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Abstract (150)

Advanced 3D imaging modalities such as micro computed tomography (micro-CT), high
resolution episcopic microscopy (HREM), and optical projection tomography (OPT) have been
readily incorporated into high-throughput phenotyping pipelines, such as the International Mouse
Phenotyping Consortium (IMPC). Such modalities generate large volumes of raw data that cannot
be immediately harnessed without significant resources of manpower and expertise. Thus, rapid
automated analysis and annotation is critical to ensure that 3D imaging data is able to be
integrated with other multi-dimensional phenotyping data. To this end, we present an automated
computational mouse phenotyping pipeline called LAMA, based on image registration, which
requires minimal technical expertise and human input to use. Designed predominantly for
developmental biologists, our software performs image pre-processing, registration, statistical
and gene function annotation, and segmentation of 3D micro-CT data. We address several
limitations of current methods and create an easy to use, fast solution application for mouse
embryo phenotyping. We also present a highly granular, novel anatomical E14.5 (14.5 days post
coitus) atlas of a population average that integrates with our pipeline to allow a range of
dysmorphologies to be automatically annotated as well as results from the validation of the

pipeline.
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Introduction

A major goal in biomedical research is to assign functional roles to all genes in order to shed light
on disease mechanisms, and to identify disease-associated genes and novel drug targets.
However, almost two decades since the human and mouse draft genomes were published
(Lander et al., 2001; Waterston et al., 2002), the proportion of genes still in the dark genome
(minimal gene function or disease association assigned) remains at over 30% (Oprea 2019). One
important approach to add functional knowledge to each gene in the genome involves the
phenotyping of mutant mice, leveraging the close homology between the mouse and human
genomes as well as the relative ease of generating null deletions and the existence of established
phenotyping procedures (Hrabé de Angelis 2015; Meehan et al., 2017). The International Mouse
Phenotyping Consortium (IMPC) is a high-throughput functional genomics project that is well on
its way to generating a genome wide catalogue of gene function by phenotyping all gene
knockouts in mice on a uniform genetic background (Brown et al., 2012; Lloyd et al., 2020). To
date phenotype data for over 7000 genes are available on the IMPC web portal
(mousephenotype.org), data which has already contributed to the identification of many novel
candidate disease genes and potential new mouse models of human disease (Cacheiro et al.,
2020; Meehan 2017; Bowl et al., 2017; Moore et al., 2018).

Approximately one third of all knockout mouse lines exhibit embryonic or early postnatal, lethality
or subviability (Hrabé de Angelis et al., 2015; Dickinson et al., 2016). These genes are of particular
importance as they can provide insights into developmental processes and disorders. The IMPC
embryo phenotyping pipeline aims to study these genes at key developmental time points, with a
major component being the generation and analysis of high resolution, whole embryo, 3D images
(Adams et al., 2013).

Embryo anatomy can be manually assigned phenotype annotation by experts with knowledge of
mouse anatomy and development (Wilson et al. 2016). However, this is prohibitively time
consuming to perform at scale and is subject to user error and bias. Furthermore, manual
annotation is susceptible to inter-operator variability, and may miss abnormalities that are not
present on a predetermined checklist of structures that reflect annotator expertise. Automated

analysis methods that aim to address these issues have been developed and were first applied
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to mouse whole embryos, by analysing magnetic resonance images (MRI) from wild type mice at
embryonic day 15.5 (E15.5) (Zamyadi et al. 2010). This work was expanded to the analysis of
micro-CT images at E15.5 and incorporated the analysis of mutant embryo images (Wong et al.,
2014). The latter works by aligning with a non-affine spatial transformation the gross anatomy of
mutant embryos that share a genetic alteration and wild type embryos, and then localizing regions
of anatomical dysmorphology by modelling the effect of genotype on local volume changes or
voxel intensities, in a process called voxel-based morphometry (VBM). The resulting heat maps,
representing statistical significance of local voxel deformation, can be overlaid on embryo images
to highlight local dysmorphology. Mouse embryo atlases in which visible anatomical structures
have been delineated enable the assignment of dysmorphology to anatomical labels as well as
the automatic calculation of organ volume by the propagation of atlas labels post-registration back
towards the input images. Atlases can be made using a single segmented specimen as a
reference, for example those made for the eMouse Atlas Project (EMAP), which created atlases
from multiple developmental stages from serial histological sections (Richardson et al., 2014).
However the segmentation of organs from micro-CT images and MRI can be more difficuklt due
to increased noise and reduced contrast. A solution to this is to segment a population average
consensus image formed from spatially normalising multiple specimens, as shown by (Holmes et
al., 1998) in brain MRI, and provides an unbiased registration target from which to propagate
anatomical labels (Hammers et al., 2002). Mouse embryo atlases of population average models
derived from MRI images (Cleary et al., 2010) and micro-CT (Wong et al., 2012) have been
developed for the E15.5 stage where 6 and 48 structures were segmented respectively. These
methods have yet to be applied to the analysis of other key developmental stages that are studied
within the IMPC, namely E14.5, at which point organogenesis becomes largely compete, and
E18.5, the stage immediately prior to birth and which is an important stage for the analysis of
perinatal lethality or subviability.

Sample size of both mutant and wild type controls will have a substantial effect on the power of a
mouse phenotyping study and its consideration in automated analysis of mouse embryos has not
been investigated in-depth. Wong et al., (2012) performed a power analysis using automatically-
calculated wild type organ size distributions from four organs (brain, liver, lung and myocardium),
and showed that organ volume differences between 9-14% were theoretically detectable using a
sample size of eight mutants and controls. Their analysis also showed that increasing sample
size may substantially improve sensitivity, but they chose a sample size that was a compromise

between sensitivity and computational expense imposed by the analysis pipeline design. Up to
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now, however, no empirical assessment of the effect of sample size has been carried out on
whole embryo data. Imaging data submitted to the IMPC embryo pipeline often have mutant
sample sizes that are significantly lower that the desired eight mutant specimens due to cost and
other practical limitations. However, imaging data from wild type control specimens can be much
higher as they accumulate over the lifetime of a project. Applying these large numbers of wild
type control animals in the automated analysis should increase statistical power, but this has yet
to be investigated.

A surprising finding from recent high-throughput studies is that mutant lines generated from
isogenic inbred mice frequently exhibit incomplete penetrance and variable expressivity of
phenotypes (Wilson et al., 2017; Dickinson et al., 2016). These phenomena potentially complicate
efforts to assign phenotype annotations at the line level. The ability to reliably assign phenotype
annotations to each animal (specimen-level annotation) would help with cases of penetrance and
expressivity variability. In this work we address this question by empirically testing the ability to

detect sex differences and phenotypes of knockouts with varying sample sizes.

Another factor to consider is the developmental stage of specimens being tested, as it is known
that embryos harvested at E14.5 represent a range of developmental substages due to
uncertainty around the exact time of conception. It has been shown that selecting wild type
comparison specimens that are stage-matched is vital to prevent misidentification of
dysmorphology during manual annotation of embryos (Geyer et al., 2017), but this problem has

yet to be studied in the context of automated phenotyping using 3D images.

The issues raised above motivated us to develop a new automated phenotyping pipeline, which
we present in this paper. The software pipeline ‘Lightweight Analysis of Morphological
Abnormalities’ (LAMA) is freely available software developed for Linux and Windows™ platforms

(https://github.com/mpi2/LAMA). LAMA is an automated computational phenotyping pipeline

based on image registration that performs image pre-processing, registration, statistical
annotation and segmentation of 3D image data. LAMA requires minimal technical expertise to
install, and can run on a standard desktop PC. The registration strategy that we have employed
speeds up the spatial normalization process and enables a greatly increased sample number of
baselines to be used as controls, thereby increasing the power to detect abnormalities. We also
present results of the validation of the pipeline by testing the ability of LAMA to detect sex-specific

differences between sets of E14.5 embryos as well as showing that it can uncover known
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anatomical abnormalities in a broadly affected knockout line as well as a knockout line displaying
specific, localised dysmorphology. This represents the first time that VBM methods have been
applied successfully to whole embryos at this developmental stage. We also show that the
developmental substage is an important variable when designing automated phenotyping
experiments and we provide a solution to mitigate this confounding effect. We have begun to
address the issue of variable expressivity and incomplete penetrance and discuss future areas of

research in these domains.

