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Abstract11

Over a decade of genome-wide association studies have led to the finding that significant genetic12

associations tend to spread across the genome for complex traits. The extreme polygenicity where13

“all genes affect every complex trait” complicates Mendelian Randomization studies, where natural14

genetic variations are used as instruments to infer the causal effect of heritable risk factors. We15

reexamine the assumptions of existing Mendelian Randomization methods and show how they need16

to be clarified to allow for pervasive horizontal pleiotropy and heterogeneous effect sizes. We propose17

a comprehensive framework GRAPPLE (Genome-wide mR Analysis under Pervasive PLEiotropy) to18

analyze the causal effect of target risk factors with heterogeneous genetic instruments and identify19

possible pleiotropic patterns from data. By using summary statistics from genome-wide association20

studies, GRAPPLE can efficiently use both strong and weak genetic instruments, detect the exis-21

tence of multiple pleiotropic pathways, adjust for confounding risk factors, and determine the causal22

direction. With GRAPPLE, we analyze the effect of blood lipids, body mass index, and systolic23

blood pressure on 25 disease outcomes, gaining new information on their causal relationships and the24

potential pleiotropic pathways.25
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1 Introduction26

Understanding the pathogenic mechanism of common diseases is a fundamental goal in clinical27

research. As randomized controlled experiments are not always possible, researchers are looking28

towards Mendelian Randomization (MR) as an alternative method for probing the causal mechanisms29

of common diseases [18]. MR uses inherited genetic variations as instrumental variables (IV) to30

interrogate the causal effect of heritable risk factor(s) on the disease of interest. The basic idea is that31

at these variant loci, the inherited alleles are randomly transmitted from the parents to their offsprings32

according to Mendel’s laws. Thus, the genotypes are independent from non-heritable confounding33

variables which may obfuscate causal estimation in parent-offspring studies. More generally, such34

independence also approximately holds for population data such as the genome-wide association35

studies (GWAS) when individuals share the same ancestry [46]. With the accumulation of data from36

GWAS, there is an increasing interest in MR approaches, especially approaches that only rely on the37

GWAS summary statistics that are readily available in the public domain [19, 46].38

How well Mendelian Randomization works depends on how well the genetic variant loci used as39

instruments abide by the rules of IV. These rules dictate that, if the genetic locus has an effect on40

the disease outcome, it should be only through pathways mediated by the risk factor(s) of interest.41

This rule, termed exclusion restriction, is violated when there is horizontal pleiotropy, defined as the42

case where the genetic variant can influence the disease through pathways other than the given risk43

factor(s) [21]. There has been much recent attention on this issue [10, 4, 5, 25, 51, 59, 42, 11, 3, 36, 43]44

in MR, yet our understanding is far from complete. Current methods rely on different assumptions45

on the pattern of horizontal pleiotropy, while improper assumptions may lead to biased estimation of46

the true causal effects. What assumptions on pleiotropy and genetic effects would be suitable? Would47

it be possible to learn the degree of pleiotropy from the data? Could we perform model diagnosis48

utilizing only GWAS summary statistics?49

The pleiotropy issue that muddles Mendelian Randomization studies is, in a large part, due to50

the fact that complex traits are extremely polygenic [16, 57, 8, 32, 45, 49, 36, 38, 55]. Accumulating51

evidence from GWAS studies indicate that complex diseases may share an omnigenic architecture52

where all genes affect every complex trait [6]. While a few genes might be “core” genes, almost all53

genes are involved and can exert non-zero effects on both the risk factors and disease. Thus, given54

a risk factor that explains only part of the causal mechanism of a complex disease, there would be55

many SNPs affecting the disease through their effects on other unmeasured risk factors. In other56

words, in an MR analysis, not only would we expect horizontal pleiotropy to be a pervasive issue57

across all genetic variants, any disease or complex risk factor would also be associated with a large58

number of SNPs across the whole genome. Many existing MR methods rely on the assumption that59

pleiotropic effects sparsely involve only a few SNPs, which directly counters these recent insights.60

Methods that don’t assume sparsity often require that the pleiotropic effects cancel each other across61

SNPs, named as the instrument strength independent of direct effect (inSIDE) assumption [4], which62

can be rather optimistic. Recently, a few new methods relaxed the inSIDE assumption to consider63

“directional pleiotropy” through one pleiotropic pathway [36]. However, there would then be an issue64
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in identifying the true causal effect of the risk factor, and the model is restrictive to allow for only one65

pleiotropy pathway. Armed with these assumptions, most existing methods also utilize only the few66

SNPs that have the strongest association with the risk factor as instruments, ignoring the SNPs that67

are weakly associated. In this work, we will show that weakly associated SNPs are also informative,68

and that a model combining weak and strong SNPs would not harm MR while increasing its accuracy69

and stability in some scenarios.70

We propose a comprehensive statistical framework for causal effect estimation when pleiotropy is71

pervasive across the genome. The framework, called GRAPPLE (Genome-wide mR Analysis under72

Pervasive PLEiotropy), facilitates interactive identification of multiple pleiotropic pathways and the73

incorporation of all SNPs associated with the risk factor into the analysis. GRAPPLE builds on the74

statistical framework MR-RAPS [59]. However, we emphasize the detection of multiple pleiotropic75

pathways when the inSIDE assumption in MR-RAPS is violated as well as the discrimination of76

the direction of causality. Using GRAPPLE, we further address how to jointly estimate the effects77

with multiple risk factors to reduce directional pleiotropy, as well as how to integrate cohorts with78

overlapping samples, both common challenges faced by current studies. The estimation accuracy of79

GRAPPLE is examined through validations involving real studies and simulations.80

