1 Skin Delivery of Modified Vaccinia Ankara Viral Vectors Generates Superior T

2 Cell Immunity Against a Respiratory Viral Challenge

- 3 Youdong Pan¹, Luzheng Liu¹, Tian Tian¹, Jingxia Zhao^{1,2}, Chang Ook Park¹, Serena Y. Lofftus¹,
- 4 Claire A. Stingley¹, Shenglin Mei², Xing Liu³, and Thomas S. Kupper^{1,4,*}
- ⁵ ¹Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women's
- 6 Hospital, Boston, Harvard Medical School, Boston, Massachusetts, USA.
- ⁷ ²Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA.
- ⁸ ³The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and
- 9 Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
- ⁴Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts, USA.
- 11
- 12 *Correspondence should be addressed to <u>tkupper@bwh.harvard.edu</u>
- 13

14

15 Abstract

Modified Vaccinia Ankara (MVA) was recently approved as a Smallpox vaccine. Transmission 16 of Variola is by respiratory droplets, and MVA delivered by skin scarification (s.s.) protected 17 mice far more effectively against lethal respiratory challenge with VACV than any other route of 18 delivery, and at much lower doses. Comparisons of s.s. with intradermal, subcutaneous or 19 20 intramuscular routes showed that MVA_{OVA} s.s.-generated T cells were both more abundant and transcriptionally distinct. MVA_{OVA} s.s. produced greater numbers of lung Ova-specific CD8⁺ 21 T_{RM} and was superior in protecting mice against lethal VACV_{OVA} respiratory challenge. Nearly 22 23 as many lung T_{RM} were generated with MVA_{OVA} s.s. compared to direct pulmonary immunization with MVA_{OVA}, and both routes vaccination protected mice against lethal 24 pulmonary challenge with VACV_{OVA}. Strikingly, MVA_{OVA} s.s.-generated effector T cells 25 exhibited overlapping gene transcriptional profiles to those generated via direct pulmonary 26 immunization. Overall, our data suggest that heterologous MVA vectors delivered via s.s. are 27 28 uniquely well-suited as vaccine vectors for respiratory pathogens like COVID-19. In addition, MVA delivered via s.s. could represent a more effective dose-sparing smallpox vaccine. 29

30

31	Vaccines against viral and bacterial pathogens have become a fundamental part of pediatric and
32	adult patient care ¹⁻⁴ . Once ubiquitous diseases like smallpox, polio, measles, tetanus, and
33	diphtheria have either been eliminated or substantially reduced in incidence by vaccination in
34	most of the industrialized world. Vaccination against seasonal influenza has been more
35	challenging, and vaccination against HIV has proven elusive ⁵⁻⁷ . Vaccines against emerging
36	diseases like Ebola, SARS, and MERS and most recently COVID-19 are the subject of intense
37	interest and widespread activity ⁸⁻¹⁰ . Most vaccines are administered by intramuscular or
38	subcutaneous injection. While readily accessible, skeletal muscle tissue is poorly adapted to
39	initiating immune responses, as is subcutaneous adipose tissue ¹¹ . In contrast, upper layers of the
40	skin are the site of continuous and multiple immune responses over a lifetime ¹² . Smallpox
41	vaccination through skin with Vaccinia virus (VACV) has been uniquely successful ^{2,11} .
42	The eradication of smallpox by worldwide epicutaneous immunization with VACV was
42 43	The eradication of smallpox by worldwide epicutaneous immunization with VACV was the greatest public health achievement of the 20 th century ² . Since that time, VACV has been
43	the greatest public health achievement of the 20 th century ² . Since that time, VACV has been
43 44	the greatest public health achievement of the 20 th century ² . Since that time, VACV has been employed as a vaccine vector in many settings ¹³ . However, its use has been limited by
43 44 45	the greatest public health achievement of the 20 th century ² . Since that time, VACV has been employed as a vaccine vector in many settings ¹³ . However, its use has been limited by unacceptable morbidity, particularly in recipients who are immunocompromised ¹⁴ . More
43 44 45 46	the greatest public health achievement of the 20 th century ² . Since that time, VACV has been employed as a vaccine vector in many settings ¹³ . However, its use has been limited by unacceptable morbidity, particularly in recipients who are immunocompromised ¹⁴ . More recently, Modified Vaccinia Ankara (MVA), a replication-deficient variant of VACV, has come
 43 44 45 46 47 	the greatest public health achievement of the 20 th century ² . Since that time, VACV has been employed as a vaccine vector in many settings ¹³ . However, its use has been limited by unacceptable morbidity, particularly in recipients who are immunocompromised ¹⁴ . More recently, Modified Vaccinia Ankara (MVA), a replication-deficient variant of VACV, has come into wider use ¹⁵ . Although it lacks ~10% of the parent genome ¹⁶ , it retains the immunogenicity
 43 44 45 46 47 48 	the greatest public health achievement of the 20 th century ² . Since that time, VACV has been employed as a vaccine vector in many settings ¹³ . However, its use has been limited by unacceptable morbidity, particularly in recipients who are immunocompromised ¹⁴ . More recently, Modified Vaccinia Ankara (MVA), a replication-deficient variant of VACV, has come into wider use ¹⁵ . Although it lacks ~10% of the parent genome ¹⁶ , it retains the immunogenicity of the parent virus and has just been approved by the FDA as a modern alternative for smallpox
 43 44 45 46 47 48 49 	the greatest public health achievement of the 20 th century ² . Since that time, VACV has been employed as a vaccine vector in many settings ¹³ . However, its use has been limited by unacceptable morbidity, particularly in recipients who are immunocompromised ¹⁴ . More recently, Modified Vaccinia Ankara (MVA), a replication-deficient variant of VACV, has come into wider use ¹⁵ . Although it lacks ~10% of the parent genome ¹⁶ , it retains the immunogenicity of the parent virus and has just been approved by the FDA as a modern alternative for smallpox preventative vaccination ¹⁷ . Like VACV, it is also being widely used as heterologous vaccine

53 century, delivery of VACV i.m. was ineffective at conferring protection against smallpox. In

contrast, development of a cutaneous "pox" lesions, achieved only after epicutaneous 54 immunization, was considered emblematic of successful protective vaccination, suggesting that 55 this mode of delivery was critically important¹⁴. In addition, smallpox vaccination was effective 56 in patients with agammagloblulinema, while VACV immunization had disastrous complications 57 in patients with T cell deficiency²⁰. This suggested that T cells were critically important for 58 protective immunity^{21,22}. Finally, Variola virus is transmitted via respiratory droplets, suggesting 59 an oropharyngeal-pulmonary mode of transmission²³. It is notable that murine models of 60 epicutaneous skin immunization with VACV generate memory T cell populations in both skin 61 and lung, and these lung memory T cells protect against lethal pulmonary challenge with this 62 virus¹¹. Intramuscular immunization with VACV in these models did not yield comparable 63 protection. This suggests that protection against smallpox is at least in part mediated by T 64 65 cells^{22,24}, and that skin immunization is an effective means of generating protective memory T cell populations in the lung¹¹. 66

In the present study, we asked whether immunization with MVA was more effective and more effective if delivered epicutaneously (s.s.) as compared to intramuscularly (i.m.). We also asked whether skin immunization with an MVA vector generated populations of antigen specific CD8⁺ T cells in lung as well as skin. In addition, epicutaneous immunization was compared to intradermal, subcutaneous, and intramuscular immunization in generated protective immunity against a lethal pulmonary challenge. Finally, we asked if T cell imprinting by skin draining and lung draining nodes was similar.

