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Most diseases disrupt multiple proteins, and drugs treat such diseases by restoring the func-1

tions of the disrupted proteins. How drugs restore these functions, however, is often unknown2

as a drug’s therapeutic effects are not limited only to the proteins that the drug directly tar-3

gets. Here, we develop the multiscale interactome, a powerful approach to explain disease4

treatment. We integrate disease-perturbed proteins, drug targets, and biological functions5

into a multiscale interactome network, which contains 478,728 interactions between 1,6616

drugs, 840 diseases, 17,660 human proteins, and 9,798 biological functions. We find that7

a drug’s effectiveness can often be attributed to targeting proteins that are distinct from8

disease-associated proteins but that affect the same biological functions. We develop a ran-9

dom walk-based method that captures how drug effects propagate through a hierarchy of10

biological functions and are coordinated by the protein-protein interaction network in which11

drugs act. On three key pharmacological tasks, we find that the multiscale interactome pre-12

dicts what drugs will treat a given disease more effectively than prior approaches, identifies13

proteins and biological functions related to treatment, and predicts genes that interfere with14

treatment to alter drug efficacy and cause serious adverse reactions. Our results indicate that15

physical interactions between proteins alone are unable to explain the therapeutic effects of16

drugs as many drugs treat diseases by affecting the same biological functions disrupted by17

the disease rather than directly targeting disease proteins or their regulators. We provide18

a general framework for identifying proteins and biological functions relevant in treatment,19

even when drugs seem unrelated to the diseases they are recommended for.20
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Complex diseases, like cancer, disrupt dozens of proteins that interact in underlying bio-21

logical networks [1–4]. Treating such diseases requires practical means to control the networks22

that underlie the disease [5–7]. By targeting even a single protein, a drug can affect hundreds of23

proteins in the underlying biological network. To achieve this effect, the drug relies on physical24

interactions between proteins. The drug binds a target protein, which physically interacts with25

dozens of other proteins, which in turn interact with dozens more, eventually reaching the proteins26

disrupted by the disease [8–10]. Networks capture such interactions and are a powerful paradigm27

to investigate the intricate effects of disease treatments and how these treatments translate into28

therapeutic benefits, revealing insights into drug efficacy [10–15], side effects [16], and effective29

combinatorial therapies for treating the most dreadful diseases, including cancers and infectious30

diseases [17–19].31

However, existing systematic approaches assume that, for a drug to treat a disease, the pro-32

teins targeted by the drug need to be close to or even need to coincide with the disease-perturbed33

proteins [10–14] (Figure 1). As such, current approaches fail to capture biological functions,34

through which target proteins can restore the functions of disease-perturbed proteins and thus treat35

a disease [20–25] (Supplementary Fig. 3). Moreover, current systematic approaches are “black-36

boxes:” they predict treatment relationships but provide little biological insight into how treatment37

occurs. This suggests an opportunity for a systematic, explanatory approach. Indeed for particu-38

lar drugs and diseases, custom networks have demonstrated that incorporating specific biological39

functions can help explain treatment [26–29].40

Here we present the multiscale interactome, a powerful approach to explain disease treat-41

ment. We integrate disease-perturbed proteins, drug targets and biological functions in a mul-42

tiscale interactome network. The multiscale interactome uses the physical interaction network43

between 17,660 human proteins, which we augment with 9,798 biological functions, in order to44

fully capture the fundamental biological principles of effective treatments across 1,661 drugs and45

840 diseases.46

To identify how a drug treats a disease, our approach uses biased random walks which model47

how drug effects spread through a hierarchy of biological functions and are coordinated by the48

protein-protein interaction network in which drugs act. In the multiscale interactome, drugs treat49

diseases by propagating their effects through a network of physical interactions between proteins50

and a hierarchy of biological functions. For each drug and disease, we learn a diffusion profile,51

which identifies the key proteins and biological functions involved in a given treatment. By com-52
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paring drug and disease diffusion profiles, the multiscale interactome provides an interpretable53

basis to identify the proteins and biological functions that explain successful treatments.54

We demonstrate the power of the multiscale interactome on three key tasks in pharmacology.55

First, we find the multiscale interactome predicts which drugs can treat a given disease more accu-56

rately than existing methods that rely on physical interactions between proteins (i.e. a molecular-57

scale interactome). This finding indicates that our approach accurately captures the biological58

functions through which target proteins affect the functions of disease-perturbed proteins, even59

when drugs are distant to diseases they are recommended for. The multiscale interactome also60

improves prediction on entire drug classes, such as hormones, that rely on biological functions and61

thus cannot be accurately represented by approaches which only consider physical interactions be-62

tween proteins. Second, we find that the multiscale interactome is a “white-box” method with the63

ability to identify proteins and biological functions relevant in treatment. Finally, we find that the64

multiscale interactome predicts what genes alter drug efficacy or cause serious adverse reactions65

for a given treatment and identifies biological functions that help explain how these genes interfere66

with treatment.67

Our results indicate that the failure of existing approaches is not due to algorithmic limita-68

tions but is instead fundamental. We find that a drug can treat a disease by influencing the behaviors69

of proteins that are distant from the drug’s direct targets in the protein-protein interaction network.70

We find evidence that as long as those proteins affect the same biological functions disrupted by71

the disease proteins, the treatment can be successful. Thus, physical interactions between proteins72

alone are unable to explain the therapeutic effects of drugs, and functional information provides an73

important component for modeling treatment mechanisms. We provide a general framework for74

identifying proteins and biological functions relevant in treatment, even when drugs seem unrelated75

to the diseases they are recommended for.76
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Results77

The multiscale interactome represents the effects of drugs and diseases on proteins and bio-78

logical functions. The multiscale interactome models drug treatment by integrating both physical79

interactions between proteins and a multiscale hierarchy of biological functions. Crucially, many80

treatments depend on biological functions (Supplementary Fig. 3) [20–24]. Existing systematic81

network approaches, however, primarily model physical interactions between proteins [10–14],82

and thus cannot accurately model such treatments (Figure 1a, Supplementary Fig. 1).83

Our multiscale interactome captures the fact that drugs and diseases exert their effects through84

both proteins and biological functions (Figure 1b). In particular, the multiscale interactome is85

a network in which 1,661 drugs interact with the human proteins they primarily target (8,56886

edges) [30,31] and 840 diseases interact with the human proteins they disrupt through genomic al-87

terations, altered expression, or post-translational modification (25,212 edges) [32]. Subsequently,88

these protein-level effects propagate in two ways. First, 17,660 proteins physically interact with89

other proteins according to regulatory, metabolic, kinase-substrate, signaling, and binding rela-90

tionships (387,626 edges) [33–39]. Second, these proteins alter 9,798 biological functions accord-91

ing to a rich hierarchy ranging from specific processes (i.e. embryonic heart tube elongation) to92

broad processes (i.e. heart development). Biological functions can describe processes involving93

molecules (i.e. DNA demethylation), cells (i.e. the mitotic cell cycle), tissues (i.e. muscle at-94

rophy), organ systems (i.e. activation of the innate immune response), and the whole organism95

(i.e. anatomical structure development) (34,777 edges between proteins and biological functions,96

22,545 edges between biological functions; Gene Ontology) [40, 41]. By modeling the effect of97

drugs and diseases on both proteins and biological functions, our multiscale interactome can model98

the range of drug treatments that rely on both [20–24].99

Overall, our multiscale interactome provides a large, systematic dataset to study drug-disease100

treatments. Nearly 6,000 approved treatments (i.e., drug-disease pairs) spanning almost every101

category of human anatomy are compiled [31, 42, 43], exceeding the largest prior network-based102

study by 10X [13] (Anatomical Therapeutic Classification; Supplementary Fig. 4).103

