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ABSTRACT 51 

Rationale: Respiratory Syncytial Virus (RSV) infection is a leading cause of infant respiratory 52 

disease and hospitalization.  Infant airway microbiota occupying the nasopharynx have been 53 

associated with respiratory disease risk and severity.  The extent to which interactions between 54 

RSV and microbiota occur in the airway, and their impact on respiratory disease severity and 55 

infection susceptibility, are not well understood.  56 

Objectives: To characterize associations between the nasal microbiota and RSV infection 57 

before, during, and after infants’ first respiratory illness. 58 

Methods: Nasal 16S rRNA microbial community profiling of two cohorts of infants in the first 59 

year of life: 1) a cross-sectional cohort of 89 RSV infected infants sampled during illness and 60 

102 population matched healthy controls, and 2) an individually matched longitudinal cohort of 61 

12 infants who developed RSV infection and 12 who did not, sampled at time points before, 62 

during, and after infection. 63 

Measurements and Main Results:  We identified 12 taxa significantly associated with RSV 64 

infection.  All 12 were differentially abundant during infection, with seven differentially abundant 65 

prior to infection, and eight differentially abundant after infection.  Eight of these taxa were 66 

associated with disease severity.  Nasal microbiota composition was more discriminative of 67 

healthy vs. infected than of disease severity.  68 

Conclusions: Our findings elucidate the chronology of nasal microbiota dysbiosis and suggest 69 

an altered developmental trajectory associated with first-time RSV infection.  Microbial temporal 70 

dynamics reveal indicators of disease risk, correlates of illness and severity, and the impact of 71 

RSV infection on microbiota composition.  Identified taxa represent appealing targets for 72 

additional translationally-oriented research. 73 

Key words: microbiota, RSV, infant respiratory disease 74 
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Introduction 76 

 The composition and function of host-associated microbial communities are associated 77 

with many aspects of health and disease [1].  These relationships between the microbiome and 78 

host biology exhibit spatial and temporal dependencies, with relevant interactions manifest by 79 

the microbiota of specific body sites during critical periods of host development, environmental 80 

exposure, pathogenesis, illness, or convalescence [2-6].  Specifically, there is a growing body of 81 

evidence that the microbiome influences immune maturation and function [7-9], mucosal surface 82 

physiology [10, 11], and the risk and severity of acute and chronic respiratory diseases [12-16]. 83 

 Respiratory Syncytial Virus (RSV) is the most significant respiratory tract infection 84 

affecting infants.  It is the most frequent cause of acute lower respiratory infections in children 85 

under five, and a common cause of hospitalization in children under two [17-19].  Approximately 86 

one-half of infants are infected with RSV during their first year of life, and nearly all have been 87 

infected by two years of age.  Severe disease requiring hospitalization occurs in 1-3% of those 88 

infected, and in most cases is not accompanied by any of the known risk factors such as age at 89 

infection, pre-term birth, underlying cardiopulmonary disease or immunosuppression [20-22].  90 

Additionally, RSV infection in early life has been linked to subsequent development of asthma 91 

and chronic obstructive lung disease [19, 23]. 92 

 Recent studies have identified associations between nasopharyngeal microbiota and 93 

RSV clinical manifestations including severity [24, 25].  Nasopharyngeal microbiota composition 94 

has been shown to be altered during periods of acute RSV infection and the abundance of 95 

certain bacterial taxa have been associated with immune response and disease severity [13, 96 

24-26].  While these findings suggest that respiratory microbiota may play an important role in 97 

RSV infection, the spatial and temporal scope of a relationship remains unclear.  Specifically, 98 

whether associations between RSV infection and microbiota composition are limited to the 99 
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nasopharynx, and in what sequence and duration they manifest, are not well understood [27, 100 

28]. 101 

 Here, we analyze the nasal microbiota of two cohorts of infants to elucidate the 102 

relationship between airway microbial communities and RSV infection.  We used a large cross-103 

sectional cohort of infants comprised of an RSV infected case group sampled during acute 104 

illness and a matching healthy control group to characterize the nasal microbiota of acute RSV 105 

infection and identify associations with disease severity.  To assess associations with the nasal 106 

microbiota that may exist before or after RSV infection, we used a smaller longitudinal cohort 107 

comprised of a group of infants that developed RSV infection during their first year of life and 108 

another group that did not, with each group sampled at matching time points corresponding to 109 

before, during, and after acute illness. 110 

 111 

METHODS 112 

Clinical methods 113 

All study procedures were approved by the University of Rochester Medical Center 114 