- 74
- 75
- 76

77 **Results**

Doses from 10^4 pfu to 10^7 pfu of MVA were used for epicutaneous immunization (s.s.), 78 and after 7 days, lymph node and spleen T cells were harvested and stimulated *in vitro* with 79 VACV infected splenocytes, after which IFN-y production was measured. All MVA doses led to 80 significant T cell IFN- γ production, with 10⁶ and 10⁷ pfu being equally potent (Fig. 1a,b). Other 81 groups of mice were immunized with these doses, and after 30 days these mice were challenged 82 on the skin with VACV. After 6 days, biopsies of the immunized sites were taken and VACV 83 DNA was measured by PCR. All immunization doses led to diminished VACV DNA at the 84 infected site (compared to unimmunized controls), but 10⁶ and 10⁷ pfu immunization showed 85 superior protection (Fig. 1c). Other groups of mice were immunized in an identical manner and 86 were subjected to lethal intranasal infection with VACV at day 30. All unimmunized mice 87 rapidly lost weight and succumbed to the infection. In contrast, 40% of 10⁴, 70% of 10⁵, and 88 100% of 10⁶ and 10⁷ pfu immunized mice survived the infection (Fig. 1d,e). Thus, 10⁶ pfu is the 89 lowest MVA dose that provides both strong T cell cytokine production as well as optimal 90 protective immunity against skin and pulmonary infection. 91

To test whether delivery of MVA to scarified skin could induce poxvirus-specific 92 immune responses, we inoculated C57BL/6 mice with MVA or Vaccinia Virus (VACV) by 93 scarification. By 7 days after inoculation, a pustular lesion resembling a "pox" reaction had 94 formed at the inoculation site in all the immunized mice. The pox lesions induced by MVA and 95 96 VACV skin scarification followed similar patterns of evolution (although with different size and kinetics), from macules to papules to vesicles and finally into pustules which ruptured and healed 97 over time with scars (Extended data, Fig. 1). MVA-induced pox reactions did heal more rapidly 98 99 than those induced by replication competent VACV (Extended data, Fig. 1). To determine the

100	safety of MVA in immunocompromised hosts, we next immunized immunodeficient Rag1-/-
101	mice with VACV and MVA, respectively, and followed the mice for several weeks. While both
102	groups of mice lost some weight over the first two weeks, MVA immunized mice rapidly
103	regained the weight and flourished over the next several weeks (Fig. 1g). In contrast, 100% of
104	the VACV immunized mice developed progressive weight loss and expanding cutaneous lesions
105	of VACV infection, ultimately requiring euthanasia (Fig. 1f-h). Thus, MVA can be administered
106	safely to mice wholly deficient in adaptive immunity. In another set of experiments, we
107	immunized Wild-type (WT) mice as well as mice deficient in either Langerhans cells (Langerin
108	DTA) or both Langerhans cells and langerin positive dermal dendritic cells (Langerin DTR +
109	DT), respectively. Prior to infection, mice were loaded with OT-1 cells and the immunizing virus
110	was MVA _{OVA} . Spleen and lymph nodes were harvested at days 10 and 30, skin was harvested at
111	day 30, and OT-1 T cells were counted. At day 10, $T_{\rm eff}$ cells were somewhat diminished in
112	Langerin DTA mice and more markedly diminished in Langerin DTR + DT mice (Fig. 1i). At
113	day 30, skin T_{RM} were significantly diminished in Langerin DTA mice and even more
114	diminished in Langerin DTR+DT mice (Fig. 1i). This pattern was also true for T cells bearing
115	markers of T_{CM} and T_{EM} . These data suggest that both LC and langerin positive dermal DC play
116	an additive role in optimal antigen presentation of MVA-encoded antigens to T cells.
117	We next compared the anatomical route of vaccine delivery on the T cell response to
118	MVA vaccination. Using CFSE OT-1 loaded mice, MVA _{OVA} was delivered by epicutaneous
119	infection (s.s.), or injected intradermally (i.d.), subcutaneously (s.c.), or intramuscularly (i.m.).
120	Draining lymph nodes were harvested at 60 hours and 5 days, and OT-1 cells were analyzed by
121	FACS. LN from s.s. immunized mice showed roughly 90% of OT-1 proliferating, and 60%
122	making IFN- γ , at 60 hours, with comparable numbers at 5 days (Fig. 2a,c). Vaccination by i.d.

123	was less effective, with 71% of OT-1 cells proliferating and 33% making IFN- γ at 60 hours, with
124	modest improvement at 5 days post infection (Fig. 2a,c). Both s.c. and i.m. showed poor OT-1
125	activation at 60 hours with some improvement at 5 days (Fig. 2a,c). When lymph node or spleen
126	OT-1 cells were stimulated with antigen, significantly more IFN- γ was produced by OT-1 cells
127	from mice vaccinated via s.s. compared to other routes (Extended data, Fig. 2). Vaccination via
128	i.d. was intermediate with regard to IFN- γ production, while s.c. and i.m. led to nearly four-fold
129	lower IFN-γ levels (Extended data, Fig. 2). In terms of absolute numbers of OT-1 cells
130	generated, s.s. was superior to all modes of vaccination, with i.d. being second and both i.m. and
131	s.c. far less effective (Fig. 2b,d). We next took OT-1 cells from the 5-day post-immunization
132	time point and performed transcriptional profiling on OT-1 cells generated after s.s., i.d., s.c., or
133	i.m., respectively. While there was some overlap, there were surprisingly many differences
134	between T cells generated by different routes of immunization, even at the same day post
135	immunization (Fig. 2e, Extended data, Fig. 3). Principal component analysis revealed that T_{eff}
136	generated by s.s. and i.m. were transcriptionally quite distinct. T cells generated after s.s., i.d.,
137	and s.c., were more similar but still quite distinct from one another. T cells generated by s.s. and
138	i.d. clustered closely but were still clearly not overlapping. Moreover, s.s generated most
139	abundant skin infiltrating cells at day 5 post immunization (Fig. 2g).
140	We next examined memory OT-1 T cells generated at 45 days by these four routes of
141	immunization. With regard to T_{CM} , s.s. generated the largest population of these cells, roughly
142	twice as many as i.m. (Fig. 3a). The difference was even more striking when T_{EM} were
143	examined; here, s.s. generated at least 3-fold more cells than did other modes of immunization,
144	with s.c. being least effective (Fig. 3b). T_{RM} were then examined, in both skin and lung.
145	Immunization via s.s. generated 3-fold more skin T_{RM} , and more than twice as many T_{EM} , with

146	i.d. being the second most effective route (Fig. 3-f). Because MVA is often delivered i.m., it is
147	important to note that the number of T_{RM} generated by this route was more than 4-fold lower
148	than by s.s. (Fig. 3 c-f). Transcriptional profiling showed that at 45 days, OT-1 T_{EM} 's still
149	showed non-overlapping PCA clusters from s.s, i.d., s.c., and i.m. immunized mice. In contrast,
150	T_{CM} from the same mice showed transcriptional profiles that were more tightly clustered,
151	indicating that differences between the groups were minimal (Fig. 2e). Skin T_{RM} could not be
152	compared because insufficient 45-day T_{RM} were generated by i.m. and s.c. immunization.
153	In subsequent experiments, we examined groups of mice vaccinated by these different
154	routes for their ability to respond to a lethal intranasal challenge of VACV _{OVA} . Groups of ten
155	mice assayed 45 days after initial vaccination were subjected to intranasal challenge, and mice
156	were weighed daily after vaccination. Mice that lost >20% of body weight were sacrificed.
157	Figure 3g and h show that naïve mice universally succumbed to the lethal infection, while mice
158	immunized epicutaneously (s.s.) showed minor transient weight loss but complete survival. In
159	contrast, mice vaccinated i.d., s.c., or i.m. lost substantial weight (Fig. 3g), and while 60% of i.d.
160	vaccinated mice survived, only 40% and 30% of mice vaccinated i.m. and s.c., respectively,
161	survived (Fig. 3h). These results are consistent with the superior production of different memory
162	T cell subsets after vaccination by s.s
163	We were struck by the capacity of skin immunization via s.s. to generate both skin T_{RM}

and lung T_{RM}. While skin and gut T cell trafficking have been studied extensively, lung T cell
 trafficking has been studied less comprehensively. We immunized CFSE OT-1 loaded mice with
 MVA_{OVA} via three routes: s.s. to assess skin homing, intraperitoneally (i.p.) to assess gut
 homing, and intra-tracheally (i.t.) to assess lung homing. At 60 hours, T cells were collected
 from the respective draining lymph nodes (inguinal for skin, mesenteric for gut, and mediastinal

