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Abstract 

Simultaneous FDG-PET/fMRI ([18F]-fluorodeoxyglucose positron emission 

tomography functional magnetic resonance imaging) provides the capacity to image 

two sources of energetic dynamics in the brain – glucose metabolism and 

haemodynamic response. Functional fMRI connectivity has been enormously useful 

for characterising interactions between distributed brain networks in humans. 

Metabolic connectivity based on static FDG-PET has been proposed as a biomarker 

for neurological disease; but static FDG-PET cannot be used to estimate subject-

level measures of connectivity, only across-subject covariance. Here, we applied 

high-temporal resolution constant infusion fPET to measure subject-level metabolic 

connectivity simultaneously with fMRI connectivity. fPET metabolic connectivity was 

characterised by fronto-parietal connectivity within and between hemispheres. fPET 

metabolic connectivity showed moderate similarity with fMRI primarily in superior 

cortex and frontoparietal regions. Significantly, fPET metabolic connectivity showed 

little similarity with static FDG-PET metabolic covariance, indicating that metabolic 

brain connectivity is a non-ergodic process whereby individual brain connectivity 

cannot be inferred from group level metabolic covariance. Our results highlight the 

complementary strengths of fPET and fMRI in measuring the intrinsic connectivity of 

the brain, and open up the opportunity for novel fundamental studies of human brain 

connectivity as well as multi-modality biomarkers of neurological diseases. 

 

Keywords functional connectivity, metabolic connectivity, simultaneous MR-PET, 

FDG-PET, BOLD-fMRI, fPET, resting-state 
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The invention of positron emission tomography (PET) in the 1970’s (Ter-Pogossian, 

1992) and the development of functional magnetic resonance imaging in the early 

1990’s (Ogawa et al., 1990) have provided unique insights into brain function in living 

humans. During the past two decades functional magnetic resonance imaging (fMRI) 

has been an enormously powerful tool for the discovery of intrinsic brain networks, 

the characterisation of brain connectivity, and the identification of interactions 

between distributed brain networks (Fox et al., 2007; Fox and Raichle, 2007). 

Recently, the advent of simultaneous [18F]-fluorodeoxyglucose PET (FDG-PET) and 

fMRI of the brain (Judenhofer et al., 2008) has provided the opportunity for unique 

new insights into the mechanisms of dynamic metabolic and neurovascular activity in 

the human brain (Villien et al., 2014). 

Resting-state functional MRI measures the temporal coherence of spontaneous 

neural activity between spatially distinct brain regions (Fox and Raichle, 2007), and 

is normally measured using blood oxygenation level dependent fMRI (BOLD-fMRI) 

(Biswal et al., 1995). Resting-state brain connectivity indexes spontaneous large-

amplitude changes in blood oxygenation at low frequencies that have been 

associated with variability in cognition (Fox et al., 2007; Jamadar et al., 2016), 

individual differences in age (Andrews-Hanna et al., 2007), sex (Jamadar et al., 

2018), and psychiatric and neurological conditions (8). Resting-state fMRI 

connectivity has potential as a biomarker of clinical progression for a number of 

neurological diseases, although its application as a diagnostic biomarker is currently 

limited (Hohenfeld et al., 2018).  

BOLD-fMRI provides a haemodynamic-based surrogate index of neuronal activity 

with a temporal resolution in the order of seconds and sub-millimeter spatial 

resolution. The BOLD-fMRI signal is an indirect index of neuronal function, arising 
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from neurovascular coupling between neuronal activity and cerebral haemodynamics 

(Phillips et al., 2016). While BOLD-fMRI is usually interpreted as arising from 

neuronal activity, there are a number of non-neuronal contributors to the BOLD 

signal, including heart rate variability, respiration, head movement, individual 

variability in haemoglobin and the oxygen-carrying capacity of the blood, etc. (Liu, 

2017; Ward et al., 2019). As such, BOLD-fMRI is a semi-quantitative non-absolute 

index of neural activity, and BOLD-fMRI responses cannot be quantitatively 

compared across brain regions, subjects, or imaging sites, or within the same 

individual across time (Logothetis, 2008). These characteristics are a major limiting 

factor in the development of BOLD-fMRI-based biomarkers, particularly when 

derived from fMRI functional connectivity metrics (Hohenfeld et al., 2018).  

Resting-state connectivity measured using other neuroimaging techniques provide a 

unique perspective on information transfer in the brain. Here, we investigate brain 

connectivity derived from FDG-PET to measure co-variation of glucose uptake 

throughout the human brain; an index of cerebral metabolism. FDG-PET provides a 

snapshot of cerebral glucose uptake, and connectivity analyses of FDG-PET have 

characterised the covariation in cerebral glucose uptake across subjects (Horwitz et 

al., 1984; Moeller et al., 1987). This measure of ‘metabolic’ connectivity is an 

important complement to BOLD-fMRI functional connectivity, since FDG-PET 

represents a more direct and quantitative measure of neuronal function than BOLD-

fMRI. While evidence suggests metabolic connectivity shows moderate-to-strong 

correlation with fMRI connectivity (Di et al., 2017; Di and Biswal, 2012; Passow et al., 

2015; Savio et al., 2017), due to technical limitations, the majority of FDG-PET 

studies have acquired static images of the brain with an effective temporal resolution 

of the scan duration –10-40mins. Since static FDG-PET (sPET) acquisitions provide 
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a single cumulative measurement per subject, metabolic ‘connectivity’ was estimated 

across-subjects. As such, these results are more accurately characterised as 

metabolic covariance, rather than connectivity. Covariance measures are not 

dependent on the temporal correlation of glucose uptake and therefore provide 

patterns that do not necessarily arise from coupled activity between brain regions. 

Furthermore, it is known from fMRI that group-level covariance poorly predicts 

individual measures of seed-based functional connectivity (Roberts et al., 2016). 

Consequently, static FDG-PET images cannot be used to estimate metabolic 

connectivity within single subjects, greatly limiting their application as a disease 

biomarker (Veronese et al., 2019; c.f., Yakushev et al., 2017).  

