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Abstract

We describe a practical two-dimensional (2D) diffusion MRI framework to deliver specificity and improve sensitivity to axonal
injury in the spinal cord. This approach provides intravoxel distributions of correlations of water mobilities in orthogonal directions,
revealing sub-voxel diffusion components. Here we use it to investigate water diffusivities along axial and radial orientations within
spinal cord specimens with confirmed, tract-specific axonal injury. First, we show using transmission electron microscopy and
immunohistochemistry that tract-specific axonal beading occurs following Wallerian degeneration in the cortico-spinal tract as
direct sequelae to closed head injury. We demonstrate that although some voxel-averaged diffusion tensor imaging (DTI) metrics
are sensitive to this axonal injury, they are non-specific, i.e., they do not reveal an underlying biophysical mechanism of injury. Then
we employ 2D diffusion correlation imaging (DCI) to improve discrimination of different water microenvironments by measuring
and mapping the joint water mobility distributions perpendicular and parallel to the spinal cord axis. We determine six distinct
diffusion spectral components that differ according to their microscopic anisotropy and mobility. We show that at the injury site
a highly anisotropic diffusion component completely disappears and instead becomes more isotropic. Based on these findings,
an injury-specific MR image of the spinal cord was generated, and a radiological-pathological correlation with histological silver
staining % area was performed. The resulting strong and significant correlation (r = 0.70, p < 0.0001) indicates the high specificity
with which DCI detects injury-induced tissue alterations. We predict that the ability to selectively image microstructural changes
following axonal injury in the spinal cord can be useful in clinical and research applications by enabling specific detection and
increased sensitivity to injury-induced microstructural alterations. These results also encourage us to translate DCI to higher spatial
dimensions to enable assessment of traumatic axonal injury, and possibly other diseases and disorders in the brain.

Keywords: DDCOSY, axonal injury, specificity, diffusion, correlation, distribution, MADCO, MRI, spectrum, Wallerian
degeneration

1. Introduction

Diffusion magnetic resonance imaging (dMRI) can reveal
nervous system pathology by its sensitivity to changes in the
microscale tissue environment (Le Bihan et al., 1986). These
measurements provide information about the translational ap-
parent self-diffusion coefficient D, which in a complex and het-
erogeneous systems such as biological tissues, describes the
water mobility along the particular direction in which the dif-
fusion is encoded (Stejskal and Tanner, 1965). The most estab-
lished dMRI technique, diffusion tensor imaging (DTI) (Basser
et al., 1994), provides a framework for estimating the voxel-
averaged macroscopic diffusivity and diffusion anisotropy in
tissue, frequently expressed in terms of the mean diffusivity
(MD) and the fractional anisotropy (FA), respectively.
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The FA in particular has become established as a sensitive
metric for detecting subtle differences in the brain tissue envi-
ronment that correspond to structural features of healthy brain
development (Lebel et al., 2008) and aging (Madden et al.,
2012), as well as for identifying pathological alterations in dis-
ease states (Pierpaoli et al., 2001; Englund et al., 2004; Péran
et al., 2010; Teipel et al., 2014). This high sensitivity of FA to
cell and tissue level features owes to the integration across mi-
crostructural shape information as well as mesoscale architec-
ture and the arrangement of cells and fiber pathways. Because
such a wide range of tissue changes can affect FA and other DTI
metrics, DTI is commonly proposed to detect subtle pathol-
ogy that is invisible to conventional MRI, for example in di-
agnosing mild brain injury (Haacke et al., 2010; Shenton et al.,
2012) which can be accompanied by pronounced microscale
alterations – axonal varicosities or “beading”, demyelination,
gliosis, etc. – without overt changes in standard MRI.

Despite its microscopic sensitivity, models such as DTI can
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be non-specific, making it challenging to elucidate the origin
and biological basis of cellular changes (Hutchinson et al.,
2018b). Voxel-averaged metrics such as FA may particularly
suffer from partial volume effects, where the signal from indi-
vidual voxels frequently reflects an average of different diffu-
sion profiles (e.g., resulting from different orientation of white
matter tracts or cerebrospinal fluid). This confound was shown
to lead to less pronounced diffusion directionality and lower
FA (Oouchi et al., 2007; Vos et al., 2011). On the other hand,
complex WM architecture (e.g., crossing, kissing, fanning WM
tracts) introduces a higher degree of orientation dispersion, con-
sequently resulting in decreased FA (Pierpaoli et al., 1996;
Alexander et al., 2001; Nilsson et al., 2012). Fiber architec-
ture and voxel size may therefore greatly affect the measured
DTI metrics regardless of the underlying microstructure. These
competing effects can complicate the interpretation of DTI met-
rics except in regions of highly coherent white matter (WM)
(De Santis et al., 2014), which is estimated to account for less
than 10% of the total white matter of the human brain (Vos
et al., 2012).

Here, we make the distinction between the nuclear magnetic
resonance (NMR) diffusion encoding dimensions, which will
be noted as 1-, 2-, and 3D, and the physical space dimensions,
noted as 1-, 2-, and 3D. Thus, conventional 1D dMRI meth-
ods, like DTI, employ single diffusion encoding (SDE) that de-
scribes water mobility in tissue along distinct directions (Ste-
jskal and Tanner, 1965), where effects of orientation and re-
striction are intrinsically entangled. About three decades ago a
2D dMR experiment, double diffusion encoding (DDE) NMR,
where two magnetic field gradient pairs are applied consecu-
tively (Fig. 1), was shown to be capable of disentangling the
contributions of isotropic and anisotropic diffusion in the mea-
sured signal (Cory et al., 1990; Mitra, 1995). DDE can be
used in conjunction with tissue models to evaluate the micro-
scopic anisotropy (Komlosh et al., 2007; Lawrenz et al., 2010;
Lawrenz and Finsterbusch, 2015), average size (Koch and Fin-
sterbusch, 2008; Komlosh et al., 2013, 2018), size distribution
(Benjamini et al., 2014, 2016; Anaby et al., 2019), and com-
partment eccentricity (Ozarslan, 2009; Jespersen et al., 2013;
Benjamini and Basser, 2014).

To be able to fully characterize a heterogeneous biological
system, including directly measuring microscopic anisotropy,
one would require to describe it using a 3D distribution of
tensors. Observed at different diffusion times, such time-
dependent nonparametric tensor distribution would embody in-
formation about the microstructural shapes, length scales, and
orientations. By assuming the tensors within a voxel were dis-
tributed according to a Wishart distribution, Jian et al. were
able to resolve complex WM intra-voxel architecture using their
parametric tensor distribution model (Jian et al., 2007). Al-
though other parametric or model-based tensor distribution es-
timation approaches were later suggested (Leow et al., 2009;
Scherrer et al., 2016), estimating a 3D tensor distribution with 6
independent variables nonparametrically , i.e., without a priori
assuming its shape, is still a challenging task due to significant
data requirements and theoretical and numerical difficulties in
estimating these high-dimensional distributions.

Because of the ability to independently encode diffusion
in different directions (Callaghan and Komlosh, 2002), DDE
proved to be a natural step toward estimating a full tensor dis-
tribution in 3D by allowing Callaghan and Furó to reconstruct
2D projections of the full tensor distribution, which they termed
diffusion-diffusion correlation spectroscopy (DDCOSY) NMR
(Callaghan and Furó, 2004). With this method, the 2D DDE
acquisition correlates diffusive motions along orthogonal or
collinear magnetic field gradient directions. Correlations of wa-
ter mobility can then be revealed by observing the 2D distribu-
tion of diffusivities along the prescribed directions without im-
posing a parametric structural tissue model (Qiao et al., 2005;
Zong et al., 2017).