169	for lung) and were sorted based on CFSE expression into cells that had not divided (P0) or had
170	divided once through five times (P1-P5; Fig. 4a). Cells were subjected to transcriptional
171	profiling, and results were analyzed bioinformatically. By principal component analysis, P0 cells
172	from skin, gut, and lung homing nodes clustered near each other (Fig. 4b). However, as early as
173	P1 and clearly by P2, OT-1 cells activated in different nodes diverged significantly in
174	transcriptional profile. In particular, OT-1 cells from mesenteric nodes were quite distinct from
175	OT-1 cells from inguinal and mediastinal nodes (Fig. 4b). Interestingly, P1-P5 cells from
176	inguinal (skin draining) node clustered closely with P1-P5 cells from mediastinal (lung draining)
177	nodes, suggesting similar pathways involved in skin and lung homing imprinting (Fig. 4b).
178	Excluding genes upregulated in all T cell groups, lung and skin homing T cells shared
179	upregulation of 150 genes, compared to 73 and 90 upregulated in only skin or only lung,
180	respectively (Fig. 4c, d). In contrast, only 11 upregulated genes were shared between skin and
181	gut, and only 36 between lung and gut. Examination of chemokine receptors and integrin genes
182	showed homology between lung and skin, while gut immunization showed unique upregulation
183	of CCR9, $\alpha 4$ and $\beta 7$ integrins (Fig. 4e). These data suggest a very similar pattern of gene
184	expression of T cells activated in skin versus lung draining LN, and a pattern in gut draining LN
185	that is very different from lung and skin draining LN.
186	We next directly compared the capacity of skin (s.s.), lung (i.t.), and gut (i.p.)
187	immunization with MVA _{OVA} to generate lung T_{RM} . Mice were immunized by the above routes
188	and after 45 days, lung T_{RM} were analyzed. As expected, lung immunization resulted in the
189	highest number of lung T_{RM} , but skin immunization by s.s. generated more than half as many

190 T_{RM} in lung (Fig. 4f). In contrast, i.p. immunization resulted in less than 10% of the lung T_{RM}

191 compared to lung immunization (Fig. 4f). Like skin T_{RM} , lung T_{RM} were CD69⁺, CD103⁺,

- 192 CD62L⁻, KLRG1⁻, and expressed E and P selectin ligands (Extended data, Fig. 4). A
- 193 companion cohort of mice were subjected to lethal intranasal challenge with VACV_{OVA}. Mice
- immunized i.t. or s.s. showed mild weight loss but 100% recovery and survival (Fig. 4g,h). Mice
- immunized i.p. showed more severe weight loss, and only 60% survived the infectious challenge
- 196 (Fig. 4g,h). In another series of experiments, i.t. immunization was compared to s.s.
- 197 immunization with regard to generation of skin T_{RM}. While s.s. was most efficient at generating
- skin T_{RM} , lung immunization via i.t. generated 50% of the skin T_{RM} compared to s.s.
- immunization (Extended data, Fig. 5). These data confirm that lung immunization can generate
- abundant skin T_{RM} , and skin immunization can generate abundant lung T_{RM} .

201

202 Discussion

Smallpox vaccination via epidermal disruption using Vaccinia virus (VACV) provided 203 broad and effective protective immunity against Smallpox caused by Variola major, and led to 204 the eradication of this devastating infectious disease¹⁴. MVA is derived from VACV but has lost 205 10% of the parent genome, including several immune inhibitory genes that block CC 206 chemokines, IFN α/β , IFN γ , TNF α , and STING²⁵, and does not replicate in mammalian cells¹⁸. 207 208 In addition to its use as a smallpox vaccine, MVA has been used extensively as a heterologous vaccine vector¹⁵, although we were unable to find any description of it being delivered through 209 210 skin scarification. Rather, intramuscular or subcutaneous injection appear to be the preferred routes. There are no clear reasons that MVA has not been delivered via s.s., other than the 211 assumption that replication was required for this route of administration. Here, we show that 212 MVA delivered by s.s. can provoke a potent immune response at doses much lower than those 213 used for i.m. and s.c. injection. In a direct comparison of delivery via i.m., s.c., and i.d. routes, 214 s.s. administration of lower doses of MVA provide superior protective immunity against a lethal 215 VACV challenge. These data suggest that like VACV, MVA delivered by s.s. provides a potent 216 217 and durable immune response. We found that both Langerhans cells and CD207+ dermal dendritic cells were both required for optimal immunization via this route. In contrast to VACV, 218 mice deficient in adaptive immunity could be safely immunized via s.s. with MVA, supporting 219 220 the safety of this vector in immunocompromised hosts. One other advantage of the s.s. mode of delivery is dose sparing-doses of MVA too low to elicit immune response i.m. are quite 221 immunogenic when delivered by s.s. 222 When used as a heterologous vaccine vector encoding for a T cell antigen, MVA_{OVA} 223

delivered s.s. provided robust early activation of OVA-specific T cells (OT-1) in skin draining

lymph nodes. Interestingly, early CD8⁺ effector T cells in skin draining lymph nodes at day 5 225 showed different patterns of gene expression after immunization s.s., i.d., s.c., and i.m., 226 227 respectively. T cells generated by i.m. immunization were most distinct transcriptionally from those generated by s.s. immunization. When T cells were harvested from spleens at day 45 after 228 immunization, cells with T_{EM} markers retained distinct transcriptional profiles, with i.m. 229 230 generated T_{EM} cells being most distinct from s.s. generated T_{EM} cells. Day 45 memory T cells expressing CD62L (T_{CM}) showed smaller transcriptional differences across immunization routes, 231 232 but s.s. generated T_{CM} cells were still readily distinguished from those generated by i.m. immunization. These surprising data suggest that there are qualitative differences in T_{eff} and T_M 233 cells generated by immunization route that are evident by day 5 and persist at day 45. 234 There were also quantitative differences in T_M generation depending on route of 235 administration. Immunization via s.s. generated greater numbers of both T_{EM} and T_{CM} at 45 days 236 after immunization. When skin T_{RM} were measured, s.s. generated more T cells than other routes, 237 238 with i.m. being least efficient. Because lethal intranasal challenge with VACV results in death from pulmonary inflammation, we also measured lung T_{RM} . Strikingly, s.s. generated higher 239 numbers of lung T_{RM} than other routes, consistent with previous reports^{11,26}, with i.m. generating 240 241 fewest lung T_{RM} . T_{RM} from skin and lung both expressed CD69 and CD103, with expression of E- and P-selectin ligands detectable as well. When animals were challenged by lethal intranasal 242 243 infection with VACV_{OVA}, only mice immunized by s.s. showed minimal weight loss and 100% 244 survival. Mice immunized by all other routes showed greater morbidity and some mortality, with i.m. immunization being least effective. Whether the ability of s.s. immunized mice to uniformly 245 survive the intranasal challenge of VACV_{OVA} was due to higher numbers of lung T_{RM}, 246 247 circulating T_{EM} and T_{CM}, or qualitatively different T_{eff} and memory T cells cannot be determined

from these data. However, this suggests that the original method of smallpox vaccination— s.s.
administration—appears to be uniquely effective at generating robust protective immunity
against airway challenge.