Recent advances in radiotracer delivery, together with the improved PET signal 

detection sensitivity of dual-modality MR-PET scanners, has made it possible to 

study the dynamics of FDG-PET glucose uptake with substantially improved 

temporal resolution. The method described as ‘functional’ FDG-PET (FDG-fPET) 

have achieved a temporal resolution of 60sec (Hahn et al., 2016, 2017; Jamadar et 

al., 2019b; Li et al., 2019; Villien et al., 2014)  or less (Hahn et al., 2020; Jamadar et 

al., 2019a; Rischka et al., 2018). These methodological advancements have opened 

up an unprecedented opportunity to examine the temporal coherence of glucose 

metabolic signals across subjects, in a similar manner to BOLD-fMRI. 

The goal of the present study was to investigate FDG-fPET metabolic connectivity 

with high temporal resolution. We used FDG-fPET data with temporal resolution of 

16sec, and simultaneously acquired BOLD-fMRI data with a temporal resolution of 

2.45sec. Two major hypotheses were tested in the present study. Firstly, we 

hypothesised that static FDG-PET metabolic covariance would be moderately 

associated with fPET metabolic brain connectivity. Secondly, we predicted that 
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resting-state metabolic brain connectivity would be strongly associated with resting-

state BOLD-fMRI connectivity.  

 

Materials and Methods 

All methods were reviewed by the Monash University Human Research Ethics 

Committee, in accordance with the Australian National Statement on Ethical Conduct 

in Human Research (2007). Administration of ionising radiation was approved by the 

Monash Health Principal Medical Physicist, in accordance with the Australian 

Radiation Protection and Nuclear Safety Agency Code of Practice (2005). For 

participants aged over 18yrs, the annual radiation exposure limit of 5mSv applies 

and the effective dose equivalent was 4.9mSv. Detailed information on the constant 

infusion acquisition procedure is available in Jamadar et al. (2019b). Data is 

available on OpenNeuro (see Data Availability Statement), and a data descriptor is 

available in Jamadar et al. (in press). 

 

Participants 

Participants (n=27) were aged 18-23 years (mean 19 years); 20 female, all right 

handed (Edinburgh Handedness Inventory). Participants had between 13-18 years of 

education (mean 14 years), normal or corrected-to-normal vision and no personal 

history of diagnosed Axis-1 mental illness, diabetes or cardiovascular illness. 

Participants were screened for claustrophobia, non-MR compatible implants, clinical 

or research PET scan in the past 12-months, and women were screened for current 

or suspected pregnancy. Prior to the scan, participants were directed to consume a 

high protein/low sugar diet for 24-hours, fast for 6 hours, and drink 2-6 glasses of 
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water. Blood sugar level was measured using an Accu-Check Performa (model NC, 

Mannheim, Germany); all participants had blood sugar levels below 10mmol/L (max 

in this sample 4.73mmol/L). 

 

Procedure 

Prior to the scan, participants completed a brief cognitive battery (30mins, results not 

reported here). Participants were then cannulated in the vein in each forearm with a 

minimum size 22-gauge cannula, and a 10mL baseline blood sample was taken at 

the time of cannulation. For all participants, the left cannula was used for FDG 

infusion, and the right cannula was used for blood sampling. Primed extension tubing 

was connected to the right cannula (for blood sampling) via a three-way tap.  

Participants underwent a 95-minute simultaneous MR-PET scan in a Siemens 

(Erlangen) Biograph 3 Tesla molecular MR (mMR) scanner (Figure 1A). Participants 

were positioned supine in the scanner bore with head in a 16-channel 

radiofrequency (RF) head coil, and were instructed to lie as still as possible with 

eyes open, and think of nothing in particular. [18-F] fluroodeoxyglucose (FDG; 

average dose 233MBq) was infused over the course of the scan at a rate of 36mL/hr 

using a BodyGuard 323 MR-compatible infusion pump (Caesarea Medical 

Electronics, Caesarea, Israel). One participant received a lower dose (167MBq) due 

to infusion pump error. Infusion onset was locked to the onset of the PET scan.  

Plasma radioactivity levels were measured throughout the duration of the scan. At 

10-mins post-infusion onset, a 10mL blood sample was taken from the right forearm 

using a vacutainer; the time of the 5mL mark was noted for subsequent decay 

correction. Subsequent blood samples were taken at 10-min intervals for a total of 10 
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samples for the duration of the scan. The cannula line was flushed with 10mL of 

saline after every sample to minimise line clotting. Immediately following blood 

sampling, the sample was placed in a Heraeus Megafuge 16 centrifuge 

(ThermoFisher Scientific, Osterode, Germany) and spun at 2000rpm for 5 mins; 

1000 μL plasma was pipetted, transferred to a counting tube and placed in a well 

counter for 4mins. The count start time, total number of counts, and counts per 

minute were recorded for each sample. Figure 1B shows the interpolated plasma 

radioactivity concentration over time. The average radioactivity concentration 

constantly increases over time with the lowest relative slope at the end of the 

acquisition. 

 

Figure 1: A. Experimental paradigm. Participants underwent a 95-minute 

simultaneous MRI-PET scan. [18F]-FDG was infused over the course of the scan, 

with infusion start time locked to the onset of the PET scan (time 0). For the first 30-
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minutes, non-functional MRI scans were acquired to allow the PET signal to increase 

to detectable levels (see Figure 2, plasma radioactivity curve). At the 30-minute 

timepoint, 6 consecutive 10-minute resting-state BOLD-fMRI (T2* echo planar 

imaging) blocks were completed. Participants rested quietly with eyes open with 

central fixation (cross) for the full 60-minutes. Abbreviations: UTE, ultrashort echo 

time; MRS, magnetic resonance spectroscopy; GFM, gradient field map; pASL, 

pulsed arterial spin labelling; SWI, susceptibility weighted imaging; mins, minutes.  

B. Plasma radioactivity curve. Individual subject radioactivity curves are plotted in 

grey, with the average across all subjects plotted in black.  