The DDCOSY NMR method was recently generalized from
2D to a 3D size-shape-orientation distribution, by imposing the
constraint that all the tensors within the distribution had axial
symmetry (de Almeida Martins and Topgaard, 2016), reducing
the number of independent variables from 6 to 4. This NMR
method employed a 3D triple diffusion encoding (TDE) to be
able to capture the tensor distribution. However, a modified 3D
diffusion sequence was suggested to reduce the computational
complexity and the data requirements of the full tensor distribu-
tion approach by avoiding its estimation in the first place, thus
allowing its integration with MR imaging. In this implemen-
tation harmonically modulated gradients along all three axes
are used instead of rectangular gradients, effectively making
the diffusion encoding akin to performing magic-angle spin-
ning (MAS) about a fixed axis (Eriksson et al., 2013). This
qMAS-encoded signal was shown to be independent of contri-
butions from anisotropic diffusion, and to be sensitive mainly to
the rate of isotropic diffusion, thus distinguishing between pore
size and domain orientation in an indirect manner, and with-
out actually reconstructing the tensor distribution (Lasič et al.,
2014; Szczepankiewicz et al., 2015; Westin et al., 2016).

In this work we characterized and directly assessed diffu-
sion correlations between the axial and radial axes in spinal
cord specimens with confirmed and specific injury-induced ax-
onal Wallerian degeneration (Waller, 1850; Carroll, 2009). We
elected to study this well-characterized injury paradigm for
which the primary morphologic features in the sub-acute period
are axonal beading with some myelin damage as a means to ex-
plore the specificity of DDCOSY in a tissue environment with
biologic relevance beyond phantom studies (Komlosh et al.,
2017), but with less complexity than injury in brain tissue
(Hutchinson et al., 2018b). Because axial symmetry and ori-
entational coherence are reasonable assumptions to make in the
spinal cord, we hypothesized that 2D projections onto the ax-
ial and radial directions of the full diffusion tensor distribution
could be used to assess the injury with high specificity. We used
the marginal distributions constrained optimization (MADCO)
framework (Benjamini and Basser, 2016) to accelerate data ac-
quisition and obtain voxelwise DDCOSY MR images, or sim-
ply diffusion correlation imaging (DCI), of healthy and injured
ferret spinal cord specimens. We found evidence of distinct
diffusion components in accordance with the “standard model”
(Novikov et al., 2018), which can be modeled as immobile wa-
ter, extra-axonal, and intra-axonal water. Importantly, we ob-
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served a clear change in the intra-axonal water component at
the site of injury; these changes were captured and used to gen-
erate injury-specific images.

2. Theory

Pfeuffer et al. suggested describing diffusion in heteroge-
neous media using a distribution of effective diffusivities by
modeling the signal as a multiexponential function with respect
to b and D (Pfeuffer et al., 1999), which implies Gaussian diffu-
sion processes. There may be two reasons for non-Gaussianity
in biological tissue: (1) multiple water pools that can each
be Gaussian, (2) and the restricted diffusion non-Gaussianity,
which leads to time-dependency (Fieremans et al., 2016; Lee
et al., 2018). Nevertheless, although it is well known that Gaus-
sian diffusion is not universally applicable to biological tissue,
this method provided a phenomenological description of the
range of water mobilities in such systems (Pfeuffer et al., 1999;
Topgaard and Söderman, 2002; Yablonskiy et al., 2003; Ro-
nen et al., 2006; Zong et al., 2017; Kim et al., 2017; Benjamini
et al., 2017; Slator et al., 2019; Benjamini and Basser, 2019;
Williamson et al., 2019). This approach inspired the tensor dis-
tribution model (Tuch et al., 2002), which is a generalization of
the 1D multiexponential distribution.

Thus, for the 1D case the functional form of the diffu-
sion parameters is assumed to be exponential, i.e., K(b,D) =

exp(−bD), and the transformation in this case is to a domain of
exponential parameters with a finite range. Such transforma-
tion, which is an example of an inverse problem, is achieved by
decomposing the signal attenuation, M, into a sum of N expo-
nential components each with unique diffusivity and probability
of occurrence that results in a discrete function, F(D),

M(b) =

N∑
n=1

F(Dn) K(b,Dn) + ε(b), (1)

where ε(b) is the experimental noise. Callaghan and Furó in-
troduced DDCOSY and extended this framework such that a
DDE acquisition with rapid succession of orthogonal diffusion
gradient blocks can be used to probe the 2D diffusion correla-
tions between those directions, as shown in Fig. 1 (Callaghan
and Furó, 2004). When probing diffusion correlations in the x-z
plane (i.e., when the gradient blocks are orthogonal), Eq. 1 is
generalized to

M(bx, bz) =

Nz∑
nz=1

Nx∑
nx=1

F(Dnx ,Dnz ) exp[−bxDnx − bzDnz ]+ε(bx, bz),

(2)
Because the functional form that relates D and b is smooth

and continuous, solving the Fredholm integral in Eq. 1 is an
ill-posed inverse problem (Farrar and Glauber, 1967; Epstein
and Schotland, 2008), which means that the solution does not
vary smoothly with the data. The main implication is that a
unique and stable solution in the presence of noise does not ex-
ist. To overcome this limitation, a nearly universal approach for
estimating distributions of MR parameters is to prescribe their
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Figure 1: The DDE sequence with rapid succession of orthogonal diffusion
gradient blocks.

range, and to impose nonnegativity constraints on the distribu-
tions.

Equations 1 and 2 can be expressed in vector and matrix no-
tation by writing the function F as f ∈ <N×1 and f ∈ <NxNz×1,
respectively. The multidimensional signal can be written as
m ∈ <Nb×1, with Nb being the number of acquired data points.
The kernel, K can be written as the matrix K ∈ <Nb×N and
K ∈ <Nb×NxNz , for the 1D and 2D variants, respectively. In this
case, Eqs. 1 and 2 can be written in matrix form as

m = Kf + ε, (3)

Estimating f is not straightforward. The most common strat-
egy to solve this ill-posed inverse problem is to use regulariza-
tion or, alternatively, a Monte Carlo method to estimate not only
one but an entire ensemble of solutions (Prange and Song, 2009;
de Almeida Martins and Topgaard, 2016). Here, we chose to
use `2 regularization and not the MC method because of the in-
herently high sensitivity of the MC method to noise in the data
(Benjamini and Basser, 2020). Hence, Eq. 3 can be solved as
the following regularized nonnegative least-squares minimiza-
tion problem (Provencher, 1982; Kroeker and Mark Henkel-
man, 1986):

f̂ = arg min
f≥0

(‖K0f −m‖22 + α‖f‖22). (4)