Because s.s. immunization was so efficient at generating lung T cells and protective 251 immunity against a pulmonary infectious challenge, we compared skin infection with direct lung 252 253 infection, and assess T_{eff} in skin and lung draining LN, respectively, using i.p. injection and mesenteric nodes as a control. Thus, three routes of immunization were compared-s.s., 254 intratracheal (i.t.), and intraperiotoneal (i.p.), and T_{eff} from draining lymph nodes—inguinal, 255 mediastinal, and mesenteric, respectively--- were compared by transcriptional profiling. While 256 proliferating T_{eff} from skin graining and gut draining nodes rapidly diverged, proliferating T_{eff} 257 258 from skin draining and lung draining nodes showed significant overlap over time. Both $\alpha 1\beta 1$ intergrin, CCR4, and CCR8 were preferentially elevated in T cells from skin and lung draining 259 nodes, and $\alpha 4\beta 7$ and CCR9 were preferentially upregulated in mesenteric lymph nodes, 260 consistent with previously reported data²⁷⁻²⁹. When lung T_{RM} were examined after 45 days, both 261 skin and lung infection generated abundant lung T_{RM}, while i.p. immunization was less efficient 262 at generating these cells. Protection against lethal intranasal challenge was complete in skin and 263 lung immunized mice, but incomplete after i.p. immunization. These data suggest that there is 264 substantial overlap in T cells imprinted by skin and lung draining lymph nodes and suggests that 265 skin immunization is well-suited at generating T cells with lung tropic properties. 266

Two important conclusions can be drawn from this study that are relevant to human disease. First, immunization with MVA generates powerful immunity, but like VACV the most potent local and systemic immunity generated occurs after superficial skin immunization (s.s.) that involves epidermal disruption. The dose of MVA used in s.s. delivery can be much lower

271	than required in muscle/i.m. delivery. This suggests that doses of MVA being stockpiled in
272	anticipation of a dystopian future smallpox attack may protect orders of magnitude for more
273	people if delivered s.s. instead of MVA. The second conclusion is that MVA delivered by s.s. is
274	a very effective way of generating protective T_{RM} in lung, in addition to a more robust circulating
275	T cell response. MVA vaccines are being developed for respiratory pathogens, including
276	influenza A and respiratory syncytial virus ^{30,31} , but these are being tested only by i.m. or s.c.
277	injection. Our data strongly suggests that delivering these vaccines via s.s. may generate even
278	more effective protective immunity to pathogens that infect lung. Whether MVA encoding for
279	Coronavirus genes and delivered s.s. could provide protective immunity against COVID-19 is an
280	intriguing question that we are pursuing presently.
281	
282	Methods
283	Methods and associated references are available in the online version of the paper.
284	Acknowledgements
285	We thank Dr. Mike Seaman (Beth Israel Deaconess Medical Center, Boston, MA) for providing
286	the initial stock of MVA, Dr. Bernard Moss (NIH) for providing the initial stocks of VACV.
287	This work was supported by grants R01 AI127654 to Dr. T. S. Kupper from National Institutes
288	of Health/NIAID and R01 AR065807 from the National Institutes of Health/NIAMS.
289	Supplementary Information
290	Supplementary Information is linked to the online version of the paper.
291	Competing interests statement
292	The authors declare that they have no competing financial interests.

293 Figure Legends

294 Figure 1. MVA immunization via skin scarification (s.s.) elicits dose-dependent anti-

295 vaccinia immune response. a-b. IFN-γ secretion by vaccinia-specific T cells isolated from

draining lymph nodes (a) or spleens (b) at 7 days post MVA infection at indicated dose. c.

297 Quantitative real time PCR (qRT-PCR) analysis of skin viral load at 6 days post re-infection.

298 Mice were immunized with the indicated doses of MVA via s.s. 45 days later, mice were re-

challenged with 1.8×10^6 pfu vaccinia virus (VACV). Then 6 days later, skin tissues were

300 harvested and processed to qRT-PCR. **d-e.** Body weight (BW) (d) and survival measurements (e)

301 of WR-VACV re-challenged mice that were immunized previously with MVA at indicated dose

45 days earlier. **f.** Photographs of pox lesion in Rag1^{-/-} mice taken on day 4, 7, 14 and 28 post-

immunization with the same amount (1.8 x 10^6 pfu) of MVA or VACV. g-h. Immunized Rag1^{-/-}

mice were monitored for BW change (g) and survival (h) for up to 12 weeks after immunization

with the same amount (1.8 x 10^6 pfu) of MVA or VACV. i. Quantification of effector T cell (T_{eff},

day 5), central memory (T_{CM}, day 45), effector memory (T_{EM}, day 45) or tissue resident memory

 $(T_{RM}, day 45)$ T cells post MVA infection. Naïve OT-I Thy1.1⁺ cells were transferred into

308 Thy 1.2^+ recipient mice one day before mice were infected with 1.8×10^6 pfu MVA-Ova. Then at

different time points post infection, OT-I cells were isolated from lymph nodes (T_{eff} , T_{CM} , T_{EM})

or skin (T_{RM}) and analyzed by flow cytometry. a-c. Data is representative of three independent

experiments. Symbols represent individual mice (n = 5 mice/group). c-d. Unimmunized (UI)

mice were included as controls. Graphs show mean \pm s. d., ns = not significant, *p < 0.05, **p <

313 0.01.

Figure 2. Delivery of MVA via s.s. generates T cells that are both quantitatively more

315 abundant and qualitatively distinct from those generated from i.d., s.c., i.m.. a-d. Flow

316	cytometric analysis (a, c) and quantification (b, d) of OT-I cell proliferation in draining lymph
317	nodes of recipient mice at 60 hours (a, b) and 5 days (c, d) post MVA infection via different
318	routes. CFSE-labeled naïve OT-I Thy1.1 ⁺ cells were transferred into Thy1.2 ⁺ recipient mice one
319	day before mice were infected with 1.8×10^6 pfu MVA-Ova via indicated infection routes. e.
320	Principal component analysis (PCA) of gene-expression for T cells generated by MVA infection
321	via different routes. Naïve T cells (T_N) were sorted from the peripheral lymph nodes of naïve
322	OT-I mice. Effector T cells (T_{eff}) were sorted from draining lymph nodes at 5 days post
323	infection. Central memory T cells (T_{CM}) and effector memory T cells (T_{EM}) were sorted from the
324	spleen of mice at 45 days post infection. Each dot represents an individual experiment wherein
325	mRNA was pooled from 15-20 mice from 3-4 independent biological groups (5 mice/group). f.
326	Heatmap of differentially expressed genes selected from a pair-wise comparison between s.s.
327	generated T_{eff} cells and naïve T cells. g. Quantification of skin infiltrating T cells at day 5 post
328	1.8×10^6 pfu MVA-Ova infection via indicated routes. a, c, Data are representative of three
329	independent experiments (n = 5 mice per group). Graphs show mean \pm s. d. of 5 mice per group.
330	*p < 0.05, **p < 0.01.

