them include graph neural networks which will likely see increasing
adoption in the coming years.
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ceedings. Aachen, Germany: CEUR-WS.org.

Rodriguez-Garcia, M. A. and Hoehndorf, R. (2018). “Inferring ontology graph structures
using OWL reasoning”. In: BMC Bioinformatics 19.1, p. 7.

Harispe, S. et al. (2014). “The semantic measures library and toolkit: fast computation of
semantic similarity and relatedness using biomedical ontologies”. In: Bioinformatics
30.5, pp. 740–742.

Zhu, G. and Iglesias, C. A. (2017). “Computing Semantic Similarity of Concepts in Knowl-
edge Graphs”. In: IEEE Transactions on Knowledge and Data Engineering 29.1, pp. 72–
85.

Couto, F. M. and Lamurias, A. (2019). “Semantic Similarity Definition”. In: Encyclopedia
of Bioinformatics and Computational Biology. Ed. by S. Ranganathan, M. Gribskov,
K. Nakai, et al. Oxford: Academic Press, pp. 870–876.

Holter, O. M., Myklebust, E. B., Chen, J., et al. (2019). “Embedding OWL ontologies with
OWL2Vec”. In: CEUR Workshop Proceedings. Vol. 2456, pp. 33–36.

Chen, J., Althagafi, A., and Hoehndorf, R. (2020). “Predicting candidate genes from phe-
notypes, functions, and anatomical site of expression”. In: bioRxiv.

Alshahrani, M., Khan, M. A., Maddouri, O., et al. (2017). “Neuro-symbolic representation
learning on biological knowledge graphs”. In: Bioinformatics 33.17, pp. 2723–2730.

Ristoski, P. and Paulheim, H. (2016). “RDF2Vec: RDF Graph Embeddings for Data Min-
ing”. In: International Semantic Web Conference.

Grover, A. and Leskovec, J. (2016). “Node2vec: Scalable Feature Learning for Networks”.
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’16. San Francisco, California, USA: Association
for Computing Machinery, pp. 855–864.

Ali, M., Jabeen, H., Hoyt, C. T., et al. (2019). “The KEEN Universe: An Ecosystem for
Knowledge Graph Embeddings with a Focus on Reproducibility and Transferability”.
In: Proceedings of the International Semantic Web Conference (ISWC) 2019.

Ali, M., Hoyt, C. T., Domingo-Fern?ndez, D., et al. (2019). “BioKEEN: a library for
learning and evaluating biological knowledge graph embeddings”. In: Bioinformatics
35.18, pp. 3538–3540.

Fey, M. and Lenssen, J. E. (2019). “Fast Graph Representation Learning with PyTorch
Geometric”. In: ICLR Workshop on Representation Learning on Graphs and Mani-
folds.

Smaili, F. Z., Gao, X., and Hoehndorf, R. (2018). “Onto2vec: joint vector-based represen-
tation of biological entities and their ontology-based annotations”. In: Bioinformatics
34.13, pp. i52–i60.

— (2019). “Opa2vec: combining formal and informal content of biomedical ontologies to
improve similarity-based prediction”. In: Bioinformatics 35.12, pp. 2133–2140.

18

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.07.082164doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.07.082164
http://creativecommons.org/licenses/by/4.0/


Kulmanov, M., Liu-Wei, W., Yan, Y., et al. (2019). “EL Embeddings: Geometric con-
struction of models for the Description Logic EL++”. In: Proceedings of IJCAI 2019.
IJCAI.

Kulmanov, M., Khan, M. A., and Hoehndorf, R. (2018). “DeepGO: predicting protein
functions from sequence and interactions using a deep ontology-aware classifier”. In:
Bioinformatics 34.4, pp. 660–668.
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Köhler, S., Schulz, M. H., Krawitz, P., et al. (2009). “Clinical Diagnostics in Human Ge-
netics with Semantic Similarity Searches in Ontologies”. In: The American Journal of
Human Genetics 85.4, pp. 457–464.
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