To accompany the pipeline, a novel, highly detailed E14.5 anatomical atlas of a population
average is also presented. The population average was computed from micro-CT images of 16
wild type mice at a high resolution of 14 um3. The atlas consists of the manual segmentation of
184 organs and anatomical structures in the population average representing the most detailed
average mouse embryo atlas currently available. The population average and atlas will be a
valuable resource for the developmental biology community to aid in both manual and automated
analyses. Using them along with LAMA, it is possible for the first time to automatically annotate
dysmorphic E14.5 embryo anatomy with ontological EMAPA terms (Hayamizu et al. 2013), which
are ready for export to the IMPC for display on the portal, and as we move forward, this novel
dataset of ontological phenotype associations will be integrated with other data sets enabling to

study the gene function relationships to anatomy and ultimately disease.

Results

Overview of the phenotyping pipeline for E14.5 mouse embryos

LAMA is a voxel-based morphometry approach to automate the detection of anatomical
dysmorphology in mouse embryos. It is written in the Python programming language and features
spatial normalisation of images using a groupwise registration process to iteratively align micro-
CT embryo images into the same coordinate space. Internally, it uses elastix (Klein et al., 2010)
for pairwise multi-resolution 3D image registration. Firstly, a population average model embryo
must be constructed from wild type derived images (Fig 1A), which serves as an atlas template
due to its high contrast and low signal to noise ratio. The population average also acts as a target
image for the subsequent spatial normalisation of the phenotyping images (described below) (Fig

1A). The next step involves spatially normalising each wild type and mutant image that will be
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used in the downstream statistical analysis by registering it onto the population average (Fig 1B),
resulting in homologous anatomical structures occupying identical coordinates and morphology.
After spatial normalisation, applying the inverse registration transformation to the population
average mask and atlas, aligns them back onto the corresponding specimen image and allows
for the calculation of whole embryo volume and each of the atlas labels (Fig 1B). For this paper,
we focus on the organ volume analysis as this is linked to the atlas resulting in automated EMAPA-
associated phenotype calls that are more robust and interpretable than those at the individual
voxel level. However, we also include statistical parametric heat maps from the voxel-level
Jacobian determinants (which indicate local volume shrinkage/expansion during spatial

normalisation) for illustrative purposes.

Creation of a Novel E14.5 mouse embryo atlas

The E14.5 population average used in this study was created from 16 specimens (8 male and 8
female), with a resulting crown-rump length of 9.18 mm and an isotropic image resolution of 14
um?3 (Fig. 2A). The visible organs were segmented using a mixture of manual and semi-automatic
segmentation (see Methods) producing a segmented E14.5 atlas containing 184 unique labels
(Fig. 2B; Table 1). A key requirement for the full utilization of the atlas, is that the segmented
labels are assigned appropriate community-accepted ontology terms allowing the automatic
integration of the resulting gene-to-phenotype data from LAMA with other data sets. The 184
labels were therefore mapped to gross anatomy terms from the EMAPA developmental ontology
(Hyamizu at. al., 2013). Through manual inspection of registration results a number of the labels
were identified as being too small or thin leading to difficulty in assessing registration accuracy,
such as the external carotid arteries (Fig. 2C). With this in mind, we identified such labels in the
atlas (see Methods) to exclude them from downstream analyses, resulting in a final set of 103
labels that were used in the current analysis (Table 1). These 103 labels were distributed across
the majority of the EMAPA high-level organ system terms (Fig. 2E) and range in size from the
largest (forebrain at 35,596,092 um?®) to smallest (metatarsals 14,420 um?) (Fig. 2D) .

Developmental substage

Embryos harvested at E14.5 represent a range of developmental substages (DSS) and have

rapidly developing anatomy and so it is crucial for a high throughput data analysis pipeline to
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account for this variation in the data. To account for overall size of the embryo, derived organ
volumes are normalised by whole embryo volume and the Jacobian determinants are normalised
by limiting the analysis of the Jacobian determinants to those generated after the affine
registration stage, which accounts for overall embryo size (see Methods) as done previously at
E15.5 (Wong et al.,, 2012). To assess whether this normalization is sufficient to account for
differences due to embryo DSS, we made two datasets comprising of wild type specimens where
eight of the smallest or largest specimens were labelled as “mutants” (see Methods), thereby
simulating the cases of mutant lines containing embryos at early or late E14.5 DSS and we applied
the LAMA pipeline statistical analysis to each data set. (Fig 3A). Both tests returned significant
Jacobian determinant voxels suggesting that the relabelled wild types had morphological
differences that were dependent of the developmental stage of the specimens. We then included
a surrogate for DSS, whole embryo volume (WEV), within our linear model analysis, which
resulted in the two tests returning no significant voxels for genotype effect, showing that the DSS
effect can be controlled for in this manner. To gain a more detailed view on the voxel-level DSS-
dependent relative size differences, we fitted Jacobian determinates from 93 wild type specimens
to a linear model by WEV only (Fig 3B) which highlighted regions that are proportionally larger at
later stages (red) or proportionally smaller at later stages (blue). Similarly, the stage effect on
WEV-normalised organ volumes was significant for 78/103 labels (Table 2) including organs that
were proportionally larger (n=58) later in development such as thymus and lung lobes (Fig. 3C-
D) and those that were proportionally smaller (n=23) including brain ventricles and trigeminal
glands (Fig. 3E-F). To summarize, normalizing the Jacobian determinants or organ volumes
before statistical analysis is not sufficient to account for DSS and failure to model DSS can lead
to false positive results, and one way to account for this is to regress out the DSS effect in the

statistical analysis.

Optimal sample size for phenodeviance testing

In order to validate LAMA with a positive control we applied it to wild type embryos where females
were relabelled as “mutant”. This gives us a convenient dataset where we expected the only gross
differences between the sets to be located at the gonads (see Fig. 4, suppl. 1 for an example of
gonad images). A quality control step removed specimens with obvious tissue damage due to
sample preparation, extreme imaging artefacts or non-determined sex, resulting in a data set

consisting of 89 wild type specimens (49 male, 40 female). Using a linear model (organ volume ~
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sex + whole embryo volume), we found that along with the gonad (FDR-corrected g-value = 1.3e
25) (Fig. 4A), the lens of the eye unexpectedly also had a significant sex effect (FDR-corrected g-
value = 0.028) (Fig. 4B; Suppl. Fig 4,2). Therefore, we included the lens along with the gonad as
true positives in the following experiment. With this large data set, we were also able to address
the effect that sample size has on the sensitivity of phenodeviance detection (in this case the
ability to differentiate between male and female gonads and lenses). We ran a series of
experiments in which organ volume was first normalised by whole embryo volume and then
regressed on whole embryo volume and sex as described previously, in which each experiment
had a different number of male and female (relabelled as “mutant”) specimens. Each experiment
was repeated 50 times with random specimen selection, and using the permutation approach to
correct for multiple testing (see Methods). Due to the large difference between male and female
gonad sizes, significant gonad volume differences were identified in almost every replication of
each experiment (Fig. 4C), and significant Jacobian determinant voxels were identified within, or
close to, the gonad with significant voxels covering a larger area with increasing male sample size
(Fig 4E). For the lens of the eye, significant volume differences were detected only with a male
sample size of 32 or over, with the maximum male and female sample size (49 male & 8 female)
resulting in significant hits in over a half the cases (Fig. 4D). To assess the rate of false positive
detection, any significant organ volumes, other than gonad or lens of the eye in the preceding
experiments were classed as false positives. The rate of false positives was found to be well
controlled with only 1 of 103 organs called as significant in more than 1% of tests (epiglottis in
1.6% of all the replications), and with a mean false positve rate of 0.07% per label. These
experiments show that LAMA is able to identify sex-specific differences in wild type embryos and
that even with a low mutant sample size, differences in morphology can be detected more reliably

as the control sample size is increased.

