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Abstract 

Alternative splicing is an RNA processing mechanism that affects most genes in human, 
contributing to disease mechanisms and phenotypic diversity. The regulation of splicing involves 
an intricate network of cis-regulatory elements and trans-acting factors. Due to their high 
sequence specificity, cis-regulation of splicing can be altered by genetic variants, significantly 
affecting splicing outcomes. Recently, multiple methods have been applied to understanding the 
regulatory effects of genetic variants on splicing. However, it is still challenging to go beyond 
apparent association to pinpoint functional variants. To fill in this gap, we utilized large-scale 
datasets of the Genotype-Tissue Expression (GTEx) project to study genetically-modulated 
alternative splicing (GMAS) via identification of allele-specific splicing events.  We demonstrate 
that GMAS events are shared across tissues and individuals more often than expected by chance, 
consistent with their genetically driven nature. Moreover, although the allelic bias of GMAS 
exons varies across samples, the degree of variation is similar across tissues vs. individuals. 
Thus, genetic background drives the GMAS pattern to a similar degree as tissue-specific splicing 
mechanisms. Leveraging the genetically driven nature of GMAS, we developed a new method to 
predict functional splicing-altering variants, built upon a genotype-phenotype concordance 
model across samples. Complemented by experimental validations, this method predicted >1000 
functional variants, many of which may alter RNA-protein interactions.   Lastly, 72% of GMAS-
associated SNPs were in linkage disequilibrium with GWAS-reported SNPs, and such 
association was enriched in tissues of relevance for specific traits/diseases. Our study enables a 
comprehensive view of genetically driven splicing variations in human tissues. 
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Introduction 

High-throughput sequencing technologies are enabling identification of an extraordinary number 
of genetic variants in the human genome1. These data provide a foundation to elucidate the 
genetic underpinnings of human diseases or phenotypic traits. Many genome-wide studies have 
been conducted to uncover associations between the genetic variants and complex traits2. 
However, moving from associations to revealing the underlying mechanisms remains a 
significant challenge. Genetic variants could affect many aspects of gene expression or function, 
which is a major determinant of phenotypic diversity3. Until recently, research efforts have been 
focused on variants that may impose epigenetic or transcriptional regulation. However, it is 
increasingly recognized that genetic variants also play critical roles in modulating post-
transcriptional mechanisms, such as alternative splicing4,5. 

Alternative splicing is an essential mechanism in eukaryotic gene expression, contributing to 
many aspects of phenotypic complexity and disease mechanisms6. Splicing is regulated by an 
intricate network of trans-factors and cis-regulatory elements6. Thus, it is not surprising that 
genetic variants may alter different aspects of splicing regulation, such as the cis-regulatory 
motifs, trans-factor expression or function, and the interactions between these players4,5. Indeed, 
quantitative trait loci (QTL) mapping in lymphoblastoid cell lines suggested that splicing QTLs 
and expression QTLs are comparable in their effects on complex traits7,8. 

Both computational and experimental methods have been developed to reveal splicing-disrupting 
genetic variants9,10,11.  Computationally, applications of machine learning methods have yielded 
promising results12.  Recently, performance improvements were achieved using deep learning to 
predict splice site usage directly from nucleotide sequence13,14,15,16.  However, these methods still 
present challenges in interpretability and it is difficult to determine whether the features being 
used are biologically relevant.  Experimentally, massively parallel reporter assays have enabled 
large-scale screens of functional variants in splicing17,18,19,20,21. However, due to the limited insert 
size cloned into the reporters, the splicing outcome may not always recapitulate endogenous 
splicing patterns. Additionally, these reporter assays can only be performed in one cell type at a 
time. In general, it remains a great challenge, both computationally and experimentally, to 
identify causal genetic variants specific to each tissue type. 

In this study, we carried out global analyses of allele-specific alternative splicing using RNA-seq 
data from a large panel of human tissues and individuals generated by the GTEx project22. 
Compared to machine learning methods, allele-specific analysis is a data-driven approach that 
requires little prior knowledge about splicing regulatory mechanisms. The advantage of this 
approach includes its applicability to a single RNA-seq dataset. In addition, it compares the 
alternative alleles of a heterozygous SNP in the same cellular environment in the same subject. 
Thus, the method controls for tissue conditions, trans-acting factors, global epigenetic effects, 
and other environmental influences.  

Our lab previously developed allele-specific analysis methods to identify allele-specific splicing 
events, also called genetically modulated alternative splicing (GMAS)23,24. Here, in addition to 
applying these methods to the GTEx data, we developed a new method to infer functional SNPs 
underlying the GMAS events. Using these methods, we observed that GMAS patterns were 
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significantly shared between tissues and individuals, consistent with the expectation that genetic 
variants are the driving factors for GMAS. Nonetheless, some GMAS events showed high 
variability across individuals or tissues, enriched in genes related to immune response or muscle 
function, respectively. Importantly, the degree of variability in allele-specific splicing of GMAS 
exons was similar across tissues and individuals. The large-scale dataset also allowed us to 
examine the functional relevance of GMAS events. About 72% of GMAS-associated SNPs were 
in linkage disequilibrium (LD) with GWAS-reported SNPs, a significantly higher percentage 
than expected by chance. Moreover, for a number of GWAS traits, the related GMAS events 
were enriched in tissues expected to be closely relevant to the traits.   

Results 

Overview of genetic modulation of alternative splicing in GTEx data 

We first applied our previously published method23 to identify GMAS events. Briefly, this 
method examines allelic biases in reads covering heterozygous SNPs in each gene. By 
comparing the allele-specific expression patterns of all heterozygous SNPs in a gene and their 
associations with alternative splicing, the method identifies SNPs that are associated with allele-
specific splicing patterns (Methods). Although this method does not pinpoint the functional (or 
causal) SNPs regulating splicing, it captures exons (namely GMAS exons) that are under such 
genetic regulation. Therefore, the SNPs with allelic bias located in the GMAS exons are named 
tag SNPs.  Using this method, we analyzed a total of 7,822 GTEx RNA-seq datasets, across 47 
tissues and 515 donors, following a few quality control filters (Methods).  

Across all tissues, a total of 12,331 exons were identified as GMAS exons, associated with 
18,894 heterozygous tag SNPs (Methods), where one GMAS exon may be associated with 
multiple tag SNPs.  We focused on GMAS events that are common to multiple samples by 
requiring each GMAS exon be present in ≥3 samples (across all tissues and individuals). A total 
of 4,941 GMAS exons (7,404 tag SNPs) were retained (Supplemental Table 1). For each tissue, 
an average of 10% of all testable exons (defined based on read coverage requirements, see 
Methods) were identified as GMAS exons (Fig. 1A). This percentage is highest in whole blood 
(17.8%), which may reflect existence of a high level of genetic modulation of splicing, consistent 
with the sQTL results in the GTEx study22. Pancreas, in which splicing regulation is not well 
understood26, had the smallest fraction of exons demonstrating GMAS patterns (8.4%). This 
lower percentage could be partly explained by the low read depth relative to other tissues 
(Supplemental Fig. S1).  