Propagation of the effects of drugs and diseases through the multiscale interactome. To learn104

how the effects of drugs and diseases propagate through proteins and biological functions, we105

harnessed network diffusion profiles (Figure 1c). A network diffusion profile propagates the effects106

of a drug or disease across the multiscale interactome, revealing the most affected proteins and107
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biological functions. The diffusion profile is computed by biased random walks that start at the108

drug or disease node. At every step, the walker can restart its walk or jump to an adjacent node109

based on optimized edge weights. The diffusion profile r P R|V | measures how often each node110

in the multiscale interactome is visited, thus encoding the effect of the drug or disease on every111

protein and biological function.112

Diffusion profiles contribute three methodological advances. First, diffusion profiles provide113

a general framework to adaptively integrate physical interactions between proteins and a hierarchy114

of biological functions. When continuing its walk, the random walker jumps between proteins115

and biological functions at different hierarchical levels based on optimized edge weights. These116

edge weights encode the relative importance of different types of nodes: wdrug, wdisease, wprotein,117

wbiological function, whigher-level biological function, wlower-level biological function. These weights are hyperparame-118

ters which we optimize when predicting the drugs that treat a given disease (Methods). For drug119

and disease treatments, these optimized edge weights encode the knowledge that proteins and bi-120

ological functions at different hierarchical levels have different importance in the effects of drugs121

and diseases [20, 21]. By adaptively integrating both proteins and biological functions in a hierar-122

chy, therefore, diffusion profiles model effects that rely on both.123

Second, diffusion profiles provide a mathematical formalization of the principles governing124

how drug and disease effects propagate in a biological network. Drugs and diseases are known to125

generate their effects by disrupting or binding to proteins which recursively affect other proteins126

and biological functions. The effect propagates via two principles [8, 9]. First, proteins and bio-127

logical functions closer to the drug or disease are affected more strongly. Similarly in diffusion128

profiles, proteins and biological functions closer to the drug or disease are visited more often since129

the random walker is more likely to visit them after a restart. Second, the net effect of the drug130

or disease on any given node depends on the net effect on each neighbor. Similarly in diffusion131

profiles, a random walker can arrive at a given node from any neighbor.132

Finally, comparing diffusion profiles provides a rich, interpretable basis to predict pharma-133

cological properties. Traditional random walk approaches predict properties by measuring the134

proximity of drug and disease nodes [9]. By contrast, we compare drug and disease diffusion135

profiles to compare their effects on proteins and biological functions, a richer comparison. Our ap-136

proach is thus consistent with recent machine learning advances which harness diffusion profiles137

to represent nodes [44].138
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The multiscale interactome accurately predicts which drugs treat a disease. By comparing139

the similarity of drug and disease diffusion profiles, the multiscale interactome predicts what drugs140

treat a given disease up to 40% more effectively than molecular-scale interactome approaches141

(AUROC 0.705 vs. 0.620, +13.7%; Average Precision 0.091 vs. 0.065, +40.0%; Recall@50 0.347142

vs. 0.264, +31.4%) (Figure 2a, b, Methods). Note that drug-disease treatment relationships are143

never directly encoded into our network. Instead, the multiscale interactome learns to effectively144

predict drug-disease treatment relationships it has never previously seen.145

Moreover, the multiscale interactome accurately models classes of drugs that rely on biolog-146

ical functions and which molecular-scale interactome approaches thus cannot model effectively.147

Indeed, the top overall performing drug classes (i.e., sex hormones, modulators of the genital148

system; Supplementary Fig. 6) and the top drug classes for which the multiscale interactome out-149

performs the molecular-scale interactome (i.e., pituitary, hypothalamic hormones and analogues;150

Figure 2c, Supplementary Fig. 7) harness biological functions that describe processes across the151

body. For example, Vasopressin, a pituitary hormone, treats urinary disorders by binding receptors152

which trigger smooth muscle contraction in the gastrointestinal tract, free water reabsorption in153

the kidneys, and contraction in the vascular bed [30, 45, 46]. Treatment by Vasopressin, and by154

pituitary and hypothalamic hormones more broadly, relies on biological functions that describe155

processes across the body and that are modeled by the multiscale interactome.156

The multiscale interactome identifies proteins and biological functions relevant in complex157

treatments. Existing interactome approaches to systematically study treatment are “black boxes:”158

they predict what drug treats a disease but cannot explain how the drug treats the disease through159

specific proteins and biological functions [10–15] (Figure 2d). By contrast, drug and disease dif-160

fusion profiles identify proteins and biological functions relevant to treatment (Figure 2e, Sup-161

plementary Note 3). For a given drug and disease, we identify proteins and biological functions162

relevant to treatment by inducing a subgraph on the k most frequently visited nodes in the drug and163

disease diffusion profiles which correspond to the proteins and biological functions most affected164

by the drug and disease.165

Gene expression signatures validate the biological relevance of diffusion profiles (Figure166

2f). We find that drugs with more similar diffusion profiles have more similar gene expression167

signatures (Spearman ρ “ 0.392, p “ 5.8 ˆ 10-7, n “ 152) [47, 48], indicating that diffusion168

profiles reflect the effects of drugs on proteins and biological functions.169
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Furthermore, case studies validate the proteins and biological functions that diffusion pro-170

files identify as relevant to treatment. Consider the treatment of Hyperlipoproteinemia Type III171

by Rosuvastatin (i.e., Crestor). In Hyperlipoproteinemia Type III, defects in apolipoprotein E172

(APOE) [49–51] and apolipoprotein A-V (APOA5) [52,53] lead to excess blood cholesterol, even-173

tually leading to the onset of severe arteriosclerosis [50]. Rosuvastatin is known to treat Hyper-174

lipoproteinemia Type III by inhibiting HMG-CoA reductase (HMGCR) and thereby diminishing175

cholesterol production [54, 55]. Crucially, diffusion profiles identify proteins and biological func-176

tions that recapitulate these key steps (Figure 2g). Notably, there is no direct path of proteins177

between Hyperlipoproteinemia and Rosuvastatin. Instead, treatment operates through biological178

functions (i.e., cholesterol biosynthesis and its regulation). Consistently, the multiscale interac-179

tome identifies Rosuvastatin as a treatment for Hyperlipoproteinemia far more effectively than a180

molecular-scale interactome approach, ranking Rosuvastatin in the top 4.33% of all drugs rather181

than the top 72.7%. The multiscale interactome explains treatments that rely on biological func-182

tions, a feat which molecular-scale interactome approaches cannot accomplish.183

Similarly, consider the treatment of Cryopyrin-Associated Periodic Syndromes (CAPS) by184

Anakinra. In Cryopyrin-Associated Periodic Syndromes, mutations in NLRP3 and MME lead to185

immune-mediated inflammation through the Interleukin-1 beta signaling pathway [56]. Anakinra186

treats Cryopyrin-Associated Syndromes by binding IL1R1, a receptor which mediates regulation of187

the Interleukin-1 beta signaling pathway and thus prevents excessive inflammation [30,57]. Again,188

diffusion profiles identify proteins and biological functions that recapitulate these key steps (Fig-189

ure 2h). Crucially, diffusion profiles identify the regulation of inflammation and immune system190

signaling, complex biological functions which are not modelled by molecular-scale interactome191

approaches. Again, the multiscale interactome identifies Anakinra as a treatment for CAPS far192

more effectively than a molecular-scale interactome approach, ranking Anakinra in the top 10.9%193

of all drugs rather than the top 71.8%.194

The multiscale interactome identifies genes that alter patient-specific drug efficacy and cause195

adverse reactions. A key goal of precision medicine is to understand how changes in genes196

alter patient-specific drug efficacy and cause adverse reactions [58] (Figure 3a). For particu-197

lar treatments, detailed mechanistic models have been developed which can predict and explain198

drug resistance among genes already identified as relevant to treatment [26–29]. More systemati-199

cally, however, current tools of precision medicine struggle to predict the genes that interfere with200
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patient-specific treatment [59] and explain how such genes interfere with treatment [60].201

We find that genetic variants that alter drug efficacy and cause serious adverse reactions occur202

in genes that are highly visited in the corresponding drug and disease diffusion profiles (Figure203