Automated identification of developmental phenotypes in E14.5 mice
embryos

The initial aim of LAMA is to automatically identify dysmorphology from data generated by IMPC
and other projects To demonstrate its effectiveness on IMPC-generated data, we have chosen
two exemplar mutant lines that illustrate its use in embryos with multiple dysmorphologies across

the body and embryos with very specific, localised abnormalities.
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The first example is Wfdc2, which encodes a protease inhibitor protein that is expressed in several
tissues during mouse development prior to E14.5 (Lizio et al., 2015) including intestines, lungs
and pancreas. WFDC2 plays a role in cancer development (Bingle et al., 2002; Li et al., 2013)
and two papers have recently shown Wfdc2 homozygous mutants display severe pulmonary
phenotypes in mice including collapsed lungs at perinatal day 1.5 (P1.5) (Nakajima et al., 2019),
alveolar abnormalities, dyspnea and reduced blood oxygen saturation at birth (Zhang et al., 2019),
but are otherwise anatomically normal. The IMPC reported a partially penetrant preweaning
lethality phenotype for this line with 5.5% of the genotyped pups determined as homozygous for
the mutation. Our analysis of four E14.5 Wfdc2” specimens resulted in significantly smaller organ
volumes for the bronchi at the gene-level. (Fig 5A) but no significant specimen-level differences
were observed for this gene. The Jacobian determinant analysis identified two significant regions
that largely overlap with one of the bronchi after the FDR-corrected p-value threshold was raised
to 0.1. This means that for this gene, the whole organ statistics were more sensitive than the
Jacobian determinants. In all four mutants, the trachea and bronchus are visibly smaller in

diameter (Fig. 5C-D), but otherwise appear normal.

Acan encodes for the protein aggrecan, which is the primary proteoglycan in articular cartilage, is
present in the extracellular matrix of long bone epiphyseal growth plates, and is required for
normal bone development. Acan” mice exhibit phenotypes associated mainly with abnormal bone
morphology, including long bones, abnormal ribs and vertebrae as well as enlarged liver, and
pulmonary hypoplasia (Table 3). Human diseases are associated with ACAN mutations including
osteochondritis (Stattin et al., 2010) and skeletal dysplasia (Tompson et al., 2009). Along with
complete preweaning lethality, the IMPC reports a reduced bone area compaosition and increased
circulating cholesterol levels in adult heterozygous animals. We analysed six E14.5 Acan”
specimens with LAMA, identifying 28 statistically significantly organ volume differences. Of these,
13 had a mean volume difference between wild type and mutant of over 15% and are visible by
eye (Fig. 6A), and 15 have a mean volume difference of below 15%, which makes visual
identification of these differences difficult (Fig 6 suppl. 2). 12 of the significant organs are bones
including all those present in the Mouse Genome Informatics (MGI) annotations (Table 3) (see
Fig 6C-D for examples of identified dysmorphologies). Of these gene-level annotated organs, the
specimen-level analysis assigned annotations to 15 of them (Fig. 6B) showing a considerable
overlap between these two analyses. There were three significant organs highlighted by the
specimen-level analysis that were not present at the gene-level, representing just four individual

calls out of a total of 42 specimen-level calls, including one tail vertebra annotation. The significant
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Jacobian determinant voxels indicate a smaller Meckel's cartilage in the mutants, which is not
identified in previous literature or by our organ volume difference test, but is visibly different in the
mutants (Fig. 6D). We did not find a significantly smaller lung volume difference for any of the
lung lobes, which would indicate hypoplasia as previously reported (Houghton et al., 1989), but
the inverted lung lobe labels indicate an acceptable registration accuracy (Fig 6 suppl. 1). The
position of the lungs within the thoracic cavity however looks altered, possibly due to changes in
the thoracic cavity size. We did not identify the remaining previously reported phenotype of
tracheal cartilage morphology either.

Discussion

In this work we present a new automated computational phenotyping pipeline for dysmorphology
detection in mutant mouse embryos along with a novel, highly-detailed E14.5 anatomical atlas.
The LAMA pipeline is easy to install and run, and uses fewer resources than currently available
software. We have undertaken validation of the pipeline and provide data on the effect of
developmental substage and sample size on phenotyping results, as well as showing that LAMA
can uncover previously reported and new phenotypes from E14.5 IMPC knockout mice embryos.
This pipeline can accelerate the automatic analysis of 3D embryo data at this developmental
stage (and will be adapted for other stages) within large scale projects such as the IMPC and

smaller challenge-led projects driving forward the use of disease models in scientific discovery.

We employ an image registration pipeline to spatially normalise wild type and mutants in a similar
manner to a previously reported pipeline (Wong et al., 2012; Wong et al., 2014), but with the
following two key differences. Firstly, during spatial normalization of the wild type and mutant
images, LAMA uses the population average as the fixed image at each stage. This contrasts with
Wong et al., (2012) where the wild type and mutant images (8 + 8) are spatially normalised by a
combination of initial pairwise registrations in the linear stages and then non-linear registrations.
In addition, the fixed image is the average intensity image from the previous stage. Thus, the
specimens from each mutant line, and its controls, exist in their own unique coordinate space. By
contrast, our approach allows the initial spatial normalization of all the wild type images into the
population average space once only (as opposed to registering wild types for each mutant line),
and to reuse the resulting data as controls for each mutant line, enabling us to dramatically
increase the number of wild type embryos used as baseline comparisons. Secondly, we have

shown that even after normalizing volumetric data by whole embryo volume, E14.5 developmental


https://doi.org/10.1101/2020.05.04.075853

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.04.075853; this version posted May 4, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

substage-specific organ volume differences are widespread across the embryo. These stage-
dependent growth rate differences can lead to false positive results if the statistical model does
include these substage data (Fig 3). Wong et. al., (2012) account for developmental substage
variability by normalizing organ volumes and Jacobian determinants to whole embryo volume and
report an organ volume standard deviation of 8-13% amongst wild type E15.5 embryos. In the
current study, we sought to include as many wild type controls as possible in order to increase
the power of our analyses, which increases the range of developmental substages in our control
set, and we have adopted a modified linear regression model that controls for this confounding
effect. Our choice of whole embryo volume (WEV), as a staging metric was motivated by the ease
by which it can be calculated after embryo spatial normalization, and should correspond well to
crown-rump length and whole body weight, which have been used previously to stage embryos
(Dagg 1963; Peterka et al., 2002). Alternative methods that rely on the appearance of external
features of the embryo (Theiler et al., 1989; Boehm et al., 2011; Geyer et al., 2017), may be more
accurate, but these are not immediately amenable to automated analysis at E14.5. A promising
approach to automated staging involves spatially, and temporally normalizing embryos to a four
dimensional population average model embryo, with developmental stage as the fourth dimension
(Wong et al., 2015). However the temporal dimension of the reported 4D model, extends only to
E14.0 and it is generated from optical projection tomography images, a different modality to that
used in this project. During this analysis we identified 81 organs that show a statistically significant
staging effect (Table 2) which likely reflects different rates of growth of various organs at different
E14.5 developmental substages, and this represents the most detailed embryo-wide data of

E14.5 substage-specific organ growth rates that we are currently aware of.

Males and females are sets of animals with convenient and specific gonad differences that
enabled us to test the ability of LAMA to identify anatomical differences. We found that we were
able to uncover statistically significant organ volume differences in the gonads while keeping false
positives low. To assess the performance on mutant data, we tested LAMA on two IMPC-
generated knockout lines. The first (Wfdc2”) was predicted to display specific pulmonary
abnormalities and the second (Acan”), a mutation shown previously to display severely-
dysmorphic phenotypes across the whole of the embryo. Our automated analysis of E14.5 Wfdc2
" embryos revealed two significantly different organ volumes: those of the trachea and bronchi,
which are novel findings for this gene. These overlap broadly with the locations of the previously
reported pulmonary-specific abnormalities in Wfdc2” mice, including the absence of mature club

cells from the bronchi and trachea, postnatally-collapsed lung, reduced lung surfactant levels
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(Nakajima et al., 2019), and alveoli abnormalities (Zhang et al. 2020). The novel phenotypes bring
forward the time when gross abnormalities due to loss of Wfdc2 first become visible during embryo
development (previously postnatally), and therefore add new temporal information to the role of

Wfdc2 in pulmonary development.