In each tissue, the most prevalent type of alternative splicing for GMAS events is skipped exons 
(SEs), accounting for about 80% of all events, followed by retained introns (RIs, ~10%) 
(Supplemental Fig. S2A). The distribution of percent spliced-in (PSI) values of GMAS exons in 
each tissue generally showed bimodal patterns, except for the RI events that had relatively low 
PSI (Supplemental Fig. S2B), consistent with previous findings for alternatively spliced exons in 
general27,28. 
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Figure 1: The landscape of GMAS exons in human tissues. (A) % of GMAS exons among all testable 
exons in each tissue (averaged across individuals). (B) The variability of GMAS patterns across tissues 
and individuals (Methods). Each dot represents an exon, and the colors represent the number of overlapping 
dots. This analysis only included GMAS exons that exist in ≥2 individuals per tissue and ≥2 tissues per 
individual. The numbers along the diagonal line show the number of GMAS exons above and below the line, 
respectively. GO terms enriched among genes in the high variability groups (boxed) are shown. Color intensity 
represents the number of genes associated with each significant GO term. The p values were estimated based 
on 10,000 randomizations of control genes matching gene length and GC content of the test genes24. The 
significant cutoff of the P value was set to be 1/(number of total GO terms considered).
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GMAS patterns vary across tissues and individuals to a similar degree 

Given the datasets from many individuals and a large panel of tissues, we first examined the 
global variability in GMAS patterns depending on these two variables.  To segregate the impact 
of tissues and individuals on GMAS, we used a linear mixed model that includes these two 
variables and a number of confounding factors (age, ethnicity and gender) (Methods).  We 
observed equivalent levels of dependence of GMAS on tissues and individuals (Fig. 1B). This 
result is in stark contrast to previous findings that both gene expression and splicing in general 
predominantly vary depending on tissue types instead of individuals29. Nevertheless, our result 
is not surprising because GMAS, by definition, consist of splicing events modulated by genetic 
variants that can be individual-specific.  In turn, this result confirms the validity of the reported 
GMAS events. Importantly, our observation highlights that genetic background drives the 
splicing patterns of GMAS exons to a similar degree as tissue-specific splicing mechanisms, a 
previously under-appreciated aspect. 

Genes that contain GMAS exons with high tissue variance or high individual variance have 
substantially different function (Fig. 1B). The first group of genes is enriched in Gene Ontology 
(GO) terms associated with biophysical properties of the cells, especially related to heart or 
skeletal muscle function (e.g., sarcomere organization, cardiac muscle development and 
cytoskeleton organization).  This finding supports that alternative splicing is an important aspect 
contributing to the vast spectrum of biophysical properties of different cell types30. In contrast, 
genes harboring GMAS exons with large variability across individuals are often involved in 
immune response and signaling pathways. This observation suggests that the individual 
variability in immune or stress response31,32,33 is partly accounted for by splicing variations 
driven by genetic backgrounds. For genes with GMAS exons with low variability across both 
tissues and individuals, the most significant GO terms are related to essential cellular processes 
(Supplemental Fig. S3), which may reflect existence of selection against splicing variability in 
essential genes.   

GMAS patterns are shared between tissues or individuals 

To better understand the tissue-specificity of GMAS events, we next investigated the extent of 
overlap of GMAS exons between tissues (Methods). We observed that biologically related 
tissues, such as brain regions, heart and skeletal muscles, and reproductive tissues (uterus and 
vagina), formed clear clusters (Fig. 2A). Most brain regions shared about 25-43% of GMAS 
exons with one another, with the exception of cerebellum and cerebellar hemisphere. These two 
regions were previously reported as outliers with distinctly higher splicing factor expression 
than other brain regions29. Consistently, we observed that these two brain regions shared the 
most GMAS exons with each other, and much less with other regions (Supplemental Fig. S4).  

Next, we asked whether GMAS patterns are shared between distinct tissues more than expected 
by chance. For this analysis, we focused on 26 representative tissues to remove redundant ones 
that are highly similar to each other (Methods). Each exon was required to be testable in at least 
10 individuals and 5 representative tissues of a specific individual. We observed that the allelic 
bias of the GMAS tag SNPs was more similar between tissues of the same individual than 
expected by chance (Fig. 2B). Similarly, for the same tissue, the GMAS-associated allelic bias is 
also shared among individuals to a greater extent than expected by chance (Fig. 2C).  
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Figure 2: Comparison of GMAS patterns across tissues or individuals. (A) Heatmap of the Jaccard 
indices of GMAS exons between each pair of tissues (Methods). White boxes correspond to tissue 
pairs with < 10 common testable exons. (B) Empirical cumulative distribution function (eCDF) of 
variances across tissues in the allelic biases of tag SNPs of GMAS exons for all individuals. Controls 
were included for comparison purposes (Methods). The p value was calculated using the Kolmogorov–
Smirnov test. (C) Similar as (B), but for variance across individuals per tissue. 
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These results suggest that genetic variants are important drivers for GMAS patterns and tissue-
specific effects may play a relatively less dominant role. This observation is consistent with the 
data in Fig. 1B where the majority of GMAS exons showed relatively small variability across 
tissues or individuals, with those that are tissue- or individual-specific being the minority. 

Inferring functional SNPs for GMAS events 

Since genetic background is a main driver for GMAS events, an important task is to pinpoint the 
functional genetic variants underlying these events. Note that the tag SNPs identified with the 
GMAS events are not necessarily functional as they could be in LD with the functional SNPs. To 
infer the functional SNPs, we developed a new method that combines allele-specific analysis of 
one dataset with population-level variation in GMAS patterns, namely, concordance-based 
analysis of GMAS (cGMAS).  