 

MR-PET protocol 

PET data was acquired in list mode. Infusion of FDG radiotracer and PET data 

acquisition started with the Ultrashort TE (UTE) MRI for PET attenuation correction 

(Figure 1A). To allow the PET signal to rise to detectable levels, non-functional MRI 

scans were acquired in the first 30-mins following infusion onset. These scans, in 

order, were: UTE (TA=1.40mins), T1 3D MPRAGE (TA = 7.01mins, TR=1640ms, 

TE=2.34ms, flip angle = 8°, FOV=256x256mm2, voxel size = 1x1x1mm3, 176 slices; 

sagittal acquisition), and several scans not reported here: T2 SPACE (TA=5.52min), 

magnetic resonance spectroscopy (MRS, TA=2.48min), gradient field map 

(TA=1.02min), pulsed arterial spin labelling (TA=4.21), T2 susceptibility-weighted 

image (TA=6.50min), left-right phase correction (TA=0.21min). For the remainder of 

the scan, six consecutive 10min blocks of T2*-weighted echo planar images (EPIs) 

were acquired (TR=2450ms, TE=30ms, FOV=190mm, 3x3x3mm3 voxels, 44 slices, 

ascending axial acquisition). 
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MR image preparation 

For the T1 structural image, the brain was extracted, then registered to MNI152 

space using Advanced Normalization Tools (ANTs) (Avants et al., 2011). The grey 

matter, white matter and brain cortex labels of T1 image were segmented by using 

Freesurfer with Desikan-Killiany Atlas (Diedrichsen et al. 2009).  

The six blocks of EPI scans for all subjects (a total of 245 EPIs) underwent a 

standard fMRI pre-processing pipeline. Specifically, all scans were brain extracted 

(FSL BET (Smith, 2002)), corrected for intensity non-uniformity using N4 bias field 

correction (ANTs (Tustison et al., 2010)), motion corrected (FSL MCFLIRT 

(Jenkinson et al., 2002)), slice timing corrected (AFNI (Cox, 1996) and high-pass 

filtered (Hz > 0.01) to remove low frequency noise (FSL (Jenkinson et al., 2012). 

Across subjects, average mean framewise translational motion was 0.41mm; 

maximum was 1.09mm. 

 

PET image reconstruction and preparation 

The 5700-second list-mode PET data for each subject was binned into 356 3D 

sinogram frames each of 16-second interval. The pseudoCT method (Burgos et al., 

2014) was used to correct the attenuation for all acquired data. Ordinary Poisson-

Ordered Subset Expectation Maximization (OP-OSEM) algorithm (3 iterations, 21 

subsets) with point spread function correction was used to reconstruct 3D volumes 

from the sinogram frames. The reconstructed DICOM slices were converted to NIFTI 

format with size 344x344x127 (voxel size: 2.09 x 2.09 x2.03 mm3) for each volume. 

A 5-mm FWHM Gaussian post-filter was applied to each 3D volume. All 3D volumes 
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were temporally concatenated to form a 4D (344 x 344 x 127 x 356) NIFTI volume. A 

guided motion correction method using simultaneously acquired MRI images was 

applied to correct the motion during the PET scan. We retained the 225 16-sec 

volumes commencing from the 30 minute timepoint, which matched the start of the 

BOLD-fMRI EPI acquisition, for further analyses.  A single static PET image was 

derived from the sum of the 16-sec volumes. 

The 225 PET volumes were motion corrected (FSL MCFLIRT (Jenkinson et al., 

2002); the mean PET image was brain extracted and used to mask the 4D data. The 

fPET data was further processed using a spatio-temporal gradient filter to estimate 

the short-term change in glucose uptake from the cumulative glucose uptake that 

was measured. The filter removed the accumulating effect of the radio-tracer and 

other low-frequency components of the signal to isolate short-term resting-state 

fluctuations. This approach intrinsically adjusted for the mean signal whilst avoiding 

global-signal regression and other approaches that may create spurious anti-

correlations in the data (Li et al., 2019); (Murphy and Fox, 2017). Due to radiotracer 

dynamics, it was not expected that the fPET sensitivity would be uniform across the 

60minutes of the resting-state data acquisition. As the radiotracer accumulated in the 

brain, it was anticipated that the signal-to-noise ratio of the PET image 

reconstruction would progressively improve. The Supplement includes the definition 

of the spatiotemporal filter (Supplementary Figure S1). 

 

Connectivity Analyses 

fPET and fMRI timeseries were extracted for each of the 82 regions of interest from 

the segmentation of the T1-weighted image, interpolated using an ANTs rigid 
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registration (Avants et al., 2011). To construct a connectivity matrix, Pearson’s 

correlation coefficients were estimated between the timeseries from pairs of regions. 

This produced a single per-subject per-modality 82x82 matrix corresponding to the 

60minutes of resting-state in the experimental protocol. The six motion parameters 

were used to account for framewise displacement effects in the fPET and fMRI 

connectivity matrices. Thus, each region-by-region association is a partial correlation 

of region A, region B, pitch, roll, yaw, x, y, z for each subject, then averaged across 

subjects for the group connectome. 

Group-average connectivity for BOLD-fMRI and FDG-fPET: The similarity between 

the group-average BOLD-fMRI and FDG-fPET matrices was assessed using a 

Pearson correlation across all edges on the lower triangle of the connectivity 

matrices (excluding the diagonal and symmetric triangle). The regional variation 

between the two modalities was assessed by calculating a separate correlation 

coefficient for each row of the connectivity matrix, providing a measure of similarity of 

the connectivity profile for each brain region.  

sPET metabolic covariance: A FDG-sPET metabolic covariance matrix was 

constructed using the mean signal for each subject from the static PET image. The 

signal was de-meaned for each subject to remove inter-subject variances, such as 

dosage and physiology. The across-subject correlation between pairs of ROIs was 

then estimated to generate the covariance matrix. The similarity of across-subject 

metabolic covariance of sPET and inter-subject temporal correlation/metabolic 

connectivity of fPET was examined at a regional and global level. A comparison of 

the characteristics of the metabolic covariance and the metabolic connectivity was 

performed, assessing the scale of correlations and the network profile.  
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Spatial maps of region degree: To further characterise and contrast connectivity from 

the two modalities, the strength of connections to each region were examined. Each 

connectivity matrix was discretised at the 90th percentile level to provide a binary 

graph of the ‘strongest’ connections. We took this approach, rather than a threshold 

approach based on null-hypothesis testing, as the SNR properties of each modality 

are substantially different. Thus, a common threshold across all three modalities 

would lead to many significant regions in some modalities (i.e. sPET) and very few in 

others (i.e. fPET). We argue that the percentile approach is appropriate in this 

analysis, as the goal was to examine and compare the distribution of most 

connected regions between modalities, without the additional concerns of sub-

threshold results. Results across other thresholds are reported in the Supplement. 