The regularization term on the right hand side uses an `2
norm, called Tikhonov regularization (Tikhonov and Arsenin,
1977). Its use implicitly assumes that the system contains a
continuous distribution of the investigated MR variable (e.g.,
T2), which has been standard practice in many previous works
spanning more than three decades (Kroeker and Mark Henkel-
man, 1986; Menon and Allen, 1991; Fordham et al., 1995;
Pfeuffer et al., 1999; Venkataramanan et al., 2002; Song et al.,
2002b; MacKay et al., 2006; Ronen et al., 2006; Mitchell et al.,
2012; Reiter et al., 2016; Thrane et al., 2019). Importantly, the
quadratic nature of the regularization term guarantees the ex-
istence of a unique solution to Eq. 4 (Venkataramanan et al.,
2002). Selecting the regularization tuning parameter, α, was
done using the L-curve method (Lawson and Hanson, 1974),
with the triangle algorithm for finding its corner (Castellanos
et al., 2002). For further discussion regarding the choice of
α, and also comparison of different inversion techniques, the
reader is referred to Mitchell et al. (2012).
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In addition to the commonly applied spectral constraints, i.e.,
nonnegativity and limited bandwidth of D, we used here the
MADCO framework (Benjamini and Basser, 2014; Benjamini
et al., 2016), which expands the scope of the applied spectral
constraints by using the more accessible marginal distributions
to enforce physical constraints on the multidimensional distri-
bution. In our case, we can use the estimated 1D water mobility
distribution function in x and in z, F(Dx) and F(Dz), while solv-
ing Eq. 4 with the 2D data such that

‖

Nx∑
nx=1

F(Dnx ,Dz) − F(Dz)‖2 < σz (5a)

‖

Nz∑
nz=1

F(Dx,Dnz ) − F(Dx)‖2 < σx, (5b)

where σ is set according to the noise variance of the measure-
ment. These spectral inequality constraints can be applied as
a set of additional spectral constraints, thus vastly reducing the
required amount of data and significantly improving the stabil-
ity of the inversion process (Benjamini et al., 2016; Benjamini
and Basser, 2017, 2018).

As mentioned earlier, we assume axial symmetry in this
study because of the spinal cord’s known neuroanatomy. In this
case, D⊥ = Dx and D‖ = Dz are the radial and axial diffusiv-
ities, respectively. The computation of the FA is also reduced
to

FA =

∣∣∣D‖ − D⊥
∣∣∣√

D2
‖

+ 2D2
⊥

. (6)

To facilitate the interpretation of the results we will be using
D⊥ and D‖ notations from now on.

3. Materials and Methods

3.1. Specimen preparation

The animals used in this study were housed and treated
at the Uniformed Services University of the Health Sciences
(USUHS) according to national guidelines and institutional
oversight. Perfusion fixed spinal cords were obtained from a
collection of specimens taken as part of a larger study of closed
head injury (CHI) in adult male ferrets (Hutchinson et al.,
2018a). Two cervical cord sections were selected, one from
an uninjured control and the other one-week following CHI,
which resulted in focal corticospinal tract (CST) hemorrhage
that was confirmed by hypointensities in in vivo susceptibil-
ity weighted images of the animal (Hutchinson et al., 2019).
Wallerian degeneration was expected along the CST, but not
along other pathways. The animals were euthanized and un-
derwent transcardial perfusion with ice-cold 0.1 M phosphate
buffered saline (PBS, pH 7.4, Quality Biological) followed by
4% paraformaldehyde (PFA, Santa Cruz Biotechnology, in PBS
0.1 M pH 7.4) at USUHS, according to standard methods. The
spinal cords were then transferred to a PBS-filled container for

12 days to ensure any residual PFA was removed from the tis-
sue. The two specimens were immersed in perfluoropolyether
(Fomblin LC/8, Solvay Solexis, Italy), and inserted into the
same 10 mm NMR tube (Shigemi Inc., Japan).

3.2. MRI data acquisition
MRI data were collected using a 10 mm coil with a 7T

wide-bore vertical magnet and an AVANCE III MRI spec-
trometer equipped with a Micro2.5 microimaging probe and
three GREAT60 gradient amplifiers (Bruker BioSpin, Billerica,
MA), which have a nominal peak current of 60 A per channel.
This configuration can produce a maximum nominal gradient
strength of 1.495 T/m along each of the three orthogonal direc-
tions. DCI data were acquired using a spin-echo DDE weighted
echo planar imaging (DDE–EPI) sequence with diffusion en-
coding gradients applied in parallel (z) and perpendicular (x)
to the spinal cord axis of symmetry (axial and radial, respec-
tively), as shown in Fig. 1. A two-step phase cycle was used to
assure that all acquired signal originates from the first 90◦ r.f.
pulse (Callaghan, 2011).

A full 2D DDCOSY acquisition requires stepping inde-
pendently two successive pairs of diffusion encoding gradient
pulses with orthogonal directions, G1 = Gz and G2 = Gx,
which is typically on the order of 32 × 32 = 1024 gradient
steps (Callaghan and Furó, 2004; Zong et al., 2017). Here,
the MADCO framework was used to reduce the number of
required data points (Benjamini and Basser, 2016; Benjamini
et al., 2017). Accordingly, an hierarchical sampling scheme
was adopted such that first 1D diffusion data in both experi-
mental directions is acquired by stepping Gz while Gx is held at
zero, and vice versa. In this step we used 19 linearly sampled
Gz that resulted in bz-values ranging from 0 to 6700 s/mm2 (or
Gz = 0 − 0.66 T/m) to encode diffusion in the parallel axis
(i.e., Dz) and 22 linearly sampled Gx that resulted in bx-values
ranging from 0 to 36000 s/mm2 (or Gx = 0 − 1.31 T/m) to
encode diffusion along the perpendicular axis (i.e., Dx). Two-
dimensional DDE data was acquired using highly sparse encod-
ing of 25 sampled combinations of bz and bx within the above
1D acquisition range. This hierarchical encoding scheme led to
a total of 66 diffusion weighted images, which represents about
6.5% of the conventionally used DDCOSY data.

Other acquisition parameters were diffusion gradient dura-
tion and separation of δ = 3 ms and ∆ = 30 ms, respectively,
TR = 800 ms, and TE = 21 ms. A single 1 mm axial slice with a
matrix size of 90×90 and in-plane resolution of 100×100 µm2

was acquired with 4 averages and 8 segments. The signal-to-
noise ratio (SNR), defined as the ratio between the unattenuated
signal intensity within the tissue, and the standard deviation of
the signal intensity within the background, was 169.

Calibration scan using the DDE pulse sequence on a silicon
oil (decamethylcyclopentasiloxane, Gelest Inc., Morrisville,
PA) was performed to confirm diffusion gradients linearity over
a broad range of b-values. As expected, the data decayed in
a monoexponential manner (Fig. S1), and the obtained diffu-
sion coefficient was very similar to the one previously reported
(Komlosh et al., 2017). For more details, please refer to the
Supplementary Material.
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3.3. MRI data processing

One-dimensional data were first used to estimate the water
mobility spectra in each image voxel by solving Eq. 4 for each
diffusion encoding direction, i.e., x and z. With the 1D dis-
tributions as constraints, the 2D data sets were then processed
by using the MADCO framework (Benjamini et al., 2016) to
solve Eq. 4 with the 2D DDE data. All data processing was
performed with in-house code written in MATLAB (The Math-
works, Natick, MA). To resolve the 2D spectra subject to the
MADCO constraints we used CVX, a package for specifying
and solving convex optimization problems (Grant and Boyd,
2008; CVX Research, 2012).