Leveraging the genetically driven nature of GMAS, cGMAS is built upon the rationale that a 
functional SNP, if exists as a heterozygous SNP, should always lead to allele-specific splicing 
pattern (i.e., GMAS) in the corresponding dataset. Thus, we expect to observe concordance 
between the genotype of a functional SNP and the splicing patterns of a GMAS exon across 
different individuals. As illustrated in Fig. 3A (details in Methods), the cGMAS method 
considers as candidate functional SNPs all heterozygous SNPs in GTEx individuals located in 
the proximity of GMAS events. For each candidate SNP, a concordance score (Si) was calculated 
between its genotype and the GMAS pattern in each individual where the SNP genotype is 
available. In particular, the GMAS pattern was represented by the allelic imbalance at the tag 
SNP initially identified with the GMAS event (Supplemental Fig. S5). Subsequently, the 
distribution of Si over all individuals was analyzed using a Gaussian Mixture Model (GMM) to 
identify prominent peaks. The significance of each peak was evaluated via randomization of the 
Si values. The functionality of the candidate SNP was determined based on the number and Si 
values of significant peaks (FDR ≤ 0.05) detected in the above procedure (Supplemental Fig. 
S5).     

The ability to identify functional SNPs via cGMAS is expected to depend on the number of 
individuals that possess the GMAS pattern of a given exon. To carry out a power analysis for 
this method, we simulated 100 hypothetical GMAS exons with functional SNPs that occur in a 
varying number of individuals (Methods). In addition, we varied the fraction of the simulated 
individuals that harbor a heterozygous genotype at each functional SNP (Methods). As expected, 
greater predictive power was achieved if more individuals had the GMAS event (Fig. 3B). The 
proportion of individuals that had heterozygous alleles at the candidate SNP (i.e., heterozygous 
ratio) also affected power, where higher heterozygous ratios led to increased power.  

Functional SNPs for GMAS events in GTEx individuals 

We applied cGMAS to analyze the GTEx data in two ways: separately for individual tissues and 
collectively using data of all tissues. Since the number of datasets from each tissue is limited, the 
latter analysis is associated with increased predictive power. Although tissue-specific functional 
SNPs may not be identifiable, the pooled analysis could detect SNPs that function relatively 
ubiquitously across tissues. These analyses together identified 1,045 putative functional SNPs 
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Figure 3: Prediction of functional SNPs for GMAS events. (A) Functional SNPs are predicted by considering 
candidate SNPs (red crosses) in the vicinity of an GMAS exon, including the tag SNP itself (blue crosses). 
Concordance among the allelic ratios of the tag SNP in all samples is calculated as described in Methods 
(with hypothetical distributions shown). (B) The percentage of SNPs predicted given the number of individuals 
in the simulated testing cohort (Methods). Different percentages of individuals with the heterozygous genotype 
were simulated. Vertical dotted line marks 10 individuals. (C) Top: number of predicted functional SNPs per tissue. 
Bottom: number of GMAS exons with predicted functional SNPs per tissue. The rightmost bar (All) corresponds to 
predictions made by pooling samples from all tissues. (D) Left pie chart: predicted functional SNPs in the exonic or 
intronic regions of SE (skipped exons).  Exonic GMAS: the functional SNP is also the exonic GMAS tag SNP. The 
rest of the functional SNPs were classified into the “Exonic” or “Flanking intron” group. Right pie chart: for retained 
introns (RI). Intronic GMAS: the functional SNP is also the GMAS tag SNP. N’s refer to the number of functional 
SNPs for each group. No functional SNPs were predicted for alternative 5’ or 3’ss exons. (E) Densities of predicted 
functional SNPs near the exon-intron boundaries of their associated GMAS exons (SEs only). The number of 
functional SNPs was normalized by the total number of testable SNPs at each nucleotide position. Orange curve 
is the fitted trend line of the shaded area that represents the SNP density at single nucleotide resolution. 
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corresponding to 677 GMAS exons (FDR ≤ 0.05, Fig. 3C). These SNPs had 16-24% of overlap 
with known sQTLs, depending on the method and dataset used for sQTL analyses22,34,35 
(Supplemental Fig. S6).  

Among the putative functional SNPs, about 78% (812) coincided with the GMAS tag SNPs. The 
rest of the SNPs were located within the same exons as the GMAS exon or in the flanking 
introns (Fig. 3D). In addition, 23 (2.2%) putative functional SNPs resided in the 5’ splice sites 
(5’ss), and 26 (2.5%) in the 3’ss. The alternative alleles of these SNPs caused significant 
difference in the splice site strength (Supplemental Fig. S7). In general, putative functional SNPs 
demonstrated a positional bias towards enrichment near the splice sites of skipped exons (Fig. 
3E), consistent with the expectation that regulatory elements of splicing tend to locate in close 
proximity to splice sites.  Note that since the other types of alternative exons had relatively small 
numbers of events, they were not included in this analysis. 

Experimental support of functional SNPs for GMAS 

To support the predicted functional SNPs, we performed minigene reporter experiments using a 
splicing reporter from a previous study36. For each candidate SNP, we created two versions of 
the minigene construct, harboring the reference and variant alleles respectively (Supplemental 
Table 2). Once expressed in cells, minigenes containing functional SNPs are expected to show a 
significant splicing difference between the two versions. Using this system in HeLa cells, we 
tested five predicted functional SNPs, three associated with exon skipping events (PDE4DIP, 
MAP2K3, and UGT2B17) and two with intron retention events (SEPT4 and ATHL1). All five 
SNPs were confirmed to lead to allele-specific splicing patterns (Fig. 4A). These results strongly 
support the predicted functionality of these SNPs. 

It is expected that many functional SNPs may disrupt the interaction between splicing factors 
and their cis-regulatory motifs6. Among the putative functional SNPs, 492 were predicted to alter 
the binding motifs of known splicing factors37,38 (using our previous motif analysis method24) or 
overlap the binding sites of splicing factors in the ENCODE eCLIP datasets39 (Supplemental Fig. 
S8A). For these SNPs, we observed that the splicing of their associated GMAS exons showed 
significant changes upon splicing factor knockdown (KD) compared to random control exons 
(Fig. 4B), supporting the functional roles of the splicing factors.  