(URMC) Research Subjects Internal Review Board (IRB) (Protocol # RPRC00045470) and all 115 

subjects’ caregivers provided informed consent. The infants included in the study were from the 116 

University of Rochester Respiratory Pathogens Research Center AsPIRES [29] and PRISM 117 

studies and cared for prior to discharge in the URMC Golisano Children’s Hospital and 118 

Rochester General Hospital newborn nurseries and birthing centers.  For the cross-sectional 119 

cohort (Table 1A), we analyzed 191 nasal samples from 89 subjects with acute RSV infection 120 

and 102 healthy subjects. Control samples and subjects were selected to minimize population 121 

level differences in age at the time of sampling, gestational age at birth, and mode of delivery.  122 

For the longitudinal cohort (Table 1B), we collected 72 nasal samples from 12 RSV positive 123 

subjects and 12 healthy subjects.  Samples were collected from the RSV group at 124 
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approximately one month of age, during acute RSV infection, and approximately one month 125 

after illness, and at corresponding timepoints from the healthy controls.  Control subjects were 126 

selected to match on an individual basis by sex, mode of delivery, and gestational age at birth, 127 

and samples were selected to match by age.  Subjects were eligible as controls if they had no 128 

respiratory illness between birth and at least ten days after the last sample. Patient metadata for 129 

the cross-sectional and longitudinal cohorts is included in the online Supplemental Table 1. 130 

16s rRNA amplicon sequencing 131 

 Genomic DNA was extracted and the V1-V3 16S rRNA hypervariable region was 132 

sequenced as described previously [4].  Bioinformatics processing was performed with QIIME 2 133 

[30], using DADA2 [31] for denoising and the GreenGenes reference database [32, 33] as the 134 

basis of taxonomic classification.  Additional methodological details of sample preparation, 135 

sequencing, controls, and bioinformatic processing are available in Supplemental Methods. 136 

Associations of taxon abundance with RSV infection and disease severity 137 

Because differential abundance testing of high-throughput sequencing-based microbial 138 

community profiling data is relatively immature, with no consensus methodology [34, 35], we 139 

applied four prominent univariate and multivariate algorithms which were selected to be 140 

complementary in terms of their strengths and technical limitations.  We required that significant 141 

results be corroborated across multiple methods to be accepted.  Details of diversity analyses 142 

and machine learning classification/regression analyses are available in Supplemental 143 

Methods. 144 

 145 

RESULTS 146 

Overview of infant cohort 147 

 The cross-sectional case-control cohort yielded 191 nasal samples with 16S rRNA 148 

sequencing data from 89 subjects with acute RSV infection and 102 matched healthy subjects 149 
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(Table 1A).  The average number of reads per sample was 64,320 with 180 samples having at 150 

least 5,000 reads.  All subjects were full-term and less than 10 months of age, and the ill and 151 

healthy groups matched at the population level in terms of sex, gestational age at birth, mode of 152 

delivery, and age at the time of sampling.  Infected subjects were divided into mild and severe 153 

based on a threshold Global Respiratory Severity Score (GRSS) of 3.5, yielding groups of 30 154 

and 59, respectively [36]. Severity scores and additional patient metadata for the cross-sectional 155 

and longitudinal cohorts are in Supplemental Table 1. 156 

 The longitudinal cohort yielded 72 nasal samples with 16S rRNA sequencing data 157 

corresponding to 12 healthy controls and 12 RSV positive subjects sampled at three time points: 158 

one month of age, during acute illness (and corresponding age for healthy controls), and one 159 

month after illness (Table 1B).  The average number of reads per sample was 47,745, with 67 160 

samples having at least 5,000 reads.  Healthy controls closely matched RSV positive subjects in 161 

terms of sex, mode of delivery, gestational age at birth, and age at the time of sampling.  All 162 

subjects were full term and less than one year of age.  Healthy controls did not develop 163 

symptomatic respiratory infection between birth and at least 10 days after their last sample was 164 

taken.  Notably, only two of the RSV cases in this cohort exhibited severe disease (GRSS > 165 

3.5). 166 

Microbiota diversity and associations with RSV infection and severity.  167 

In the cross-sectional cohort, alpha diversity as measured by Faith’s index was elevated 168 

in RSV positive subjects at the time of infection relative to age matched healthy controls (p = 169 

0.039), with a greater difference observed in the group of subjects with severe disease (mean 170 