331 Figure 3. Delivery of MVA via s.s. is superior in generating memory T cells and is superior in protecting mice against lethal respiratory challenge. a-b. Quantification of OT-I T_{CM} and 332 T_{EM} cells from spleen of mice at 45 days post MVA infection via indicated routes. c-f. Flow 333 cytometric analysis (c, e) and quantification (d, f) of OT-I T_{RM} cells isolated from skin (c, d) or 334 lung (e, f) tissue at 45 days post MVA infection via indicated routes. g-h. Body weight (BW) (g) 335 and survival measurements (h) of WR-VACV re-challenged mice that were previously 336 immunized with MVA via indicated routes 45 days earlier. OT-I WT cells were adoptively 337 transferred into μ MT mice before mice were infected with 1.8×10^6 pfu MVA via indicated 338

routes. 45 days later, mice were re-challenged with a lethal dose of WR-VACV by intranasal 339 infection. c, e, Data are representative of three independent experiments (n = 5 mice per group). 340 341 Graphs show the mean \pm s. d. of 5 mice per group. Un-immun. = un-immunized. **p < 0.01. 342 Figure 4. MVA s.s. generates more than half number of lung T_{RM} compared to intratracheal (i.t.) and is sufficient to protect mice against lethal respiratory challenge. a. Flow 343 cytometric analysis of OT-I cell proliferation in draining lymph nodes at 60 hours post MVA 344 infection via s.s.. CFSE-labeled naïve OT-I Thy1.1⁺ cells were transferred into Thy1.2⁺ recipient 345 mice one day before mice were infected with 1.8×10^6 pfu MVA-Ova. **b**. PCA of gene-346 expression data for nineteen CD8⁺ T cell populations based on CFSE signal and different 347 infection routes. Each dot represents an individual experiment wherein mRNA was pooled from 348 349 15-20 mice from 3-4 independent biological groups (5 mice/group). c. Heatmap of differentially 350 expressed genes selected from a pair-wise comparison between s.s. and intra-peritoneal (i.p.) activated T cells. d. Venn diagram analysis of genes differentially expressed in pairwise 351 comparisons between s.s., i.t. and i.p. activated T cells relative to T_N (fold change cutoff, ≥ 2). e, 352 353 Quantitative real-time PCR (qRT-PCR) analysis of cell homing molecule gene expression in s.s., i.t. and i.p. activated T cells. f. Flow cytometric analysis (left) and quantification (right) of lung 354 T_{RM} cells at day 45 post MVA infection via indicated routes. g-h. Body weight (BW) (g) and 355 356 survival measurements (h) of WR-VACV re-challenged mice that were immunized previously with MVA via indicated routes 45 days earlier. OT-I WT cells were adoptively transferred into 357 μ MT mice before mice were infected with 1.8×10^6 pfu MVA via indicated routes. 45 days later, 358 359 mice were re-challenged with a lethal dose of WR-VACV by intranasal infection. Graphs show the mean \pm s. d. of 5 mice per group. Un-immun. = un-immunized. ns = not significant, *p < 360 0.05, **p < 0.01.361

362 Extended Data Figure Legends

363 Extended Data Figure 1. MVA skin scarification induced smaller pox lesions that healed

364 significantly faster compared to VACV skin scarification in immunocompetent mice.

365 C57BL/6 mice were immunized with 1.8 X 10⁶ pfu MVA or VACV by skin scarification.

366 Photographs of pox lesion were taken on day 4, 7, 14 and 28 post-immunization.

367 Extended Data Figure 2. Delivery of MVA via s.s. generates stronger cellular responses

compared to i.d., s.c., and i.m. infection routes. C57BL/6 mice were immunized with 1.8 X

- 10^6 pfu MVA via indicated routes. Activated T cells in draining lymph nodes (a) and spleen (b)
- 370 were isolated at 7 days post infection, and T cell response against VACV was measured based on
- 371 IFN- γ secretion. Symbols represent individual mice (n = 5 mice/group). *p < 0.05, **p < 0.01.

372 Extended Data Figure 3. Delivery of MVA via s.s. generates T cells that are qualitatively

distinct from those generated from i.d., s.c., i.m.. a-b. Venn diagram analysis of genes up-

374 regulated (a) or down-regulated (b) in pairwise comparisons between T cells activated via MVA

375 s.s., i.d., s.c., i.m. (day 5) relative to that of T_N. **c-d.** Fold change analysis of genes shared among

376 s.s., i.d., s.c. and i.m. activated T cells (day 5) relative to that of T_N. c, 146 shared up-regulated

- genes, d, 41 shared down-regulated genes. e. Quantitative real-time PCR (qRT-PCR) analysis of
- cell homing molecule gene expression in s.s., i.d., s.c. and i.m. activated T cells (day 5) relative
- to that of T_N. ns = not significant, *p < 0.05, **p < 0.01.

380 Extended Data Figure 4. Phenotyping of tissue-resident memory T cell surface marker on

- ³⁸¹ lung CD8⁺ T_{RM} cells generated by MVA infection via skin scarification, intra-tracheal
- 382 administration or intra-peritoneal injection. Flow cytometric analysis of T cell proliferation
- and homing receptor expression on OT-I cells residing in lung at 45 days post MVA infection.
- Naïve OT-I Thy1.1⁺ cells were transferred into Thy1.2⁺ recipient mice one day before mice were

385	infected with 1.8×10^6 pfu MVA-Ova by s.s., i.t. or i.p At 45 days after infection, proliferation
386	and tissue-homing receptor expression of OT-I T_{RM} cells isolated from lung tissue were analyzed
387	by flow cytometry. Data are representative of three independent experiments ($n = 5$ mice per
388	group). ESL, E-selectin ligand.
389	Extended Data Figure 5. Skin T _{RM} cells generated by MVA infection via skin scarification,
389 390	Extended Data Figure 5. Skin TRM cells generated by MVA infection via skin scarification, intra-tracheal administration or intra-peritoneal injection. Flow cytometric analysis and

394 Online Methods

395 Mice

Wide-type (WT) C57BL/6, CD45.1⁺, Thy1.1⁺, Rag1^{-/-}, µMT, Langerin-DTA, Langerin-DTR 396 mice were purchased from Jackson Laboratory. Thy1.1⁺ Rag1^{-/-} OT-I mice were maintained 397 through routine breeding in the animal facility of Harvard Institute of Medicine, Harvard 398 Medical School. Animal experiments were performed in accordance with the guidelines put forth 399 by the Center for Animal Resources and Comparative Medicine at Harvard Medical School. 400 Mice were randomly assigned to each group before start and experiments were performed 401 402 blinded with respect to treatment. For survival experiments, mice that had lost over 25% of original BW were euthanized. 403

404 Viruses

405 An attenuated strain (VACV) of WR-VACV was used in some experiments as control vaccine

406 and was a kind gift from Dr. Bernald Moss (National Institutes of Health, Bethesda, MD). Wild-

407 type WR-VACV were purchased from American Tissue Culture Company (ATCC). The virus

408 stocks were expanded and tittered in Hela cells and CV-1 cells (ATCC) by standard procedures.

409 ACAM3000MVA (Acambis Modified Vaccinia Ankara) (MVA) and DF-1 Cells were gifted by

410 Dr. Michael Seaman (Beth Israel Deaconess Medical Center, Boston MA). MVA stocks were

411 expanded and titrated in DF-1 cells as previously described (39, 40).

412 Virus Infection

413 Mice were immunized with the MVA or VACV at the indicated doses by skin scarification as

414 previously described. Alternatively, mice were immunized by s.c., i.d., or i.m. injection at the

415 indicated dose. For secondary challenge, memory mice were challenged intranasally with a lethal

416	dose of WR-VACV (2 X 10^6 pfu in 20 µl of PBS) at 6 to 20 weeks post immunization. The
417	change of BW and survival of mice were monitored daily following challenge for up to 12 days.
418	In vitro restimulation assay
419	Poxvirus-specific T cell response against poxvirus was assessed at day 7 post challenge. Single
420	cell suspension prepared from draining lymph nodes or spleens was re-suspended in T cell
421	medium (RPMI containing 10% FBS, 2mM 2- β mercaptoethanol, 1X nonessential amino acid,
422	1X sodium pyruvate), and were used as effector cells. For target cell preparation, naïve
423	splenocytes was infected at 37 °C for 5 h with WR-VACV at a MOI of 5 in RPMI medium
424	supplemented with 10% FCS. After infection, the cells were washed 3 times with PBS, and co-
425	cultured (5 x 105 cells/well) with effector cell at a 1:1 ratio in 96 well plate in T cell medium at
426	37 °C for 48 h. Uninfected naïve splenocytes co-cultured with target cells were used as negative
427	controls. IFN- γ concentration in the culture supernatants were measured by ELISA using anti-
428	IFN-γ mAb pairs (BD Pharmingen) according to manufacturer's protocol.