GRAPPLE is applied to a screening of the causal effects of 5 risk factors (three plasma lipid81

traits, body mass index, and systolic blood pressure) on 25 common diseases. Although there have82

been many causal effect screens [51, 39, 36] for these risk factors and diseases, the combined analysis83

enabled by GRAPPLE brings forth new insights on the pleiotropic landscape across diseases and,84

thus, an improved understanding of the causal estimates obtained. Specifically, we will reexamine85

the role of lipid traits on coronary artery disease and type-II diabetes, where the results from the86

multitude of MR studies [46, 31, 33] have been under heated debate.87

2 Results88

2.1 Model Overview89

2.1.1 From the causal model to GWAS summary statistics90

Our framework starts with a set of structural equations that jointly specify the generative model on91

the disease Y that relies on K observed risk factors X = (X1, · · · , XK) of interest, and all genetic92

variants Z = (Z1, Z2, . . . ) (Fig 1a).93

Y = XTβ + f(U ,Z, EY ) (if Y is a continuous trait)

logit [P (Y = 1)] = XTβ + f(U ,Z, EY ) (if Y is a binary trait)

Xk = gk(U ,Z, EXk
), k = 1, · · · ,K

(1)

where U represents unknown non-heritable confounding factors and EXk
and EY are random noise94

acting on Xk and Y respectively. The parameter of interest, β, quantifies the causal effect of the95
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vector of risk factors X on Y . Due to Mendel’s law of inheritance, the genotypes Z are independent96

of (U , EY , EXk
). The function f(U ,Z, EY ) represents the causal effect of unmeasured risk factors97

on Y , which can be heritable (contributed by Z) or non-heritable (contributed by U). The non-98

parametric functions f(·) and gk(·) allow interactions among SNPs in Z and variables (U , EY , EXk
)99

in their causal effects on X and Y . Under this model, there is horizontal pleiotropy for a SNP j if Zj100

has nonzero association with f(U ,Z, EY ). This is the case, for example, when Zj acts on Y through101

a pathway affecting unmeasured risk factors, or when Zj is in linkage disequilibrium (LD) with such102

a locus.103

Now consider the case where only GWAS summary statistics, i.e. the estimated marginal asso-104

ciations between each SNP j and the risk factors/disease traits, are available. Let Γj be the true105

association between SNP j and Y , and γj be the vector of true marginal associations between SNP106

j and X. Later, we will denote their estimated values from GWAS summary statistics as Γ̂j , γ̂j .107

Then, as shown in Materials and Methods, the model (1) results in the linear relationship108

Γj = γTj β + αj (2)

where for binary Y , the parameter β in (2) is a conservatively biased version of β in (1). This109

relationship holds even when the functions f(·) and g(·) in (1) are not linear. Here, αj is the marginal110

association between Zj and f(U ,Z, EY ), representing the unknown horizontal pleiotropy of SNP j.111

In MR, one would typically simultaneously select p SNPs as multiple instruments to estimate the112

causal effect of X.113

One can immediately see that identifying β is impossible without further assumptions on αj .114

Early MR methods such as IVW [10] made the simplest assumption that all instruments are valid115

satisfying αj = 0. However, as already discussed in Introduction, the assumption of no pleiotropy, or116

more generally, assuming that αj is sparsely nonzero as in Weighted Median [5] or MR-PRSSO [51]117

contradicts the fact that horizontal pleiotropy is pervasive. One assumption that allows pervasive118

pleiotropy is to assume the inSIDE assumption [4] where αj ⊥⊥ γj , or alternatively, the random119

effect model [59, 43] where αj ∼ N (0, τ2) for most genetic instruments. Unfortunately, the inSIDE120

assumption requires all unmeasured heritable risk factors of the disease to be genetically uncorrelated121

with the target risk factor(s) X, which is likely violated, especially when there are clusters of SNPs122

associate with both the unmeasured risk factors and X.123

Noticing the limitation of the inSIDE assumption, some new MR methods, such as LCV [39],124

CAUSE [36] and MRMix [42] allow a proportion of genetic instruments to be associated with one125

common hidden pleiotropic pathway affecting both the risk factor and disease. For instance, under126

the above notation, both CAUSE and MRMix assumed that for the proportion of SNPs that violate127

the inSIDE assumption, their pleiotropic effects satisfy αj = γTj a + α̃j where γTj a represents the128

directional pleiotropic effects due to a confounding pathway and α̃j ⊥⊥ γj . This is a more realistic129

assumption than inSIDE, though there would then be an issue to distinguish the true causal effect130

β from the pleiotropic direction β + a, and the model may be too restrictive to allow for only one131

pleiotropic pathway.132
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Figure 1: Model overview. a, The causal directed graph represented by structural equations (1). b, The
existence of a pleiotropic pathway 2 (purple) can result in multiple modes of the profile likelihood. c,
Multi-modality of the profile likelihood can reflect causal direction. d, The work-flow with GRAPPLE.

2.1.2 Identify multiple pleiotropic pathways and the direction of causality133

The key idea underlying GRAPPLE is to detect multiple pleiotropic pathways by using the shape of134

the data profile likelihood under no pleiotropy to probe the underlying causal mechanism, without135

explicit assumptions of the pleiotropic patterns (Fig 1b). When K = 1, the GWAS summary statistics136

reduce to the scalar γ̂j and Γ̂j , , with their standard errors σ2
1j and σ2

2j . From the central limit theorem,137

the joint distribution of (γ̂j , Γ̂j) approximately follows a multivariate normal distribution138 (
γ̂j

Γ̂j

)
∼ N

((
γj

Γj

)
,

(
σ2

1j σ1jσ2jθ

σ1jσ2jθ σ2
2j

))
(3)

where θ is a shared sample correlation that can be estimated as θ̂ (see Materials and Methods).139

When there is no horizontal pleiotropy in the p selected independent genetic instruments (αj = 0140
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for j = 1, 2, · · · , p), the robustified profile likelihood is [59],141

l(b) = −
p∑
j=1

ρ

 Γ̂j − bγ̂j√
σ2

1j + b2σ2
2j + 2bθ̂σ1jσ2j

 (4)

where ρ(·) is the Tukey’s Biweight loss. As described with more details in Materials and Methods,142

the profile likelihood is obtained by profiling out nuisance parameters γ1, · · · , γp in the full likelihood143

from (3), which is further robustified by replacing the L2 loss with Tukey’s Biweight loss to increase144

the sensitivity of mode detection. Under no pleiotropy or inSIDE assumption, it would only have one145

mode near the true causal effect b = β.146

Now consider the case where a second genetic pathway (Pathway 2) also contributes substantially147

to the disease, and where some of the loci that we include as instruments are also associated with148