Faith’s index of healthy = 1.933, mild illness = 2.176, severe illness = 2.250).  The difference 171 

between subjects with mild and severe infection was not significant, however, the correlation 172 

coefficient between severity score and Faith’s index was positive (r = 0.134; p=0.065).  There 173 

were no significant differences in alpha diversity as measured by the Shannon index, 174 
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suggesting that the observed differences reflect increased phylogenetic heterogeneity in the 175 

subjects with infection, as opposed to a greater number of total species or more even 176 

distributions of species’ relative abundances. 177 

 In the longitudinal cohort, Weighted and Unweighted Unifrac distances were used to 178 

assess beta diversity at each visit, and to assess the magnitude of change within individuals 179 

from visit to visit (Figure 1A).  At all three time points, significant differences were found 180 

between the group that developed RSV infection and the group that did not, based on the 181 

Weighted Unifrac metric (initial visit p = 0.032, illness and age matched healthy visit p = 0.009, 182 

follow-up visit p = 0.012).  By Unweighted Unifrac, these differences were significant at the initial 183 

visit (p = 0.035) and the illness visit (p = 0.011), and approached significance at the post-illness 184 

visit (p=0.078).  By both metrics, the largest, most significant difference was observed at the 185 

illness visit (and the corresponding timepoint for the healthy controls).  Further examination of 186 

beta diversity during illness using the cross-sectional cohort (Figure 1B) revealed more 187 

significant differences between healthy subjects and severely ill subjects (Unweighted Unifrac p 188 

= 0.003, Weighted Unifrac p = 0.003) than between healthy subjects and subjects with mild 189 

disease (Unweighted Unifrac p = 0.036, Weighted Unifrac p = 0.005), as well as greater 190 

differences between healthy and RSV infected infants when the infection occurred at younger 191 

ages (among subject 0-3 months old, Unifrac PERMANOVA healthy vs. mildly ill p = 0.538 192 

(Unweighted) and 0.084 (Weighted), healthy vs. severely ill p = 0.001 (Unweighted) and 0.001 193 

(Weighted); among subjects > 6 months old, healthy vs mildly ill p = 0.931 (Unweighted) and 194 

0.191 (Weighted), healthy vs. severely ill p = 0.309 (Unweighted) and 0.389 (Weighted)).  195 

Assessing the magnitude of longitudinal changes by the Unweighted Unifrac metric, the within 196 

subject change from the initial visit to the illness visit, and the corresponding time point in 197 

healthy subjects, was larger among the subjects that developed infection than those that 198 
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remained healthy (p=0.061). All computed alpha and beta diversity values are in Supplemental 199 

Table 2. 200 

Longitudinal abundance patterns of RSV-associated taxa 201 

The relative abundance of twelve distinct taxa exhibited significant associations with the 202 

occurrence of RSV infection according to multiple corroborative statistical assessments.  While 203 

all twelve taxa were differentially abundant between RSV infected and healthy infants during 204 

illness, and the corresponding time point in healthy subjects, they exhibit distinguishable 205 

patterns of temporal dynamics, pre- and post-illness occurrence, and associations with illness 206 

severity (Table 2).  Notably, associations between nasal microbiota and RSV infection are not 207 

confined to the period of acute infection: all but one (Haemophilus) of the twelve taxa associated 208 

with RSV infection are significantly differentially abundant between groups either before or after 209 

illness, or both.  Most of the taxa (7/12) that are differentially abundant between RSV infected 210 

and healthy infants during illness are differentially abundant at the initial visit at one month of 211 

age, prior to illness.  Similarly, most of the taxa (8/12) that are differentially abundant during 212 

illness are differentially abundant after illness.  However, persistent differential abundance 213 

between groups across all three time points is observed only in a minority (4/12) of taxa.  214 

Furthermore, the microbiota differences between health and RSV infection are not simply 215 

categorical but vary in magnitude with illness, as most of the taxa (8/12) that are differentially 216 

abundant during illness are associated with illness severity.  Additionally, most of these severity-217 

associated taxa (6/8) exhibit persistent differences beyond the period of acute illness and are 218 

differentially abundant during and after illness, while half (4/8) are differentially abundant prior to 219 

illness.   Finally, the abundances of most RSV-associated taxa are positively associated with the 220 

disease, and only a minority of taxa (5/12) that differ in abundance between groups are elevated 221 

in healthy infants. 222 
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 Staphylococcus, Clostridia (not shown), and Bacilli each exhibit a similar temporal 223 

pattern; ubiquitous and comparable in abundance between groups prior to illness, significantly 224 

diminished during illness (p <= 0.001, 0.013, & 0.005, respectively) and remain so one month 225 

later (Figure 2A; p = 0.011, 0.033, & 0.039).  The classes Alphaproteobacteria (not shown) and 226 