The number of these binary edges connected to each region was calculated to 

provide a map of regional degree for each modality.  

Graph-based network analysis: To investigate the patterns of connectivity within and 

between subnetworks, node degree was calculated and regions were sorted by 

subnetwork assignment (i.e., frontoparietal, dorsal attention, ventral attention, default 

mode, somatomotor, limbic, subcortical, and visual; as classified by (Yeo et al., 

2011). As the regions were not evenly distributed between subnetworks, some 

subnetworks (e.g. default mode network) contained a higher number of nodes than 

others. Therefore, there was a higher chance that significant edges would occur 

within subnetworks with more nodes by random chance. To minimise this bias in our 

interpretation, we adjusted node degree for the capacity of each network (number of 

observed edges, divided by number of potential edges between two subnetworks). 

Shared variance between sPET & fPET; and fMRI & fPET: To investigate the shared 

variance between the two modalities, the fPET connectome for each individual was 
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regressed from the sPET and fMRI connectome, respectively. The standardised 

residuals of the regression were visualised in a matrix to show the distribution of 

variance not explained by fPET in the sPET and fMRI connectome.  

 

Results 

We first provide a qualitative overview of the static PET (sPET) covariance, 

functional PET (fPET) connectivity, and fMRI connectivity matrices (Figure 2), and 

their associated network graphs (Figure 3). Secondly, we compare the sPET results 

to fPET, to determine if sPET covariance is predictive of fPET connectivity. Lastly, 

we compare fPET results to fMRI, to determine the relationship between metabolic 

and functional connectivity.  

Metabolic covariance, metabolic connectivity, and haemodynamic connectivity 

sPET Metabolic Covariance: The across-subject sPET metabolic covariance matrix 

showed large variability in connection strength across ROIs (Figure 2A). Each 

cortical sub-division showed strong covariance with neighbouring regions, as evident 

by the high covariance values (r�0.5; orange-yellow colours) along the main 

diagonal. Furthermore, each cortical sub-division showed strong homotopic 

covariance, as evident by the high covariance values along the diagonals of the top 

right and bottom left quadrants of the matrix. High temporo-subcortical covariance 

was observed both within and between hemispheres; and high fronto-subcortical, 

fronto-temporal and parieto-occipital covariance was also apparent albeit of smaller 

magnitude than the temporo-subcortical covariance. FDG-sPET showed the highest 

region degree in the temporal poles and subcortically (Figure 2D). In the network 
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graphs (Figure 3A), sPET showed strong widespread connectivity between the 

dorsal attention, frontoparietal, subcortical, sensorimotor and default mode networks. 

fPET Metabolic Connectivity: The most salient effect for the group-averaged within-

subject FDG-fPET metabolic connectivity matrix was the stronger (r�0.15; orange-

yellow colours) fronto-parietal connectivity, both within and between hemispheres 

(Figure 2B). Left-right homotopic connectivity was also evident for frontal and parietal 

cortices; this was not visually apparent for subcortical, temporal and occipital 

cortices. fPET showed the highest degree in the frontal poles and the superior cortex 

(Figure 2E). For the network graphs (Figure 3B) fPET showed high connectivity 

between the frontoparietal and dorsal attention networks, and between the dorsal 

attention and sensorimotor networks. Moderate connectivity was apparent between 

the sensorimotor-frontoparietal networks, and between the default mode and dorsal 

attention, frontoparietal and visual attention networks. The dorsal attention network 

showed strong within-network connectivity as well. 

fMRI Functional Connectivity: BOLD-fMRI showed strong (r�0.6; orange-yellow 

colours) connectivity within anatomical sub-divisions, both within and between 

hemispheres (Figure 2C). This pattern was evident from the four diagonal lines in the 

fMRI connectivity matrix. A number of long-range connections between anatomical 

sub-divisions were also evident, including fronto-parietal, parieto-occipital and 

temporo-parietal regional connectivity. These long-range connections were evident 

both within and between hemispheres but were of smaller magnitude than the short-

range and homotopic connections. Network graphs for the fMRI data (Figure 3C) 

showed strongest connectivity between the dorsal attention and visual networks, with 

the visual network having the highest self-connectedness. The visual attention 

network showed high connectedness with the frontoparietal and sensorimotor 
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network, and the default mode network showed an intermediate level of 

connectedness with the frontoparietal and dorsal attention networks. The anatomical 

projections of the most highly connected regions (Figure 2F, lower row) indicated 

that the parietal cortex was most inter-connected region in the fMRI data, with 

superior frontal and inferior occipital cortices showing intermediate levels of 

haemodynamic based connectivity. Subcortical and orbitofrontal regions were the 

least inter-connected regions in the BOLD-fMRI data. 
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Figure 2: A. FDG-sPET resting-state covariance matrix thresholded from -0.65 < r < 

0.65. B. FDG-fPET resting-state connectivity matrix thresholded from 0 < r < 0.12. C. 

BOLD-fMRI resting-state connectivity matrix thresholded from 0 < r < 0.75. 

Supplementary Figure 1 shows the distribution of the number of edges across r 

values for each modality.  
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D. Spatial representation of the connection centrality (region degree; number of 

connections attached to the region) of FDG-sPET. E.  Spatial representation of the 

connection centrality (region degree) of FDG-fPET and F. Spatial representation of 

the connection centrality (region degree) of BOLD-fMRI. Supplementary Figures 5-7 

show the variation of the region degree plots (panels d-f) across different thresholds. 