Pathway 2 (Fig 1b). In this scenario, SNPs that are associated with X only through Pathway 2 can149

contribute to a second mode in the profile likelihood at location β + κ/δ, where κ and δ quantifies150

the causal effect of Pathway 2 on Y and its marginal association with X, respectively (Materials and151

Methods). By a similar logic, multiple pleiotropic pathways result in multiple modes in l(b). Thus,152

we can use the presence of multiple modes in l(b) to diagnose the presence of horizontal pleiotropic153

effects that are grouped into different directions.154

The existence of pleiotropic pathways not only complicates MR, more severely, it makes the causal155

effects of the risk factors unidentifiable. Specifically, when Pathway 2 exists, the GWAS summary156

statistics alone can not provide information to distinguish β from β+κ/δ. Instead of making further157

assumptions to identify the true causal effect, when multiple modes are detected, we suggest collecting158

more GWAS data to adjust for confounding risk factors that contribute to these modes. To help159

finding the confounding risk factors, GRAPPLE identifies marker SNPs of each mode, as well as the160

mapped genes and GWAS traits of each marker SNP (see Materials and Methods), so that researchers161

can use their expert knowledge to infer possible confounding risk factors that contribute to each162

mode. With the GWAS summary statistics of these confounding traits, GRAPPLE can perform a163

multivariate MR analysis assuming the inSIDE assumption on the remaining horizontal pleiotropic164

effects. GRAPPLE uses an adjusted robustified profile likelihood approach that can jointly estimate165

β and τ2 (Materials and Methods).166

With multiple modes detection, we can also consider the question of whether X indeed causes167

Y , as our structural equation (1) presumes, or it is the reverse case of Y causing X. If it were the168

case that the direction of causality runs from Y to X, then an instrument is associated with X either169

through Y , or through unmeasured heritable risk factors of X unrelated to Y . In the latter case,170

a SNP j satisfies γj 6= 0 while Γj = 0, and would contribute to a mode at 0. In the former case,171

γj = βΓj where β is the causal effect of Y on X, and these SNPs may contribute to a mode around172

1/β. This idea shares similarities with bidirectional MR [50, 26]. Bidirectional MR is based on the173

assumptions that when MR is reversely performed, all selected instruments affect Y not through X,174

and filters out suspicious SNPs that may violate this assumption by checking their associations with175
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X. Though it sometimes works, there is no guarantee that the filtering does not introduce bias. In176

GRAPPLE, we identify the direction by checking if there is a mode at 0 after switching the roles of177

X and Y , while tolerating the existence of another mode around 1/β̂.178

2.1.3 Weak genetic instruments: A curse or a blessing?179

Besides the assumption of no-horizontal-pleiotropy, for a SNP to be a valid genetic instrument, it180

needs to have a non-zero association with the risk factor of interest. In most MR pipelines, SNPs are181

selected as instruments only when their p-values are below 10−8, which is required to guarantee a low182

family-wise error rate (FWER) for GWAS data. Using such a stringent threshold also avoids weak183

instrument bias [13], where measurement errors in γ̂jk are too large to lead to bias in β̂. However,184

such a stringent selection threshold may result in very few, or even zero, instruments for under-185

powered GWAS, and may still not be adequate to avoid weak instrument bias. Further, when our186

goal is to jointly model the effects of multiple risk factors (the setting where X as a vector), it is187

unrealistic to assume that all selected SNPs have strong effects on every risk factor. In addition, the188

highly polygenecity phenomenon of complex traits indicates that the number of weak instruments far189

outnumbers the number of strong instruments, and collectively, they may exert a positive effect on190

the estimation accuracy.191

In GRAPPLE, we use a flexible p-value threshold, which can be either as stringent as 10−8 or as192

mild as 10−2, for instrument selection. Based on the profile likelihood framework of MR-RAPS [58],193

GRAPPLE can provide valid inference of β̂ to avoid weak instrument bias for multiple risk factors194

with SNPs selected at any given p-value threshold, when horizontal pleiotropy of most SNPs follow the195

random effect model αj ∼ N (0, τ2). This flexible p-value threshold is beneficial for several reasons.196

First, including moderate and weak instruments may increase power, especially for under-powered197

GWAS data where there are too few strongly associated SNPs. Second, for MR with multiple risk198

factors where it is inevitable to include SNPs that have weak associations with some of the risk factors,199

we can obtain more accurate causal effect estimations than methods that can only deal with strongly200

associated SNPs. More importantly, comparing estimates across a series of p-value thresholds can201

show stability of our estimates and a more complete picture of the underlying horizontal pleiotropy.202

In practice, we suggest researchers to vary the selection p-value thresholds from a stringent one (say203

10−8) to a mild one (say 10−2), both in the detection of multiple modes and in estimating causal204

effects. We would expect to see consistent results across the p-value thresholds, if there are truly205

multiple pleiotropic pathways or our assumptions hold in estimating the causal effects of the risk206

factors.207

2.1.4 The three-sample design to guard against instrument selection bias208

Selecting instruments from GWAS summary statistics can also introduce bias, which is the “winner’s209

curse”. The magnitude of γ̂jk will increase conditional on being selected and would bias the estimate210

of β. When K = 1 that there is only one risk factor, the estimate will bias towards 0, but there is211
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no guarantee of the direction of the bias when K > 1. Typically, it is believed that the selection bias212

is negligible when only the strongly associated SNPs are selected as instruments.213

However, we find that for commonly used MR methods, instrument selection can introduce bias214

even when only genetic variants with genome-wide significant p-values (≤ 10−8) are selected (Fig S1a).215