In addition, we have shown that LAMA can recapitulate the majority of the previously reported
Acan” phenotypes, which will greatly speed up the annotation of this severely-affected mutant.
There were also four significant organ volume differences for Acan™ that have not previously been
reported. It is possible that these are novel phenotypes, but it is difficult to confirm this by looking
at the CT images. It is possible that the apparent abnormality is due to proximity to actual severe
dysmorphology and during the registration process were warped along with the abnormal organ.
For example, two of these organs without previous reports, sympathetic ganglia and the spinal
cord marginal layer, are located close to the affected vertebra.

As efforts are underway to reduce the numbers of animals used in scientific experiments we
wanted to test whether LAMA could identify dysmorphology with low mutant sample number. In
addition, being able to use low sample numbers would let us investigate the effects of incomplete
penetrance and variable expressivity as well as providing phenotype data from mutant lines where
many specimens do not reach the developmental stage being tested. To begin to answer this, in
the sex difference test we show that increasing the control sample size from 8 to 46 greatly
increases the power to detect anatomical differences and that by using many controls it is possible
to sometimes uncover phenotype information even with a low mutant sample of one. We also
show that when applying the specimen-level organ volume analysis to the Wfdc2” and Acan™”
mutant lines, we were able to generate annotations on individual specimens. These specimen
level annotations mostly overlapped with those assigned at the gene-level providing support for
these phenotypes. These results lead us to recommend the following for our high throughput
automated screen of mutant mice: to increase sample size to include as many control specimens
as possible, and that specimen-level analysis is feasible at least on a subset of organs, but likely

those which are most severely affected.

The choice of registration parameters involves a compromise of balancing good registration
accuracy on some organs with misregistration at others. We found that the gonad registration, for
example, could be improved by removing much of the registration constraint, but this led to over-

warping at the heart. One solution to this could be to use multiple sets of registration parameters,
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each optimised to different parts of the atlas. Another approach could involve methods that do not
require co-registration of images that could be applied to organs with a high registration error rate.
This approach has been previously addressed (Yan et al., 2017; Ashish & Brusniak 2018) but
only on a limited number of organs, and these methods are yet to be applied to embryonic mice.
LAMA is able to perform statistical analysis on the voxel intensities of the spatially normalised
images, but we found that the image data used in this study contained large differences in intensity
profiles that were possibly due to the different users and imaging equipment involved in image
acquisition over a number of years. For this reason, we have concentrated our current analysis
of mutant lines on organ volume differences and Jacobian determinant analysis, which are both
more robust to varying intensity profiles. Future work may look towards employing more
sophisticated image normalization methods and exploring the analysis of other image features,
such as textures, that may be less susceptible to intensity profile differences. Future work will
include the adaption of the pipeline to other key developmental stages. E18.5 is a key
developmental stage that we are currently working towards as it is important for the analysis of
gene mutations that result in perinatal lethality and subviability. Earlier stages may also be
amenable such as E12.5, but the earlier stages such as E9.5 may prove difficult for a registration-
based approach due to the rapid developmental changes at this time point and the fact that

mutations that cause lethality at this stage cause very extreme dysmorphology.

To conclude, we provide a new, easy-to-use pipeline for the automated analysis of E14.5 mouse
embryos, along with a highly-detailed atlas that will be useful for both manual and automated
studies of mutant mice. We have provided information on the differential growth rate of organs
within the E14.5 developmental stage, shed light on the optimal number on the samples to use in
mouse embryo phenotyping studies and have shown that LAMA can detect sex-specific

differences and abnormal anatomy in E14.5 mutant embryos.

Materials and methods

Mice

All animals were housed and maintained in the Mary Lyon Centre, MRC Harwell Institute under
specific pathogen-free (SPF) conditions, in individually ventilated cages adhering to
environmental conditions as outlined in the Home Office Code of Practice. The Acan'™® allele

was obtained by cre deletion of C57BL/6N-AcantmaEUCOMMHMgu/
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(EM:10224) mice as described in (Birling et al., 2019). Homozygous mutants are named Acan™
here. The C57BL/6NTac-Wfdc2em(MPOH/H (EM:11407, homozygous mutants named Wfdc2™
here) was obtained by genome editing as described in (Mianné et al., 2017). Lines were
maintained by crossing heterozygous animals with inbred C57BL/6N wildtype animals. Mice were

euthanised by Home Office Schedule 1 methods.

Micro-CT imaging of whole embryos

14.5 days post coitum (E14.5) female mice were sacrificed by cervical dislocation and the uterine
horns removed into ice-cold phosphate buffered saline (PBS). Embryos were extracted and a
piece of yolk sac collected for genotype analysis. Embryos were fixed in 4% paraformaldehyde
(PFA) at 4°C and left overnight. After fixation, the samples were washed and stored in PBS at
4°C. For staining, samples were rinsed in dH2O for 10 minutes before being submerged in 50%
Lugol’s solution and protected from light. Embryos were then left in the contrast agent for 2 days.
Following staining, embryos were washed in dH2O for at least one hour, embedded in 1% agarose

(in dH20) and left at room temperature for a minimum of two hours.

High resolution micro-CT images (SkyScan 1172, Bruker) of agarose-embedded embryos were
acquired at a source voltage of 70 kV, with the current set at maximum (~100 mA). Specimens
were imaged, in a standard orientation, at 3 ym with a 0.5 mm aluminum filter. X-ray projections
were acquired at 0.25° increments, and reconstructed using the Feldkamp algorithm (Feldkamp
et al. 1984) provided by NRecon (Bruker). Ring artefact corrections were applied as necessary.
Reconstructions were automatically cropped to remove background and scaled to 14 um isotropic

voxels using the HARP software (Brown et al., 2016).

Registration pipeline implementation

The image registration pipeline was written in the Python programming language (Python 3.6),
adapting a modular design that allows for individual components (registration, inversion, statistics
etc.) to be run either sequentially or independently using simple TOML configuration files.
Individual image registrations are performed using the elastix toolkit (S. Klein et al., 2010;
Shamonin et al., 2013). The linear model analysis is implemented in R. All code is available on
Github (https://github.com/mpi2/LAMA/releases/latest) and is tested to work on Ubuntu 18.04,

and Windows. To make the installation of LAMA as easy as possible and to help data
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reproducibility, LAMA is available via the PyPi Python package repository (lama-phenotype-

detection).

Population average construction

Micro-CT images from 14 specimens of mixed sex were used in the creation of the population
average through a multi-stage and resolution registration process. The initial fixed image was
chosen at random from the input images and all other images are rigidly-registered towards it.
The registered output images were averaged creating a rigidly-aligned blurry average. The
outputs from the rigid registration are affinely-registered towards the blurry average to account for
differences in overall size. The blurry affine average from this step was then used as the fixed
image for deformable registration, which allows non-linear transformations. The deformable B-
spline registration process contained five resolutions with decreasing control point spacing and
blurring at each resolution, with a final grid spacing of 8 voxels, sequentially aligning smaller
anatomical structures (Fig. 1A). The parameter file for our population average can be found here

(https://github.com/mpi2/LAMA/configs/301015 pop _avg.toml) (link to population average when

available).

Image segmentation/E14.5 Atlas creation

Key anatomical structures within the E14.5 population average were identified manually by
referencing the online digitised mouse atlas (Graham et al., 2015), and which itself is based on
The Atlas of Mouse Development (Kaufman, 1992). Moreover, structures that could be identified
were restricted to those that showed good contrast and resolution within the population average.
ITKSnap was used (Yushkevich et al., 2006; www.itksnap.org) to create the segmentations, and

dependent on size and complexity of an anatomical structure, were produced using semi-
automated and manual methods and combined into a single label file until 184 structures were
segmented at E14.5. These structures were then merged with some previous segmentations of
brain structures derived from an E15.5 atlas (Wong et al., 2012), to give a total of 184 anatomical
components. Small, spindly labels in the atlas were flagged by taking the mean of a distance
transform for each label, and flagging labels with a value < 1.5. The atlas and associated metadata

file are available (link when available).
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Generation of data for phenotype detection

Baseline and mutant specimens are registered onto the previously created population average.
The outputs of this registration include the non-affine spatial transformations, co-registered
images and the Jacobian determinants det(Jg), a scalar field which describes the local volume
change in each voxel. Statistical analysis of these outputs (described below) produce statistical
parametric heat maps that can be overlaid onto the population average applying the computed
spatial transformations, or superimposed onto the input images applying the inverse of the spatial
transformations. The statistical parametric heat maps can be viewed with the Volume Phenotype

Viewer (VPV) described previously (Brown et al., 2016; https://github.com/mpi2/vpv)

A typical project involves generating baseline data from wild type animals, before running all the
mutant lines. For each line, the mutant and all the baseline data at each voxel, within a mask
region, are fitted to a linear model with genotype and staging metric (whole embryo volume) as
fixed effects, returning a t-statistic and p-value for the genotype effect.