3b). We define the treatment importance of a gene according to the visitation frequency of the204

corresponding protein in the drug and disease diffusion profiles (Methods). Genes that alter drug205

efficacy and cause adverse reactions exhibit substantially higher treatment importance scores than206

other genes (median network importance = 0.912 vs. 0.513; p “ 2.95 ˆ 10-107, Mood’s median207

test), indicating that these treatment altering genes occur at highly visited nodes. We thus provide208

evidence that the topological position of a gene influences its ability to alter drug efficacy or cause209

serious adverse reactions.210

We find that the network importance of a gene in the drug and disease diffusion profiles pre-211

dicts whether that gene alters drug efficacy and causes adverse reactions for that particular treat-212

ment (AUROC = 0.79, Average Precision = 0.82) (Figure 3c). Importantly, the knowledge that a213

gene alters a given treatment is never directly encoded into our network. Instead, diffusion profiles214

predict treatment altering relationships that the multiscale interactome has never previously seen.215

Our diffusion profiles thereby provide a systematic approach to identify genes with the potential216

to alter treatment. Our finding is complementary to high-resolution, temporal approaches such as217

discrete dynamic models which model drug resistance and adverse reactions by first curating genes218

and pathways deemed relevant to a particular treatment [26–29]. Diffusion profiles may help pro-219

vide candidate genes and pathways for inclusion in these detailed approaches, including genes not220

previously expected to be relevant. New treatment altering genes, if validated experimentally and221

clinically, could ultimately affect patient stratification in clinical trials and personalized therapeutic222

selection [61].223

Finally, we find that when a gene in a diseased patient alters the efficacy of one indicated drug224

but not another, that gene primarily targets the genes important to treatment for the resistant drug225

(Figure 3d, e). Overall, 71.0% of the genes known to alter the efficacy of one indicated drug but not226

another exhibit higher network importance in the altered treatments than in the unaltered treatment.227

We thus provide a network formalism explaining how changes to genes can alter efficacy and cause228

adverse reactions in only some drugs indicated to treat a disease.229

Consider Benazepril and Diltiazem, two drugs indicated to treat Hypertensive Disease (Fig-230

ure 3f). A mutation in the AGT gene alters the efficacy of Benazepril but not Diltiazem [62–64].231

Indeed, our approach gives higher treatment importance to AGT in treatment by Benazepril than in232
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treatment by Diltiazem, ranking AGT as the 45th most important gene for Benazepril treatment but233

only the 418th most important gene for Diltiazem treatment. Moreover, our approach explains why234

AGT alters the efficacy of Benazepril but not Diltiazem (Figure 3f). Diltiazem primarily operates235

at a molecular-scale, inhibiting various calcium receptors (CACNA1S, CACNA1C, CACNA2D1,236

CACNG1) which trigger relaxation of the smooth muscle lining blood vessels and thus lower blood237

pressure [30,65–67]. By contrast, Benazepril operates at a systems-scale: Benazepril binds to ACE238

which affects the renin-angiotensin system, a systems-level biological function that controls blood239

pressure through hormones [30,68,69]. Crucially, AGT or Angiotensinogen, is a key component of240

the renin-angiotensin system [69–71]. Therefore, AGT affects the key biological function used by241

Benazepril to treat Hypertensive Disease. By contrast, AGT plays no role in the calcium receptor242

driven pathways used by Diltiazem. Thus when a gene alters the efficacy of a drug, the multiscale243

interactome can identify biological functions that may help explain the alteration in treatment.244
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Discussion245

The multiscale interactome provides a general approach to systematically understand how drugs246

treat diseases. By integrating physical interactions and biological functions, the multiscale interac-247

tome improves prediction of what drugs will treat a disease by up to 40% over physical interactome248

approaches [10, 13]. Moreover, the multiscale interactome systematically identifies proteins and249

biological functions relevant to treatment. By contrast, existing systematic network approaches are250

“black-boxes” which make predictions without providing mechanistic insight. Finally, the mul-251

tiscale interactome predicts what genes alter drug efficacy or cause severe adverse reactions for252

drug treatments and identifies biological functions that may explain how these genes interfere with253

treatment.254

The multiscale interactome demonstrates that integrating biological functions into the inter-255

actome improves the systematic modeling of drug-disease treatment. Historically, systematic ap-256

proaches to study treatment via the interactome have primarily focused on physical interactions be-257

tween proteins [8–10, 13]. Here, we find that integrating biological functions into a physical inter-258

actome improves the systematic modeling of nearly 6,000 treatments. We find drugs and drug cate-259

gories which depend on biological functions for treatment. More broadly, incorporating biological260

functions may improve systematic approaches that currently use physical interactions to study dis-261

ease pathogenesis [72–75], disease comorbidities [6], and drug combinations [22–24]. Harnessing262

the multiscale interactome in these settings may thus help answer key pharmacological questions.263

Moreover, the multiscale interactome can be readily expanded to add additional node types rele-264

vant to the problem at hand (i.e. microRNAs to study cancer initiation and progression [76]). Our265

finding is consistent with systematic studies which demonstrate, in other contexts, that networks266

involving functional information can strengthen prediction of cellular growth [25, 77], identifica-267

tion of gene function [78–80], inference of drug targets [81], and general discovery of relationships268

between biological entities [82, 83].269

Moreover, we find that diffusion profiles incorporating both proteins and biological functions270

provide predictive power and interpretability in modeling drug-disease treatments. Diffusion pro-271

files predict what drugs treat a given disease and identify proteins and biological functions relevant272

to treatment. In other pharmacological contexts, diffusion profiles incorporating proteins and bi-273

ological functions may thus improve systematic approaches which currently employ proximity or274

other non-interpretable methods [6,16,17,33]. In studying the efficacy of drug combinations [17],275

diffusion profiles may identify synergistic effects on key biological functions. In studying the276
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adverse reactions of drug combinations [16], diffusion profiles may identify biological functions277

which help explain polypharmacy side effects. In disease comorbidities [6, 33], diffusion profiles278

may predict new comorbidities and identify biological functions which help explain the develop-279

ment of the comorbidity.280

Finally, our study shows that both physical interactions and biological functions can propa-281

gate the effects of drugs and diseases. We find that many drugs neither directly target the proteins282

associated with the disease they treat nor target proximal proteins. Instead, these drugs affect the283

same biological functions disrupted by the disease. This view expands upon the current view of284

indirect effects embraced in other biological phenomena. In the omnigenic model of complex285

disease [84, 85], for example, hundreds of genetic variants affect a complex phenotype through286

indirect effects that propagate through a regulatory network of physical interactions. Our results287

suggest that the multiscale interactome, incorporating both physical interactions and biological288

functions, may help propagate indirect effects in complex disease. Altogether, the multiscale in-289

teractome provides a general computational paradigm for network medicine.290
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Data availability. All data used in the paper, including the multiscale interactome, approved291

drug-disease treatments, drug and disease classifications, gene expression signatures, and pharma-292

cogenomic relationships is available at github.com/snap-stanford/multiscale-interactome.293

Code availability. Python implementation of our methodology is available at github.com/snap-294

stanford/multiscale-interactome. The code is written in Python. Please read the README for295