Thus, unlike the usual two-sample GWAS summary statistics design which involves one GWAS data216

for the risk factor and one for the disease, we strongly advocate using a three-sample GWAS summary217

statistics design (Fig 1d). To avoid the selection bias, selection of genetic instruments is done on218

another GWAS dataset for the risk factor, whose cohort has no overlapping samples with both the219

risk factor and disease cohorts. In addition, to ease calculation (see Materials and Methods), currently220

we only include independent SNPs in GRAPPLE and we use the LD clumping for SNP selection to221

obtain them [41]. The three-sample design will also avoid possible selection bias introduced during222

clumping.223

Summarizing the above points, a complete diagram of the GRAPPLE workflow is shown in Fig 1d.224

A researcher may start with a single target risk factor of interest. The shape of the robustified profile225

likelihood provides information on possible pleiotropic pathways. If multiple modes are detected,226

then one may need to adjust for pleiotropic pathways. Unfortunately, this step can not be done227

automatically as summary statistics themselves do not provide enough information to distinguish a228

causal mode from a pleiotropic mode. Researchers can use the marker SNP/gene/trait information229

that GRAPPLE provides to understand each mode, decide what confounding risk factors to adjust230

for, and collect extra GWAS data for them. GRAPPLE can then jointly estimate the causal effects231

of multiple risk factors to adjust for the confounding effects of the added risk factors.232

2.2 Assessment of GRAPPLE with real studies233

2.2.1 Inference from both weak and strong genetic instruments under no pleiotropy234

We first examine whether GRAPPLE provides reliable statistical inference combining weak and strong235

instruments under an artificial setting with real GWAS summary statistics. In this setting, we make236

X and Y be the same trait from two non-overlapping cohorts, thus γj = Γj while γ̂j 6= Γ̂j for any237

SNP. Though the structural equation describing the causal effect of X on Y does not exist, the linear238

relationship model (2) from which we estimate β still holds with β = 1 and αj = 0. In other words,239

we are not estimating a meaningful “casual” effect, but are in a special case where the true β is240

known, which can be used to test whether MR methods provides valid inference under no pleiotropy.241

Specifically, we consider three traits: Body mass index (BMI), Type II diabetes (T2D) and height242

from the GIANT and DIAGRAM consortium where sex-specific GWAS data are available [30, 35].243

The female cohort is used to get γ̂j and the male cohort is used to get Γ̂j . As a three-sample design,244

the UK Biobank data for corresponding traits are used for SNP selection. The true β is 1, when245

we assume that all selected instruments have no gender-specific association with the traits. For246

benchmarking, we compare the performance of GRAPPLE with CAUSE [36] and other three well-247

adopted MR methods, inverse-variance weighted (IVW) [10], MR-Egger [4] and weighted median [5]248
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with the same three-sample design.249

We compare across different p-value thresholds for instrument selection, ranging from a stringent250

threshold 10−8 to a mild threshold 10−2 (Fig 2a). GRAPPLE keeps providing unbiased estimates of β251

showing that it does not suffer from the weak instrument bias. Surprisingly, biases exist in other MR252

methods even with a stringent p-value threshold, which is most likely due to the power discrepancy253

between the GWAS data for selection and estimating γj . In addition, the confidence intervals do get254

narrower with GRAPPLE for T2D, showing the potential benefit of including weak instruments for255

less powerful GWAS studies.256

Finally, we demonstrate that the three-sample design to avoid selection bias is necessary not only257

for GRAPPLE, but also for other MR methods. As shown in Fig S1a, the two-sample design where we258

use the same cohort of the risk factor for selection can result in biased casual effects estimation, and259

the biases appear for most MR methods even when only the strongly associated SNPs are selected.260

2.2.2 Level of pleiotropy in SNPs with heterogeneous strengths261

Next, we examine whether or not the weak instruments are more vulnerable to pleiotropy, which262

can be a concern for including the weak SNPs. We compare four risk factor and disease pairs that263

cover eight different complex traits, including the effect of BMI on T2D, low-density cholesterol264

concentrations (LDL-C) on coronary artery disease (CAD), height on smoking, and systolic blood265

pressure (SBP) on stroke (Fig 2b).266

We test whether independent sets of strongly and weakly associated SNPs can provide consistent267

estimates of the causal effects of the risk factors. SNPs passing the p-value threshold 10−2 in the cohort268

for selection are divided into three groups after LD clumping: “strong” (pj ≤ 10−8), “moderate”269

(10−8 < pj ≤ 10−5), and “weak” (10−5 < pj ≤ 10−2). The SNPs across groups are used separately270

to obtain group-specific estimates of the causal effect β. We observe that for all the four pairs, the271

estimates β̂ are stable across groups (Fig 2b). Though the “weaker” SNPs provide estimates with272

more uncertainty due to limited power, the estimates are consistent with those from the “strong”273

group. Other MR methods also show some level of consistency in estimating β across different sets274

of instruments, but perform worse due to weak instrument bias (Fig S1b). To conclude, in the275

analysis of these four pairs of traits, we do not see any evidence that weakly associated SNPs provide276

more biased estimates than strong instruments due to horizontal pleiotropy. In contrast, as the277

strong SNPs, they may also provide useful information to infer the causal effects of the risk factors.278

GRAPPLE can expand the ability to evaluate causal effect of risk factors with both strong and weak279

genetic instruments.280

2.2.3 Identify direction of causality for known causal relationships281

Then, we examine the performance of GRAPPLE in identifying the causal direction with the shape282

of the profile likelihood. For the causal direction, we focus on the two pairs of traits with known283

causal relationship: BMI on T2D, and LDL-C on CAD. We switch the roles of the risk factor and284
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disease to see if the correct direction can be revealed. Specifically, we treat T2D and CAD as the285