 

Figure 3: Connectivity matrices (top panel) and network graphs (bottom panel) for 

eight canonical resting-state networks. Within-network connections lie on the 

diagonal (e.g. visual-visual), and between-network connections lie on the off-

diagonal (e.g. visual-default mode). A. FDG-sPET metabolic covariance, B. FDG-

fPET metabolic connectivity and C. BOLD-fMRI haemodynamic connectivity. 

Abbreviations: FP, frontoparietal network; DAN, dorsal attention network; VAN, 

ventral attention network; DMN, default mode network; SM, sensorimotor network; 

Lim, Limbic network; SC, subcortical network; Vis, visual network.  
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Comparison of FDG-sPET metabolic covariance and FDG-fPET metabolic 

connectivity 

Qualitatively the sPET covariance and fPET connectivity matrices show little 

similarity (Figure 2A & 2B). The fPET connectivity was dominated by fronto-parietal 

connectivity, whereas the sPET covariance demonstrated greater variability 

throughout the connectivity matrix. The distribution of edges for each r value for 

sPET and fPET showed that fPET is biased towards positive r values, whereas sPET 

is symmetric around r=0 (Supplementary Figure S2). Comparison of the network 

graphs (Figure 3) and the anatomical projections of the most connected regions 

(Figure 2D-F) are consistent with the finding that sPET and fPET show little 

anatomical similarity across the brain. This result is confirmed by the matrix of 

sPET~fPET residuals (Figure 4A) which highlights that sPET covariance has 

substantial variance (e > 0.5) that is unexplained by fPET connectivity. In particular, 

the left-right homologue covariance in the subcortical and temporal regions is not 

explained by fPET within-subject connectivity. Taken together, these results are 

consistent with the conclusion that across-subject sPET connectivity does not predict 

within-subject fPET connectivity. These results are not consistent with the hypothesis 

that static metabolic connectivity would be moderately associated with within-subject 

metabolic brain connectivity. 

 

Comparison of FDG-fPET metabolic connectivity and BOLD-fMRI haemodynamic 

connectivity 

Qualitatively the FDG-fPET metabolic connectivity and BOLD-fMRI haemodynamic 

connectivity matrices showed moderate similarity, with a trend towards stronger 
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connectivity associated with the fronto-parietal cortex (Figure 2). Both fPET and fMRI 

network graphs (Figure 3) showed strong connectivity for the dorsal attention 

network, with the dorsal attention network strongly connected to the frontoparietal 

network for fPET, and strongly connected to the visual network for fMRI. The default 

mode network showed moderate connectedness for both fPET and fMRI. The matrix 

of the fMRI~fPET residuals (Figure 4B) is relatively flat, with little variability across 

ROIs. Residual values were uniformly slightly positive (e ~0.2) suggesting a slight 

positive bias in variance for fMRI compared to fPET. Unlike the sPET~fPET 

residuals, there is little systematic variation across anatomical regions. These results 

are consistent with the conclusion that within-subject resting-state metabolic brain 

connectivity is more closely associated with resting-state haemodynamic connectivity 

than sPET metabolic covariance. 

 

Figure 4: Matrix of residuals for the multiple regressions controlling for fPET 

variance for (A) sPET and (B) fMRI.  

 

Discussion 
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In this study, we report for the first time resting-state metabolic brain connectivity 

measured using a novel FDG-functional PET imaging protocol and methodology in 

humans. A key strength of this work is the simultaneous acquisition and high 

temporal resolution that enabled multi-modality within-subject analyses of resting 

state brain activity. The simultaneous acquisition of fPET and fMRI data is of 

particular importance, as measures of metabolic and haemodynamic responses to 

the same neural activity without the confound of intra-individual differences in 

attention, fatigue, motivation, nutrient intake and blood chemistry that occur in 

sequential brain imaging experiments (Chen et al., 2018). We compared shared 

variance between within-subject functional PET metabolic connectivity and across 

subject static PET metabolic covariance, and with BOLD-fMRI haemodynamic 

connectivity. Resting-state functional FDG-PET connectivity showed a high degree 

of unexplained variance between sPET covariance and fPET connectivity; and 

greater explained variance between fPET connectivity and BOLD-fMRI connectivity. 

Our study builds upon the foundations of earlier work that has used variants of 

positron emission tomography to study the resting brain, including the seminal work 

of Fox, Raichle, Shulman and colleagues who used O15 PET imaging of cerebral 

blood flow to delineate the default mode network (Raichle et al., 2001; Shulman et 

al., 1997), and Horwitz et al. (Azari et al., 1994; Horwitz et al., 1984) who conducted 

the first region-by-region correlation of neuroimaging signals using FDG-PET.  

Metabolic connectivity is predominantly evident in fronto-parietal regions 

FDG-fPET metabolic connectivity was dominated by fronto-parietal connectivity both 

within and between hemispheres. This is consistent with early evidence showing the 

frontoparietal cortices are highly metabolically active compared to temporo-occipital 

regions (Sasaki et al., 1986), particularly at rest (Shokri-Kojori et al., 2019); 
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(Vaishnavi et al., 2010). This pattern was confirmed by the brain network graphs 

where the dorsal attention network was strongly connected to the frontoparietal and 

sensorimotor networks, and showed strong intra-connectedness. Together, the 

frontoparietal and dorsal attention networks are responsible for flexible, goal directed 

behaviour (Laird et al., 2011), and the two networks interact closely to subserve 

action-focused attentional control (Dixon et al., 2018). The inter-connectedness of 

the frontoparietal and dorsal attention networks with the sensorimotor network is 

consistent with this interpretation. Interestingly, the dorsal attention and frontoparietal 

control networks have the highest metastability, update efficiency, and neural 

synchrony in comparison to other resting-state networks (Alderson et al., 2020). 

These networks demonstrate a resting-state configuration that is similar to a task-

related configuration, which thereby facilitates dynamic and flexible switching 

between rest and task-active states. Our results support this interpretation and 

suggest that glucose metabolism in these networks is maintained at a high level in 

the resting-state, potentially to facilitate flexible switching to task-positive states 

when necessary. 