429 **Preparation of cell suspensions**

430 Lymph nodes and spleens were harvested and pressed through a 70-μm nylon cell strainer to

431 prepare cell suspensions. Red blood cells (RBC) were lysed using RBC lysis buffer (00-4333-57;

432 eBioscience). Skin tissue was excised after hair removal, separated into dorsal and ventral

433 halves, minced, and then incubated in Hanks balanced salt solution (HBSS) supplemented with

434 1 mg/ml collagenase A (11088785103; Roche) and 40 μg/ml DNase I (10104159001; Roche) at

435 37 °C for 30 min. After filtration through a 70-μm nylon cell strainer, cells were collected and

436 washed three times with cold PBS before staining.

437 Mouse adoptive transfer and treatment

438	Lymph nodes were collected from naïve female donor mice at age of 6-8 weeks. T cells were
439	purified by magnetic cell sorting using a mouse $CD8\alpha^+$ T-cell isolation kit (130-104-075;
440	Miltenyi Biotec) or a mouse CD4 ⁺ T-cell isolation kit (130-104-454; Miltenyi Biotec), according
441	to the manufacturer's protocols. T cells were then transferred intravenously into female recipient
442	mice at a total number of 5×10^5 . T cells were labeled with carboxyfluorescein succinimidyl
443	ester (CFSE, 65-0850; eBioscience) before co-transfer, where indicated. In some experiments,
444	mice were treated daily with FTY720 (10006292; CAYMAN, 1 mg/kg) by intraperitoneal
445	injection.
446	Microarray, data analysis and quantitative real-time PCR
447	For each group of microarray dataset, OT-I cells from 15-20 mice were sorted with a FACSAria
448	III (BD Biosciences) and pooled. RNA was extracted with a RNeasy Micro kit (74004; Qiagen).
449	RNA quality and quantity were assessed with a Bioanalyzer 2100 (Agilent). Then RNA was
450	amplified and converted into cDNA by a linear amplification method with WT-Ovation Pico
451	System (3302-60; Nugen). Subsequently cDNA was labeled with the Encore Biotin module
452	(4200-60; Nugen) and hybridized to GeneChip MouseGene 2.0 ST chips (Affymetrix) at the
453	Translational Genomics Core of Partners Healthcare, Harvard Medical School. GeneChips were
454	scanned using the Affymetrix GeneChip Scanner 3000 7G running Affymetrix Gene Command
455	Console version 3.2. The data were analyzed by using Affymetrix Expression Console version
456	1.3.0.187 using Analysis algorithm RMA. To evaluate overall performance of microarray data,
457	principal component analysis (PCA) and Pearson correlation coefficients among 12 diverse
458	samples were applied by using 26,662 transcripts (R Program). All microarray data was
459	submitted to the Gene Expression Omnibus.

460	For relative quantitative real-time PCR, RNA was prepared as described above. Bio-Rad iCycler
461	iQ Real-Time PCR Detection System (Bio-Rad) was used with the following settings: 45 cycles
462	of 15 s of denaturation at 95 °C, and 1 min of primer annealing and elongation at 60 °C. Real-
463	time PCR was performed with 1 μl cDNA plus 12.5 μl of 2× iQ SYBR Green Supermix (Bio-
464	Rad) and 0.5 μ l (10 μ M) specific primers. For absolute quantitative real-time PCR. each standard
465	curve was constructed using 10-fold serial dilutions of target gene template ranging from 10^7 to
466	10^2 copies per mL and obtained by plotting values of the logarithm of their initial template copy
467	numbers versus the mean Ct values. The actual copy numbers of target genes were determined
468	by relating the Ct value to a standard curve.

469 **Determination of viral load**

470 Viral load in various tissues following MVA or VACV skin scarification was determined by

471 quantitative real-time PCR, as previously described (17). Briefly, DNA was purified using the

472 DNeasy Mini Kit (Qiagen, Valencia, CA). The primers and TagMan probe used in the

473 quantitative PCR assay are specific for the ribonucleotide reductase Vvl4L of vaccinia virus. The

474 sequences are: (forward) 5'-GAC ACT CTG GCA GCC GAA AT-3'; (reverse) 5'-CTG GCG

475 GCT AGA ATG GCA TA-3'; (probe) 5'-AGC AGC CAC TTG TAC TAC ACA ACA TCC

476 GGA-3'. The probe was 5'-labeled with FAM and 3'-labeled with TAMRA (Applied Biosystems,

Foster City, CA). Real-time PCR was performed with the Bio-Rad iCycler iQTM Real-Time

478 PCR Detection System (Bio-Rad Laboratories). Thermal cycling conditions were 50°C for 2 min

and 95°C for 10 min for one cycle, followed by 45 cycles of amplification (94°C for 15 s and

- 480 60°C for 1 min). Standard curve was established from DNA of an MVA or VACV stock with
- 481 previously determined titer. Corresponding CT values obtained by the real time PCR reactions

482	were plotted on the standard curve to calculate viral load in the samples. The number of viral
483	DNA copies was normalized to that in the skin samples of uninfected naïve mice.
484	Statistical analysis
485	Comparisons for two groups were calculated using Student's t test (two tailed). Comparisons for
486	more than two groups were calculated with one-way analysis of variance (ANOVA) followed by
487	Bonferroni's multiple comparison tests. Two-way ANOVA with Holm-Bonferroni post hoc
488	analysis was used to compare weight loss between groups and Log-rank (Mantel-Cox) test was
489	used for survival curves. $p < 0.05$ was considered statistically significant.

490

491 REFERENCES

- Hilleman, M.R. Vaccines in historic evolution and perspective: a narrative of vaccine discoveries. *Vaccine* 18, 1436-1447 (2000).
- 494 2. Radetsky, M. Smallpox: a history of its rise and fall. *Pediatr Infect Dis J* 18, 85-93 (1999).
- Bandyopadhyay, A.S., Garon, J., Seib, K. & Orenstein, W.A. Polio vaccination: past,
 present and future. *Future Microbiol* 10, 791-808 (2015).
- 4. Deforest, A., *et al.* Simultaneous administration of measles-mumps-rubella vaccine with
 booster doses of diphtheria-tetanus-pertussis and poliovirus vaccines. *Pediatrics* 81, 237246 (1988).
- 5015.Orenstein, W.A., Seib, K., Graham-Rowe, D. & Berkley, S. Contemporary vaccine502challenges: improving global health one shot at a time. Sci Transl Med 6, 253ps211503(2014).
- 6. Pollara, J., Easterhoff, D. & Fouda, G.G. Lessons learned from human HIV vaccine trials.
 Curr Opin HIV AIDS 12, 216-221 (2017).
- 5067.Pica, N. & Palese, P. Toward a universal influenza virus vaccine: prospects and
challenges. Annu Rev Med 64, 189-202 (2013).
- 5088.Tapia, M.D., *et al.* Safety, reactogenicity, and immunogenicity of a chimpanzee509adenovirus vectored Ebola vaccine in adults in Africa: a randomised, observer-blind,510placebo-controlled, phase 2 trial. *Lancet Infect Dis* (2020).
- 511 9. Hui, D.S.C. & Zumla, A. Severe Acute Respiratory Syndrome: Historical, Enidemiala air and Clinical Features, Infact Dis Clin North Am 22, 860, 880 (201
- 512 Epidemiologic, and Clinical Features. *Infect Dis Clin North Am* **33**, 869-889 (2019).
- 513 10. Shang, W., Yang, Y., Rao, Y. & Rao, X. The outbreak of SARS-CoV-2 pneumonia calls
 514 for viral vaccines. *NPJ Vaccines* 5, 18 (2020).
- Liu, L., *et al.* Epidermal injury and infection during poxvirus immunization is crucial for
 the generation of highly protective T cell-mediated immunity. *Nat Med* 16, 224-227
 (2010).
- Ho, A.W. & Kupper, T.S. T cells and the skin: from protective immunity to inflammatory skin disorders. *Nat Rev Immunol* 19, 490-502 (2019).
- Hruby, D.E. Vaccinia virus vectors: new strategies for producing recombinant vaccines.
 Clin Microbiol Rev 3, 153-170 (1990).
- Belongia, E.A. & Naleway, A.L. Smallpox vaccine: the good, the bad, and the ugly. *Clin Med Res* 1, 87-92 (2003).
- 52415.Guzman, E., et al. Modified vaccinia virus Ankara-based vaccine vectors induce525apoptosis in dendritic cells draining from the skin via both the extrinsic and intrinsic526caspase pathways, preventing efficient antigen presentation. J Virol 86, 5452-5466527(2012).
- Antoine, G., Scheiflinger, F., Dorner, F. & Falkner, F.G. The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. *Virology* 244, 365-396 (1998).
- Pittman, P.R., *et al.* Phase 3 Efficacy Trial of Modified Vaccinia Ankara as a Vaccine against Smallpox. *N Engl J Med* 381, 1897-1908 (2019).