“risk factor”, and BMI and LDL-C as the corresponding “disease” (Fig 2c). For T2D, the cohort for286

the other gender is used for SNP selection and for CAD, the risk factor cohort used is from [17] and287

the selection p-values are from [44]. As expected, we see that when the roles of the risk factor and288

disease are reversed, the robustified profile likelihood shows a main mode at 0, and a weaker mode289

around 1/β.290

2.2.4 Multiple pleiotropic pathways in the effect of C-reactive protein291

Finally, we test for our ability to identify multiple pleiotropic pathways with the analysis of the C-292

reactive protein (CRP) effect on CAD. C-reactive protein has been found to be strongly associated293

with the risk of heart disease while many SNPs who are associated with the C-reactive protein also294

seem to have pleiotropic effect on lipid traits [22]. Previous MR analyses only included SNPs that295

are near the gene CRP to guarantee a free-of-pleiotropy analysis [14] and found that CRP has no296

causal effect on CAD, validated also by randomized experiments [28]. However, if the SNP selection297

near CRP gene is not performed, can GRAPPLE identify the existence of multiple pathways and298

obtain the correct estimate of the C-reactive protein effect from its associated SNPs across the whole299

genome?300

CRP GWAS data from [40] is used for selection and the data from [20] using a larger cohort is301

used for getting γ̂j . The robustified profile likelihood shows a pattern of three modes, indicating302

the existence of at least three different pathways (Fig 2d). One mode is negative, one is positive303

and the third is around zero. The negative mode involves a few marker genes including HNF1A and304

PVRL2, with a marker trait LDL-C. The positive mode has marker traits pulmonary function and305

the C-reactive protein, and the few markers genes (IL6R, ARHGAP10, BCL7B, PABPC4 ) are also306

involved in immune response and lung cancer progression [47, 48]. The mode at 0 has marker genes307

CRP and LEPR, and only one marker trait, the C-reactive protein.308

We compare across 3 p-value thresholds (10−8, 10−5, 10−3) and check how the existence of multiple309

pathways affects causal estimates of the effect of C-reactive protein in MR methods using SNPs across310

the genome. Including the C-reactive protein as the only risk factor, all bench-marking methods give311

a negative estimate of the CRP effect, which is possibly driven by the bias from an LDL-C induced312

pleiotropic pathway (Fig 2e). MR-RAPS is the estimation method used in GRAPPLE only there is313

only one risk factor, and the three other bench-marking methods give incorrect inference of the CRP314

effect with a p-value of β below 0.01 for at least one SNP selection threshold (notice that the weak315

instrument bias is bias towards zero as shown in Fig 2a, thus the significance at p-value threshold316

10−3 for MR-Egger and IVW is not due to weak instrument bias). In contrast, after using two risk317

factors: the C-reactive protein and LDL-C, where LDL-C is an apparent confounding risk factor from318

Fig 2d, the estimates of CRP effect can keep insignificant across p-value thresholds. In addition, the319

estimates β̂CRP themselves are much closer to 0 compared with that without including LDL-C. This320

analysis illustrates how GRAPPLE can detect pleiotropic pathway, provide information on which321

confounding risk factors to adjust for, and obtain reliable inference after adjusting for additional risk322

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.05.06.077982doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.077982
http://creativecommons.org/licenses/by-nc/4.0/


factors.323

As a complement to the above real data analysis, we have also conducted a set of simulations324

to evaluate GRAPPLE’s performance in detecting multiple pleiotropic pathways. For details, see325

Supplementary Note 2 and Fig S2.326

2.3 A causal landscape from 5 risk factors to 25 common diseases327

Finally, we apply GRAPPLE to interrogate the causal effects of 5 risk factors on 25 complex diseases328

through a multivariate genome-wide screen. The five risk factors are three plasma lipid traits: LDL-C,329

high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), BMI and SBP. The diseases include330

heart disease, Type II diabetes, kidney disease, common psychiatric disorders, inflammatory disease331

and cancer (Fig 3a). For each pair of the risk factor and disease, we compare across p-value thresholds332

from 10−8 to 10−2. As a summary of the results, Fig 3a illustrates the average number of modes333

detected across the p-value thresholds for SNP selection (for modes at each p-value threshold, see334

Figure S2). Besides the number of modes, Fig 3a also shows the p-values for each risk factor when335

GRAPPLE is performed with only the single risk factor (see also Fig S3, Materials and Methods).336

These p-values are not valid when there are pleiotropic pathways.337

Fig 3a shows that multi-modality can be detected in many risk factor and disease pairs. Multi-338

modality is most easily seen using the stringent p-value threshold 10−8 (Fig S3). However, we find339

that some modes are contributed by a single SNP thus is more likely an outlier than a pathway. For340

instance, the effect of stroke on LDL-C shows two modes when the p-value threshold is 10−8 or 10−7
341

(one mode around −2.3 and another mode near 0.08). However, the negative mode only has one342

marker SNP (rs3184504) which has been found strongly associated with hundreds of different traits343

according to GWAS Catalog [9] while the other mode has hundreds or marker genes. After removing344

the SNP rs3184504, the mode disappears. Such a mode also disappears when we increase the p-value345

threshold to include more SNPs as instruments. Thus, the average number of modes serves as a346

strength of evidence for the existence of multiple pleiotropic pathways. Some risk factor and disease347

pairs show multi-modality without having a significant p-value for β, suggesting that the risk factor348

and disease are genetically correlated through multiple pathways but there is no evidence that risk349

factor has a causal effect on the disease.350

We then focus on two diseases: CAD and T2D. For CAD, all five risk factors show very significant351

effects, though multi-modality is detected in HDL-C and SBP. First, consider the well-studied, often-352

debated relationship between CAD and the lipid traits. In our results for HDL-C, with different353

p-value thresholds, three modes in total can show up, two being negative and one positive, indicating354

that the pathways from HDL-C to CAD is complicated (Fig 3b). (Fig 3b shows that one negative mode355

is contributed by SNPs near genes LPL and BUD13, which are strongly associated with triglycerides.356

Another positive mode is contributed by SNPs near genes ALDH1A2 and PSKH1, which is related357

to respiratory diseases [52]. The markers of the other negative mode are mapped to genes including358

LIPG and CETP.359

Since the effects of the lipid traits are generally complicated, we combine all 5 risk factors and run360
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an MR jointly with GRAPPLE (Fig 3c) with different p-value thresholds. After adjusting for other361

risk factors, the two most prominent risk factors for the heart disease are LDL-C and SBP, while the362

protective effect of HDL-C stays negligible as well as the risk brought by TG. So these results show363

that HDL-C as a single measurement does not seem to have a protective effect on heart disease, while364

there are complicated multiple pathways involved. Researchers have suggested analyzing different365

subgroups of HDL-C as smaller particles tend to have a stronger protective effect [60].366