Gammaproteobacteria, and Gammaproteobacteria member clades Pseudomondales (not 227 

shown) and Moraxella, also exhibit a common pattern in that all four are significantly elevated in 228 

the infants that develop RSV infection before (p <= 0.001, 0.033, 0.003, & 0.001), during (p <= 229 

0.036, 0.002, 0.001, & 0.001), and after illness (Figure 2B; p = 0.044, 0.009, 0.038, & 0.003).  230 

By contrast, Corynebacterium and Anaerococcus are elevated in infants that do not develop 231 

RSV infections at the pre-illness timepoint (p = 0.008 & 0.020, respectively) and the illness 232 

timepoint (p < 0.001 & p = 0.008) but do not differ between groups at the post-illness timepoint 233 

(Figure 2C).  Finally, three taxa exhibit unique temporal trends with respect to illness: 234 

Betaproteobacteria increases in abundance over time in the RSV group only (Figure 2D) – 235 

being significantly elevated during (p = 0.006) and after (p = 0.039) illness – while Haemophilus 236 

(not shown) is significantly more abundant in the infected group during (p < 0.001) illness and 237 

minimally abundant in both groups before and after.  Gluconacetobacter exhibits a distinct 238 

temporal pattern in that it is elevated in the RSV group before (p = 0.003) and during (p < 0.001) 239 

illness, but no difference is observed between groups after illness (Figure 2D).  The 240 

composition of all cross-sectional and longitudinal samples summarized at all taxonomic levels 241 

is in Supplemental Tables 3 and 4. 242 

Abundance of taxa associated with severity in acute illness 243 

The abundance of six of the taxa associated with RSV infection are positively associated 244 

with severity at the time of acute illness: Alphaproteobacteria (p = 0.026), Gammaproteobacteria 245 

(p < 0.001), Pseudomonas (p < 0.001), Gluconacetobacter (p < 0.001), Burkholderiales (p = 246 

0.015), and Haemophilus (p < 0.001), with exceptionally high levels of Haemophilus influenzae 247 
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being very strongly associated (p < 0.001) with severe disease (Figure 3).  Pseudomonas and 248 

Burkholderiales are the primary drivers of associations between severity and their 249 

corresponding clades, Pseudomondales and Betaproteobacteria. The abundance of Bacilli (p < 250 

0.001) and Staphylococcus (p < 0.001), conversely, are negatively associated with disease 251 

severity at the time of illness.  As described above, Moraxella, Corynebacterium, Anaerococcus, 252 

and Clostridia are associated with the occurrence of RSV infection (or lack thereof), but they are 253 

not associated with severity of disease. 254 

Predicting RSV infection status and illness severity from microbiota composition 255 

To further assess the relationship between nasal microbiota and RSV infection using the 256 

cross-sectional cohort, Gradient Tree Boosting machine learning models were trained and 257 

applied to predict the RSV infection status of a subject using the composition of their nasal 258 

microbiota, where status was defined in three ways: RSV infected vs. healthy; healthy vs. mild 259 

RSV infection vs. severe RSV infection; and severity score (with all healthy subjects having a 260 

score of 0).  Five-fold cross-validation was employed, with 20% of samples being held out 261 

during training and then used to test the accuracy of the trained model.  This approach can 262 

indicate how much information about a subject’s status is reflected in the composition of their 263 

nasal microbiota.  Performance was best when distinguishing infected from healthy, which could 264 

be done with 90% accuracy using compositional profiles at the level of exact sequence variants.  265 

Distinguishing healthy, mild disease, and severe disease was less effective, with an accuracy of 266 

77% being achieved using compositional profiles summarized based on taxonomic assignment 267 

at the level of species.  Prediction of the continuous valued severity score exhibited the worst 268 

performance, with 38% of the variance in severity score being explained by the model, also 269 

using species level compositional profiles.  Sequence variants classified as Moraxella, 270 

Staphylococcus, Corynebacterium, or Streptococcus comprised the top three most informative 271 

features across all three models.  Model result summaries are in Supplemental Tables 5-7.  272 
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Discussion 273 