information on downloading and running the code.296
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Figure 1: The multiscale interactome models drug treatment through both proteins and biological functions. (a)
Existing systematic network approaches assume that drugs treat diseases by targeting proteins that are proximal to disease
proteins in a network of physical interactions [10–14]. However, drugs can also treat diseases by targeting distant proteins
that affect the same biological functions (Supplementary Fig. 3) [20–25]. (b) The multiscale interactome models drug-
disease treatment by integrating both proteins and a hierarchy of biological functions (Supplementary Fig. 1). (c) The
diffusion profile of a drug or disease captures its effect on every protein and biological function. The diffusion profile
propagates the effect of the drug or disease via random walks which adaptively explore proteins and biological functions
based on optimized edge weights. Ultimately, the visitation frequency of a node corresponds to the drug or disease’s
propagated effect on that node (Methods). (d) By comparing the diffusion profiles of a drug and disease, we compare their
effects on both proteins and biological functions. Thereby, we predict whether the drug treats the disease (Figure 2a-c),
identify proteins and biological functions related to treatment (Figure 2d-h), and identify which genes alter drug efficacy
or cause dangerous adverse reactions (Figure 3). For example, Hyperlipoproteinemia Type III’s diffusion profile reveals
how defects in APOE affect cholesterol homeostasis, a hallmark of the excess blood cholesterol found in patients [49–53].
The diffusion profile of Rovustatin, a treatment for Hyperlipoproteinemia Type III, reveals how binding of HMG-CoA
Reductase (HMGCR) reduces the production of excess cholesterol [54, 55]. By comparing these diffusion profiles, we
thus predict that Rosuvastatin treats Hyperlipoproteinemia Type III, identify the HMGCR and APOE-driven cholesterol
metabolic functions relevant to treatment, and predict that mutations in APOE and HMGCR may interfere with treatment
and thus alter drug efficacy or cause dangerous adverse reactions.
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Figure 2: The multiscale interactome accurately predicts what drugs treat a disease and systematically identifies
proteins and biological functions related to treatment. (a) To predict whether a drug treats a disease, we compare the
drug and disease diffusion profiles according to a correlation distance. (b) By incorporating both proteins and biological
functions, the multiscale interactome improves predictions of what drug will treat a given disease by up to 40% over
molecular-scale interactome approaches [13]. Reported values are averaged across five-fold cross validation (Methods).
(c) The multiscale interactome outperforms the molecular-scale interactome most greatly on drug classes that are known
to harness biological functions which describe processes across the body (i.e., pituitary, hypothalamic hormones and
analogues; median and 95% CI shown). (d) Existing interactome approaches are “black boxes”: they predict what drug
treats a disease but do not explain how the drug treats the disease through specific biological functions [10–15]. (e) By
contrast, the diffusion profiles of a drug and disease reveal the proteins and biological functions relevant to treatment. For
each drug and disease pair, we induce a subgraph on the k most frequently visited nodes in the drug and disease diffusion
profiles to explain treatment. (f) Drugs with more similar diffusion profiles have more similar gene expression signa-
tures (Spearman ρ “ 0.392, p “ 5.8 ˆ 10-7, n “ 152), suggesting that drug diffusion profiles capture their biological
effects. (g) The multiscale interactome explains treatments that molecular-scale interactome approaches cannot faith-
fully represent. Rosuvastatin treats Hyperlipoproteinemia Type III by binding to HMG CoA reductase (HMGCR) which
drives a series of cholesterol biosynthetic functions affected by Hyperlipoproteinemia Type III [49–55]. (h) Anakinra
treats Cryopyrin-Associated Periodic Syndromes by binding to IL1R1 which regulates immune-mediated inflammation
through the Interleukin-1 beta signaling pathway [30, 57]. Inflammation is a hallmark of Cryopyrin-Associated Periodic
Syndromes [56].
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Figure 3: Diffusion profiles identify which genes alter drug efficacy and cause serious adverse reactions and identify
biological functions that help explain the alteration in treatment. (a) Genes alter drug efficacy and cause serious
adverse reactions in a range of treatments [61]. A pressing need exists to systematically identify genes that alter drug
efficacy and cause serious adverse reactions for a given treatment and explain how these genes interfere with treatment
[59]. (b) Genetic variants alter drug efficacy and cause serious adverse reactions by targeting genes of high network
importance in treatment (median network importance of treatment altering genes = 0.912 vs. 0.513 p “ 2.95 ˆ 10-107;
Mood’s median test; median and 95% CI shown). We define the network treatment importance of a gene according to
its visitation frequency in the drug and disease diffusion profiles (Methods). (c) The treatment importance of a gene
in the drug and disease diffusion profiles predicts whether that gene alters drug efficacy and causes serious adverse
reactions for that particular treatment (AUROC = 0.79, Average Precision = 0.82). (d) Genes uniquely alter efficacy
in one indicated drug but not another by primarily targeting the genes and biological functions used in treatment by
the affected drug. In patients with Hypertensive Disease, a mutation in AGT alters the efficacy of Benazepril but not
Diltiazem. Indeed, AGT exhibits a higher network importance in Benazepril treatment than in Diltiazem treatment,
ranked as the 45th most important gene rather than the 418th most important gene. (e) Overall, 71.0% of genes known
to alter efficacy in one indicated drug but not another exhibit higher network importance in treatment by the affected
drug. (f) Diffusion profiles can identify biological functions that may help explain alterations in treatment. Shown are
the proteins and biological functions identified as relevant to the treatment of Hypertensive Disease by Benazepril and
Diltiazem. AGT, which uniquely alters the efficacy of Benazepril, is a key regulator of the renin-angiotensin system, a
biological function harnessed by Benazepril in treatment but not by Diltiazem [69–71].
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Methods301

The multiscale interactome. The multiscale interactome captures how drugs use both a net-302

work of physical interactions and a rich hierarchy of biological functions to treat diseases. In303

the multiscale interactome, 1,661 drugs connect to the proteins they target (8,568 edges) [30, 31].304

840 diseases connect to the proteins they disrupt through genomic alterations, altered expression,305

or post-translational modification (25,212 edges) [32]. 17,660 proteins connect to other proteins306

based on physical interactions such as regulatory, metabolic, kinase-substrate, signaling, or bind-307

ing relationships (387,626 edges) [33–39]. Proteins connect to the 9,798 biological functions they308

affect (22,545 edges) [40, 41]. Finally, biological functions connect to each other in a rich hierar-309

chy ranging from specific processes (i.e. embryonic heart tube elongation) to broad processes (i.e.310

heart development) (22,545 edges) [40,41]. Biological functions can describe processes involving311

molecules (i.e. DNA demethylation), cells (i.e. the mitotic cell cycle), tissues (i.e. muscle atro-312

phy), organ systems (i.e. activation of the innate immune response), and the whole organism (i.e.313

anatomical structure development).314

We visualize a representative subset of the multiscale interactome using Cytoscape [86] (Fig-315

ure 1b).316

Drug–protein interactions. We map drugs to their protein targets using DrugBank [30] and the317

Drug Repurposing Hub [31]. For DrugBank, we map the Uniprot Protein IDs to Entrez IDs using318

HUGO [87]. For the Drug Repurposing Hub, we map drugs to their DrugBank IDs using the drug319

names and DrugBank’s “drugbank approved target uniprot links.csv” file. We map protein targets320

to Entrez IDs using HUGO [87]. We filter drug-target relationships to only include proteins that are321

represented in the network of physical interactions between proteins (see Methods: Protein–protein322

interactions). All drug-target interactions are provided in Supplementary Data 1.323

Disease–protein interactions. We map diseases to genes they affect through genomic alterations,324

altered expression, or post-translational modification by using DisGeNet [32]. To ensure high-325

quality disease-gene associations, we only consider the “curated” set of disease-gene associations326

provided by DisGeNet which draws from expert-curated repositories: UniProt, the Comparative327

Toxicogenomics Database, Orphanet, the Clinical Genome Resource (ClinGen), Genomics Eng-328

land PanelApp, the Cancer Genome Interpreter (CGI), and the Psychiatric Disorders Gene Asso-329

ciation Network (PsyGeNET). We exclude all disease-gene associations that are inferred, based330

on orthology relationships from animal models, or based on computational-mining of the litera-331
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ture. Ultimately, diseases are associated with genes they affect via genomic alteration, alteration332

of expression, or post-translational modification according to the DisGeNet relationship ontology.333

To avoid circularity in the analysis, we remove disease-gene associations marked as therapeutic.334

Finally, we filter disease-gene relationships to only consider genes whose protein products were335

present in the network of physical interactions between proteins (see Methods: Protein–protein336

interactions). All disease-protein interactions are provided in Supplementary Data 2.337

Protein–protein interactions. We generate a network of 387,626 physical interactions between338

17,660 proteins by compiling seven major databases. Across all databases, we only consider hu-339

man proteins and their interactions; only allow protein-protein interactions with direct experi-340

mental evidence; and only allow physical interactions between proteins, filtering out genetic and341

indirect interactions between proteins such as those identified via synthetic lethality experiments.342

All protein-protein interactions are provided in Supplementary Data 3.343

1. The Biological General Repository for Interaction Datasets [34] (BioGRID; 309,187 in-344

teractions between 16,352 proteins). BioGRID manually curates both physical and genetic345

interactions between proteins from 71,713 high- and low-throughput publications. We map346

BioGRID proteins to Entrez IDs by using HUGO [87]. We only include protein-protein347

interactions from BioGRID that result from experiments indicating a physical interaction348

between the proteins, as described by BioGRID [34], and ignore protein-protein interactions349

indicating a genetic interaction between the proteins. We use the “BIOGRID-ORGANISM-350