Lipids are involved in a number of biological functions including energy storage, signaling, and367

acting as structural components of cell membranes and have been reported to be associated with368

various diseases [54, 24, 56, 27, 34, 1]. Besides CAD, another disease that most likely involves the lipid369

traits is the Type II diabetes (Fig 3a). T2D is associated with dyslipidemia (i.e., higher concentrations370

of TG and LDL-C, and lower concentrations of HDL-C), though the causal relationship is still unclear371

[23]. In the mean time, evidence has emerged that LDL-C reduction with statin therapy results in a372

modest increase in risk of T2D [54]. For the MR analyzing each risk factor alone, we see potential373

protective effects of LDL-C and HDL-C on T2D but also multi-modality patterns. Two modes show374

up in the profile likelihood from HDL-C to T2D where one negative mode has a marker gene LPL375

and a mode near 0 with marker genes CETP and AC012181.1. Thus we include all 3 lipid traits,376

along with BMI and run a joint model for these 4 risk factors using GRAPPLE (Fig 3d). Our result377

indicates a mild protective effect of HDL-C on T2D, while showing not enough evidence for the effect378

of either LDL-C or TG.379

3 Discussion380

We propose a comprehensive framework that utilizes both strong and weakly associated SNPs to un-381

derstand the causal relationship between complex traits. GRAPPLE is robust to pervasive pleiotropy382

and can identify multiple pleiotropic pathways. The multivariate MR in GRAPPLE can adjust for383

known confounding risk factors.384

GRAPPLE incorporates several improvements over existing MR methods. It gets rid of weak385

instrument bias by dealing with measurement errors of the SNP associations on the risk factors with386

profile likelihood. Our likelihood is similar to the approach in [12], while allowing pervasive pleiotropy387

with the inSIDE assumption. The multi-modality visualization shares similarities with [25], which388

estimates the causal effect by the global mode, but we provide a more comprehensive analysis to389

identify multiple pleiotropic pathways by the local modes. Our causality direction identification is390

related to bidirectional MR where they used the assumption that if we reverse the role of risk factor391

and disease, the estimated causal effect is likely to be 0. We use this idea in a more principled way392

and can avoid bias when SNPs affecting the disease through the target risk factors are also selected393

in the reversed MR. Finally, as the intercept term in MR-Egger is not invariant to the arbitrary394

assignment of effect alleles for each SNP, leading to the deficiency of the method, GRAPPLE does395

not include any intercept term.396

GRAPPLE needs a separate GWAS cohort of the exposure for SNP selection, which is necessary397
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for valid inference with weakly associated SNPs. Actually, as shown in Fig S1a, the three-sample398

design is needed for other MR methods as well to avoid selection bias. Currently, we find it hard399

to obtain multiple good-quality public GWAS summary statistics with non-overlapping cohorts. We400

suggest that the stage-specific or study-specific GWAS data before meta-analysis may be released to401

the public in the future.402

In GRAPPLE, we still require using a p-value threshold, though it can be as mild as 10−2,403

instead of requiring no p-value threshold at all. There are two main reasons for this requirement.404

One consideration is to increase power, as including too many SNPs with γj = 0 or extremely small405

would instead increase the variance of β̂ [59, 58]. Another consideration is that we would not want406

unmeasured risk factors that are unassociated (or very weakly associated) with target risk factors407

to bring in large pleiotropic effects on SNPs that mainly affect these unmeasured risk factors. The408

chance of including these SNPs would be much lower by requiring a mild p-value threshold.409

To adjust for confounding risk factors, GRAPPLE requires that these factors are either known a410

priori, or can be identified from the marker SNPs / genes / traits. However, this step can be hard411

to execute in practice. The pleiotropic pathways may not be well tagged, and GRAPPLE may not412

have the power to return enough markers. As a future direction, instead of adjusting for unknown413

confounding risk factors, we may consider directly adjusting for confounding gene expressions that414

can be more easily identified.415

Finally, when discussing the causal effect of a risk factor, one implicit assumption we use is416

consistency, assuming that there is a clear and only one version of intervention that can be done417

on the risk factor. However, interventions on risk factors such as BMI are typically vague [15]. For418

instance, there can be multiple ways to change weight, such as taking exercise, switching to different419

diet or conducting a surgery. It is common sense that these different interventions would have different420

effects on diseases, though they may change BMI by the same amount. Similarly, the cholesterol has421

abundant functions in our body and involves in multiple biological processes. Intervening different422

biological processes to change the concentrations of lipid traits may also have different effect on423

diseases. With MR, the interventions are changing risk factors levels with natural mutations, which424

may be different from interventions with drugs that has a rapid and strong effect on the risk factors.425

We think that our causal inference using GRAPPLE, along with the markers we detect, would provide426

abundant information to deepen our understanding of the risk factors. However, one still needs to427

be careful when giving causal interpretations of the results. One recommendation in practice is to428

triangulate the results from MR with other sources of evidence [37].429
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Materials and Methods430

Model details431

The structural equations (1) where X = (X1, X2, · · · , XK) and β = (β1, β2, · · · , βK) describe how

individual level data are generated. To link it with the GWAS summary statistics data, denote

γjk = argminγVar [Xk − γZj ]

which is the true marginal association between a SNP Zj and risk factor Xk and

αj = argminαVar [f(U ,Z, EY )− αZj ]

which is the marginal association between Zj and the causal effects of unmeasured risk factors on432

Y , i.e. the horizontal pleiotropic effect of Zj on Y given X. Then we can rewrite the structural433

equations into the following linear models:434

Xk = γjkZj + [gk(U ,Z, EXk
)− γjkZj ] = γjkZj + εjk (5)

435

Y = XTβ + αjZj + [f(U ,Z, EY )− αjZj ] = XTβ + αjZj + ẽj (6)

where corr(Zj , εjk) = 0 for any k and corr(Zj , ẽj) = 0 guaranteed by the definitions of γjk and αj .