Furthermore, 31 putative functional SNPs were testable for allele-specific binding (ASB) using 
the ENCODE eCLIP data in our previous study40, 18 (58%) of which had significant ASB 
supporting their functional roles. To experimentally confirm the ASB patterns, we carried out 
electrophoretic mobility shift assays (EMSA, or gel shift) for BUD13, the protein with the largest 
number of eCLIP peaks overlapping putative functional SNPs (Supplementary Fig. S8A, B).  
We focused on two candidate functional SNPs and asked whether BUD13 binds to the 
alternative alleles with different strength. Two versions of the RNA sequences were synthesized 
harboring the alternative alleles of each SNP. As shown in Fig. 4C, the binding of BUD13 to 
target RNAs was stronger with increasing protein input. The alternative alleles of the SNPs 
demonstrated visible differences in their binding to the protein, supporting the functional impact 
of these SNPs. Note that the two SNPs were also predicted as ASB SNPs for BUD13 via eCLIP-
seq analysis of K562 cells40 (Fig. 4C), consistent with our experimental results.  
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Figure 4: Experimental support of predicted functional SNPs. (A) Minigene experiments validating predicted 
functional SNPs for GMAS in triplicates (R1-3). The inclusion levels (% inclusion) of the skipped exons or 
retained introns were estimated from the band intensities of the PAGE gel. (B) eCDF of the absolute changes 
in the PSI values of GMAS exons upon KD of splicing factors associated with putative functional SNPs (based 
on motif analysis of eCLIP overlap). The p value was calculated using the Kolmogorov–Smirnov test. 
(C) EMSA validating allele-specific binding of BUD13 to putative functional SNPs. The amount of BUD13
protein used in the experiment is illustrated above the gel. BUD13 eCLIP reads (gray) are shown below the
gel, where the locations of the SNPs are labeled with vertical colored lines. The fraction of reads supporting
either allele at the functional SNP position is delineated.
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GMAS events are enriched in disease-relevant genes and regions 

To examine the disease relevance of GMAS events, we first asked whether GMAS events are 
significantly associated with GWAS loci. For this analysis, we included all GMAS events 
identified in this study, not limited to those with predicted functional SNPs. Specifically, we 
examined whether GMAS-associated SNPs were in LD with GWAS SNPs (and within 200kb in 
distance, Methods). As controls, random variants from non-GMAS genes were sampled and 
analyzed relative to GWAS SNPs similarly. We observed that 72% (5317) GMAS SNPs were in 
LD with GWAS SNPs, a percentage significantly higher than that among control SNPs (Fig. 5A; 
P < 2.2 ´ 10-16). Note that similar results were observed when only including the putative 
functional SNPs for GMAS (Fig. 5A; P < 2.2 ´ 10-16). These observations support the likely 
disease relevance of GMAS events.  

We further examined the GMAS-GWAS relationship for specific traits/diseases. For each 
trait/disease, we repeated the above LD analysis and calculated the enrichment of GMAS SNPs 
relative to control SNPs that are located in LD regions of GWAS SNPs (defined as relative risk, 
Methods, Fig. 5B). A number of traits/diseases, such as immune function, Parkinson’s disease, 
and Bipolar disorder, demonstrated significantly high enrichment (Fig. 5B). Interestingly, GMAS 
SNPs associated with immune function had the highest relative enrichment, consistent with the 
known prevalence of alternative splicing in the immune system41. The enriched association of 
GMAS SNPs with neurological function or related diseases suggests that splicing may have 
close relevance in these processes.  Complex traits such as height and body mass index (BMI) 
had the lowest relative risk (although still significant), indicating that splicing likely contributes 
the least to their underlying biological mechanisms among those considered here.  

An interesting question is whether the GMAS events were identified in tissues relevant to their 
associated GWAS traits/diseases. To this end, we defined a trait-relevance ratio (TRR) to 
evaluate the proportion of GMAS SNPs in each tissue that were in LD with GWAS SNPs for a 
given trait/disease (Methods).  This analysis revealed some interesting insights. For example, for 
Bipolar disorder, brain tissues had the highest TRRs among all tissues, consistent with the nature 
of the disease (Fig. 5C). In contrast, TRRs were highest in lymphocytes and whole blood for 
immune function-associated GMAS SNPs (Fig. 5D), both with immune relevance. In addition, 
GMAS SNPs associated with metabolic function had highest TRRs in tissues (liver and adrenal 
gland) of close relevance to metabolism (Supplemental Fig. S9A). Neuroticism- and cognitive 
function-related GMAS SNPs were observed with high TRRs in brain tissues (Supplemental Fig. 
S9B, S9C). Thus, these observations are highly consistent with the expected tissues of relevance 
of the traits/diseases, supporting the potential involvement of GMAS in related functional 
processes. For other traits, the top tissues with high TRR values were more diverse or non-
intuitive (Supplemental Fig. S9D-S9I). It’s likely that genetically driven splicing alteration is not 
a primary contributor, or alternatively, these traits/diseases are complex and involve biological 
processes in a wide range of tissues.  

Discussion 

We report a comprehensive study of allele-specific alternative splicing (a.k.a. GMAS) in human 
tissues. Using GTEx datasets, we identified thousands of GMAS events, encompassing 4941 
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Figure 5: Functional relevance of GMAS events. (A) Proportions of all GMAS SNPs and putative 
functional SNPs in LD with (and within 200kb of) GWAS SNPs. Controls were random dbSNPs in genes 
that do not harbor GMAS SNPs. *p < 2.2 x 10-16 (Fisher’s Exact test) (B) Relative risk of GMAS SNPs in 
LD with selected trait/disease, defined as the ratio between the values in (A) of the GMAS and control 
groups for all GMAS SNPs. ASD: autism spectrum disorder. SCZ: schizophrenia. BMI: body mass index. 
All p values < 2.2 x 10-16 (Fisher’s Exact test).  (C)-(D) Trait-relevance ratio of each tissue (TRRt) defined 
as the proportion of GMAS SNPs identified in each tissue that were in LD with GWAS SNPs, for bipolar 
disorder and immune function, respectively.  
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exons and 7404 SNPs. The multifaceted nature of the data allowed an examination of the GMAS 
landscape across tissues and individuals. We observed that the allele-specific pattern of GMAS 
events varied to similar degrees across tissues and individuals. It is well-established that 
alternative splicing demonstrates high tissue-specificity, which enables segregation of samples 
by tissue types rather than per individual29,42,43. In contrast, our analysis showed that, for 
genetically regulated splicing events, the genetic contribution to splicing variability is equivalent 
to that contributed by tissue-specificity. As tissue-specificity is often imposed by trans-acting 
regulators, our results suggest that cis- and trans-regulatory mechanisms have similar degrees of 
impact on the variability of GMAS.  

In general, GMAS events can be shared across tissues or individuals, or demonstrate high tissue- 
or individual-specificity (Fig. 1B, Fig. 2). We observed that GMAS events overall are shared 
more significantly than expected by chance across tissues or individuals (that share the same 
genotype) (Fig. 2B, C).  This result is consistent with previous literature that genetically driven 
splicing profiles tend to be common to different cell or tissue types22,23,24. This is expected 
because genetic determinants are the most important factor for such splicing events. On the other 
hand, there do exist many GMAS events that are highly individual- or tissue-specific (Fig. 1B). 
Interestingly, genes with individual-specific GMAS exons are often involved in immune-related 
processes. This observation not only highlights the impact of an individual’s genetic makeup on 
the immune system, but also identifies splicing as a potential mechanism through which the 
phenotypic effects of genetic variants are manifested. In contrast, genes containing GMAS exons 
with high tissue variability are involved in heart or skeletal muscle function, supporting the 
particular importance of alternative splicing in the biophysical properties and functions of cells44. 