Statistical analysis

Multiple linear regression analysis was conducted in R (R Core Team, 2018) using the Im function
from the MASS package (Venables & Ripley, 2002). Benjamin-Hochburg FDR (BH-FDR)
correction was done using the padjust R package (Benjamin & Hochburg 1995).

Voxel-level data

Jacobian determinants, generated at each voxel within the population average mask, provide
information about how the registration has behaved at discrete locations in an image. The scalar
value of the Jacobian determinant at a given location is the factor by which that region has
expanded or shrunk in volume during registration. This approach, known as tensor-based
morphometry, can be used to reveal biologically significant localised shape or size changes within
a population (Ashburner & Friston, 2000). As well as the Jacobian determinants, the raw
registered intensity images are analysed. To account for image intensity differences between the
input images, LAMA includes an optional image intensity normalization step. Images are linearly
normalised to the mean intensity of voxels across all the inputs or alternatively a region of interest
(ROI) specified in the target coordinate space. To account for small registration inaccuracies, a
Gaussian blur of full-width-half-maximum (FWHM) 100 um is applied to voxel-level data. Each

voxel is fitted to a linear model (R notation: voxel ~ genotype + whole embryo volume). We use
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whole embryo volume as a proxy for developmental stage, and the addition of it as a fixed effect
models out changes that are due to developmental stage only. To account for multiple testing,
the resulting p-value maps are corrected using the Benjamini Hochberg method. The final
parametric heat maps are made by thresholding the t-static volume at g>0.05. This is output as a

volume that can be overlaid onto the target or registered image in VPV.

Whole organ volume analysis

The atlas is inverted back onto the rigidly-aligned volumes, after registration, which effectively
segments these volumes. These segmentations are used to calculate organ volumes for each
specimen as well as providing a visual atlas for identifying structures in the original inputs and
determining registration accuracy. The organ volume data is much less complex than the voxel-
based data (the number of organs vs number of voxels) allowing us to employ a more robust
method for multiple testing correction described previously by Hrabé de Angelis et al., (2015). To
summarize, organ-specific null distributions are generated by sampling synthetic mutants from
the baseline data in such a way as to match the distribution of mutant specimens per line.
Synthetic mutants are fitted to a linear model as described previously (organ volume ~ genotype
+ whole embryo volume) and the genotype effect p-values are stored. Alternative distributions are
made by collecting genotype effect p-values from testing the real mutants of each line. To obtain
a data set-wide p-value threshold per organ, p-values for the organ are ranked and a descending
p-value search is conducted starting at p=0.05 until a value is found where the proportion of
alternative p-values under the threshold divided by the proportion of null p-values is < 0.05. Mutant
p-values below this threshold are assigned as significant, which sets the organ-specific FDR to
5%.

Developmental Substage analysis

To simulate the effect of analysing mutant lines containing specimens at early or late E14.5
developmental substage, two datasets were created from 99 wild type specimens by relabeling
subsets based on the calculated whole embryo volume (WEV) of each specimen. In the first set,
eight specimens with the lowest WEV were relabelled as mutant. In the second set, eight
specimens with the highest WEV were relabelled as mutant. To test whether a substage effect
could be detected, the organ volume or Jacobian determinants data points from each set were
then analysed by using the linear regression models (organ volume ~ genotype) or (Jacobian

determinant ~ genotype). To test whether including WEV as a fixed effect could remove the
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substage confound, the organ volume or Jacobian determinants from each set were then
analysed by using the linear regression models (organ volume ~ genotype + WEV) or (Jacobian
determinant ~ genotype + WEV). The resulting organ volume, or Jacobian determinant, genotype

effect p-values were corrected for multiple testing using the Benjamini Hochberg method.

To assess the contribution of developmental substage on local relative volume differences across
the embryo, Jacobian determinants or organ volumes from 99 wild type specimens were analysed
by using the linear regression model (organ volume ~ whole embryo volume). The resulting organ
volume, or Jacobian determinant, genotype effect p-values were corrected for multiple testing

using the Benjamini Hochberg method.

Detection of sex-specific differences

The spatially normalised data from 93 wild type specimens were split by sex. For each experiment,
a different number of males and females were chosen at random without replacement and the
females were relabelled as mutants. These data were then analysed by using the linear model
(organ volume ~ sex+ whole embryo volume). For organ volume analysis, organ-specific p-value
thresholds were generated using the permutation based method as described above. Only
experiments where combinations of male and female sample size allowed at least 500 unique
null permutations were included. Each experiment was repeated 50 times to gain a robust
measure of the effect of sample number. For each set of experiments, the organs that were
reported as having a significant organ volume difference were recorded.

For the Jacobian determinant analysis g-values were generated from the resulting p-values
using the Benjamini Hochberg method and threshold to g < 0.05. False positive rates for organs
other than gonad or lens of the eye was calculated by dividing the total number of times a given

organ passed the organ-specific significance threshold by the total number of tests performed.

Variable penetrance and low N

To identify potentially variable expressivity or incomplete penetrance of organ volume
phenotypes, specimens were treated as for the line-level analysis above. With the number of
mutants reduced to one the FDR threshold was increased to 20%. The voxel-level data is similarly

processed as the line-level voxel data and the voxels are thresholded to an FDR of 5%.
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Optimization and quality control

At each stage of the registration process, the image similarity metric output by elastix is plotted
against iteration number for each spatial resolution allowing the user to select an optimal number

of iterations per stage.

Image registration can sometimes fail to produce acceptable results, for example when the
moving image is over fitted to the fixed image, producing unrealistic warping of images. To check
for issues such as these, after each registration stage an additional HTML report is generated
which contains mid-sagittal slices for each registered image for rapid quality control. Another issue
that can be encountered using bspline-based image registration is folding of the deformation field
which prevents topology preservation, reducing the accuracy of the propagation of labels from
the atlas to the specimen images. This problem can be detected by the presence of negative
Jacobian determinants. In the case of negative Jacobian determinants, instead of outputting log-
transformed Jacobian determinants, only the negative Jacobian determinant regions are
displayed, allowing the user to quickly identify problematic regions within the registered images.

The registration stage of the analysis is the most time-consuming part of the pipeline, and so it is
a requirement to be able to optimize registration parameters, especially within a high throughput

context.

Comparing phenotypes to known phenotypes

Tables of known phenotypes were generated by querying MGI phenotype pages for the gene of

interest (Acan: www.informatics.jax.org/marker/phenotypes/MGI1:99602, Wrfdc2:

www.informatics.jax.org/marker/phenotypes/MGI1:1914951). Only phenotypes generated form a

homozygous null strains were kept to aid in the comparison. Duplicate and redundant phenotypes
(e.g. abnormal bone structure if more specific bone phenotypes were present). Also removed
were phenotypes that might not translate to a gross anatomical dysmorphology that could be

potentially detected by LAMA (e.g. deafness).