18. Cottingham, M.G. & Carroll, M.W. Recombinant MVA vaccines: dispelling the myths. *Vaccine* 31, 4247-4251 (2013).

535	19.	Altenburg, A.F., et al. Modified vaccinia virus ankara (MVA) as production platform for
536	17.	vaccines against influenza and other viral respiratory diseases. <i>Viruses</i> 6 , 2735-2761
537		(2014).
538	20.	Bray, M. Understanding smallpox vaccination. J Infect Dis 203, 1037-1039 (2011).
539	20.	Gordon, S.N., <i>et al.</i> Smallpox vaccine safety is dependent on T cells and not B cells. J
540	21.	<i>Infect Dis</i> 203 , 1043-1053 (2011).
541	22.	Kennedy, J.S., <i>et al.</i> Induction of human T cell-mediated immune responses after primary
542	<i>LL</i> .	and secondary smallpox vaccination. J Infect Dis 190, 1286-1294 (2004).
543	23.	Milton, D.K. What was the primary mode of smallpox transmission? Implications for
544	23.	biodefense. Front Cell Infect Microbiol 2, 150 (2012).
545	24.	Terajima, M., <i>et al.</i> Identification of vaccinia CD8+ T-cell epitopes conserved among
546	27.	vaccinia and variola viruses restricted by common MHC class I molecules, HLA-A2 or
547		HLA-B7. <i>Hum Immunol</i> 67 , 512-520 (2006).
548	25.	Eaglesham, J.B., Pan, Y., Kupper, T.S. & Kranzusch, P.J. Viral and metazoan poxins are
549	20.	cGAMP-specific nucleases that restrict cGAS-STING signalling. <i>Nature</i> 566 , 259-263
550		(2019).
551	26.	Pan, Y., <i>et al.</i> Survival of tissue-resident memory T cells requires exogenous lipid uptake
552		and metabolism. <i>Nature</i> 543 , 252-256 (2017).
553	27.	von Andrian, U.H. & Mackay, C.R. T-cell function and migration. Two sides of the same
554		coin. N Engl J Med 343 , 1020-1034 (2000).
555	28.	Kupper, T.S. & Fuhlbrigge, R.C. Immune surveillance in the skin: mechanisms and
556		clinical consequences. Nat Rev Immunol 4, 211-222 (2004).
557	29.	Park, C.O. & Kupper, T.S. The emerging role of resident memory T cells in protective
558		immunity and inflammatory disease. Nat Med 21, 688-697 (2015).
559	30.	Hessel, A., et al. MVA vectors expressing conserved influenza proteins protect mice
560		against lethal challenge with H5N1, H9N2 and H7N1 viruses. PLoS One 9, e88340
561		(2014).
562	31.	Olszewska, W., Suezer, Y., Sutter, G. & Openshaw, P.J. Protective and disease-
563		enhancing immune responses induced by recombinant modified vaccinia Ankara (MVA)
564		expressing respiratory syncytial virus proteins. Vaccine 23, 215-221 (2004).
565		