Leveraging the GTEx genotype information and GMAS events, we developed a new method to 
pinpoint functional SNPs that regulate splicing. Specifically, our method appraises the 
concordance between the allelic bias of a candidate SNP and the splicing pattern of an 
alternatively spliced region, as represented by the allelic signature of the tag GMAS SNP. The 
key factor that determines the performance of our method is the “heterozygous ratio” of a 
candidate functional SNP among the testing cohort. Our method demonstrates high predictive 
power when many individuals have heterozygous alleles at the candidate SNP locus. Within the 
GTEx cohort, we were able to predict over 1000 functional SNPs for GMAS, and the quality of 
our predictions was confirmed by the enrichment of functional SNPs near the splice sites, a 
popular metric used to examine the splicing relevance of a SNP. This method can be generally 
applied to any dataset encompassing large populations to expand the repertoire of functional 
SNPs that regulate splicing.  

Many large-scale efforts have been devoted to understanding the functional relevance of SNPs in 
the human genome. To date, the GWAS catalog has documented hundreds of thousands of 
phenotype-associated SNPs from over 3500 publications2. Yet, many traits were found to 
associate with non-coding or intergenic SNPs that do not alter the protein sequences, which 
makes GWAS interpretation challenging. We observed that a high fraction of GMAS events are 
associated with SNPs in LD with GWAS loci, suggesting that these GWAS-reported SNP-trait 
associations may be related to dysregulation of splicing. This observation is further substantiated 
by the GMAS enrichment in tissues of expected relevance for a number of GWAS traits (e.g., 
bipolar disorder, metabolic and immune function). Our study indicates that allele-specific 
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splicing analysis is an effective means to discover functionally relevant genetic variants that may 
contribute to disease mechanisms.  

Methods 

Preprocessing of GTEx RNA-seq data and identification of GMAS events 

FASTQ files from individuals with genotype information (from whole genome sequencing, 
whole exome sequence, or Illumina SNP Arrays) were downloaded from the GTEx database 
(v6p release). Library adaptors were trimmed by Cutadapt45. We aligned the reads to the hg19 
genome and transcriptome using HISAT225 with parameters --mp 6,4 --no-softclip --no-mixed --
no-discordant, keeping only the uniquely mapped read pairs for the following analyses. Samples 
with fewer than 25 million uniquely aligned read pairs were considered as insufficient read 
coverage for detecting GMAS events and thus discarded (about 10% of all datasets). We focused 
on the tissues that have at least 50 samples with sufficient read coverage. In total, 7822 RNA-seq 
samples across 47 tissues from 515 donors were kept for the GMAS analysis. 

We collected a list of high-quality SNPs from whole genome sequencing (quality filter: GQ ≥ 
20), whole exome sequence (quality filter: GQ ≥ 20), and Illumina SNP Arrays (quality filter: 
IGC ≥ 0.2) provided by GTEx. In addition to the genotyped SNPs, we included all dbSNPs 
(version 146) that showed RNA-seq evidence of being heterozygous in at least one GTEx 
individual as potential candidates for the GMAS analysis. To determine which dbSNPs were 
heterozygous, we used the RNA-seq reads covering the candidate dbSNP position and defined 
the SNP to be heterozygous if it had at least 3 reads for each of the two alleles (with at least 20 
total reads). Additionally, we further filtered out those with extreme allelic ratio (AR, defined as 
number of reads covering the reference allele/total number of reads), i.e., AR < 0.1 or AR > 0.9, 
to avoid potential amplification biases or sequencing errors.  

We applied our published method23 to predict GMAS events using the combined list of SNPs 
(genotyped or RNA-seq-based) and the uniquely aligned RNA-seq reads. Briefly, this method 
first examines allele-specific expression (ASE) of all heterozygous SNPs in a gene. It then 
determines whether ASE is global in the specific gene, which represents gene-level ASE 
possibly regulated at the level of transcription or RNA decay that affects all heterozygous SNPs 
in the gene. Alternatively, a gene may have local ASE, that is, ASE demonstrated in only a small 
fraction of testable (≥ 20 read coverage) heterozygous SNPs.  GMAS accounts for a type of such 
local ASE patterns, where the ASE SNP is located in an alternatively spliced exon and has 
significant allelic bias relative to control SNPs in the same gene (non-ASE SNPs).   

Relative to the published version23, we made the following modifications in this study. First, 
instead of focusing solely on annotated alternatively spliced exons from GENCODE 
comprehensive annotation (v24lift37), we tested all internal exons for potential GMAS events. 
Second, we replaced the normalized expression value (NEV) by PSI calculated by the method 
described in Schafer et al. 201546, only keeping exons with ≥ 15 total reads (inclusion reads + 
exclusion reads) or ≥ 2 exclusion reads. An exon is testable if it passes the read coverage 
requirements for PSI calculation and has a powerful (defined as having ≥ 20 read coverage) non-
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ASE SNP in another exon of the same gene23. To avoid false positives, we only focused on 
GMAS events that were called in at least three samples out of the total 7822 samples we 
analyzed. 

Estimation of tissue vs. individual contributions to GMAS pattern variations 

We used the lmer function from the lme4 package in R to model the allelic imbalance for each 
GMAS exon as the following: 

Allelic imbalance ~ (1|individual) + (1|tissue) + age + ethnicity + sex 

The allelic imbalance was calculated as the absolute difference of allelic ratio to 0.5. The fixed 
effects (age, ethnicity, and sex) were chosen based on the previous literature29. The allelic 
imbalance variations contributed by tissues and by individuals were estimated from the above 
model. 

Tissue-specificity quantified by Jaccard index and GMAS frequency 

We used the Jaccard index to quantify the extent of sharing of the GMAS pattern for an exon e 
between tissues i and j (seij). Specifically, 𝑠"#$ =

&'(	∩	&'+
&'(	∪	&'+

, where Nei and Nej are the number of

individuals with e showing GMAS pattern in tissues i and j respectively (i ≠ j). To reliably 
estimate seij, we required 𝑁"# ∪ 𝑁"$ ≥ 10. The final GMAS pattern shared between tissues i and j 

(sij) was calculated as 𝑠#$ =
∑ /'(+0
'12

3
, where E is the total number of exons with seij for tissues i 

and j. 