Figures
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Figure 1. LAMA pipeline workflow. (A) Population average construction. An initial target from the inputs is used to
rigidly align all inputs creating a rigid population average. This is repeated with affine registration and deformable
registration at each stage using the population average as the target from the subsequent stage. (B) Generation of data
for phenotype detection. The same process as in A, but each stage uses the population average form A as the target.
Jacobian determinant volumes, registered images and organ volumes are statistically analysed. (C) Organ volumes
(shown here) or voxel values are fitted to a linear model by genotype and whole embryo volume. The resulting genotype
effect p-values are corrected for multiple testing either by permutation-based FDR correction (option 1, organ volumes
only) the orange histogram is the null distribution from permuting the wild type organ volumes and the blue histogram
is the alternative distribution derived from testing the organ volume from all mutant lines tested. The vertical green line
indicates the calculated p-value threshold for this organ, with values lower than this annotated as significant. Option 2
is to apply Benjamini Hochberg FDR correction for voxel-level or organ volume data. k/m = p-value rank divided by
number of values. The straight blue line indicates the threshold under which values are annotated as significant.
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Figure 2. E14.5 atlas creation. (A) Population average created from 16 wild type mixed sex E14.5 C57BL/6 mice. (B)
E14.5 atlas consisting of 184 individual structures overlaid on the population average. (C) An example of a small size-
excluded label, external carotid artery (arrow). Scale bar = 1mm. (D) Plot showing the organ volumes for each of the

184 E14.5 atlas labels. (E) Counts for each high level organ system applied to labels in the E14.5 atlas.
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Figure 3. Effect of E14.5 developmental substage on local volume changes detected by LAMA. (A) Simulation of the
analysis of mutant lines with large (top panel) or small (bottom panel) wild types relabelled as mutants. Genotype effect
t-statistics where g (FDR-corrected p-values) < 0.05 were overlaid on the E14.5 population average. Left panel shows
results from the model: Jacobian determinant ~ genotype with red voxels highlighting regions that are significantly
larger in the test group and blue voxels highlighting regions that are significantly smaller in the test group. Right panel
shows results from model: Jacobian determinant ~ genotype + WEV, where no voxels passed the q < 0.05 threshold.
(B) Result from linear model: Jacobian determinant ~ WEV, indicating regions where the normalised organ volume is
directly (red) or inversely proportional (blue) to WEV.

(C-F) lllustrative examples of differences in organ size relative to embryo volume. Each panel shows three
representative wild types from the smallest set (top) and largest set (bottom) of specimens. Images are affinely
registered towards the population average to account for overall embryo volume. Arrows indicate relevant anatomy.
(C-D) Larger relative thymus size and lung volume (D), (E-F) Smaller relative lateral ventricles and trigeminal gland

volume. Scale bar = 1mm.
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Figure 4. Identification of sex differences in wild type E14.5 mice. (A) A series of statistical tests were carried out with
various combinations of male and female wild type sample size (with females relabelled as ‘mutant’). Each test was
repeated 50 times with randomly selected specimens. The values reported are the number of times the gonad volume
was reported significantly different (p < organ p threshold) in each set of tests. (B) Example results of Jacobian
determinant analysis using 8 females and 8 males (left) and 8 females and 46 males (right). Scale bar = 1Imm. RG:
right gonad, LG = left gonad.
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Figure 4, supplementary 1. Wild type embryos gonad examples.

Sagittal sections of rigidly-aligned wild type embryo images showing the left gonad (LG). The stomach (S) and
metanephros (M) are also indicated. Females (top) and males (bottom). Scale bar = 1mm.
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Figure 4, supplementary 2. Differences in wild type lens volume

Representative sagittal sections of affinely-registered (normalised for overall embryo size) wild type specimens
illustrating difference in lens sizes between females (top rows) and males (bottom rows). (A) Unlabeled affinely-
registered images (B) Affinely-registered images overlaid with inverted lens label (green). (C) Plot of whole-embryo

normalised organ volume against whole embryo volume.
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Figure 5. Automated identification of pulmonary system phenotypes in a Wfdc2 knockout mouse line.

(A) Organ volume plots from statistically significant organs. (B) Jacobian determinant analysis t-statistics (FDR
corrected to q < 0.1) overlaid on the E14.5 population average. Blue regions indicate smaller bronchi in the mutants.
(C-D) Axial slices of rigidly-aligned Wfdc2 mutants (bottom) and whole embryo volume-matched wild type rigidly-aligned
specimens (top). Arrows indicate the location of affected organs (C: bronchi, D: trachea).

Scale bar = 1mm.
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Figure 6. Analysis of Acan” mutants by LAMA.

(A) Scatter plots showing organ volume in voxels vs whole embryo volume in voxels for organs with a significant
genotype effect. Only organs with a mean whole embryo-normalised volume difference, between controls and mutants,
of > 15% shown (B) Comparison of line-level (Acan) and individual specimen-level results. Yellow cells indicate
statistically significant organ volume differences for the genotype effect. The column ‘% vol diff’ indicates the mean
organ volume difference (whole embryo normalised) between wild type and Acan” mutants (C-D) lllustrative 2D sagittal
slices highlighting identified dysmorphology. Left panels: Jacobian determinant t-statistics (FDR corrected to g < 0.05)
overlaid onto the E14.5 population average. Right panels: rigidly-aligned Acan’ specimens (bottom), and stage-
matched wild type rigidly aligned specimens (top)

Scale bar = 1mm

Legend: mc: Meckels’s cartilage, ex: exoccipital bone, cv: cervical vertebrae, h: humerus, s: scapula, p: pleural and

pericardial components, r: ribs, f: femur
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Fig 6. Supplementary 1. Comparison of wild type and Acan-/- mutant lungs
Rigidly-aligned specimens overlaid with individual lung lobe labels inverted from the atlas showing mutants (left) and
stage-matched wild types (right). Top row are sagittal sections, bottom row are coronal sections. The dotted line in the

sagittal sections corresponds to the section chosen for the coronal view.
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Fig 6. Supplementary 2. Significant organ volume differences in Acan”- null mutants.
Scatter plots showing organ volume in voxels vs whole embryo volume in voxels for organ with a significant genotype
effect. Organs highlighted here have a mean whole embryo-normalised difference of less than 15% between wild types

and mutants. Blue markers are wild type controls, orange markers are mutants.
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bl bl rame EMAPA Anatomical structu EMAPA organ system  Used in curvest analysts

3 forebrain 10833 nervous system TRUE

21 ceretellar_primordium 17787 nervous system TRUE

23 midersin 10574 nervous system TRUE

24 panz 17393 nervous system TRUE

20 medulla_cblongssa 1T nervous sysiem TRuE

20 renna_ang_emer_eye sy 17108 sensory organ sysem TRUE

27 lems_ot_me_eye 17538 sensory omgan sysem TRUE

30 susmandioular_gland 18812 ammestary system TRUE

30 Meckel s carmiage 17638 ammessary system TRUE

7 mancible 18290 musculnskeletal sysbem TRUE

38 lowes molar primores 17521 messary system TRUE

0 ssomach 17021 simestary system TRUE

41 stomach_jumen 18393 smestary system TRUE

2 15348 alimessary system TRUE

43 mid_hindgut Naerm ameiary sysiem TRuE

44 rectum 178N ammessary system TRUE

a5 pameress 17303 amessary system TRUE

47 medal perygoid_muscie 20141 musculnskeletal sysbem TRUE

4B masseter muscle 20135 musculnskeletal sysbem TRUE

43 tongue 17185 ammervary system TRUE Iabel label name: EMAPA Anatomical structul EMAPA organ system  Used In current analysis
L vemermmeal crgen 17612 sensory agan syssem TRUE 31 semicircuiar_canal 32832 sensory organ sysiem FALSE
2 medial labe_of_ihver 18318 Iher and Edlery system TRUE [ e e — FaLes
3 Ie# Jobe_of_lver 18307 Iher and Edlery system TRUE 23] et st = wyatem raLse
34 right_lube._of ver 18311 Iver and Edlery system TRuE ety