To be able to identify spectral regions of interest (sROI), i.e.,
regions in the 2D diffusion spectra that may represent biolog-
ically significant components, we employed a previously sug-
gested straightforward approach (Pas et al., 2020). In essence,
the algorithm inspects the spectra in individual voxels, identi-
fies peaks, and represents them with a binary value. This way
when considering an imaging dataset (i.e., voxel-wise spectra
that cannot be individually examined), averaging all of the (bi-
nary) spectra across the whole specimen substantially reduces
the risk of averaging out some of the more subtle peaks (com-
pared with a simple average of all the spectra). This method
does not necessarily extract spectral components but is intended
to provide a summary of the spectral information within the im-
age, and therefore guide the investigator in their approach to
(automatically or manually) define the sROIs.

To evaluate the voxel-averaged D⊥ and D‖ we used a subset
of the DDE dataset. For D⊥, a monoexponential fit was per-
formed with bz = 0 and 4 values of bx kept under 1000 s/mm2.
For D‖, a monoexponential fit was performed with bx = 0 and
6 values of bz kept under 1000 s/mm2.

We also estimated the diffusion kurtosis, K, to expend
the range of b-values and include effects of non-Gaussianity
(Jensen et al., 2005). To evaluate the voxel-averaged K⊥ and
K‖ we used a subset of the DDE dataset, and fit the data to the
signal model of

exp(−bD +
1
6

b2D2K). (7)

For K⊥, the fit was performed with bz = 0 and 8 values of
bx kept under 3000 s/mm2. For K‖, the fit was performed with
bx = 0 and 12 values of bz kept under 3000 s/mm2.

3.4. Estimating variability and uncertainty

We investigated the reliability of our signal processing
framework using two independent analyses: numerical simu-
lations and quantification of the intrinsic variability in our data.

The numerical simulations included 30 realizations of a
model P(D⊥,D‖) with three distinct peaks in randomly as-
signed [D⊥,D‖] coordinates, standard deviations, and intensi-
ties. These model distributions were used to generate syn-
thetic data, with the experimental parameters used in the current
study. Rician noise with standard deviation of 1/170 (to match
with our measured SNR) was added to each signal (1- and 2D).

After processing through the proposed framework each esti-
mated model distribution realization yielded the spectral com-
ponents (SC) and their corresponding D⊥ and D‖, which were
then compared with the known ground truth values. More de-
tails can be found in the Supplementary Material.

The intrinsic variability between solutions of Eq. 4 with dif-
ferent sampling schemes was used to quantify the uncertainty
of our estimates (Prange and Song, 2009; Topgaard, 2017). We
solved Eq. 4 for 100 bootstrap samples containing two thirds
of the full dataset (i.e., 16 points) randomly sampled without
replacement from the measured signal. This procedure results
in a 100 different realizations of P(D‖,D⊥) in each of the im-
age voxels. As will be detailed in the Results section, these
spectra were further processed, thus identifying and extracting
significant spectral components (SC) that could then be used to
reconstruct images. The variability and uncertainty of the esti-
mated SCs could be obtained from their distribution following
the bootstrap procedure. Images of the standard deviation and
of the lower and upper boundaries of the 95% confidence inter-
val of each of the SCs are shown in the Supplementary Material.

3.5. Microscopy

3.5.1. Histology
Adjacent specimens of spinal cord tissue from the MRI

scanned tissue were evaluated by histology analysis of neu-
ronal and glial density, morphology and pathology. Each
specimen was cut into two 10 mm lengths so that histology
could be performed for both coronal and axial slices and the
specimens were sent for commercial histological processing
(FD Neurotechnologies, Ellicot City, MD) where they were
cryoprotected, frozen and cryosectioned to 40 µm thickness.
For evaluation of axonal damage, Silver staining was per-
formed with the FD NeuroSilver Kit II (see manual PK301 at
www.fdneurotechnologies.com for procedures and references).
For the evaluation of axon and myelin content, double im-
munohistochemistry was performed using primary antibod-
ies for myelin/oligodendrocyte glycoprotein (MOG, Sigma-
Aldrich, SAB1406138) and neurofilament (NF, Enzo Life Sci-
ences, BML-NA1297) with labeling antibodies of AlexaFluor
488 (green) and AlexaFluor 594 (red) respectively. For evalua-
tion of astrocytes and microglia, double immunohistochemistry
was performed with primary antibodies for glial fibrillary acidic
protein (GFAP, abcam, ab4674) and ionized calcium-binding
adaptor molecule 1 (IBA-1, Wako Chemicals USA, 019-19741)
with labeling antibodies of AlexaFluor 488 (green) and Alex-
aFluor 594 (red) respectively. All immunofluorescent sections
were co-labeled with DAPI (blue).

3.5.2. TEM
After MRI scanning, 0.5 × 0.5 × 1 mm3 cubes of tissue were

cut from within the CST region of each specimen and from the
uninjured dorsal column (DC) region in two orientations, axial
and coronal, so that these planes could be evaluated. These sec-
tions were then fixed by newly prepared 2.0% Glutaraldehyde,
2.5% PFA in 0.1 M cacodylate buffer (pH = 7.4) for 1 hr at
room temperature. Fixed samples were washed 3 times by 0.1
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Figure 2: Electron microscopy imaging was used to validate the existence and
extent of the axonal injury in the CST. Cross-sectional (axial) and longitudinal
(coronal) planes were imaged, both from the control and from the TBI speci-
men. Local swelling of the injured region was observed, indicated by the red
arrow in the axial plane. In addition, note the elongated axons in the control
sample, compared with the more rounded, beaded, axons at the injury site.

M cacodylate buffer and then were post-fixed in 1.0% osmium
tetroxide in 0.1 M cacodylate buffer. After several washed
by 0.1 M cacodylate buffer, the samples were dehydrated by
incubation in the increasing concentrations of ethanol and 3
times with 100% ethanol. Samples were then infiltrated with
Epon-Aradite (Ted Pella, Redding, CA): 30% Epon-Aradite in
ethanol for 2 hr, 50% for 4 hr, 75% overnight, and 100% for
1 day with 2 changes. Samples were polymerized at 60◦C for
2 days. Ultrathin sections (about 80 nm) were cut with a Re-
ichert Ultracut E Microtome and collected on copper slot grids.
Sections were counter-stained with uranyl acetate and lead cit-
rate, and examined under a FEI Tecnai12 transmission electron
microscope operating with a beam energy of 120 keV. Images
were acquired using a Gatan 2000×2000 cooled CCD camera
(Pleasanton, CA), resulting in in-plane resolution of 250×250
nm2.

3.5.3. Image processing
Whole-slice images were collected using digital slide scan-

ning microscopy at 20x magnification, such that 1 pixel =

0.32 × 0.32 µm2. For silver stained sections, optical imaging
was performed using a Nanozoomer system (Hamamatsu Pho-
tonics, Hamamatsu, Japan) and for florescence imaging, a Zeiss
Axio Scan Z1 system was used (Carl Zeiss Microscopy, Thorn-
wood, NY, United States). All images were exported in TIFF
format for offline processing.

The color balance tool on ImageJ was used on both the fluo-
rescent and silver stained images. For qualitative analysis, the
fluorescent stained image was further split into separate RGB
channels, and then the red and green channels were recom-
bined.

The % area of silver staining was quantified after binariza-
tion of the grayscale image using a locally adaptive threshold
procedure (Bradley and Roth, 2007), thus avoiding the need to
manually select a threshold value.