By replacing X in (6) with (5), we get

Y =
(
γTj β + αj

)
Zj + ẽj +

∑
k

βkεjk = ΓjZj + ej

where Γj = γTj β+αj and ej = ẽj +
∑

k βkεjk. As Corr(Zj , ej) = 0, we conclude that Γj also satisfies

that

Γj = argminΓVar [Y − ΓZj ] .

Thus, parameters Γj also represent true marginal associations between SNP Zj and the the disease436

trait. This is how we result in working with Eq (2).437

When the disease is a binary trait, the structural equation of Y changes to438

logit [P (Y = 1)] = XTβ + f(U ,Z, EY ) (7)

With the same argument, we have

logit [P (Y = 1)] = ΓjZj + ej

If we further assume that for each genetic instrument j, Zj is actually independent of ej (instead of439

just being uncorrelated), then the odds ratio that is estimated from the marginal logistic regression440

will be approximately Γj/c with a constant c > 1 determined by the distribution of ej . In other441
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words, for binary disease outcomes, Eq (2) is still approximately correct with the β in (2) being a442

conservatively biased (by a ratio of 1/c) version of the β in (7) (for a detailed calculation, see A.1 of443

[59]).444

GWAS summary statistics from overlapping cohorts445

The GWAS estimated effect sizes (log odds ratios for binary traits) of SNP j are Γ̂j for the disease446

and a length K vector γ̂j for the risk factors. As shown in [7] and derived in Supplementary Note447

3.1, for any risk factor k we have448

Corr
[
Γ̂j , γ̂jk

]
≈ Nsk√

NekNo
Corr [Ys, Xks] (8)

where No and Nek are the total sample sizes for the disease and kth risk factor. Nsk is the number449

of shared samples. The correlation of Xk and Y of any shared sample is Corr [Ys, Xks]. Eq (8) shows450

that all the SNPs share the same correlation. As a consequence, we assume451

(
Γ̂j

γ̂j

)
∼ N


(

Γj

γj

)
,Σj =


σYj

σXj1

. . .

σXjK

Σ


σYj

σXj1

. . .

σXjK



 (9)

where Σ is the unknown shared correlation matrix.452

Estimate the shared correlation Σ453

To estimate Σ from summary statistics, we can use Eq (8). We first need to choose SNPs where454

γjk = 0 for all risk factors k so that we can estimate the shared correlation Corr
[
Γ̂j , γ̂jk

]
using the455

sample correlation of the chosen SNPs. We choose all SNPs whose selection p-values pjk ≥ 0.5 for all456

k.457

For these selected SNPs, denote the Z-values of (γ̂j , Γ̂j) for j = 1, · · · , T as matrix ZT×(K+1)458

where T is the number of selected SNPs. Then Σ is estimated as the correlation matrix of ZT×(K+1).459

Instruments selection using LD clumping460

In GRAPPLE, we need to first select a set of SNPs as genetic instruments to estimate the causal effects461

β. Here, we only select independent SNPs to simplify the calculation. Besides the independence462

requirement, we only include SNPs that pass a p-value threshold to reduce the inclusion of false463

positives that can decrease power. To avoid selection bias, a separate cohort for each risk factor464

is used where the reported p-values in that cohort are used for instruments selection. Denote the465

selection p-value for SNP j and risk factor k as pjk, for multiple risk factors and a given selection466

threshold, we require the Bonferroni combined p-values K min(pjk) to pass the threshold. After that,467

15

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.05.06.077982doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.077982
http://creativecommons.org/licenses/by-nc/4.0/


we use LD clumping with PLINK [29] to select independent genetic instruments. The LD r2 threshold468

for PLINK is set to 0.001.469

Estimate the effects β470

Here, we perform statistical analysis assuming αj ∼ N(0, τ2) for the pleiotropic effects, while robust471

to outliers where the pleiotropic effects for a few instruments are large.472

Under model (9), Eq (2) and given Σ, the log-likelihood with GWAS summary statistics satisfy:

L(β,γ1, · · · ,γp, τ2)

=− 1

2

p∑
j=1

(Γ̂j − γTj β
γ̂j − γj

)T
(Σj + τ2eeT )−1

(
Γ̂j − γTj β
γ̂j − γj

)
+ log |Σj + τ2eeT |


up to some additive constant. Here, e = (1, 0, · · · , 0).473

Define for each SNP j the statistics474

tj(β, τ
2) =

Γ̂j − γ̂jTβ√
σ2
Yj

+ βTΣXjβ − 2βTΣXjYj + τ2
(10)

where ΣXj is the variance of γ̂j and ΣXjYj is the covariance between γ̂j and Γ̂j in Σj . Then the

profile log-likelihood that profile out parameters (γ1, · · · ,γp) results in

L(β, τ2) = max(γ1,··· ,γp)L(β,γ1, · · · ,γp, τ2) = −1

2

p∑
j=1

[
tj(β, τ

2)2 + log |Σj + τ2eeT |
]

As discussed in [59], maximizing L(β, τ2) would not give consistent estimate of τ2. Because of475

this and the goal of making β̂ robust to outlier SNPs with large pleiotropic effects, our optimization476

function is the adjusted robustified profile likelihood defined as477

l(β, τ2) = −
∑
j

lj(β, τ
2) = −

∑
j

ρ
(
tj(β, τ

2)
)

(11)

where ρ(·) is some robust loss function. By default, GRAPPLE uses the Tukey’s Biweight loss

function:

ρ(r) =

 c2

6

[
1− (1− (r/c)2)3

]
if |r| ≤ c

c2/6 otherwise

where c is set to its common default value 4.6851. We maximize (11) with respect to β as well as478

solving the following estimating equation for the heterogeneity τ2 which is479

ϕ2(β, τ2) = l(β, τ2)− pη = 0 (12)
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where η = E [ρ(Z)] with Z ∼ N (0, 1). The estimating equation satisfies E
[
ϕ2(β, τ2)