34 susmandibular_duct 3633 Amentary system FaLsE

0 caudate_jone o iver 18313 Inver and Eievy system TRUE

S e RUE 39 lowes inciser primerdia 17918 samentary system FaLsE
8 mesnephos 17373 gemitoarinary system TRUE 40 thyroid 7008 alimentary system FALEE
oL ie#t lung e — TRUE 30 gesiogiossus musce 18270 musculnskeletal system FaLsE
82 rigt lung cranist jobe e — TRUE 37 biasder_jumen 18321 gensbourinasy system FaLsE
03 right lung middie jobe 17SAT respirsiory system TRUE 95 ursteric_trunk 28434 genitourinary system FALEE
[y ——— 17388 respientory sysem TRUE 80 negeic_ducts 0577 gemsbouinasy system FaLsE
13 right lung acceszary lose 17581 respieniory system TRuE 08 aptic Il nerve 17573 sensory organ system FALSE
88 bronchil 32089 respieniory system TRUE 09 eye muscies 35333 sensory organ system FaLsE
o7 traches 10573 respieniory sysiem e 72 Infundibuem_of pitustary 39598 endocrine system FaLsE
70 nesal caity epihetum 17003 sensory organ sysem TRUE 74 facial_VIl_gangfla 17508 nervous system FaLsE
71 future_antesior pRuftary 35398 endocrine system TRUE 70 vestibulocochiear VIE_ga ITIT1 nervous system FALSE
73 brain_veniricies 32674 nervous system TRUE 81 oowlomator_IE_nerve ITI74 nervous system FALEE
3 frigeminal_¥_gangila 10757 newvous system TRUE 82 trigeminal_V1_merves L7798 nervous system FALEE
77 saperkr ganglion of glozs 17138 nevous sysiem TRUE 83 irigeminal_VZ_merves 17799 nervous system FaLSE
7B Inferion_gangion_of giosse 17193 nervous system TRUE 54 rigemina_va 17800 nervous system FaLes
79 smperior._cervical_sympatne 18431 nevous sysiem TRUE 83 vestibukocochiear VIR me 17801 nervous system FALSE
B0 sympathetic._ganglis 17497 nemvous system TRUE 80 eeterior_lett  vagal X 23330 nervous system FALSE
53 spimal_cord_ s layer 17380 nervous sysiem TRuE

54 spemnl_core_ mergins layer 17383 nervous system TRUE 87 posterior_right_vegal X 47278 nenvous system FaLs2
i aa o e r—— RUE 88 speeal accessory_X1_nen 17207 nervous system FaLsE
e 19601 artiovasautar sysiem RuE 89 hypogiossal W _nerves 17208 nervous system FaLsE
7 mscendng sorin 17004 cardiovascular sysiem TRUE 50| zphem)_merves 16588 nervous system FALSE
98 descending scrin 18000 cardiovasculr system TRUE 51 let_recurrent laryngesl_ne 20330 nervous system FaLsE
99 portic_arch 17613 cardicvascular system TRUE 82 right_recurent laryngeal n 17275 nervous system FALEE
110 ductus. srieriosus TPEIB cardiowmscular system TRUE 100 amterior_cerebral_arteries 17834 cardiovasculer system FALSE
111 ductus vencsus. 17343 cardiovascular system e 101 missse_cerehral arteres 18239 cardiovasculer system FaLsE
113 juguisr lymgh sacs 18249 cardiovmscular system TRUE 102 posterior_cerebral areries 17801 cardiovasculer system FaLsE
114 infestor_vena cava 18410 cardievasculer sysiem TRuE 103 common_carosd mteries 17833 cardiovasculer system FaLsE
113 superios vens cawa 18417 carmiovmsculr sysiem TRUE 104 extermal cartid_asteries 18611 cardiovasculer system FALEE
LB adrenals 18426 endocrine system TRUE 105 internal_carotid_arteries 10328 cardiovascular system FALEE
13 spieen primordim 18535 allmentary system TRUE 106 communicaing_arteries 1B39B cardiomsculsr system FALEE
120 thymess._primardium 17I23 hemolymptoid system TRUE 07 pulmeeary_asteries L7008 respirmiony sysiem FALEE
122 metacarpais 30156 musculashelets] system TRUE 108 umbiical_ssteries 10331 cardiovascular system FaLSE
154) ks 1103 musculoskeletal system TRUE 108 vericbrnbasiles_artery 38022 cardiowascular system FALSE
E: :"" ﬁx “"""::x‘“m ::: 112 jugular veins 18638 cardiovascular system FALSE

umeruz museu s

127 irieps brachi 18111 musculnskeleial sysbem TRuE 130, putsmy. 7elr 16045 resphiory Sysdem FRLEE
128 biceps Brachi 19108 musculnskesetal syspem TRUE AT snbechovion vrins Antal cardiowmscular system FALEE
130 fexse carpl_winarls 30158 musculoskesetal system TRUE 121 faeellmb_phalanges 32630 musculoskedetal systzm FALEE
142 pronater teres Mo term musculnsheietalsystem TRUE 123 carpls 25000 musculskesetal system FaLsE
188 teres. megor 18110 musculoskeieta) system TRUE 128 flexor_corpl rassalls 30187 musculoskeletal system FaLsE
10 i dorst 18178 musculoskesetal system TRUE 131 flexor_dighones_superticial No term musculskesetal system FaLsE
148 hindimb. phaianges 281 musculnskeletal system TRUE 132 fexor_digonem_profunsies No term musculskesetal system FaLsE
147 messtarsals 30199 musculnskeletal sysbem TRUE 133 fexcr_dighonm._profunies 30200 musculoskesetal system FALSE
148 tarsais 25072 musculoskeletal system e 134 flexor_dighores_profunses 30201 musculskeletal system FaLsE
149 Mbule 19141 musculnskeleind sysbem TRUE 135 flexor_dighones_supsrticia No term musculskesetal system FaLsE
190 ke 30178 musculnskeleial sysbem TRuE 136 extensor_carpd ulnars 30180 musculoskeseta) system FaLsE
11 femer 19143 musculnskesetal sysem TRUE 137 extensor._digborum Internl 30182 musculoskeseta) system FALEE
132 Ihacus 13184 musculoskesetal system TRUE 138 extensor_ digitorum _comme 30191 musculoskebetal system FALEE
133 quadratus. femoels 36241 musculoskesetal system TRUE 139 extensor_policis__longus i No term musculoskeietl system FALEE
135 poas mape 18109 musculoskesetal system TRUE 140 extenscs_carpi_radisiis_lo No term musculoskebstal system FALEE
11 semimembranosus 30242 musculnsketetal sysbem TRUE 141 proator quadraius 30200 musculnsksletal system FaLss
102 semitenanosus 35782 musculnskeletal sysbem TRUE 1 = toogus [ e pr— FaLss
204 thinfle b 8688 musculocketetal system TRUE 134 biceps_femoris 33170 musculnskebetal system FALSE
170 vasiuz Intermedhes 30243 musculnskeletnl sysbem TRUE
172 e o 20344 ot gz e 190 psoas minor 18170 musculnskeletal system FaLsE
173 gasromemius isneral neas 30298 musculnskesetal sysbem TRUE 197 ligamestum_pateiiae 18208 musculaskeletal system FALSE
178 gaswocmemius medial hess 30290 musculoskesetal system TRUE 188 pemncus_langes 30233 musculoskedetal systzm FALEE
175 flexor_digiionem longus 36248 musculoskebetal system TRUE 108 peruneus._dighl_quarti 30200 musculoskebetal system FALSE
178 popitess 1240 musculoskeieta) system TRUE 100 caudotemonlls 30220 musculoskeletal system FaLsE
180 pectoratis Naterm musculoskeletal system TRUE 103 giutews maxisus 18527 musculskeletal system FaLsE
183 cervical vertebrns 1778 musculnskeietal system TRUE 103 tiblalis_posterior 30293 musculoskeletal system FaLsE
188 thoracic veriebrne 18011 musculnskeletal sysbem TRUE 100 grachis antices 30232 musculoskeletal system FaLsE
185 lumbar vertzbras 1807 musculoskebetal system e 107 grachis postices 30233 musculoskeletal system FaLsE
186 zacral werizhrac 18003 musculnskeleind system TRUE 108 pectineus 30238 musculoskeletal system FaLsE
187 ta vericesne 18574 musculnskeleial sysbem TRuE 108 extenser_digtorum longus 39330 musculoskesetal system FaLsE
188 ros 18010 musCUDskesetal system TRUE 171 vastus_medalis 30243 musculoskeietal system FALSE
150 exoccipital bone 18708 musculoskeietal system TRUE 177 plantarts 30294 musculoskeletal system FALEE
181 hyekd_bane 18830 musculoskesetal system TRUE 178 soleus 35786 musculoskeletal system FALSE
189 epiglotts 18280 alimentary system TRUE 179 tensor_aponewrsis_plantai 30203 musculoskesetal system FaLSE
260 chendeie 18721 musculoskesetal system TRUE 181 irapezius 18183 musculnskebetal system FALEE
187 scapuls A8722| musculasheletsl sysbem TRUE 182 sermatus_anterior 39708 musculoskesetal system FALSE
128 petvic._girdle 18828 musculockeletal system TRUE 189 basisphencid_bome 16706 musculnskebetal system FALSE
199 dlaghrage 770l resplnlory sy TRUE 182 thyroid_carsiage 18638 respiatory systems FALSE
200 cervical g 10008 nervous sysiem TRuE
] oveey e — e 193 cricom_cartilage 18030 respimtory system FaLsE
206 peritonesl cavity 18138 cavity and lning TRUE 154 aryiemod_carifiage 16683 resplratory system FALEE
207 pleral_and_pericardial_cor Mo term cavity and lining TRUE 204 tnl_drg 18372 nervous system FALSE