The benefits of fPET methodology are twofold. Firstly, FDG uptake is 

neurophysiologically closer to the process of interest – i.e. neuronal function – than 

the BOLD response. It is well-known that BOLD-fMRI is an indirect index of neuronal 

activity that is not only ill-defined (e.g., (Phillips et al., 2016), and non-quantitative 

(Logothetis, 2008), but is also confounded by physiological parameters (e.g.,(Ward 

et al., 2019). In contrast, most of the glucose uptake measured by FDG-PET is 

localised to the synapses (Sokoloff et al., 1977); (Sokoloff, 1981); (Magistretti and 

Allaman, 2015). As noted by (Raichle and Snyder, 2007), the use of PET 

methodologies in characterising the function of the brain at rest is important, as the 
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quantitative nature and physiological underpinnings of the method allows one to 

uncouple effects of blood flow, oxygen consumption and glucose metabolism in the 

measured signal.  Although technical considerations have led to the current situation 

where BOLD-fMRI is the more common method for visualising the spatiotemporal 

dynamics of neural function, FDG-PET is a more direct and less confounded method 

for visualising neuronal activity. The second benefit of fPET is that the method 

provides information about the dynamic use of the primary energy source of the 

brain – glucose. Univariate snapshots of glucose hypometabolism are predictive of 

neurodegeneration (e.g., (Jack et al., 2013), however preliminary evidence suggests 

that changes in the dynamic use of glucose over time may be an earlier and more 

powerful predictor of metabolic changes in neurodegenerative disease (Sanabria-

Diaz et al., 2013). FDG-fPET methodology therefore represents an important 

development in characterising metabolic connectivity in the human brain and may 

show promise as a biomarker for disease in the future. 

Metabolic covariance is a poor predictor of metabolic connectivity 

FDG-sPET metabolic covariance was dominated by left-right homologue, fronto-

parietal, temporo-subcortical and occipito-temporal covariance. This pattern is 

consistent with the earliest evidence of region-to-region correlation of the cerebral 

metabolic rate of glucose consumption (CMRGLC) reported by Horwitz and 

colleagues over 30-yrs ago (e.g., (Horwitz et al., 1984); (Azari et al., 1994). In their 

early work, Horwitz et al. noted the paucity of positive correlations between the 

occipito-temporal and fronto-parietal lobes; a finding which is evident in the present 

results where fronto-temporal and parieto-occipital edges demonstrated negative 

correlations. Our sPET metabolic covariance results are also consistent with more 

recent published findings. Using a static PET acquisition, (Di and Biswal, 2012) 
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reported that independent component analysis (ICA) decomposition revealed 

resting-state networks predominantly between left-right homotopic regions, with few 

networks showing anterior-posterior connectivity. In their follow-up report, (Di et al., 

2017) again found that sPET covariance is dominated by left-right homotopic 

connections, and short-range connections within anatomical sub-divisions, with only 

a few fronto-parietal connections. Similarly, (Savio et al., 2017) reported that sPET 

resting-state networks showed modest overlap with BOLD-fMRI networks, but were 

sparser and less well-separated from each other compared to BOLD networks (see 

also (Passow et al., 2015)). In summary, the static FDG-PET metabolic covariance 

results in the present study are consistent with the extensive literature of previous 

resting-state studies.  

We compared fPET connectivity to sPET covariance, since across-subject sPET 

covariance has (until the present study) been the established method for examining 

metabolic ‘connectivity’ in health and disease (Yakushev et al., 2017). On the basis 

of previous comparisons of across- versus within-subject haemodynamic 

connectivity (Roberts et al., 2016), we hypothesised that sPET covariance would be 

moderately associated with fPET connectivity. Strikingly, we found that the sPET 

covariance matrix shows a high degree of unexplained variance when fPET 

connectivity was added to the model as a predictor.  In other words, across-subject 

sPET covariance is a poor predictor of within-subject fPET connectivity. It is striking 

that the highest levels of unexplained variance was obtained in temporal and 

subcortical intra-hemisphere (left-left & right-right) and inter-hemisphere (left-right, 

right-left) connections. This suggests that the left-right homologue covariance 

identified previously (e.g., Di & Biswal, 2012; Di et al., 2017) may be an artifact of the 

across-subject correlation, and poorly reflective of within-subject connectivity. This 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.05.01.071662doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.01.071662
http://creativecommons.org/licenses/by-nc-nd/4.0/


somewhat surprising finding is analogous to Simpson’s Paradox (Simpson, 1951) 

whereby a statistical relationship observed at a population level is reversed at the 

level of the individuals that constitute the population (Kievit et al., 2013). 

Conceptually, Simpson’s Paradox refers to a sign reversal in the statistical 

relationships obtained at the individual and population (or group) levels. Roberts and 

co-workers found evidence of Simpson’s Paradox for a number of brain regions in 

fMRI haemodynamic connectivity in the dorsal attention and default mode networks 

(Roberts et al., 2016). However, they found that the majority of brain regions did not 

show a full reversal of the correlation values, as most brain regions showed across-

subject correlations in the same direction as the within-subject correlations. Roberts 

et al. therefore concluded that across-subject fMRI covariance is a reasonable 

predictor of within-subject fMRI connectivity.  