3.6. Histology-MRI co-registration

Following convergence of 2D affine co-registration of his-
tology and MR images (Image Processing Toolbox, MATLAB,
The Mathworks, Natick, MA), we performed 2D diffeomorphic
registration refinement between the silver stained image slices
and MRI volumes. This was done in order to recover true in-
plane tissue shape and bridge over residual differences between
the modalities. The diffeomorphic registration procedure in this
paper was performed using an efficient implementation of the
greedy diffeomorphic algorithm (Joshi et al., 2004), provided
as an open-source software package that was greedy1 modeled
after Symmetric Normalization (SyN) in the ANTS software
package (Avants et al., 2008). Our implementation is optimized
for computational speed, foregoing the symmetric registration
model and implementing a highly optimized image resampling
and metric computation. The greedy software was initialized
and used as previously described (Adler et al., 2018).

4. Results

4.1. Confirmation and characterization of tract-specific injury

Tract-specific axonal injury was independently confirmed by
histopathology and TEM of the spinal cord specimens. Trans-
mission electron microscopy images showed large axonal vari-
cosities or beads in both the axial and coronal planes at the in-
jured CST region when compared with uninjured regions or the
control specimen (Fig. 2).

Positive silver staining was prominent at the CST of the in-
jured spinal cord and not at the adjacent DC region or in any
tract of the control specimen (Fig. 3A). We focused on the in-
jured spinal cord to quantitatively investigate whether the Wal-
lerian degeneration was limited to the CST, and to examine the
extent of symmetry of the injury. Quantitative comparisons of
% area of silver staining between left and right CST and DC
regions were performed by using four 500 × 500 pixel ROIs
from the thresholded image in each of the damaged (CST) and
control (DC) regions. The resulting values in the CST were
14.7±0.4 (left) and 14.4±0.4 (right), as compared with the DC
at 4.1 ± 0.2 (left) and 4.2 ± 0.3 (right). A two-sample t-test was
done on pairs of these ROIs, which determined that CST had
significantly higher value of % area of silver staining than the
DC region, and that the injury was symmetric in both left and
right ROIs (Fig. 3B).

More specific evaluation using immunohistochemistry (IHC)
showed severe beading by NF immunostaining as well as MOG
positive detritus consistent with demyelinating processes in the
CST but not in other regions (Fig. 3C). Astrocyte IHC showed
modest increases in GFAP staining, but not prominent enough

1greedy codebase: https://github.com/pyushkevich/greedy.
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to suggest severe reactivity of astrocytes (Fig. 3D). Microglial
staining by Iba-1 revealed a modest increase in microglial den-
sity, especially of microglia having a phagocytic morphology.
This profile is highly consistent with Wallerian degeneration
and by and large, the greatest alteration appeared to be axonal
damage, especially beading. Taken together with the TEM re-
sults, these demonstrate tract-specificity of damage in the in-
jured specimen and axonal morphology as the most prominent
microscale correlate of pathology in the injured tract.

4.2. Voxel-averaged axial diffusivity is sensitive but non-
specific to axonal injury

Voxel-averaged scalar images can only provide macroscopic
information with respect to the voxel size, which in most cases
will contains multiple chemical and physical water pools or mi-
croenvironments. The basic DTI metrics, D⊥, D‖, and FA, as
well as diffusion kurtosis imaging (DKI) metrics, K⊥, K‖, are
all examples of voxel-averaged quantities that are known for
their relatively high microstructural sensitivity. These images,

along with a T2-weighted (T2W) image of the spinal cords, are
shown in Fig. 4. No apparent abnormalities were observed in
the T2W, D⊥, FA, and K⊥ images; these did not show any sen-
sitivity to axonal injury. Compared with adjacent WM, a mod-
erate drop in D‖ and a corresponding increase in K‖ at the CST
of the injured specimen were observed (indicated with white ar-
rows). However, GM voxels exhibited low D‖ values as well,
illustrating how this DTI metric is sensitive to axonal injury, yet
is non-specific.

A more formal statistical analysis of these observations is
summarized in Fig. 5. Three ROIs in the injured specimen –
GM, WM, and the CST (their location shown in Fig. 7) – were
selected for comparisons. For each of the imaging metrics, a
two-sample t-test was done on all pairs of ROIs to determine
whether they are significantly different from one another. The
axial diffusivity was the only metric to significantly drop from
normal WM (0.54 ± 0.01 µm2/ms) to injured WM in the CST
(0.42± 0.01 µm2/ms). However, D‖ was not able to distinguish
between GM (0.43±0.01 µm2/ms) and injured CST WM, point-
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Figure 3: Confirmation of tract-specific injury. (A) Prominent positive silver staining in the CST of the injured spinal cord. DC and CST ROIs are shown on
the image. (B) Quantitative comparisons of % area of silver staining between left and right CST and DC regions. A two-sample t-test determined that CST had
significantly higher value of % area of silver staining than the DC region, and that the injury was symmetric in both left and right CSTs. Three asterisks signify that
p ≤ .001. (C) IHC images of NF and MOG showing axonal beading and demyelination processes limited to the CST. (D) Glia IHC revealed modest increases in
astrocyte reactivity and microglial density.
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Figure 4: Voxel-averaged metrics. From left to right, top to bottom, T2W, D⊥,
D‖, FA, K⊥, and K‖ images. Note the insensitivity of the T2W, D⊥, and K⊥
images to the axonal injury in the CST region of the left hand side spinal cord.
Slight hypointensity in the D‖ and hyperintensity in the K‖ images are evident
at the injury site (white arrows), although it is non-specific to the axonal injury
and is seen in uninjured regions as well.

ing to lack of specificity. The D⊥, FA, K⊥, and K‖ metrics all
showed significant differences between GM and WM, regard-
less whether it was injured or normal.

4.3. Distinct D⊥ – D‖ correlation spectral components

Instead of assuming that each voxel contains a scalar value,
we propose here a phenomenological description to the 2D
DDE signal that provides the 2D distribution of water mobil-
ity in x and z, in our case, the axial and radial directions, re-
spectively. Each voxel contains these distributions, and the first
step in studying this system is to define spectral regions of in-
terest (sROI), i.e., regions that contain distinct components in
the axial-radial mobility spectra.

As stated, estimating the 1- and 2D distributions is not
straightforward, and there is inherent uncertainty in the so-
lution. To partially mitigate that uncertainty, we performed
numerical simulations using data generated from a range of
ground truth 3-peaks 2D distributions, with added Rician noise.
The details can be found in the Supplementary Material, and the
results are shown in Figs. S2-S5. In short, the numerical sim-
ulations showed that the estimation of the SC signal fractions
is quite robust, with very good agreement between the ground
truth and estimated values.

It is impractical to manually examine single voxels to deter-
mine the sROIs. Instead, in most multidimensional MRI studies
an average spectrum across the entire image domain is com-
puted, and used to manually assign sROIs (Kim et al., 2017;
Slator et al., 2019). Although simple to implement, this ap-
proach may lead to loss of important spectral information due
to spatial averaging. Particularly true in our case, a spectral
component that is associated with the axonal injury would be
limited to a small number of CST voxels, and will most likely
be averaged-out if a simple average were used. Instead, we used
a recently proposed method that preserves inter-voxel variabil-
ity by giving equal weight to all SCs in each voxel across the
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Figure 5: Regions of interest statistical analysis of voxel-averaged DTI and
DKI metrics from the injured spinal cord. A two-sample t-test was done on
all pairs of ROIs – GM, normal WM, and CST – to determine whether they
are significantly different from one another. The D‖ metric was sensitive to
microstructural alterations in the injury site, however, was non-specific. Two
and three asterisks signify that p ≤ .01 and p ≤ .001, respectively.

image (Pas et al., 2020) (see Section 3.3). The resulting sum-
marized radial-axial diffusion correlation distributions from the
CHI and control spinal cords are shown in Figs. 6A and B,
respectively. The red diagonal line marks where the axial and
radial diffusivities are equal, and thus, where diffusion is com-
pletely isotropic.