]
= 0 at the true480

values of β and τ2, thus can result in consistent estimate of τ2. For the details of estimating β and481

τ2 as well building confidence intervals for them, see Supplementary Note 3.2.482

Identify pleiotropic pathways via the multi-modality diagnosis483

We use the mode detection of the robustified profile likelihood (11) to detect multiple pleiotropic484

pathways. To increase sensitivity, we set τ2 = 0 and reduce the tuning parameter in the Tukey’s485

Biweight loss function to c = 3. Here we present a detailed argument on why mode detection can486

identify pleiotropic pathways.487

If there is a confounding Genetic Pathway 2 X̃, as shown in Figure 1a, that are missed, then we

have the structural equation

Y = βX + κX̃ + f(U,Z1, · · · , Zp, EY )

and also the linear model488

X = δX̃ + ε, Corr(Zj , ε) = 0 (13)

for a SNP j that only associate with Genetic Pathway 2 and uncorrelate with X conditional on X̃.

Similar to (5), we have

X = γjZj + εj , X̃ = γ̃Zj + ε̃j

Plug in (13), we have

γj = δγ̃j

Γj = βγj + κγ̃j + αj = (β + κ/δ)γj + αj

Thus, if there are enough SNPs like SNP j, they would contribute to another mode of (4) at β+κ/δ.489

The same argument works for identification of the causal direction. Say there is another X̃ that490

affects Y but is uncorrelated with the risk factor X (δ = 0). The existence of such X̃ is common,491

unless X is the only heritable risk factor of Y . SNPs strongly associated with X̃ would not likely be492

selected when X is the exposure while would appear when the roles of X and Y are switched. These493

SNPs can be used to identify the causal direction, as as in the reverse MR, they contribute to a mode494

at 0, while the SNPs that affect Y through X will contribute to a mode at 1/β.495

Select marker SNPs and genes for each mode496

GRAPPLE uses LD clumping with a stringent r2 (= 0.001) threshold to guarantee independence497

among the genetic instruments. However, marker SNPs are not restricted to these independent498

instruments in order to get more biological meaningful markers. Marker SNPs are selected from a499

SNP set G where the SNPs are selected using LD clumping with r2 threshold 0.05.500

Assume that there are M modes detected at positions β1, β2, · · · , βM . Define the residual of SNP501
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j (j ∈ G) for mode m as502

rjm = tj(βm, 0)

where tj(·, ·) is defined in Eq (10). SNP j is selected as a marker for mode m if |rjm′ | > t1 for any503

m′ 6= m and |rjm| ≤ t0. By default, t1 is set to 2 and t0 is set to 1 which gives reasonable results in504

practice. When the marker SNPs are selected, GRAPPLE further map the SNPs to ENCODE genes505

where the marker SNPs locate and and search for the traits that these SNPs are strongly associated506

with in GWA studies by querying HaploReg v4.1 [53] using the R package HaploR. The ratios Γ̂j/γ̂j507

of the marker SNPs are also returned for reference (shown as the vertical bars in Fig 3b).508

Compute replicability p-values across SNP selection thresholds509

Each p-value shown in Fig 3a summarizes a vector of p-values across 7 different selection p-value510

thresholds ranging from 10−8 ot 10−2 for each risk factor and disease pair. It reflects how consistent511

the significance is across SNP selection thresholds. Specifically, it is the partial conjunction p-value512

[2] for rejecting the null that β is non-zero for at most 2 of the selection thresholds . For a risk factor513

and disease pair k, let the p-values computed by using SNPs selected with the 7 thresholds pks where514

s = 1, 2, · · · , 7. Then rank them as pk(1) ≤ pk(2) ≤ · · · ≤ pk(7), the partial conjunction p-value for the515

pair k is computed as 5pk(3).516

Code Availability517

The R package GRAPPLE can be installed from Github at https://github.com/jingshuw/GRAPPLE.518

Data Availability519

All GWAS summary statistics that are used in the analyses of the manuscript are downloaded from520

public resources, where most of them are downloaded from the GWAS Catalog [9], and the websites521

of GWAS consortium GIANT, DIAGRAM, PGC, GLGC, and UKBiobank. A complete list of the522

datasets used in each analysis and where they are from is provided in Supplementary Tables 1 and523

2 and Supplementary Note 2. Intermediate results for screening of 5 risk factors on 25 diseases are524

available at https://www.dropbox.com/sh/myh8xgxne8fo17v/AABWJf781VrCGnqNFMLtnqIea?dl=0.525
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Figure 2: Performance evaluation. a, Estimation of β across selection p-value thresholds under no
pleiotropy. Error bars show 95% Confidence intervals and the numbers are the number of independent
SNPs obtained at each threshold. b, Estimation of β across three categories of SNPs. The numbers
are the number of SNPs in each category. c, Identifying causal directions by multi-modality with MR
reversely performed. The selection p-value threshold is kept at 10−4. d, three modes detected in the
profile likelihood with selection p-value threshold 10−4 for CRP on CAD. Marker genes and GWAS traits
(in parenthesis) are shown for each mode. e, estimation of the CRP effect β at different p-value selection

threshold with each method. The numbers are the estimated β̂, with ∗ indicating p-value below 0.05 and
∗∗ indicating p-value below 0.01.
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Figure 3: Screening with GRAPPLE. a, Landscape of pleiotropic pathways on 25 diseases. The colors
show average number of modes across 7 different selection p-value thresholds. The “+” sign shows a
positive estimated effect and “−” indicates a negative estimated effect, with the p-value for each cell a
combined p-value of replicability across 7 thresholds. These p-values are not multiple-testing adjusted
across pairs. b, Multi-modality of the profile likelihood for effect of HDL-C on CAD at 2 different selection
p-value threshold. Vertical bars are positions of marker SNPs (Γ̂j/γ̂j), labeled by their mapped genes (only
unique gene names are shown). c, Multivariate MR for the effect of 5 risk factors on CAD. d, Multivariate
MR for the effect of 4 risk factors on CAD. The Error bars are 95% confidence intervals.
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