Tissue and individual variability in GMAS 

To assess the variability in GMAS across individuals and tissues, we used variance as a 
quantitative measure of dissimilarity in allelic biases. For each exon showing GMAS pattern in 
any given individual, we measured the variance within allelic biases of the tag SNPs in all 
corresponding tissues of the individual. As controls, we sampled allelic biases of the tag SNPs of 
the same exon in similar tissues but different individuals and calculated their variance. The 
distribution of variances across all individuals for the GMAS exons was then compared to that of 
the controls (Fig. 2B). Similarly, for each exon showing GMAS pattern in a given tissue, we 
calculated the variance among the allelic biases of the tag SNPs across individuals. The controls 
were randomly sampled allelic biases of the tag SNPs of the same exon in individuals showing 
GMAS pattern for the exon but different tissues. Again, we compared the distribution of 
variances across all tissues for the GMAS exons to the distribution of variances in controls (Fig. 
2C).  

Prediction of functional SNPs for GMAS 

The basic rationale for our method is that a functional SNP for GMAS should show concordant 
relationship (cGMAS) between its genotype and the splicing pattern of the target exon across a 
large number of individuals. In the toy example illustrated in Supplemental Fig. S5A, we first 
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define a distance metric d = |0.5-Rtag|, where Rtag is the allelic ratio of the tag SNP defined as 
Nref/(Nref + Nalt). Nref and Nalt denote the number of reads harboring the reference allele and the 
alternative allele of the SNP, respectively.  Thus, d represents the difference between the allelic 
ratio of the tag SNP and the expected allelic ratio of an unbiased SNP. In Supplemental Fig. 
S5A, the candidate SNP (which is different from the tag) is assumed to be the functional SNP 
underlying GMAS, with the A allele causing exon inclusion and G allele causing exon skipping. 
Thus, for individuals with the homozygous genotype (AA or GG) at the candidate SNP, d is 
expected to be 0.5. On the other hand, for individuals with AG genotype at the candidate SNP, d 
is 0 or 1 depending on the haplotype between the tag and candidate SNPs.  

Next, we define the concordance score (Si) for this example exon in individual i, similarly as 
used in a previous study35. Si measures the concordance level between the genotype and the 
splicing pattern.  

𝑆# =

⎩
⎪
⎨

⎪
⎧ 𝑑#

:

0.5: if candidate	SNP is heterozygous

1 −
𝑑#
:

0.5: if candidate	SNP is homozygous

For the toy example in Supplemental Fig. S5A where A/G alleles of the candidate SNP cause 
complete switch of exon inclusion/exclusion, the value of Si is 1. In a different scenario as 
illustrated in Supplemental Fig. S5B where the tag SNP is considered as the candidate functional 
SNP, we define:  

𝑆# =
𝑑#
:

0.5:

Thus, in case of a functional SNP causing complete switch of exon inclusion/exclusion, the value 
of Si is also 1. In general, for true functional SNPs, Si is expected to have a distribution with a 
peak close to 1, whereas random neural SNPs have broadly distributed Si values (Supplemental 
Fig. S5C).  

For more realistic cases where the two alleles of the functional SNP do not cause 100% splicing 
difference, the distribution of Si is multi-modal. In addition to a peak close to 1, another peak in 
the medium Si range (>0) exists. On the other hand, a peak at 0 corresponds to non-functional 
SNPs. To unbiasedly model the distribution of Si, we fitted a Gaussian Mixture Model (GMM) to 
identify its peaks. The number of GMM components was determined via the Bayesian 
information criterion (BIC). A z-test was carried out to search for peaks whose average values 
were significantly different from 0 (FDR ≤ 0.1). For a true functional SNP, the Si distribution 
should be supported by individuals with different genotypes (homozygous or heterozygous). To 
avoid potential false positives driven by a specific genotype in a small number of individuals, we 
excluded candidate SNPs where the genotype supporting the Si peak is significantly biased 
towards one genotype (Fisher’s exact test, FDR ≤ 0.1).  

To ensure the magnitude of the peak was significant, we binned the x-axis (Si scores) into 100 
bins and randomized the data points evenly across the bins to generate a background distribution. 
This process was repeated 500 times to estimate an average background peak level and its 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2020. ; https://doi.org/10.1101/2020.05.04.077255doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.04.077255
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

standard deviation. We compared the peak height to the background in the same bin and defined 
significant peaks by z-score > 2.58, which corresponds to P < 0.01. 

For each GMAS exon, we examined all SNPs in the exon and the immediate introns as candidate 
functional SNPs (Supplemental Fig. S5D). SNPs that are homozygous in all individuals were not 
considered.  The concordance score for each candidate and tag SNP pair was calculated and the 
functional SNP was predicted as described above.  

Power analysis for predicting functional SNPs for GMAS 

To assess how many individuals our method necessitates to predict functional SNPs for GMAS, 
we simulated 100 functional SNPs with two alternating alleles inducing 75% difference in PSI. 
This allele-specific splicing difference is reflected in the allelic ratios. The total read counts of a 
SNP were simulated from a negative binomial distribution using parameters estimated from a 
real GTEx RNA-seq sample. We required all simulated SNPs to have at least 20 reads. The 
allelic ratios of the simulated SNPs were generated from a binomial distribution. 

We simulated six groups of 200 individuals. Each group has a specific heterozygous frequency 
(Fig. 3B), which is defined as the fraction of individuals with heterozygous alleles at the 
candidate SNP position in a group. We ran the cGMAS method on the 100 SNPs by varying the 
number of individuals while maintaining the heterozygous frequency for prediction. Figure 3B 
illustrates the power of this method in the different simulations.   

Analysis of ENCODE eCLIP-seq and RNA-seq data 

eCLIP peaks were obtained from the ENCODE portal (https://www.encodeproject.org). The 
ENCODE RNA-seq data were analyzed similarly as described above for GTEx RNA-seq data. 
PSI values of replicated samples were averaged in Fig. 4C. 	

Analysis of GMAS SNPs in LD with GWAS SNPs 

Trait-variant associations with p-values larger than 5.0 ´ 10-8 were removed from the GWAS 
catalog2 (version 1.0.2 – downloaded 2020-02-04). In addition, the GWAS SNPs were separated 
into LD blocks according to the LD information of the CEU population and further required to 
have R2 ³ 0.8 and D’ ³ 0.9. To evaluate the functional relevance of GMAS SNPs with regard to 
GWAS, we calculated the number of GMAS SNPs in LD with and within 200kb of at least one 
GWAS SNP (referred to as GMAS-GWAS SNPs). A similar number was also calculated for the 
putative functional SNPs. To determine the significance of the above enrichment, we randomly 
sampled the same number of dbSNPs from genes that do not host GMAS events. The number of 
randomized dbSNPs in LD with and within 200kb of at least one GWAS SNP was compared to 
that of the GMAS SNPs with a Fisher’s Exact test. 