While we did not directly test for Simpson’s Paradox in our data, we found that there 

is a substantial amount of variability in the group-level sPET covariance matrix that 

was not explained by within-subject fPET connectivity. Simpson’s Paradox is a 

special case of the ecological fallacy (Robinson, 1950), and the related concept of 

ergodicity (Molenaar, 2008); (Kievit et al., 2013). Ergodic processes occur when a 

group-level result is generalisable to the individuals within the sample. In reality, 

ergodic processes are quite rare, because two strict criteria must be met: namely, 

the process must be homogeneous across individuals within a sample, and the 

statistical parameters that describe the process must be constant or stationary over 

time. Functional brain connectivity measured using neuroimaging data does not 

meet the criteria for ergodicity and thus group-level results are not generalisable to 

the individuals within the group  (Fisher et al., 2018). Liegeois and colleagues have 

provided a complete mathematical examination of ergodicity in the context of BOLD-
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fMRI functional connectivity data ((Liégeois et al., 2017). Due to technical limitations 

of the PET imaging method, existing studies of resting-state metabolic connectivity 

has been limited to examinations of group-level covariance rather than within-subject 

correlation of FDG-PET timeseries (e.g., (Horwitz et al., 1984); (Di et al., 2017); 

(Savio et al., 2017). Researchers have attempted to draw quite strong conclusions 

on the basis of these results including attempts to use metabolic covariance as a 

biomarker for disease (Yakushev et al., 2017). A biomarker must, by definition, be 

estimable at the individual level (FDA-NIH, 2016). Our results suggest that metabolic 

covariance cannot be used to predict within-subject connectivity. While sPET 

covariance analyses may be useful in other contexts, future attempts to explore 

metabolic connectivity as a biomarker for disease must necessarily use fPET as the 

only statistically valid approach.  

FDG-fPET metabolic connectivity is correlated with BOLD-fMRI haemodynamic 

connectivity in fronto-parietal regions 

After controlling for FDG-fPET metabolic connectivity, the BOLD-fMRI connectivity 

matrix was uniformly slightly positive, with little variation across regions. In other 

words, fPET and fMRI share a greater amount of variance by comparison to fPET 

and sPET. The similarity between fPET and fMRI was also apparent when 

qualitatively comparing the network graphs and the distribution of the regions with 

higher degrees of connectivity. These results complement the recent findings of 

(Amend et al., 2019) who reported that FDG-fPET metabolic connectivity showed 

similarities to BOLD-fMRI haemodynamic connectivity in a rodent model. Our 

findings are also consistent with recent results of (Shokri-Kojori et al., 2019) who 

found that frontoparietal regions had the highest concurrent energy use (based on 

CMRGLC) and BOLD-fMRI activity, in comparison to the rest of the brain.  
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One puzzling finding was the low degree apparent in subcortical regions for both 

FDG-fPET and BOLD-fMRI. Indeed, this effect was also apparent for the FDG-sPET 

results. These observations are in contrast with the known high degree of inter-

connectedness of the subcortical regions with the rest of the brain: the cortico-basal 

ganglia-cerebellar (Middleton and Strick, 2000); (Bostan and Strick, 2010) and 

cortico-thalamic circuits (Parent and Hazrati, 1995). These results are likely 

attributable to the reduced sensitivity of signal detection in midbrain areas for both 

PET and fMRI (Supplementary Figure S3). Smaller subcortical structures are also 

likely to be subject to partial volume effects (Hoffman et al., 1979), particularly in 

PET data which has a physical limit in spatial resolution due to the positron range 

(Moses, 2011), which may also contribute to this result. Reconstruction techniques to 

improve PET spatial resolution, and post-processing techniques to reduce partial 

volume effects (Sudarshan et al., 2020) may result in higher quality and greater brain 

coverage of the fPET connectivity matrices. 

Direct comparisons between FDG-fPET and BOLD-fMRI are in part limited by the 

differences in temporal resolution and signal-to-noise ratio (SNR) of the two imaging 

modalities. The FDG-fPET protocol involves the administration of low levels of 

radioactivity over an extended time period, and results in PET images with lower 

signal and greater noise in comparison to BOLD-fMRI. Neural activity is optimally 

investigated using imaging techniques that have temporal resolutions in the order of 

milliseconds, which cannot be achieved by either fPET or fMRI. Nevertheless, the 

temporal resolution of conventional fMRI has been enormously useful for 

characterising distributed brain activity involving networks with multiple synapses 

over large-scale pathways in the brain. Importantly, although our understanding of 

integrative human brain networks has been developed largely from fMRI 
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experimental results, the technique cannot serve as a ‘ground-truth’ for brain 

networks that are identifiable using FDG-fPET. In addition to the inherent 

methodological limitations of fMRI, the FDG-fPET and BOLD-fMRI experimental 

techniques detect different physiological targets; namely neural glucose metabolism 

and deoxygenation of haemoglobin in the cerebrovasculature. In comparison to the 

large body of literature of fMRI networks and brain connectivity, the evaluation of 

fPET resting-state networks is based on FDG-PET as a direct and quantitative index 

of neural metabolic activity without cerebrovascular confounds (Magistretti et al., 

1999). Multi-modality imaging including simultaneous MR-PET has motivated 

important developments in PET detector technology, which have led to improved 

sensitivity for low signal detection methods including fPET (Chen et al., 2018). 

Future PET detector technologies may have the potential to further improve the 

detection sensitivity, which have the potential for the temporal resolution of functional 

PET to approach that of functional MRI. 

Future directions 

A limitation of the FDG-fPET methodology is that the biosafety constraints on the 

dose of the administered radioactivity produces noisy PET images with low SNR. 

The differing SNR profiles between the sPET, fPET and fMRI modalities motivated 

the use of a percentile ‘thresholding’ approach, rather than a statistical threshold 

which would likely require different thresholds for each modality due to differences in 

statistical power. The percentile approach allowed comparison of the most highly 

connected regions between the modalities. We note that the atlas-based 

decomposition (region-of-interest) analysis of resting-state connectivity that we 

applied is less sensitive to the signal-to-noise limitations of fPET, and thus higher 

signal-to-noise timeseries data would likely be required for individual voxel-based 
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analyses. The potential of the FDG-fPET technique is that it theoretically provides a 

more direct measure of neuronal activity than fMRI and does not have the 

susceptibility artefacts present in BOLD-fMRI. However, this advantage may not be 

realised in practice as the connectivity estimates in subcortical regions, which are 

some of the most interconnected regions in the human brain, showed low region 

degree in both FDG-fPET and BOLD-fMRI. This limitation may be addressed through 

post-processing techniques that can improve PET resolution by using synergistic 

MR-PET reconstruction techniques (Sudarshan et al., 2020). Future work should aim 

to further characterise and improve the noise properties of the fPET signal, as well 

as optimise the acquisition and data preparation procedures.  