In this study, we characterize signatures of dysbiosis associated with RSV infection and 274 

illness severity in infant nasal microbiota.  We identify differences in measures of microbial 275 

diversity and in the abundance of specific bacterial taxa between infants who develop RSV 276 

infections and those who don’t, and show that these differences manifest longitudinally before, 277 

during, and after illness in a number of distinct patterns.  While these associations are 278 

consistent with observations made previously of nasopharyngeal microbiota during acute illness 279 

[13, 26], the findings reported here elucidate the temporal sequence and persistence of these 280 

phenomena beyond the period of acute illness, and demonstrate their occurrence in the nasal 281 

cavity. 282 

Based on the observed patterns of differential abundance before, during, and after 283 

illness, the relationships between most of the taxa identified as significant and RSV infection 284 

may be assigned to one of three general categories.  The first category includes taxa which 285 

change during and after illness relative to healthy controls of the same age.  The dynamics of 286 

these taxa are consistent with RSV infection influencing the abundance of certain microbes; 287 

normal flora which dramatically diminish in a persistent way as a result of infection (Clostridia, 288 

Bacilli, & Staphylococcus).  The second category consists of taxa increased in abundance in 289 

infants who develop RSV infection at all timepoints: before, during, and after illness.  The 290 

patterns of occurrence of these taxa imply that they either are indicative of underlying factors 291 

making the host more susceptible to infection or directly contribute to infection susceptibility 292 

(Alphaproteobacteria, Gammaproteobacteria, Pseudomondales, and Moraxella).  The third 293 

category is comprised of taxa which are significantly elevated in the healthy control subjects at 294 

the initial visit and the timepoint corresponding to illness.  Such taxa (Corynebacterium and 295 

Anaerococcus) likely either reflect underlying protective qualities of the host, promote such 296 

qualities, or are directly protective themselves. The remaining three taxa identified as significant 297 
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each exhibit unique patterns of differential abundance between groups and don’t fit well into any 298 

of the three categories.  The interpretations of their associations with RSV infection are less 299 

clear, but the occurrence patterns of Betaproteobacteria and Haemophilus could be explained 300 

by an opportunistic or synergistic relationship, wherein RSV infection produces circumstances 301 

conducive to their increasing in abundance, while their increased abundance may contribute to 302 

infection severity.  The occurrence patterns of Gluconacetobacter suggest that it may reflect or 303 

promote infection susceptibility, but convalescence corresponds to an unfavorable host 304 

environment and it diminishes in abundance.   305 

Most RSV associated taxa are associated both with the presence or absence of 306 

infection, and also with disease severity.  This implies that the biological underpinnings of these 307 

associations exist to varying degrees as opposed to being categorically distinct, and that this 308 

variation is reflected in illness severity during infection.  However, the fact that our infected vs. 309 

healthy classifier outperforms our severe illness vs. mild illness vs. healthy classifier and the 310 

severity score regressor, and the fact that all significant taxa are associated with illness while 311 

only eight of them are associated with severity, suggest that the composition of nasal microbiota 312 

is more strongly associated with the difference between RSV infected and uninfected than it is 313 

with continuous variation along the gradient from health to severe illness.   314 

The taxa which are differentially abundant at one month of age – prior to infection and 315 

illness – present intriguing possibilities.  At a basic level, it may be possible to predict an infant’s 316 

risk of RSV infection in the first year of life based on the presence and abundance of these taxa 317 

at one month.  Furthermore, understanding the mechanism by which these bacteria are 318 

associated with infection risk could provide valuable insights into immunological development or 319 

mucosal function.  More speculatively, the possibility exists that the association is causal, which 320 

would suggest that these taxa may be suitable targets for prebiotic, probiotic, or antimicrobial 321 

interventions.  Similar reasoning could be applied to H. influenzae and Betaproteobacteria 322 
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Burkholderiales, which are not differentially abundant prior to illness but are associated with 323 

illness severity, and which could be targeted or assayed during infection to mitigate or predict 324 

severity.  Whether these microbes merely reflect underlying factors that influence infection 325 

susceptibility, severity, and resistance, or contribute to them directly, the clinical significance of 326 