To investigate the enrichment of GMAS-GWAS SNPs in specific traits/diseases, we calculated 
the relative risk of GMAS SNPs being in LD with and within 200kb of a GWAS SNP for the 
trait of interest versus control SNPs. The relative risk or risk ratio was calculated as follows: 
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𝑅𝑅D = 	
𝑃D
FGH/	
𝑃DIJKL

where 𝑅𝑅D is the relative risk for trait T, 𝑃D
FGH/  is the proportion of GMAS SNPs in LD with

GWAS SNPs for trait T and 𝑃DIJKL is the proportion of control SNPs in LD with GWAS traits for 
trait T.  

As a measure of how relevant the GMAS-GWAS SNPs are to the corresponding traits, we 
calculated the trait-relevance ratio (TRRt) for each tissue in which the SNP showed GMAS 
pattern. The TRRt metric controls for the number of GMAS events identified per tissue and is 
calculated as: 

𝑇𝑅𝑅JD = 	
𝐺𝑀𝐴𝑆	𝑆𝑁𝑃𝑠	𝑓𝑟𝑜𝑚	𝑡	𝑖𝑛	𝐿𝐷	𝑤𝑖𝑡ℎ	𝐺𝑊𝐴𝑆	𝑆𝑁𝑃𝑠	𝑓𝑜𝑟	𝑇

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑙𝑙	𝐺𝑀𝐴𝑆	𝑆𝑁𝑃𝑠	𝑖𝑛	𝑡 	× 	100 

where 𝑇𝑅𝑅JD is the trait-relevance ratio, T is the trait of interest and t is a source tissue of a 
GMAS-GWAS SNP. 

Cell culture 

HEK 293T and HeLa cells were obtained from ATCC and maintained in DMEM supplemented 
with 10% FBS (ThermoFisher Scientific, 10082147) and antibiotics at 37°C in 5% CO2. 

Construction of minigenes 

Minigenes containing SNP candidates were cloned as previously described40. Briefly, the 
candidate skipped exon and ~500 nt of each flanking intron were amplified using HeLa genomic 
DNA. The DNA fragment was then sub-cloned into the pZW1 splicing reporter using HindIII 
and SacII or EcoRI and SacII cloning sites. The candidates for intron retention were cloned into 
pcDNA3.1 plasmid. Final constructs were confirmed by Sanger sequencing. Primers used in this 
study are listed in Supplemental Table 2.  

Transfection, RNA extraction, reverse transcription, and PCR 

Minigene constructs were transfected into >90% confluence HeLa cells using Lipofectamine 
3000 (ThermoFisher Scientific, L300015). Total RNA was isolated after 24 h transfection using 
TRIzol (ThermoFisher Scientific, 15596018) followed by Direct-zol RNA Miniprep plus kit 
(Zymo Research, R2072). cDNA was produced from 2 µg of total RNA by SuperScript IV First-
Strand Synthesis System (ThermoFisher Scientific, 18091050). To amplify the candidate exons 
in minigene constructs, 5% of the cDNA was used as template via 26 PCR cycles (Supplemental 
Table 2). 

Gel electrophoresis and quantification 

The PCR amplicon was loaded onto 5% polyacrylamide gel and ran at 70 volts for 1.5 hours. 
The PAGE gel was stained with SYBR® Safe DNA Gel Stain (ThermoFisher Scientific, 
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S33102) for 30 min and the gel image was taken by Syngene SYBRsafe program (Syngene). 
Spliced isoforms expression level was estimated using the ImageJ software 
(http://imagej.nih.gov/ij/). Inclusion or intron retention rate (% inclusion) of the target exon was 
calculated as the intensity ratio of upper/(upper+lower) bands. 

Cloning of human BUD13 and lentiviral overexpression 

Human BUD13 was cloned from HeLa cDNA into the pCR 2.1-TOPO vector (Thermo Fisher 
Scientific, 450641). After sequence confirmation, BUD13 was sub-cloned into the pcDNA3.1 
backbone containing 3×Flag-6HIS tag using NotI and EcoRI sites. To achieve stable 
overexpression, the 3×Flag-BUD13-6HIS fragment was transferred into the pLJM1 lentiviral 
construct using the NdeI and EcoRI sites (Addgene plasmid # 19319). We produced lentiviruses 
via co-transfection of pCMV-d8.91, pVSV-G and pLJM1-3×Flag-BUD13-6HIS into HEK293T 
cells using Lipofectamine 3000 (Thermo Fisher Scientific, L3000015). Lentiviruses were 
collected from conditioned media after 48 h co-transfection and filtered through 0.2µm syringe 
filter. Lentivirus-containing medium was mixed with the same volume of DMEM containing 
polybrene (8µg/mL). The lentiviruses were transduced into HEK293T cells in ten 150mm culture 
plates, where they were incubated with 2µg /mL puromycin for 48h. 

Purification of recombinant human BUD13 

HEK293T cells stably expressing BUD13 were centrifuged at 1000 × g for 5 min at 4°C and the 
pellets were resuspended with ice-cold 5mL lysis buffer (PBS, 20mM Imidazole, 0.5% IGEPAL 
CA-630, 0.5mM DTT, 0.5 × protease inhibitor cocktail, 100U DNAse I). After 30 min 
incubation, the lysate was disrupted using sonication at 25% amplitude for 20sec with 1sec pulse. 
Next the lysate was centrifuged at 13,000 × g for 5 min at 4°C. The supernatant was collected 
and filtered using 0.45µm syringe filter. The sample was incubated with 1mL Ni-NTA agarose 
(Thermo Fisher Scientific, R90110) for 6 hrs at 4°C followed by five times of washing with 5mL 
buffer A (PBS, 20mM Imidazole, 0.5mM DTT, 0.5% IGEPAL CA-630, 0.5 × protease inhibitor 
cocktail). Proteins were eluted with 3mL elution buffer (PBS, 250mM Imidazole) and excess salt 
was removed using the desalting column according to the manufacture’s protocol (GE 
Healthcare, 17085101). Subsequently, Flag affinity purification was performed using 1mL Flag 
agarose bead (MilliporeSigma, A2220) according to the manufacture’s protocol. Elution was 
performed using 100mg/mL counter flag peptide. Flag peptide and small size of non-specific 
proteins were removed by 20K Slide-A- Lyzer dialysis cassette (ThermoFisher Scientific, 66003) 
with 1L binding buffer (PBS, 0.5% IGEPAL CA-630, 5% glycerol) in the cold room overnight. 
Recombinant BUD13 purification was confirmed by SimplyBue SafeStain (Thermo Fisher 
Scientific, LC6060) and western blot using BUD13 antibody (Bethyl Laboratories, A303-320A). 
Protein concentration was measured by Pierce Coomassie (Bradford) protein assay kit 
(ThermoFisher Scientific, 23200) and the Turner spectrophotometer SP-830. 