We encountered a technical limitation during PET post-processing that future work 

should address. The reconstruction software was unable to provide non-integer 

second fPET bins, which prevented reconstruction of the PET listmode data into 

images that had a time duration that was a multiple of the fMRI TR. One 

consequence is that a phase shift may result in the temporal synchrony of the fMRI 

and fPET timeseries data. Future work should consider this potential limitation at the 

experiment-design phase. Reconstruction of fPET frames into a multiple of the fMRI 

TR would also facilitate examination of temporal similarity between the two signals. 

An additional technical limitation is that the processing pipeline for FDG-fPET data is 

immature in comparison to the pre-processing procedures for BOLD-fMRI data. As a 

nascent technology, FDG-fPET has not had the benefit of many years of work 

validating acquisition parameters, data preparation and signal detection optimisation, 

including characterising of potential physiological artifacts that may be possible to 

remove with filtering techniques. Work in these fields are presently improving the 

radiotracer administration (e.g., (Jamadar et al., 2019a); (Rischka et al., 2018), 
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attenuation correction (Baran et al., 2018), motion correction (Chen et al., 2019) and 

data analysis (Li et al., 2019) techniques.  

An important distinction to make is that the brain connectivity reported here is not 

comparable to ‘dynamic’ connectivity as reported in the literature over the past few 

years. While the fPET metabolic connectivity measures are dynamic in the sense 

that they cross correlate the regional time-courses of FDG uptake over the scan 

period, the approach is nevertheless temporally-invariant (stationary) as the 

correlation is expected to be robust to temporal reordering of the measurement time-

points. In other words, the Pearson r-values describing the metabolic connectivity 

would be unchanged by permuting the order of the PET images. Whilst other authors 

have used the term ‘static’ to refer to stationary measures of functional connectivity, 

we do not use the term ‘static metabolic connectivity’ to avoid confusion with our use 

of static PET to denote across-subject PET covariance (see (Liégeois et al., 2017) 

for discussion of static versus dynamic functional connectivity and the mathematical 

basis of stationarity in haemodynamic connectivity). Our approach to analyse 

stationary fPET metabolic connectivity was to compare metabolic connectivity with 

the most common method for estimation of functional connectivity in the BOLD-fMRI 

literature (Liégeois et al., 2017); (Preti et al., 2017), which is the basis of our 

knowledge of integrative brain connectivity. However, truly ‘dynamic’ brain 

connectivity does take into account the temporal fluctuations of functional and 

metabolic connectivity, since the temporal ordering of the timeseries  of brain images 

is important (Calhoun et al., 2014). Dynamic connectivity approaches include sliding-

time window approaches and models of switching between microstates (Preti et al., 

2017). Whilst it is important that future studies examine the dynamics of FDG-fPET 
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metabolic connectivity, the current temporal resolution of fPET methodology will 

present a major challenge.  

 

Conclusion 

Simultaneous neuroimaging studies that independently measure brain function are 

by nature challenging. Data from each imaging modality is optimally acquired using a 

distinctive experimental protocol and instrumentation that may adversely influence 

the integrity of the complementary measures of brain function. Simultaneous FDG-

PET/BOLD-fMRI represents a significant advance over previous approaches. Our 

experimental approach to simultaneously image two mechanisms that underpin the 

dynamics of energy consumption in the brain via glucose metabolism and the 

cerebrovascular haemodynamic response, provides a unique opportunity to 

investigate the fundamental basis of human brain connectivity. In this study, we have 

reported the first FDG-fPET metabolic connectivity in humans, discovered that 

metabolic connectivity is more predictive of BOLD-fMRI haemodynamic connectivity 

than conventional FDG-PET metabolic covariance measures. Notably, these findings 

motivate and provide a basis for future metabolic brain connectivity studies across 

the human life span and investigations of novel biomarkers for neurological and 

neurodegenerative diseases.  
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Supplementary Figures 
 

 
 

Figure S1: Voxel weights for the spatiotemporal filter, depicted along the y-axis and 
the time axis. The filter is symmetrical in the x and z axis directions.  

 
The spatiotemporal filter is defined as the convolution of a 3-dimensional gaussian 
filter in the spatial domain and a 1-dimensional gaussian filter in the time domain. For 
the filter used in the main results of the paper, the standard deviation of the spatial 
gaussian was 1 voxel and of the temporal gaussian was 2 frames. The result of the 
spatiotemporal convolution was then modified to give negative weights on prior 
frames (negative time), and zero weights for the current frame.    

 
 
 

Figure S2: Distribution of edges across r values for each of the 3 modalities.  

                                                 
1 ^ These authors contributed equally 
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Figure S3: Raw images for one individual subject showing signal intensity variation 
across the brain. Top panel shows mean image across a 10-minute run; middle 
panel shows standard deviation (Std Dev) across the same run; and lower panel 
shows the coefficient of variation (COV, standard deviation divided by the mean) 
across the run.  
 

 
 
Figure S4. Spatial maps from three exemplar ROIs, i. the posterior cingulate, ii. 
anterior cingulate, and iii. left premotor cortex. These are spatial maps of the same 
data presented in the connectivity matrices above, and show the top 10% of regions 
correlated with the seed region (green).  
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Figure S5. Variability of sPET region degree with different thresholds. In the 
manuscript, we reported the spatial distribution of the top 10% most connected 
regions; here, we show the spatial distribution of the top 25, 20, 15, 10, 5% most-
connected nodes to illustrate how the results vary with different thresholds.  
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Figure S6. Variability of fPET region degree with different thresholds. In the 
manuscript, we reported the spatial distribution of the top 10% most connected 
regions; here, we show the spatial distribution of the top 25, 20, 15, 10, 5% most-
connected nodes to illustrate how the results vary with different thresholds.  
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Figure S7. Variability of fMRI region degree with different thresholds. In the 
manuscript, we reported the spatial distribution of the top 10% most connected 
regions; here, we show the spatial distribution of the top 25, 20, 15, 10, 5% most-
connected nodes to illustrate how the results vary with different thresholds.  
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