The two spectra in Figs. 6A and B appear to be quite simi-
lar, and in fact, as confirmed by microscopy, the axonal injury
is tract-specific, and therefore, most of the CHI sample should
appear to be normal. To identify the sROIs we used a two-
steps method: (1) Using the summarized 2D spectra we first
applied the sROI generator algorithm proposed in (Pas et al.,
2020) separately on the two spinal cords to obtain rectangular
sROIs. This process resulted in 5 distinct components (1–5) in
both CHI and control specimens, and a 6th component that was
identified only in the injured spinal cord. (2) We then manually
refined these rectangular sROIs to arbitrary shapes (sROIs 1–6
in Fig. 6) to improve the resulting spatial maps. When examin-
ing such correlation spectra it is useful to keep in mind that the
farther the SCs are from the diagonal, the more microscopically
anisotropic the microenvironment from which they originate is.
Similarly, the farther the SCs are from the origin, the higher the
water mobility is.

Although our data allows for a voxelwise analysis, it is pru-
dent to first perform an ROI analysis. The same ROIs as before
were chosen, namely, GM, normal WM, and CST, in both the
CHI and control sample, and their corresponding axial-radial
diffusion correlation spectra are shown in Fig. 7. The first ob-
servations are that WM and GM present unique and distinguish-
able spectral features, and that the spectra from these normal
regions in both control and TBI specimens were similar, which
strengthens the validity of this comparative study.

As expected, in both control and CHI samples P(D⊥,D‖) of
GM contained mainly microscopically isotropic components,
with most of the spectral intensity concentrated in sROIs 1 and
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Figure 6: Summarized diffusion correlation spectra of the (A) CHI and (B) con-
trol specimens. These spectra were computed using a framework for processing
and image reconstruction of multidimensional correlation MRI data (Pas et al.,
2020). Spectral ROIs (1 – 6) were determined using these summarized spectra,
and are shown with different colors.

2 (Fig. 7A). Conversely, P(D⊥,D‖) in normal WM predomi-
nantly contained two populations with moderate and high de-
gree of microscopic anisotropy in sROIs 4 and 5, respectively
(Fig. 7B). Lastly, the axial-radial diffusion correlation in the
CST ROI was examined. The control CST spectrum (Fig. 7C,
bottom) was very similar, as expected, to the other normal WM
spectra (Fig. 7B), with SCs at the same sROIs. Compared with
normal WM, P(D⊥,D‖) at the injury site had a very noticeable
change: the highly anisotropic component (SC 5) had shifted
towards the diagonal line to sROI 6, and became more micro-
scopically isotropic (Fig. 7C, top). The increased microscopic
isotropy at the injury site might reflect axonal beading that has
occurred. Figures 6 and 7 illustrate the added-value of looking
at 2D distributions, compared with 1D projections. As can be
seen, SC 6 cannot be determined from projections of P(D⊥,D‖)
onto D⊥ or D‖ because it closely overlaps with other peaks.

4.4. Diffusion correlation components capture axonal injury
with high specificity

Generating images from multidimensional spectra requires
dimensionality reduction to achieve a more compact represen-
tation of the spectral information. The most commonly used
strategy in this context is to compute the relative signal fractions
of the SCs in each voxel and display them as images (Mackay
et al., 1994; Labadie et al., 1994), which is achieved by sum-
ming (i.e., numerically integrating) over the predefined sROIs.

Signal fraction images of the 6 different P(D⊥,D‖) compo-
nents are shown in Fig. 8. Corresponding micro-tensors along
with their microscopic FA, µFA (under axial symmetry and ori-
entational coherence assumptions), are shown above the SCs
images. The µFA values were computed by plugging median
values of D⊥ and D‖ from each sROI in Eq. 6. The median
values of D⊥, D‖, and µFA from each sROI are summarized
in Table 1. The interquartile range (IQR) is used to capture
the spread of the logarithmically spaced data, with the first and
third quartiles as the lower and upper bounds, respectively.

Two microscopically isotropic SCs, 1 and 2, were identified,
with µFA of 0.10 and 0.33, respectively. While SC 1, which was

mainly limited to WM, was characterized by very low water
mobility, SC 2 has shown relatively high water mobility and
was mainly restricted to GM. Component 3 was anisotropic,
oriented perpendicular to the spinal cord axial plane. Spatially,
this SC was only present in the GM and in low intensity, and is
postulated to originate from root fibers that run in-plane.

Components 4 and 5 both exhibited anisotropic diffusion ori-
ented along the z plane. While both were mainly observed in the
WM, SC 4 was characterized by a significantly lower µFA due
to increased D⊥ and reduced D‖, compared with SC 5 (Table 1).
In addition, SC 5 provided a clear boundary of the axonal injury
area (Fig. 8), where this highly microscopically anisotropic dif-
fusion could no longer exist.

The last spectral peak, SC 6, had larger D⊥ than SC 5, and
a markedly reduced D‖ compared with both SCs 4 and 5 (Ta-
ble 1). The spatial map of SC 6 clearly shows a very specific
pattern, with hyper-intensities that are limited to the CST of the
injured spinal cord (Fig. 8). Averaged across the entire WM,
SC 6 signal fraction was 56.5%, 64.8%, and 35.6% increased
compared with control WM, control GM, and injured GM, re-
spectively (Table 1).

We quantified the uncertainty of the SCs estimates using a
bootstrap procedure that yielded 100 realizations of the diffu-
sion correlation spectra (described in more detail in the Ma-
terials and Methods section). Distributions of SCs in each
voxel were then obtained by applying the same sROIs on all
P(D‖,D⊥) realizations. The average value of the standard de-
viations of these distributions across all SCs and voxels was
0.0102 ± 0.0096. Bearing in mind that SC values range from 0
to 1, and compared with the average value across all SCs and
voxels of 0.1563± 0.1670, the uncertainty of the estimated SCs
is quite low. Images of the SC standard deviation and of the
lower and upper boundaries of the 95% confidence interval are
shown in Figs. S7 and S8, respectively, in the Supplementary
Material.