In vitro transcription of BUD13 target RNA 

Sense and antisense oligos including T7 promoter (Supplemental Table 2) were annealed at 95°C 
for 5min in a heat block then cooled down to room temperature for 3 hrs. In vitro transcription 
was performed using HiScribe T7 high yield RNA synthesis kit according to the manufacturer’s 
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protocol (NEB, E2040S). In vitro synthesized RNAs was treated with 10U RNAse-free DNAse I 
(ThermoFisher Scientific, EN0525) at room temperature for 30min, then purified by the RNA 
clean & concentrator-5 Kit (Zymo Research, R1015). Next, RNA samples were treated with 10U 
shrimp alkaline phosphatase (NEB, M0371S) at 37°C for 1 hr and then labeled with 0.5µl of 
gamma 32P-ATP (PerkinElmer, BLU502A250UC) using 20U T4 polynucleotide kinase (NEB, 
M0201S). Subsequently RNA probes were purified by 5% Urea PAGE extraction and RNA 
clean & concentrator-5 Kit. RNA concentration was measured by Qubit 2.0 fluorometer 
(ThermoFisher Scientific). 

Electrophoretic Mobility Shift Assay (EMSA) 

The RNA probes and recombinant BUD13 protein (0, 0.5, 1, 2, and 3 µg) were incubated in 15µl 
of the binding buffer (PBS, 0.5% IGEPAL CA-630, 5% glycerol, 0.1× protease inhibitor 
cocktail, 10U RNAse inhibitor) at 28°C for 30 min, then loaded onto 5% TBE-PAGE run at 75V 
for 1.5 hrs. The gel was processed without drying, covered with clear folder and exposed to X-
ray film at -80°C. 
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Figure Legends 

Figure 1. The landscape of GMAS exons in human tissues. (A) % of GMAS exons among all 
testable exons in each tissue (averaged across individuals). (B) The variability of GMAS patterns 
across tissues and individuals (Methods). Each dot represents an exon, and the colors represent 
the number of overlapping dots. This analysis only included GMAS exons that exist in ≥2 
individuals per tissue and ≥2 tissues per individual. The numbers along the diagonal line show 
the number of GMAS exons above and below the line, respectively. GO terms enriched among 
genes in the high variability groups (boxed) are shown. Color intensity represents the number of 
genes associated with each significant GO term. The p values were estimated based on 10,000 
randomizations of control genes matching gene length and GC content of the test genes24. The 
significant cutoff of the P value was set to be 1/(number of total GO terms considered). 

Figure 2. Comparison of GMAS patterns across tissues or individuals. (A) Heatmap of the 
Jaccard indices of GMAS exons between each pair of tissues (Methods). White boxes correspond 
to tissue pairs with < 10 common testable exons. (B) Empirical cumulative distribution function 
(eCDF) of variances across tissues in the allelic biases of tag SNPs of GMAS exons for all 
individuals. Controls were included for comparison purposes (Methods). The p value was 
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calculated using the Kolmogorov–Smirnov test. (C) Similar as (B), but for variance across 
individuals per tissue.  

Figure 3. Prediction of functional SNPs for GMAS events. (A) Functional SNPs are predicted 
by considering candidate SNPs (red crosses) in the vicinity of an GMAS exon, including the tag 
SNP itself (blue crosses). Concordance among the allelic ratios of the tag SNP in all samples is 
calculated as described in Methods (with hypothetical distributions shown). (B) The percentage 
of SNPs predicted given the number of individuals in the simulated testing cohort (Methods). 
Different percentages of individuals with the heterozygous genotype were simulated. Vertical 
dotted line marks 10 individuals. (C) Top: number of predicted functional SNPs per tissue. 
Bottom: number of GMAS exons with predicted functional SNPs per tissue. The rightmost bar 
(All) corresponds to predictions made by pooling samples from all tissues. (D) Left pie chart: 
predicted functional SNPs in the exonic or intronic regions of SE (skipped exons).  Exonic 
GMAS: the functional SNP is also the exonic GMAS tag SNP. The rest of the functional SNPs 
were classified into the “Exonic” or “Flanking intron” group. Right pie chart: for retained introns 
(RI). Intronic GMAS: the functional SNP is also the GMAS tag SNP. N’s refer to the number of 
functional SNPs for each group. No functional SNPs were predicted for alternative 5’ or 3’ss 
exons.  (E) Densities of predicted functional SNPs near the exon-intron boundaries of their 
associated GMAS exons (SEs only). The number of functional SNPs was normalized by the total 
number of testable SNPs at each nucleotide position. Orange curve is the fitted trend line of the 
shaded area that represents the SNP density at single nucleotide resolution.  

Figure 4. Experimental support of predicted functional SNPs. (A) Minigene experiments 
validating predicted functional SNPs for GMAS in triplicates (R1-3). The inclusion levels (% 
inclusion) of the skipped exons or retained introns were estimated from the band intensities of 
the PAGE gel. (B) eCDF of the absolute changes in the PSI values of GMAS exons upon KD of 
splicing factors associated with putative functional SNPs (based on motif analysis of eCLIP 
overlap). The p value was calculated using the Kolmogorov–Smirnov test. (C) EMSA validating 
allele-specific binding of BUD13 to putative functional SNPs. The amount of BUD13 protein 
used in the experiment is illustrated above the gel. BUD13 eCLIP reads (gray) are shown below 
the gel, where the locations of the SNPs are labeled with vertical colored lines. The fraction of 
reads supporting either allele at the functional SNP position is delineated. 

Figure 5. Functional relevance of GMAS events. (A) Proportions of all GMAS SNPs and 
putative functional SNPs in LD with (and within 200kb of) GWAS SNPs. Controls were random 
dbSNPs in genes that do not harbor GMAS SNPs. *p < 2.2 ´ 10-16 (Fisher’s Exact test) (B) 
Relative risk of GMAS SNPs in LD with selected trait/disease, defined as the ratio between the 
values in (A) of the GMAS and control groups for all GMAS SNPs. ASD: autism spectrum 
disorder. SCZ: schizophrenia. BMI: body mass index. All p values < 2.2 ´ 10-16 (Fisher’s Exact 
test).  (C)-(D) Trait-relevance ratio of each tissue (TRRt) defined as the proportion of GMAS 
SNPs identified in each tissue that were in LD with GWAS SNPs, for bipolar disorder and 
immune function, respectively.  
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