Table 1. E14.5 Atlas label information
label: label number in atlas images, label_name: the descriptive name, EMAPA Anatomical structure: associated EMAPA anatomical

term, EMAPA organ system: the top level EMAP organ system terms, Used in current analysis: If FALSE not used in the current study.
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label label_name p q t
label label_name 2] q t 71 future_anterior_pituitary 0.00054 0.00102 -35862
128 biceps_brachii 13E-14 13E-12 918988 147 metatarsals 0.00056 0.00102 -35791
35 submandibular_gland 99E-14 S.0E-12 876173 26 reiina_and_other_eye_tissues 0.00063 0.00115 353917
172 vastus_|ateralis 18E-13 5.0E-12 B.63642 164 tibialis_anterior 0.00068 0.0012 351048
174 gastrocnemius_medial_head 2.0E-13 5.0E-12 B62129 45 pancreas 8.40E04 0.00147 3.45413
7| menditde 62813 13E-1 B.37966 78 inferior_ganglian_of_glossopharyngeal_IX__nerves 9.70E-04 0.00167 -3.4093
73 brain_ventricles 9.0E-13 16E-11 -8.3023
62 right_lung_cranial_lobe 24512 35E-11 8.10042 40| siomach L00E-03 0.00167 3401
&1 leftlung LoE-11 L3E-10 779203 198 pelvic_girdle 1.01E-03 0.00167 3.39898
127 triceps._brachi 27611 31010 758555 146 hindlimb_phalanges 10TE-03 0.00174 -3.3812
120 thymus_primordium 41E-11 43E-10 7.49823 162 semitendinosus 1.34E-03 0.00216 3.30884
64 right_lung_caudal_lobe 70E-11 6.5E-10 7.3866 95 heart 4.46E-03 0.00707 -2.9163
75 trigeminal__V__ganglia 17E-10 1.5E-09 -7.1971 23 midbrain TA42E03 0.01148 -2.7389
145 latissimus_dorsi 23E-10 19E-09 712757 99 aortic_arch TATE03 0.01148 -2.7365
161 semimembranosus 4.0E-10 2.9e-09 7.01389 36 Meckel_s_cartilage 1.02E-02 0.01544 26238
155 psoas_majar 48E-10 33809 6.97466 97 ascending_aorta L11E-02 0.01649 -2.5043
130 flexor_carpi_ulnaris 5.3E-10 3.4E-09 6.95087 44 rectum 1.16E-02 0.01709 257575
118 adrenals 81E-10 4.96-09 6.85987 207 pleural_and_pericardial_companents 1.20E-02 0.01741 256361
1:: :;t lung_accessory_lobe i:iis ;;Ei: :;i:;z 181 hyoid_bane L3802 0.0176 -25108
58 mm;gph:m - 18609 9.0F_09 569273 98 descerf]lng_aonﬂ 1.59E-02 0.02242 -2.4574
41 stomach_lumen 21E-09 10E-08 6.65099 66| bronchi L67E-02 0.02325 243816
144 teres_major 40608 LoE-08 51352 67 trachea 1.98E-02 0.02725 237115
153 quadratus_femris 41E-09 196-08 6.50373 110) duches_arterinsies 28202 0.0382 -2.2303
24 pons 2. 6E-08 11607 _6.0871 195 epiglottis 3.48E-02 0.04656 -2.1427
25 medulla_oblongata 5.2E-08 21E-07 -5.9399 122 metacarpals 3.66E-02 0.0483 -2.1217
77 superior_ganglion_of_glossopharyngeal__IX__nerves 6.5E-08 2.6E-07 -5.8887 200 cervical_drg 4.05E-02 0.05285 -2.0779
48 masseter_muscle 12E-07 47E-07 573888 186 sacral_vertebrae 5.05E-02 0.08505 198174
21 cerebellar_primordium 13e-07 4.9e-07 -5.7233 1B5 lumbar_vertebrae 5.73E-02 0.07283 192562
94 spinal_cord_marginal_layer 17E-07 6.1E-07 56831 47 medial_pterygoid_muscle 713502 0.0895 18252
53/left jobe: of lver L18E-07 6.35-07 584832 199 diaphragm 9.20E-02 011413 1.70306
125, uina 19e-07 64507 5.63678 51 vomeronasal_organ 1.06E-01 012944 163473
152| Baciss 226-07 T.0E-07 560969 70 nasal_cavity_epithelium 154E.01 0.18673 143718
93 spinal_cord_mantle_layer 3.3E-07 1.0e-06 -5.5133
63 right_lung_middle_lobe 46E-07 14£-06 543007 56| aoria L66E-0L 0.15923 139521
113 jugular_lymph_sacs 7.8E-07 22606 -5.3078 5| Forebrain LB1EOL 021417 L3483
196 humenss 78E-07 39E-08 530578 206 peritoneal_cavity 2.09E-01 0.24512 1.2641
190 exoccipital_bone 8.1E-07 22E-06 _5.2992 78 superior_cervical_sympathetic_ganglia 24201 0.28046 -1.1768
38 lower_molar_primordia 8.2E-07 2.26-06 5.2952 184 thoracic_vertebrae 247E-0L 0.28249 1.16556
149 fibula 12E-06 3.1E-06 5.2085 175 flexor_digitorum_longus 281E-01 0.31819 -1.0843
54 right_lobe_of_liver 13E-06 33506 5.1882 176 popliteus 2.98E-01 0.33394 1.04613
151 femur 1BE-08 45E-06 5.10603 49 tongue 3TOE0L 0.4093 -0.8018
180 pectoralis 25E-08 6.15-06 5.02603 148 tarsals 4.88E-01 0.53457 -0.6965
173 gastrocnemius_lateral_head 5.7E-06 14E-05 481899 80 sympathetic_ganglia 547601 058789 061175
197 scapula B.7E-06 20805 471349 183 cenvical_vertebras 5.92E-01 063318 053845
150/ thin 128-05 27E-08 463301 42 forequt 5.96E-01 063318 05316
124| mris 14E°05 316705 459613 115 superior_vena_cava 68301 071815 0.40929
55 caudate_lobe_of_liver 1BE-05 4.0E-05 452535
170 vastus_intermedius 23E-05 5.0E-05 448207 167 tail veriebrae 6.96E-01 072425 -0.3018
27 lens_of_he_eye 3.2E-05 6.8E-05 4.37406 111 ductus_venosus 0.81439 0.83811 -0.2354
56 bladder 5.8E-05 0.00014 417571 114 inferior_vena_cava 0.82183 0.83811 -0.2258
43 mid_hindgut B.4E-05 0.00017 4.1183 196 clavicle 0.83811 0.84731 -0.0779
205 ovary 0.00011 0.00022 4.04187 119 spleen_primordium 094772 094772 0.06575

Table 2. Wild type staging effect linear model outputs.
Results from fitting calculated organ volumes to linear model : organ volume ~ whole embryo volume (WEV). p: WEV effect p-value.

g: Benjamini-Hochburg FDR-corrected p-values, t: WEV effect t-statistics.
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Table 3. Phenotypes recorded for Acan  mutant mice in the MGI database. Green cells indicates concordance with recorded phenoty
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