We performed radiological-pathological correlation analyses
to examine how well the MRI-derived parameters agree with
the histopathological findings. Regions of interest were se-
lected from the silver staining % area image, voxel-averaged
D‖, and diffusion correlation SCs 5 and 6 images. Twenty-eight
ROIs from the injury sites, normal-appearing WM and from
GM in the co-registered injured spinal cord images were se-
lected based on the silver staining image (Fig. 9A). We found
that silver staining % area and SC 6 signal fraction were sig-
nificantly correlated (r = 0.70, p < 0.0001, with r being the
Pearson’s correlation coefficient), as seen in Fig. 9B. The fact
that SC 5 and D‖ from the injured and GM tissues were indis-
tinguishable have led to poor correlation of these parameters
with silver staining % area (Figs. 9C and D). The strong corre-
lation of SC 6 indicates the high specificity of this component
to the traumatic brain injury (TBI)-induced microstructural al-
terations.
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Figure 7: Regions of interest analysis of the two specimens. Three ROIs were chosen: (A) GM, (B) normal WM, and (C) the CST (injury site). Control and CHI
diffusion correlation spectra from these ROIs are shown, respectively, in the bottom and top panels. Both ROIs A and B have similar SCs in all of the sROIs,
suggesting that the injury is indeed localized and not systemic. The CST spectra of the control and CHI spinal cords are markedly different: a highly anisotropic
component in sROI 5 is present in both control and CHI ROI B, and in control ROI C, while it is clearly absent in the CST of the CHI sample. Further, the same
highly anisotropic component has shifted to sROI 6 as a result of the axonal injury, and is now characterized by much more microscopically isotropic diffusion.
The shift in D⊥ of SC 1 in the CHI sample towards faster diffusivity does not reflect a clear change following injury, and is due to voxel-wise variability. A more
complete summary of the diffusion spectra is shown in Fig. 6, in which SC 1 in both samples appear quite similar.

5. Discussion

In summary, we found a diffusion spectral component that is
highly correlated with corresponding histopathology in a spinal
cord specimen with tract-specific axonal injury following Wal-
lerian degeneration. Conversely, DTI and DKI metrics could
not separate injured tissue from GM, and therefore did not show
significant tissue specificity to identify the injury. We con-
firmed by both TEM and immunohistochemistry that cellular
alterations in our specimen corresponded with injury-induced
axonal degeneration in the sub-acute period. Furthermore, this
pathology was limited to the CST and not found in other tracts
of the same specimen or in a control specimen.

We have identified a diffusion component (SC 6) with re-
duced D‖ and increased D⊥ compared with normal WM. This
change, translated to reduction in µFA, was caused by de-
creased and elevated water mobility in the axial and radial di-
rections, respectively. Such changes in the observed diffusion
characteristics can be attributed to microstructural alterations of
the axons (i.e., local swelling), or alternatively, astrocytes and
microglia could also be responsible for the observed diffusion
changes. Averaged across the entire WM, the corresponding
signal fraction of the injured population was 0.089±0.069 (with
a peak intensity of 0.403), and was strongly correlated with sil-
ver staining % area.

We found that normal WM is mainly comprised of two
anisotropic populations with ascending µFA (SCs 4 and 5, re-

spectively). Because we used a 2D DDE acquisition that re-
quires the assumption of fiber orientational coherence we can-
not determine whether the difference between SCs 4 and 5
arises from orientational dispersion or size (or both). Impor-
tantly, we were able to show that, at the injury site, the highly
anisotropic diffusion component (SC 5) completely vanishes,
and instead shifts towards a more isotropic behavior (SC 6).

In GM we found two dominant diffusion correlation com-
ponents: a microscopically isotropic population with moderate
mobility (SC 2), and a microscopically anisotropic component
oriented perpendicular to the spinal cord axial plane (SC 3).
Spectral component 1 represents a microscopically isotropic
population with very low mobility that was observed in all
regions of the spinal cord, with increased intensities in WM
(average signal fractions across both spinal cord specimens of
0.35 ± 0.10 and 0.15 ± 0.09 in WM and GM, respectively). A
subpopulation of water molecules with very slow and isotropic
diffusion in the brain was observed and explicitly modeled in
previous studies (Alexander et al., 2010; Dhital et al., 2018;
Palombo et al., 2019; Tax et al., 2020). Generally, these stud-
ies reported lower fractions of low mobility water in WM than
the values we found here, however, they were all performed in
vivo and with clinical MRI scanners using considerably lower
b-values and low spatial resolution that is prone to partial vol-
ume effects. In addition, none of these studies examined the
spinal cord. A strong presence of a low mobility water pool in
the ex vivo spinal cord was previously reported, with increased
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Figure 8: Generated images of the distinct microscopic water mobility regimes. Image intensities reflect the signal fraction of specific diffusion components in
the corresponding sROI. Above each image is an axisymmetric microscopic diffusion tensor ellipsoid that depicts the water mobility regime of each component
(assuming domain orientational coherence), along with its µFA. Note that the micro-tensor diffusivity values are plotted on a logarithmic scale normalized by D0=2
µm2/ms. In the context of this axonal injury, the most informative diffusion correlation SCs were 5 and 6. Component 5 provided a clear boundary of the injury
area, where this highly microscopically anisotropic diffusion is no longer possible. Instead, injured axons can be directly observed by looking at SC 6, which is
described by a significantly more microscopically isotropic diffusion behavior.

Table 1: Median values of D⊥, D‖, and µFA from each sROI. The interquartile range (IQR) is displayed to capture the spread of the logarithmically spaced data,
with the first and third quartiles as the lower and upper bounds, respectively. Average and standard deviation (SD) SC signal fractions from the control and CHI
specimens are shown as well.

SC fraction (mean ± SD) SC fraction (mean ± SD)
sROI D⊥ (IQR) [µm2/ms] D‖ (IQR) [µm2/ms] µFA WM Control WM CHI GM Control GM CHI

1 .009 (.003 − .032) .011 (.003 − .038) .10 .365 ± .125 .337 ± .074 .166 ± .127 .139 ± .055
2 1.05 (.621 − 2.49) .522 (.260 − 1.48) .33 .109 ± .094 .098 ± .088 .507 ± .234 .502 ± .149
3 1.76 (1.05 − 2.97) .009 (.003 − .032) .70 .004 ± .012 .005 ± .016 .041 ± .028 .071 ± .027
4 .155 (.092 − .260) 1.05 (.621 − 1.48) .83 .270 ± .160 .286 ± .128 .120 ± .107 .157 ± .109
5 .014 (.003 − .054) 2.49 (1.48 − 3.53) .99 .182 ± .098 .198 ± .131 .012 ± .027 .014 ± .027
6 .042 (.030 − .060) .369 (.310 − .439) .87 .057 ± .053 .089 ± .069 .054 ± .028 .066 ± .051

intensity in the dorsal WM (Benjamini et al., 2016), in agree-
ment with the current SC 1 image of the control specimen. The
lack of markedly increased SC 1 intensity in the dorsal portion
of the injured sample may indicate more subtle abnormalities
following the injury that expand beyond the CST, and should
be further investigated. Our findings reaffirm previous observa-
tions that this apparent immobile water subpopulation is indeed
isotropic, at least under the axial symmetry assumption.

Decrease in DTI-derived axial diffusivity is one of the first-
observed imaging signatures associated with axonal injury
(Beaulieu et al., 1996; Mac Donald et al., 2007; Zhang et al.,
2009; Budde et al., 2009; Jelescu et al., 2016b). The voxel-
averaged axial diffusivity in our study was the only DTI metric
that appeared to be sensitive to injury, where a reduced value
compared with normal WM was observed. Despite that, in-
significant correlation with silver staining % area indicated that
voxel-averaged D‖ was not able to distinguish between injured
and GM regions, and therefore was shown to be non-specific to
this axonal injury.

Changes in the voxel-averaged radial diffusivity at the injury
site were expected based on previous ex vivo spinal cord stud-
ies (Zhang et al., 2009), and based on our TEM and histological
data, however, D⊥ was insensitive to the injury in our case. This
finding can be attributed to the observed low degree of myelin
damage and glial reactivity, which are known to affect D⊥ fol-
lowing injury (Gulani et al., 2001; Song et al., 2002a). In addi-
tion, the reduction in FA following injury was not statistically
significant, most likely because D⊥ dominates the calculation
of the FA (Eq. 6). Supporting these findings, a recent simula-
tion and sensitivity analysis study found that although the µFA
may be used as a marker for beading, the axial diffusivity is bet-
ter suited and more sensitive to these alterations in tissues with
coherent arrangements (Skinner et al., 2015).