Homo sapiens-3.5.178.tab” file.351

2. The Database of Interacting Proteins [36] (DIP; 4,235 interactions between 2,751 proteins).352

DIP only considers physical protein-protein interactions with experimental evidence and353

curates these from the literature. We map the UniProt ID of each protein to its Entrez ID354

by using HUGO [87]. We allow all experimental methods from DIP since they all capture355

physical interactions [36].356

3. The Human Reference Protein Interactome Mapping Project. We integrate four protein-357

protein interaction networks from the Human Reference Protein Interactome Mapping358

Project that were generated through high-throughput yeast two hybrid assays (HI-I-05 [39]:359

2,611 interactions between 1,522 proteins; HI-II-14 [35] 13,426 interactions between 4,228360

proteins; Venkatesan-09 [37]: 233 interactions between 229 proteins; Yu-11 [38] 1,126 in-361

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2020. ; https://doi.org/10.1101/2020.04.30.069690doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.30.069690
http://creativecommons.org/licenses/by-nc-nd/4.0/


teractions between 1,126 proteins). Since protein-protein interactions in all four networks362

result from a yeast two-hybrid system, all protein-protein interactions are physical and ex-363

perimentally verified. We thus include all protein-protein interactions across these networks.364

Proteins are already provided with their Entrez ID so no mapping is required.365

4. Menche-2015 [33] (138,425 interactions between 13,393 proteins). Finally, we integrate366

the physical protein-protein interaction network compiled by Menche et al. [33]. Menche367

et al. compiles different types of physical protein-protein interactions from a range of368

sources. In all cases, protein-protein interactions result from direct experimental evidence.369

Menche et al. compiles regulatory interactions from the TRANSFAC database; binary inter-370

actions from a series of high-throughput yeast-two-hybrid datasets as well as the IntAct and371

MINT databases; literature curated interactions from IntAct, MINT, BioGRID, and HPRD;372

metabolic-enzyme coupled interactions from KEGG and BIGG; protein complex interac-373

tions from CORUM; kinase-substrate interactions from PhosphositePlus; and signaling in-374

teractions from [88]. All proteins are provided in Entrez format and thus do not require375

further mapping.376

Protein – biological function interactions. We map proteins to the biological functions they377

affect by using the human version of the Gene Ontology [40, 41] (7,993 proteins; 6,387 biologi-378

cal functions; 34,777 edges). We only allow experimentally verified associations between genes379

and biological functions according to the following IDs: EXP – inferred from experiment, IDA380

– inferred from direct assay, IMP – inferred from mutant phenotype, IGI – inferred from genetic381

interaction, HTP – high throughput experiment, HDA – high throughput direct assay, HMP – high382

throughput mutant phenotype, and HGI – high throughput genetic interaction. We exclude any383

protein–biological function relationships that are inferred from physical interactions to avoid re-384

dundancy with the physical network of interacting proteins. We also exclude protein–biological385

function relationships inferred from gene expression patterns since the Gene Ontology states that386

such interactions are challenging to map to specific proteins [40, 41]. To prevent circularity, we387

further ignore all associations based on phylogenetically inferred annotations or various compu-388

tational analyses (sequence or structural similarity, sequence orthology, sequence alignment, se-389

quence modeling, genomic context, reviewed computational analysis). Finally, we ignore associ-390

ations based on author statements, curator inference, electronic annotations (i.e. automated anno-391

tations), and those for which no biological data was available. Some biological functions in the392
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Gene Ontology have multiple synonymous IDs. For each biological function, we use the “master393

IDs” provided by GOATOOLS [89]. All protein – biological function interactions are provided in394

Supplementary Data 4.395

Biological function – biological function interactions. We construct a hierarchy of biological396

functions by using the Gene Ontology’s Biological Processes [40, 41]. The Gene Ontology rep-397

resents a curated hierarchy of biological functions, where highly specific biological functions are398

children of more general biological functions according to numerous relationship types. For ex-399

ample, “negative regulation of response to interferon-gamma” is a
ÝÑ “negative regulation of innate400

immune response” is a
ÝÑ “negative regulation of immune response” negatively regulates

ÝÝÝÝÝÝÝÝÝÝÑ “immune re-401

sponse.” We allow relationships between biological functions of the following types: regulates,402

positively regulates, negatively regulates, part of, and is a. In order to allow the model to focus on403

the biological functions most relevant to treatment, we only consider biological functions which404

are associated with at least one drug target or one disease protein, either directly or implicitly405

through their children. All biological function – biological function interactions are provided in406

Supplementary Data 5.407

Constructing dataset of approved drug-disease treatments. We construct a dataset of 5,926408

unique, approved drug-disease pairs, exceeding the largest prior network-based study by 10X [13].409

We source approved drug-disease pairs from the Drug Repurposing Database [42] (npairs “ 2, 538;410

ndrugs “ 996, ndiseases “ 463), the Drug Repurposing Hub [31] (npairs “ 1, 449; ndrugs “411

908, ndiseases “ 265), and the Drug Indication Database [43] (npairs “ 3, 304; ndrugs “ 1, 147,412

ndiseases “ 615). In all cases, we filter drug-disease pairs to ensure that only FDA-approved413

treatment relationships are included.414

We extract approved drug-disease pairs from each database as follows. In all cases, drugs are415

mapped to DrugBank IDs [30] and diseases are mapped to unique identifiers from the National Li-416

brary of Medicine [90] (NLM UMLS CUIDs: NLM Unified Medical Language System Controlled417

Unique Identifier):418

1. The Drug Repurposing Database is a gold-standard database of drug-disease pairs extracted419

from drug labels and the American Association of Clinical Trials Database [42]. Drugs420

and diseases in the Drug Repurposing Database are provided with DrugBank IDs and NLM421

UMLS CUIDs so no additional mapping is required. We extract only the drug and disease422

pairs designated as “Approved” treatment relationships.423
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2. The Broad Institute’s Drug Repurposing Hub is a hand-curated collection of drug-disease424

pairs compiled from drug labels, DrugBank, the NCATS NCGC Pharmaceutical Collection425

(NPC), Thomson Reuters Integrity, Thomson Reuters Cortellis, Citeline Pharmaprojects,426

the FDA Orange Book, ClinicalTrials.gov, and PubMed [31]. We map drugs to DrugBank427

IDs by comparing their provided names and PubChem IDs to DrugBank’s external links428

mapping [30]. We map diseases to UMLS CUIDs by using the UMLS Metathesaurus’s429

REST API [90]. Finally, we only include drug-disease pairs with a “Launched” clinical430

phase attribute, indicating FDA approval.431

3. The Drug Indication Database provides drug-indications relationships from DailyMed,432

DrugBank, the Pharmacological Actions sections of the Medical Subject Headings, the Na-433

tional Drug File Reference Terminology, the Physicians’ Desk Reference, the Chemical En-434

tities of Biological Interest (ChEBI), the Comparative Toxicogenomics Database, the Ther-435

apeutic Claims section of the USP Dictionary of United States Adopted Names and Inter-436

national Drug Names, and the World Health Organization Anatomic-Therapeutic-Chemical437

classification) [43]. The Drug Indication Database captures both diseases and non-disease438

medical conditions (i.e. pregnancy) for which a drug is used. Additionally, the Drug In-439

dication Database captures both treatment relationships between drugs and indications as440

well as prevention, management, and diagnostic relationships. We filter the Drug Indication441

Database to only include approved treatment relationships between drugs and diseases.442

We map drugs to DrugBank IDs by using the provided CAS and ChEBI IDs as well as Drug-443

Bank’s external links mapping [30]. Indications are already provided with UMLS CUIDs.444

We filter indications to only include diseases in two ways. First, we only consider indica-445

tions with a UMLS semantic type of “B2.2.1.2.1 Disease or Syndrome”, “B2.2.1.2 Patho-446

logic Function”, or “B2.2.1.2.1.2 Neoplastic Process.” Second, we only consider indications447

present in DisGeNet, a database mapping diseases to their associated genes [32].448