RSV infection in the short term, and respiratory infection-associated asthma and atopy in the 327 

long term, make these bacteria and their relationship to respiratory health important targets for 328 

translationally-oriented study. 329 

We recognize a number of limitations of this study.  Notably, our longitudinal cohort was 330 

substantially smaller than our cross-sectional cohort and incidentally it only contained two 331 

severely ill subjects.  This prevented us from assessing associations with severity at the pre- 332 

and post-illness timepoints, which would be desirable.  We were also limited to short read 333 

amplicon sequencing to profile the bacterial communities that were sampled.  This inherently 334 

limits our ability to resolve species and strains of bacteria.  Furthermore, marker gene assays 335 

contain no functional information about the microbial communities and no immunological 336 

information about the host.  More comprehensive assays such as shotgun metagenomic 337 

sequencing and flow cytometry would greatly enrich our understanding of the systems of 338 

interest.  Finally, all of our subjects were less than one year of age, had not been previously 339 

infected with RSV, and no subject was sampled more than approximately one month after 340 

illness, which prevented us from examining microbiota-RSV associations among infants who 341 

became infected in their second year of life or who had recurrent infections, and made it 342 

impossible to determine how long the associations we observed persisted after illness.  343 

Similarly, our earliest samples were at approximately one month of age and already showed 344 

differences between subjects who went on to acquire RSV infections and those who did not, so 345 

we were unable to determine how early those differences manifested.  Nevertheless, our 346 

findings provide novel insight into the developmental dynamics of the nasal microbiome in the 347 
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first year of life as they relate to susceptibility, acute illness, severity, and convalescence 348 

associated with first-time RSV infection. 349 

 350 
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Figure Legends 368 

Figure 1.  Principal coordinate analysis (PCoA) of weighted Unifrac distances was used 369 

to visualize relationships between the nasal microbiota of infants with respect to RSV 370 

infection, illness severity, and time.  Weighted Unifrac distances quantify the compositional 371 
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dissimilarity between microbial communities, incorporating information about the phylogenetic 372 

relatedness between bacteria observed across samples.  PCoA provides a summary 373 

representation of overall similarity/dissimilarity relationships among a set of samples, capturing 374 

as much information as possible using the fewest number of dimensions/principal coordinates.  375 

The proportion of overall variation represented along a single axis is indicated as a percentage 376 

in the axis label.  (A) From the longitudinal cohort only, samples are plotted with principal 377 

coordinate one on the y-axis and infant age at the time of sampling on the x-axis.  Samples are 378 

colored red or blue based on whether or not an infant developed RSV infection (red) at any 379 

point during the period of observation, and their shape indicates the time-point at which the 380 

sample was taken: initial healthy/pre-illness visit (diamond), illness visit/age-matched healthy 381 

visit (circle), or post-illness/age-matched final healthy visit (square).  The red and blue arrows 382 

indicate observed longitudinal trends within the group of subjects that developed RSV infections 383 

and the group that stayed healthy, respectively. (B) From the cross-sectional cohort only, 384 

samples are plotted in three dimensions using the first three principal coordinates.  Samples are 385 

colored according to RSV infection status and severity: healthy (blue), mild RSV infection 386 

(orange), or severe RSV infection (red).  A cluster of subjects in the foreground on the left, 387 

notable for dominant abundance of H. Influenzae, is circled in black.  While no clear segregation 388 

is observed between mild and severe illness, healthy samples occupy a notable crescent 389 

shaped structure around the illness samples, with the H. Influenzae dominated cluster furthest 390 

away from this crescent.   391 

Figure 2.   Relative abundances (y-axes) of select taxa at all three time points (x-axes) in 392 

the longitudinal cohort.  Each thin line corresponds to the abundance of a given taxon in a 393 

particular individual, while the thick lines show the mean abundance of each group at each time 394 

point.  Members of the healthy group are orange and members of the group that developed 395 
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infection are blue.  Significant taxa were grouped based on different temporal patterns of 396 

abundance with respect to illness, and each panel shown contains examples from a different 397 

group: (A) similar abundance between infection and healthy groups prior to illness, but 398 

decreased during and after illness in subjects that become infected; (B) consistently elevated in 399 

the illness group; (C) elevated in the healthy group before and during illness, but not after; and 400 