Data inversion methods used to obtain 1- and 2-D distribu-
tions of diffusivities assume that the data attenuates exponen-
tially with b. Strictly speaking, this is only valid for a partic-
ular range of the signal attenuation, and water populations that
experience ideal restricted diffusion, e.g., trapped in imperme-
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Figure 9: Silver staining % area and the corresponding diffusion correlation
SCs 5 and 6, and the voxel-averaged D‖. (A) The silver staining image after
co-registration to the injured spinal cord MRI image. Twenty-eight ROIs, 10 at
the injury sites, 7 at normal-appearing WM, and 11 at the GM, are displayed
and were used to compute individual data points in (B), (C), and (D). (B) SC
6 had a strong and significant positive correlation with silver staining % area
(r = 0.70, p < 0.0001). (C) SC 5 and D‖ were not significantly correlated
with silver staining % area (r = −0.12, p = 0.249 and r = −0.29, p = 0.071,
respectively).

able spheres, will appear to attenuate multiexponentially, and
thus result in distributed components when inverted. While
the underlying microstructure of neuronal tissue may be un-
known and ill-defined, interpretation and biophysical modeling
of diffusion processes in those systems is an active and ongo-
ing area of research (Stanisz et al., 1997; Sen and Basser, 2005;
Özarslan et al., 2013; Jelescu et al., 2016a; Benjamini et al.,
2016; Novikov et al., 2018).

In an attempt to interpret the major spectral components we
found in terms of microstructure, we would have to neglect the
non-Gaussian nature of diffusion in each water pool. Although
this involves an approximation because some of the microenvi-
ronments are technically non-Gaussian, it may still hold due to
the vast differences between the spectral components (note the
log-log axes in, e.g., Fig. 7). Applying these concepts to our
findings, we suggest the following partial biological interpreta-
tion: SC 1 can be assigned to “immobile” water, e.g., trapped
in glial cells or water bound to membranes (Stanisz et al., 1997;
Alexander et al., 2010; Williamson et al., 2019); SC 5 has the
diffusive characteristics of the so-called “stick” (Kroenke et al.,
2004), which is most commonly assigned to intra-axonal water;
and SC 4 can be thought to originate from extra-axonal water
that reside between the aligned spinal cord fibers. These com-
ponents have been previously formalized within the “standard
model” (Novikov et al., 2018). Our findings suggest that axonal
injury makes the axial diffusivity in the “stick” component (SC
5) non-Gaussian, which leads to a drop in the µFA, thus, SC

5 becomes SC 6. Finally, the GM-dominant components may
originate from neuronal soma and processes (SC 2) and root
fibers that run in the transverse plane (SC 3). Further examina-
tion and histological correlation are necessary to make a more
certain determination.

Integration of this multidimensional approach within MR
imaging applications was not feasible until recently due to bur-
densome data requirements causing impractically long scan
times. However, here we use the MADCO framework Ben-
jamini et al. (2016) and apply it to DDCOSY to significantly
reduce data requirements, requiring only 6.5% of the spectral
data as compared with previous applications (Callaghan and
Furó, 2004; Zong et al., 2017), making voxelwise DCI feasible.
Despite the significant improvement, DCI still requires consid-
erably more data than DTI, which may be a reasonable penalty
in return for the demonstrated high tissue components speci-
ficity. A more practical in vivo DDE approach in the injured
spinal cord that uses the first diffusion block with a constant,
relatively high, b-value (effectively as filter) perpendicular to
the tissue, while stepping the second orthogonal block, was re-
cently suggested (Skinner et al., 2017, 2018). While full 2D
diffusion spectra map the entire diffusivities ranges in both ax-
ial and radial directions, this practical approach would ideally
only capture water populations with slow radial diffusivity, and
describe their mobility along the axial axis.

Our study only included a single injured and a single con-
trol specimen. This work was designed to provide a proof-of-
concept, where different MRI methodologies are applied to the
same specimen which has also been extensively investigated by
histology. Our findings here are not intended to provide a gen-
eral validation of the injury model or to assess its biological re-
producibility. Future studies, in which multiple specimens are
imaged and histologically assessed and correlated are required
to generalize our findings.

In this 2D implementation of DCI we have shown it can
be used to directly and specifically assess axonal injury in the
spinal cord, where the assumption of orientational coherence
is reasonable and appears to be satisfied. However, with the
exception of areas in the Central Nervous System (CNS) such
as the splenium and genu of the corpus callosum, optic tracts,
etc., such high degree of orientational coherence is uncommon
in most brain regions. Estimating the 4D size-shape-orientation
distribution would help address this issue by taking into account
the fiber orientation dispersion as well. Our findings demon-
strated that diffusion correlations are sensitive and specific to
tissue alterations following axonal injury, and should serve as
motivation for further research that would advance the 4D dif-
fusion correlation NMR method (de Almeida Martins and Top-
gaard, 2016) towards MRI applications to assess axonal injury.

6. Conclusions

This study demonstrates the feasibility of identifying and di-
rectly mapping microstructural alteration following axonal in-
jury in the spinal cord using 2D diffusion correlation imaging
(DCI). Our results suggest that conventional maps of voxel-
averaged DTI- DKI-derived metrics are subject to partial vol-
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ume effects, rendering them non-specific to this type of mor-
phological change. By contrast, DCI analysis identifies multi-
ple intravoxel diffusion components or water pools with differ-
ent apparent mobilities and in different orientations, enabling
us to reveal and directly quantify sub-voxel microscopically
anisotropic components.

Using DCI we were able to isolate a diffusion correlation
spectral component that was specifically associated with injury-
induced tissue alterations. Compared with normal WM, the
measured water mobility of the injury-specific component was
reduced in the parallel direction and increased perpendicular to
it, which can be interpreted, with caution, as axonal beading
or alternatively as increased glial presence. The tract-specific
injury was confirmed using TEM and histopathology, the lat-
ter shown to be strongly correlated with the injury-specific MR
image. These results confirm and are able to interrogate charac-
teristic diffusion changes that provide insight into axonal injury
and diffusion MRI changes.

We predict that this new ability to selectively image mi-
crostructural changes following axonal injury in the spinal cord
has potential for future research and clinical applications by
providing increased specificity and sensitivity. These results
serve as proof-of-concept and an impetus to generalize this
imaging method approach to higher dimensions to enable the
assessment of TBI-induced alterations in the brain by develop-
ing intrinsic and invariant measures of axonal injury.
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Callaghan, P.T., Furó, I., 2004. Diffusion-diffusion correlation and exchange as
a signature for local order and dynamics. The Journal of Chemical Physics
120, 4032.

Callaghan, P.T., Komlosh, M.E., 2002. Locally anisotropic motion in a macro-
scopically isotropic system: displacement correlations measured using dou-
ble pulsed gradient spin-echo NMR. Magnetic Resonance in Chemistry 40,
S15–S19.

Carroll, S., 2009. Wallerian Degeneration, in: Squire, L.R. (Ed.), Encyclopedia
of Neuroscience. Academic Press, San Diego, CA, pp. 485–491.
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