To ensure that drug-disease relationships specifically represent treatment relationships, we449

filter drug-disease pairs based on the “indication subtype.” We remove drug-indication pairs450

where the indication subtype described is not treatment (i.e. preventative/prophylaxis, di-451

agnosis, adjunct, palliative, reduction, causes/inducing/associated, and mechanism). We ad-452

ditionally remove all drug indication pairs from the Comparative Toxicogenomics Database453

(CTD). The goal of CTD is to provide broad chemical-disease associations published in the454
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literature [91]. Concurrently, CTD does not subset these chemical-disease associations into455

drug-disease relationships that represent FDA-approved treatments.456

Finally, we remove overly broad diseases from the Drug Indication Database. We remove457

disease categories (i.e. diseases with “Diseases” in their name such as “Cardiovascular Dis-458

eases” and “Metabolic Diseases). We also remove diseases with more than 130 approved459

drugs (i.e. Disorder of Eye – 290 approved drugs).460

After compiling approved drug-disease treatment pairs, we remove treatments for which461

drugs rely on binding to non-human proteins (i.e. viral or bacterial proteins) to induce their effect.462

The multiscale interactome only models human proteins and biological functions. The multiscale463

interactome is thus not designed to model treatments which rely on binding to viral or bacterial464

proteins. To remove such treatments, we map all disease UMLS CUIDs to their corresponding Dis-465

ease Ontology ID [92]. We then remove diseases corresponding to the “disease by infectious agent466

category” of the Disease Ontology. The Disease Ontology does not map many UMLS CUIDs to467

corresponding Disease Ontology IDs. We thus manually curate the final list of diseases to remove468

additional infectious diseases: malaria, bacterial septicemia, fungal infection, coccidiosis, gon-469

orrhea, gastrointestinal roundworms, shingles, lice, gastrointestinal parasites, tapeworm, syphilis,470

genital herpes, lungworms, fungicide, fungal keratosis, yeast infection, laryngitis, enterocolitis,471

protozoan infection, African trypanosomiasis, sepsis, Chagas disease, mites, bacterial vaginosis,472

scabies, pinworm, equine protozoal myeloencephalitis (EPM), microsporidiosis, and ringworm.473

Finally, we filter approved drug-disease treatment pairs to only include drugs with at least one474

known target in DrugBank [30] or the Drug Repurposing Hub [31] and diseases with at least one as-475

sociated gene in the curated version of DisGeNet [32] as these are the only drugs and diseases that476

the multiscale interactome represents (see Methods: Drug–protein interactions, Disease–protein477

interactions).478

Ultimately, we achieve a dataset of 5,926 approved drug-disease pairs, exceeding the largest479

prior network-based study by 10X [13]. All approved drug-disease pairs are provided in Supple-480

mentary Data 6.481

Learning drug and disease diffusion profiles. We propagate the effects of each drug and disease482

across the multiscale interactome by using network diffusion profiles. A drug or disease diffusion483

profile learns the proteins and biological functions most affected by each drug or disease. Each484

drug or disease diffusion profile is computed through biased random walks that start at the drug or485
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disease node. At every step, the random walker can restart its walk or jump to an adjacent node486

based on optimized edge weights. After many walks, the diffusion profile measures how often487

every node was visited, thus representing the effect of the drug or disease on that node.488

By using optimized edge weights, diffusion profiles learn to adaptively inte-489

grate proteins and biological functions. Diffusion profiles rely on a set of scalar490

weights which encode the relative importance of different types of nodes: W “491

twdrug, wdisease, wprotein, wbiological function, whigher-level biological function, wlower-level biological functionu. These492

weights are hyperparameters which we optimize when predicting the drugs that treat a given493

disease (see Methods: Model selection and optimization of scalar weights). When a random494

walker continues its walk, it picks the next node to jump to based on the relative values of495

these weights. For example, if a random walker is at a protein and has both protein and496

biological function neighbors, it is wprotein

wbiological function
times more likely to jump to the protein neigh-497

bors than the biological function neighbors. Notice that proteins connect to drugs, diseases,498

proteins, and biological functions, making twdrug, wdisease, wprotein, wbiological functionu the relevant499

weights for a random walker currently at a protein. By contrast, biological functions connect500

to proteins, higher-level biological functions, and lower-level biological functions, making501

twprotein, whigher-level biological function, wlower-level biological functionu the relevant weights for a random walker502

at a biological function. By providing separate weights for higher- and lower-level biological503

functions, the random walker learns to explore different levels of the hierarchy of biological504

functions and integrate them appropriately.505

Diffusion profiles represent a general methodology to propagate signals through a hetero-506

geneous biological network. By carefully defining edge weights and the nodes that the random507

walker restarts to, diffusion profiles can be used in a wide range of biological tasks. Here, we de-508

fine edge weights for drug, disease, protein, and biological function node types, yet more or fewer509

weights can be used based on the problem of interest. Similarly, here, the random walker jumps510

to the initial drug or disease node after a restart, but in reality, it can restart to any node or any set511

of nodes. The edge weights and restart nodes thus make diffusion profiles a flexible approach to512

propagate signals across a heterogeneous biological network, with applicability to a wide range of513

problems in systems biology and pharmacology.514

Computing drug and disease diffusion profiles through power iteration. Mathematically, we515

compute diffusion profiles through a matrix formulation with power iteration [93–95]. The diffu-516
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sion profile computation takes as input:517

1. G “ pV,Eq the unweighted, undirected multiscale interactome with V nodes and E edges.518

2. W “ twdrug, wdisease, wprotein, wbiological function, whigher-level biological function, wlower-level biological functionu519

the set of scalar weights which encode the relative likelihood of the walker jumping from520

one node type to another when continuing its walk.521

3. α which represents the probability of the walker continuing its walk at a given step rather522

than restarting.523

4. s P R|V | a restart vector which sets the probability the walker will jump to each node after a524

restart; here, s is a one-hot vector encoding the drug or disease of interest.525

5. ε the tolerance allowed for convergence of the power iteration computation.526

The diffusion profile computation outputs r P R|V |, a drug- or disease-diffusion profile which527

measures the frequency with which the random walker visits each node. Note that
ř

i ri “ 1.528

Before computing the diffusion profile of a drug or disease of interest, we prepro-529

cess the multiscale interactome in order to only allow biologically meaningful walks. Dif-530

fusion profiles are designed to capture how a drug or disease of interest propagates its ef-531

fect by recursively affecting proteins and biological functions. Notice that drugs and dis-532

eases do not propagate their effect by using other drugs and diseases as intermediates.533

Therefore, we disallow paths that have drugs and diseases as intermediate nodes. To ac-534

complish this mathematically, we convert G “ pV,Eq to a directed graph G1 where all535

previously undirected edges are replaced by edges in both directions (i.e. edges now536

include drugØprotein, diseaseØprotein, proteinØprotein, proteinØbiological function, and537

lower-level biological functionØhigher-level biological function). We then make the drug or dis-538

ease of interest a source node (i.e. no in-edges) and all other drugs and diseases sink nodes (i.e. no539

out-edges). In G1, a random walker starts at the drug or disease of interest and recursively walks540

to proteins and biological functions. If the walker reaches any other drug or disease node, it must541

restart its walk.542

Next, we encode G1 and the set of scalar weights W into a biased transition matrix M P543

R|V |ˆ|V |. Each entry Mij denotes the probability piÑj a random walker jumps from node i to node544

j when continuing its walk. Consider a random walker at node i jumping to neighbor j of type t.545

Let T be the set of all node types adjacent to node i. We compute piÑj in two steps.546
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1. First, we compute the probability of the random walker jumping to a node of type t rather

than a node of a different type. wt is the weight of node type t as specified in W :

pt “
wt

ř

t1PT

wt1
.

2. Second, we compute the probability that the random walker jumps to node j rather than to

another adjacent node of type t. Let nt be the number of adjacent nodes of type t:

Mij “ piÑj “
pt
nt
.

After constructing M, we finally compute the diffusion profile through power iteration as

shown in Algorithm 1. The key equation is:

rpk`1q “

Restart walk
hkkkikkkj

p1´ αqs`

Continue walk...
hkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkj

αp rpkqM
loomoon

from node with out-edges

` s
ÿ

jPJ

rpkqj q
looomooon

from node without out-edges

.