(D) idiosyncratic temporal dynamics observed in each taxon.  Of the members of the fourth 401 

group shown here, Betaproteobacteria is nearly absent from all subjects at the pre-illness time 402 

point, and then becomes increasingly abundant during and after illness in the infection group 403 

while remaining nearly absent from the healthy group.  Gluconacetobacter is elevated in the 404 

infection group prior to and during illness, and substantially diminishes in abundance with 405 

convalescence. 406 

Figure 3.  Relative abundances (y-axes) of select taxa significantly associated with more 407 

severe disease in the cross-sectional cohort, with samples grouped by dichotomizing 408 

illness based on severity into mild and severe groups (x-axes), using a severity score 409 

threshold of 3.5.  Each colored point represents the relative abundance of a given taxon in a 410 

single individual, with columns (left to right), shapes (circle, triangle, square), and colors (green, 411 

orange, red) distinguishing between healthy, mild illness, and severe illness groups, 412 

respectively.  The black diamonds indicate the group mean for each group.  Box plots are 413 

overlaid on each group, centered on the group median, with notches indicating an 414 

approximately 95% confidence interval, boxes indicating boundaries of the first and third 415 

quartiles, and whiskers extending to the largest and smallest values no further than 1.5*(inter-416 

quartile range) from the boxes.  Points beyond the whiskers are commonly considered outliers, 417 

which in this case would suggest that many of the observed associations between taxon relative 418 
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abundance and illness severity are driven primarily by outliers, or that taxon abundance in 419 

severely ill infants comprises more than one underlying distribution. 420 

 421 

 422 
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Table 1A 
Summary Characteristics of Cross-Sectional Cohort 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table 1B 
Summary Characteristics of Longitudinal Cohort 

 
 
 

Variables 
(mean ± SD or N) 

Aggregate 
(N=191) 

Control 
(N=102) 

Case 
(N=89) 

Sex (Male/Female) 105/86 61/41 44/45 
Mode of Delivery (Vaginal/C-section) 128/63 68/34 60/29 

Gestational Age at Birth (Weeks) 39.23 ± 1.17 39.27 ± 1.13 39.18 ± 1.23 
Age at Sampling (Months) 3.09 ± 2.21 3.01 ± 2.19 3.18 ± 2.24 

Any Antibiotics To Date 0 0 21 
Severity Score 2.24 ± 3.01 0 ± 0 4.81 ± 2.65 

Severity Group (Mild/Severe) NA NA 30/59 

Variables 
(mean ± SD or N) 

Aggregate 
(N=24) 

Control 
(N=12) 

Case 
(N=12) 

Sex (Male/Female) 8/16 4/8 4/8 
Mode of Delivery (Vaginal/C-section) 14/10 6/6 8/4 

Gestational Age at Birth (Weeks) 39.17 ± 1.05 39.58 ± 0.90 38.75 ± 1.06 
Age at Initial Sampling (Months) 1.18 ± 0.29 1.26 ± 0.36 1.10 ± 0.19 

Age at Second Sampling (Months) 2.70 ± 0.79 2.65 ± 0.76 2.74 ± 0.86 
Age at Final Sampling (Months) 3.67 ± 0.80 3.83 ± 0.70 3.51 ± 0.89 

Severity Score 0.89 ± 1.30 0 ± 0 1.77 ± 1.34 
Severity Group (Mild/Severe) NA NA 10/2 
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Table 2. Taxa Associated with RSV Infection and Illness Severity and the Time 
Points at Which They Differ Significantly Between Healthy Infants and Those Who 
Become Ill with RSV.  Member Clades in Parentheses are the Primary Drivers of 
the Association Indicated in Parentheses. 

Taxon 
Positive 

Association 
Before 
Illness 

During 
Illness 

After 
Illness 

Illness 
Severity 

Alphaproteobacteria Disease + + + + 
Gammaproteobacteria Disease + + + + 
Pseudomonadales (Pseudomonas) Disease + + + (+) 
Moraxella Disease + + + - 
Corynebacterium Health + + - - 
Gluconacetobacter Disease + + - + 
Anaerococcus Health + + - - 
Staphylococcus Health - + + + 
Betaproteobacteria (Burkholderiales) Disease - + + (+) 
Bacilli Health - + + + 
Clostridia Health - + + - 
Haemophilus (influenzae) Disease - + - (+) 
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Visit Age

Axis 1 (44.11 %)

RSV Infection

Healthy

Before RSV

During RSV

After RSV

Healthy Before

Healthy During

Healthy After

1 month 3 months 5 months

Axis 1 (48.67 %)

Axis 3 (6.658 %)

Axis 2 (17.15 %)

Healthy

Mild

Severe

A

B
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Supplemental Methods 

Genomic DNA extraction 

Total genomic DNA was extracted from the nasal samples using a modification of the 

ZymoBIOMICSTM DNA Miniprep Kit (Zymo Research, Irvine, CA) and FastPrep mechanical lysis 

(MPBio, Solon, OH).  16S ribosomal DNA (rRNA) was amplified with Phusion High-Fidelity 

polymerase (Thermo Scientific, Waltham, MA) and dual indexed primers specific to the V1-V3 

(8F: 5’ AGAGTTTGATCCTGGCTCAG 3’;  534R: 3’ ATTACCGCGGCTGCTGG 5’) 

hypervariable regions [1]. Amplicons were pooled and paired-end sequenced on an Illumina 

MiSeq (Illumina, San Diego, CA) in the University of Rochester Genomics Research Center. 