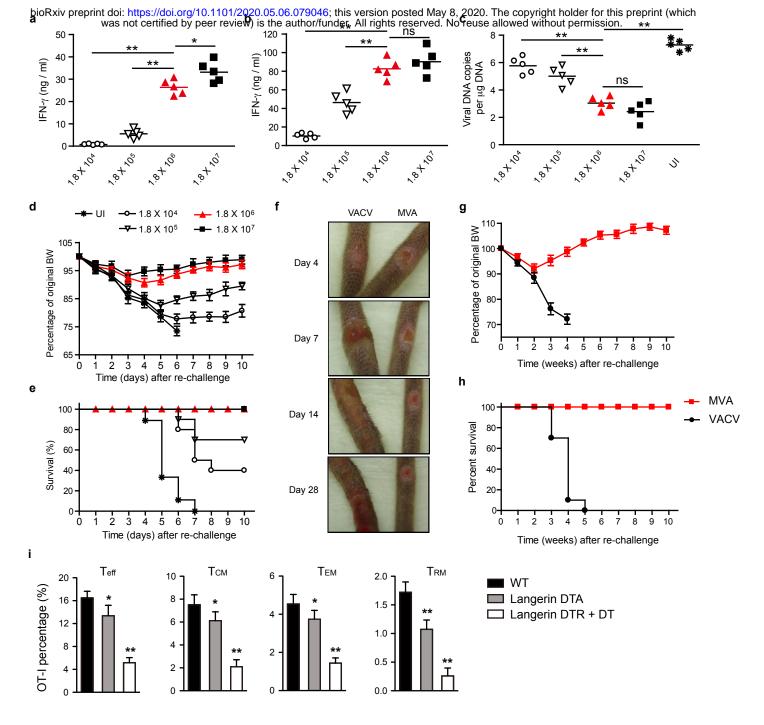


Fig. 1

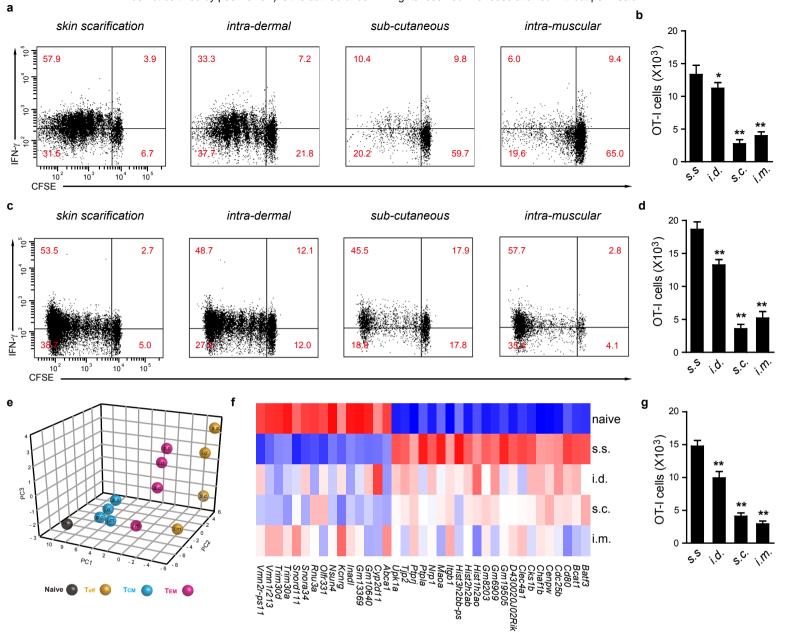


Fig. 2

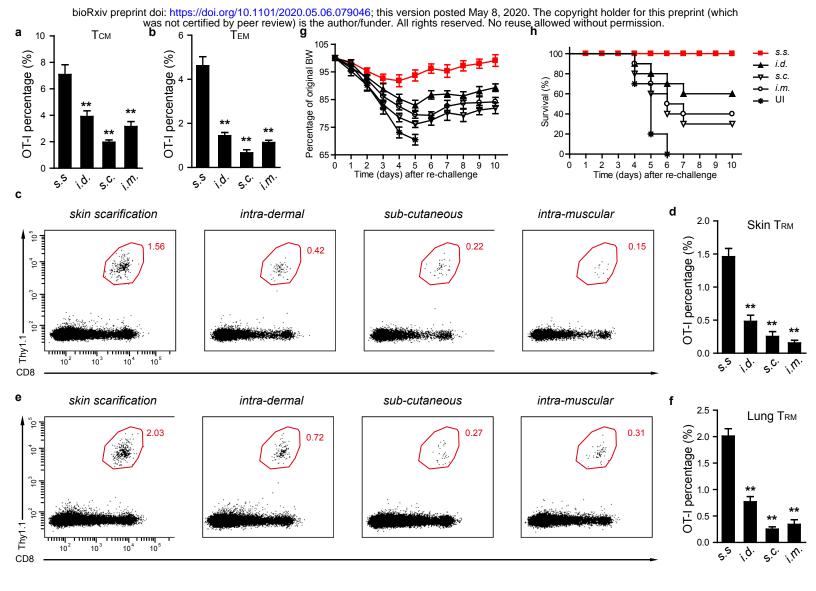
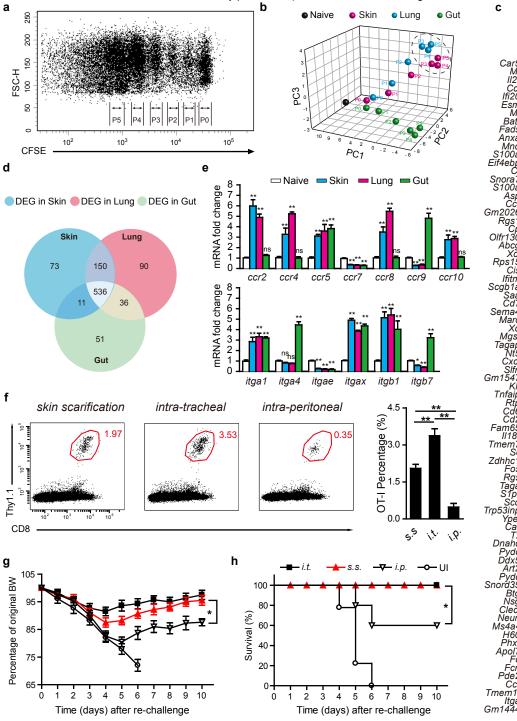



Fig. 3

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.06.079046; this version posted May 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

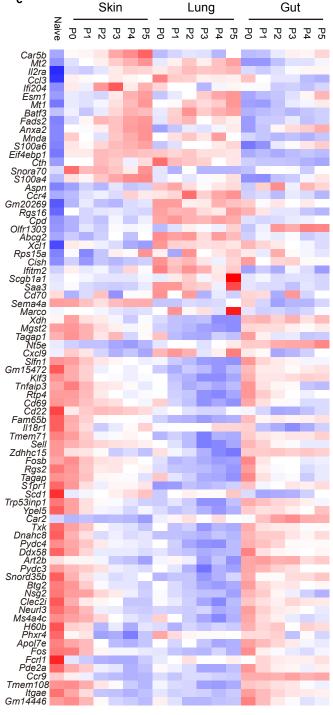
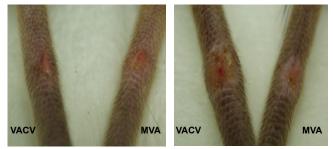
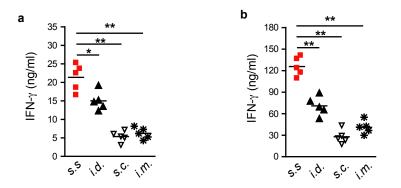
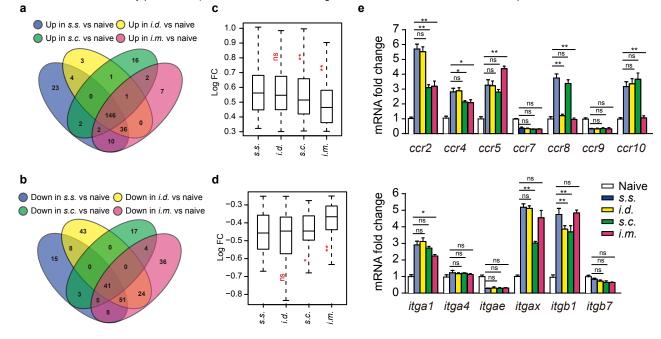
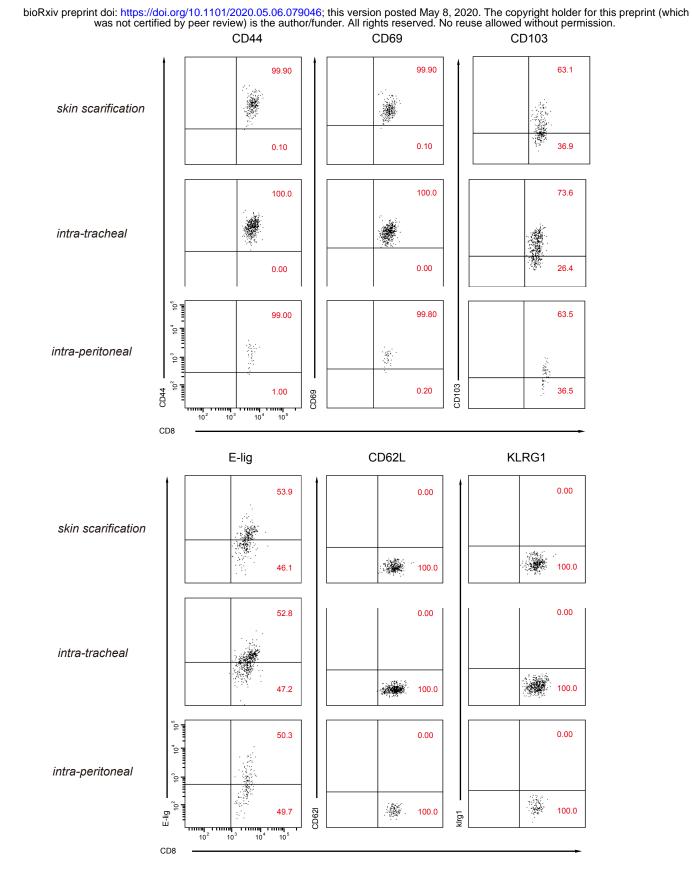
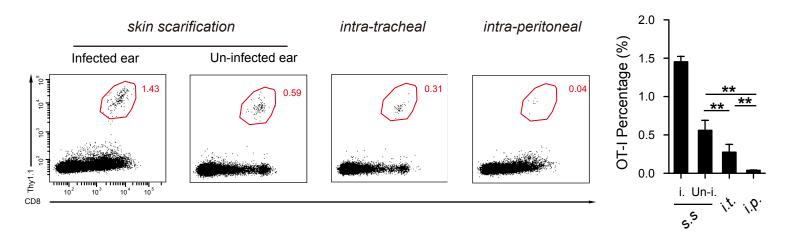



Fig. 4


Day 14


Day 28


Extended data, Fig. 1


Extended data, Fig. 2

Extended data, Fig. 3

Extended data, Fig. 4

Extended data, Fig. 5