At each step, the random walker can restart its walk at the drug or disease node according to547

p1´αqs or continue its walk. If the random walker continues its walk from a node with out-edges,548

then it jumps to an adjacent node according to αprpkqMq. If the random walker continues its walk549

from a node without out-edges (i.e. a sink node), then it restarts its walk according to αps
ř

jPJ

rpkqj q,550

where J is the set of sink nodes in the graph. At every iteration,
ř

i ri “ 1.551

Code for the power iteration implementation is available at github.com/snap-552

stanford/multiscale-interactome. We use a tolerance of ε “ 1ˆ 10´6.553
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Algorithm 1 Diffusion profiles through power iteration
% Initialize diffusion profile

rp0qi “ 1
|V |
@i

% While not converged

while
∥∥rpk`1q ´ rpkq

∥∥
1
ą ε do

% Start new walk at drug or disease node or continue walk.

rpk`1q “ p1´ αqs` αprpkqM` s
ř

jPJ

rpkqj q

end while

Predicting what drugs will treat a given disease with diffusion profiles. For a drug to treat a554

disease, it must affect proteins and biological functions similar to those disrupted by the disease.555

The diffusion profiles of the drug rpcq and the disease rpdq encode the effect of the drug and the556

disease on proteins and biological functions. Therefore, comparing rpcq and rpdq allows us to predict557

what drugs treat a given disease.558

For each drug and each disease, we compute the diffusion profile as described above. For559

each disease, we then rank-order the drugs most likely to treat the disease based on the similarity560

of the drug and disease diffusion profiles SIMprpcq, rpdqq and a series of baseline methods.561

We test five metrics of vector similarity:562

1. L2 norm:
b

ř

i |r
pcq
i ´ rpdqi |2,563

2. L1 norm:
ř

i |r
pcq
i ´ rpdqi |,564

3. Canberra distance:
ř

i
|rpcq

i ´rpdq

i |

|rpcq

i |`|rpdq

i |
,565

4. Cosine similarity: rpcq¨r(d)

}rpcq}2}r(d)}2
,566

5. Correlation distance: 1´ prpcq´rpcqq¨pr(d)´r(d)q

}pr(c)´r(c)q}2}pr(d)´r(d)q}2
.567

We additionally test two proximity metrics. In particular, we consider the visitation fre-568

quency of the drug node i in the disease diffusion profile as: r(d)
i . We also consider the visitation569

frequency of the drug node i in the disease diffusion profile multiplied by the visitation frequency570

of the disease node j in the drug diffusion profile: r(d)
i ˚ r(c)

j .571

Baseline metrics to predict what drugs will treat a disease. To predict what drugs will treat a572

given disease, we consider baselines that measure (1) the overlap between drug targets and disease573

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2020. ; https://doi.org/10.1101/2020.04.30.069690doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.30.069690
http://creativecommons.org/licenses/by-nc-nd/4.0/


proteins, (2) the overlap between the functions of drug targets and disease proteins, and (3) the574

state-of-the-art proximity metric on a molecular-scale interactome. First, we compute the “protein575

overlap” baseline which we define as the Jaccard Similarity between the set of drug targets T and576

the set of disease proteins S: |TXS|
|TYS|

. Second, we compute the “functional overlap” baseline which577

we define as SimIC which measures the semantic similarity between the GO terms U associated578

with the drug targets and the GO terms V associated with the disease proteins [96]. We tested 17579

functional overlap baselines, of which this was the best performing (Methods: Baseline metrics580

of functional overlap between drug targets and disease proteins) (Supplementary Fig. 5). Third,581

we compute the state-of-the-art proximity metric on a molecular-scale interactome which is the582

closest distance metric in [10,13]. Let T be the set of drug targets, S be the set of disease proteins,583

and lps, tq be the shortest path length between nodes s and t. The state-of-the-art proximity metric584

first computes the “closest” distance dpS, T q “ 1
|T |

ř

tPT minsPS lps, tq between S and T . Next,585

this distance is compared to a reference distance distribution which measures dpS, T q when S and586

T are randomly permuted to sets of proteins that match the size and degrees of the original disease587

proteins and drug targets in the network. Finally, the state-of-the-art proximity metric is computed588

by taking a z-score of dpS, T q with respect to the reference distribution: zpS, T q “ dpS,T q´µdpS,T q

σdpS,T q
.589

Baseline metrics of functional overlap between drug targets and disease proteins. We tested590

17 baseline methods that predict what drugs treat a disease by considering the biological functions591

affected by drug targets and disease proteins (Supplementary Fig. 5).592

First, we tested baseline methods that compare the functional overlap between drug targets593

and disease proteins. Let U and V be the sets of Gene Ontology (GO) terms associated with drug594

targets and disease proteins respectively. Let U 1 and V 1 be the multisets of GO terms associated595

with drug targets and disease proteins respectively. Let U2 and V 2 be the sets of GO terms enriched596

among drug targets and disease proteins according to Gene Set Enrichment Analysis (GSEA) re-597

spectively [89, 97]. Note that in the multisets U 1 and V 1, U 1i and V 1i correspond to the number of598

occurrences of the ith element in the multiset.599

We measure the following baselines:600

• The Jaccard Similarity or Intersection between the set of GO terms associated with the drug601

targets and the set of GO terms associated with the disease proteins: |UXV |
|UYV |

or |U X V |602

• The Jaccard Similarity or Intersection between the multiset of GO terms associated with the603

drug targets and the multiset of GO terms associated with the disease proteins:
ř

i minpU 1
i ,V

1
i q

ř

i maxpU 1
i ,V

1
i q

604
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or
ř

iminpU 1i , V
1
i q605

• The Jaccard Similarity or Intersection between the set of GO terms enriched among drug606

targets and the set of GO terms enriched among disease proteins according to Gene Set607

Enrichment Analysis [89, 97]: |U
2XV 2|

|U2YV 2|
or |U2 X V 2|608

• The Z-scored Jaccard Similarity or Intersection between the set of GO terms associated with609

the drug targets and the set of GO terms associated with the disease proteins: z
`

|UXV |
|UYV |

˘

or610

z
`

|U X V |
˘

611

• The Z-scored Jaccard Similarity or Intersection between the multisets of GO terms asso-612

ciated with the drug targets and the set of GO terms associated with the disease proteins:613

z
`

ř

i minpU 1
i ,V

1
i q

ř

i maxpU 1
i ,V

1
i q

˘

or z
`
ř

iminpU 1i , V
1
i q
˘

614

We compute reference distributions for z-scored metrics by following the approach in [10,615

13]. Specifically, we randomly permute the set of disease proteins S and the set of drug targets T616

to sets of proteins that match the size and degrees of the original disease proteins and drug targets617

in the network. We then generate the GO sets and multisets that correspond to the permuted S and618

T , compute the relevant baseline metric, and repeat this for random permutations of S and T to619

generate a reference distribution. Finally, we compute a z-score by comparing the baseline metric620

for the true S and T to the reference distribution.621

Second, we tested baseline methods that calculate the semantic similarity between the GO622

terms associated with the drug targets and those associated with the disease proteins [98]. Consider623

U and V , the sets of GO terms directly associated with drug targets and disease proteins respec-624

tively. Semantic similarity methods first define a similarity simpu, vq between a GO term directly625

associated with drug targets u and a GO term directly associated with disease proteins v. The626

similarity of the sets U and V are subsequently calculated by aggregating across the similarities of627

pairwise GO terms u and v.628

We used the following semantic similarity metrics as as they are among the most common629

and best-performing metrics in a variety of settings [98].630

• The Resnik Similarity [99, 100] between u and v measures the information content of631

the most informative common ancestor between u and v. simpu, vq “ Resnikpu, vq “632

ICrMICApu, vqs633
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– Let ppuq be the fraction of proteins in the multiscale interactome that are associated634

with a GO term u or its descendants. The information content IC of term u is defined as635