Each sequencing run included: (1) positive controls consisting of a 1:5 mixture of 

Staphylococcus aureus, Lactococcus lactis, Porphyromonas gingivalis, Streptococcus mutans, 

and Escherichia coli; and (2) negative controls consisting of sterile saline. 

Microbiota background control 

The background microbiota was monitored at multiple stages of sample collection and 

processing. All sterile saline, buffers, reagents, plasticware and flocked nylon swabs used for 

sample collection, extraction and amplification of nucleic acid were UV irradiated to eliminate 

possible DNA background contamination. Elimination of potential background from the 

irradiated buffers, reagents, plasticware and swabs was confirmed by 16S rRNA amplification. 

After sample collection, multiple aliquots of sterile saline with swabs used for sample collection 

were carried through our entire sequencing protocol as individual samples, including DNA 

extraction, 16S rRNA amplification, library construction and sequencing to monitor potential 

background microbiome [2].   Data from these background control samples is deposited in SRA 

along with positive controls. 
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Bioinformatics analysis 

Raw data from the Illumina MiSeq was first converted into FASTQ format 2x312 paired 

end sequence files using the bcl2fastq program, version 1.8.4, provided by Illumina.  Format 

conversion was performed without de-multiplexing and the EAMMS algorithm was disabled.  All 

other settings were default.  Reads were multiplexed using a configuration described previously 

[1].  Briefly, for both reads in a pair, the first 12 bases were a barcode, which was followed by a 

primer, then a heterogeneity spacer, and then the target 16S rRNA sequence.  QIIME 1.9.1 [3] 

was used to extract the barcodes into a separate file for importing into QIIME 2 [4], which was 

used to perform all subsequent processing.  Reads were demultiplexed requiring exact barcode 

matches, and 16S primers were removed allowing 20% mismatches and requiring at least 18 

bases.  Cleaning, joining, and denoising were performed using DADA2 [5]: forward reads were 

truncated to 275 bps and reverse reads to 260 bps, error profiles were learned with a sample of 

one million reads, and a maximum expected error of two was allowed.  Taxonomic classification 

was performed with a custom naïve Bayesian classifier trained on the August, 2013 release of 

GreenGenes [6, 7].  Sequence variants that could not be classified at least at the phylum level 

were discarded.  Sequencing variants observed fewer than ten times total, or in only one 

sample, were discarded.  Samples with fewer than 900 reads were discarded. 

Phylogenetic trees were constructed for each cohort using MAFFT for sequence 

alignment and FastTree for tree construction [8, 9]. Prior to diversity analyses, samples were 

rarefied to a depth of 900 reads.  Faith’s PD and the Shannon index were used to measure 

alpha diversity, and Kruskal-Wallis to test for differences.  Weighted and Unweighted Unifrac 

distances were used to measure beta diversity [10] and pairwise PERMANOVA to test for 

differences. 

Infected vs. healthy and healthy vs. mild vs. severe classification, and severity score 

regression, were performed using the Sample Classifier plugin [11] in QIIME 2, using the 
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Gradient Tree Boosting Classifier/Regressor, five-fold cross-validation, 20% data hold-out for 

testing, 5,000 estimators, parameter tuning, and feature selection.  Both exact sequence variant 

abundances and abundances of taxa summarized at species level were tried as inputs, and 

whichever performed better was used and reported. 

Associations of taxon abundance with RSV infection and disease severity 

Univariate tests for differential taxon abundance between groups was performed using 

both ANCOM [12] and LefSe [13]. Multivariate regression models using gneiss [14] and 

MaAsLin [15] were employed to assess associations of taxon abundance with RSV infection 

and disease severity while controlling for the potentially confounding covariates sex, mode of 

delivery, age at sampling, reads per sample, and antibiotic usage.  The cross-sectional and 

longitudinal cohorts were analyzed independently.  All reported results were significant by at 

least two tests. 
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