ICpuq “ ´ logrppuqs. The Maximum Informative Common Ancestor (MICA) between636

two GO terms u and v is defined as MICApu, vq “ argmax
xPancestorspu,vq

ICpxq.637

• simIC [96] integrates both the information content of GO terms and the structural in-638

formation of the GO hierarchy to determine the similarity between GO terms u and v:639

simpu, vq “ simICpu, vq “ 2 logrppMICApu,vqs
logrppuqs`logrppvqs

p1´ 1
1`ICrMICApu,vqsq640

• simGIC [101] which considers the information content of all common ancestors of the GO641

terms directly associated with the drug targets U and the GO terms directly associated with642

the disease proteins V . simpu, vq “ simGICpU, V q “
ř

xPApUqXApV q IC(x)
ř

xPApUqYApV q IC(x) .643

– Here, ApXq is the set of terms within X and all their ancestors in the GO hierarchy.644

We aggregated the Resnik Similarity and simIC across U and V by using the average, maxi-645

mum, and best match average approaches.646

• Average: 1
|U ||V |

ř

uPU

ř

vPV

simpu, vq647

• Max: max
u,vPUˆV

simpu, vq648

• Best Match Average [102]: 1
|U |`|V |

r
ř

uPU

max
vPV

simpu, vq `
ř

vPV

max
uPU

simpu, vqs649

Evaluating predictions of what drugs will treat a disease. We evaluate how effectively a model650

ranks the drugs that will treat a disease by using AUROC, Average Precision, and Recall@50.651

For each disease, a model produces a ranked list of drugs. We identify the drugs approved to652

treat the disease and, consistent with prior literature, assume that other drugs cannot treat the653

disease [11–14]. For each disease, we then compute the model’s AUROC, Average Precision, and654

Recall@50 values based on the ranked list of drugs. We report the model’s performance across655

diseases by reporting the median of the AUROC, the mean of the Average Precision, and the mean656

of the Recall@50 values across diseases.657

To ensure robust results, we perform five-fold cross validation. We split the drugs into five658

folds and create training and held-out sets of the drugs and their corresponding indications. We659

compute the above evaluation metrics separately on the training and held-out sets. Ultimately, we660

report all performance metrics on the held-out set, averaged across folds (Figure 2b).661
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Model selection and optimization of scalar weights. The diffusion profiles of662

each drug and disease depend on the scalar weights used to compute them W “663

twdrug, wdisease, wprotein, wbiological function, whigher-level biological function, wlower-level biological functionu and the664

probability α of continuing a walk. Similarly, how effectively diffusion profiles predict what665

drugs treat a given disease depends on the similarity metric used to compare drug and disease666

diffusion profiles. We optimize the prediction model across the scalar weights W , the probability667

of continuing a walk α, and the comparison metrics by performing a sweep and selecting the668

model with the highest median AUROC on the training set, averaged across folds.669

After initial coarse explorations for each hyperparameter, we sweep across 486 combina-670

tions of hyperparameters sampled linearly within the following ranges wdrug P r3, 9s, wdisease P671

r3, 9s, wprotein P r3, 9s, whigher-level biological function P r1.5, 4.5s, wlower-level biological function P r1.5, 4.5s, α P672

r0.85, 0.9s and set wbiological function “ whigher-level biological function ` wlower-level biological function. We also673

sweep across the seven comparison metrics described above. We repeat this procedure for both674

the multiscale interactome and the molecular-scale interactome to identify the best diffusion-675

based model for both. The optimal weights for the molecular-scale interactome are wdrug “676

4.88, wdisease “ 6.83, wprotein “ 3.21 with α “ 0.854 and use the L1 norm to compare rpcq and rpdq677

(Figure 2c, Supplementary Note 1). The optimal weights for the multiscale interactome arewdrug “678

3.21, wdisease “ 3.54, wprotein “ 4.40, whigher-level biological function “ 2.10, wlower-level biological function “679

4.49, wbiological function “ 6.58 with α “ 0.860 and use the correlation distance to compare rpcq680

and rpdq (Figure 2b, c). We utilize these optimal weights for the multiscale interactome for all681

subsequent sections. Optimized diffusion profiles are provided in Supplementary Data 10.682

Additional information on selecting the edge weight ranges is provided as Supplementary683

Note 2.684

Evaluating predictions of what drugs will treat a disease by drug category. We analyze the685

multiscale interactome’s predictive performance across drug categories by using the Anatomical686

Therapeutic Chemical Classification (ATC) [103]. We map all drugs to their ATC class by using687

DrugBank’s XML database “full database.xml” [30]. We use the second level of the ATC classi-688

fication and only consider categories with at least 20 drugs. For the drugs in each ATC Level II689

category, we compute the rank of the drugs for the diseases they are approved to treat. We conduct690

this analysis twice, first to understand the overall performance of the best multiscale interactome691

model (Supplementary Fig. 6) and second to understand the differential performance of the best692
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multiscale interactome model compared to the best molecular-scale interactome model using dif-693

fusion profiles (Figure 2c; Supplementary Fig. 7). The ATC classification for the drugs in our694

study is provided in Supplementary Data 7.695

Diffusion profiles identify proteins and biological functions related to treatment. For a given696

drug-disease pair, diffusion profiles identify the proteins and biological functions related to treat-697

ment. For each drug-disease pair, we select the top k proteins and biological functions in the drug698

diffusion profile and in the disease diffusion profile. To explain the relevance of these proteins and699

biological functions to treatment, we induce a subgraph on these nodes and remove any isolated700

components. We set k “ 10 for the case studies in Figures 2g, 2h, and 3f. We focus on these701

nodes since the nodes ranked most highly in the diffusion profiles have the highest propagated702

effect and are thus considered the most relevant to treatment. Additionally, these top nodes also703

capture a substantial fraction of the overall visitation frequency in the diffusion profile (i.e. about704

50% for Figures 2g, 2h). We additionally include the rankings of the top 20 proteins and biological705

functions for each case study as Supplementary Fig. 16-18.706

Validation of diffusion profiles through gene expression signatures. To validate drug diffusion707

profiles, we compare drug diffusion profiles to the drug gene expression signatures present in the708

Broad Connectivity Map [47, 48] (Figure 2f).709

We map drugs in the Broad Connectivity Map to DrugBank IDs using PubChem IDs, drug710

names, and the DrugBank “approved drug links.csv” and “drugbank vocabulary.csv” files [30].711

Drugs in the Broad Connectivity Map have multiple gene expression signatures based on the712

cell line, the drug dose, and the time of exposure. However, drugs only have a single diffusion713

profile. We thus only consider drugs where activity is consistent across cell lines and select a714

single representative gene expression signature for each drug. To accomplish this, we follow Broad715

Connectivity Map guidelines [47, 48] as described next. For drugs:716

1. We only consider drugs with similar signatures across cell lines (an inter-cell connectivity717

score >= 0.4) and with activity across many cell lines (an aggregated transcriptional activity718

score >= 0.3).719

2. We only consider drugs that are members of the “touchstone” dataset: the drugs that are720

the most well-annotated and systematically profiled across the Broad’s core cell lines at721

standardized conditions. The Broad Connectivity Map specifically recommends the “touch-722

stone” dataset as a reference.723
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For gene expression signatures, we utilize the Level 5 Replicate Consensus Sig-724

natures provided by the Broad Connectivity Map. Each gene expression signature725

captures the z-scored change in expression of each gene across replicate experiments726

(“GSE92742 Broad LINCS Level5 COMPZ.MODZ n473647x12328.gctx”). For these gene ex-727

pression signatures:728

1. We only consider genes whose expression is measured directly rather than inferred (i.e.729

“landmark” genes).730

2. We only consider signatures that are highly reproducible and distinct (distil cc q75 >= 0.2731

and (pct self rank q25 <= 0.1).732

3. We require that each signature be an “exemplar” signature for the drug as indicated by the733

Broad Connectivity Map (i.e. a highly reproducible, representative signature).734

4. We require that each signature be sufficiently active (i.e. have a transcriptional activity score735

>= 0.35) and result from at least 3 replicates (distil n sample thresh >= 3).736

5. In cases where multiple signatures meet these criteria for a given drug, we select the signature737

with the highest transcriptional activity score.738

The gene expression signatures we ultimately use for each drug are provided in Supplemen-739

tary Data 8.740

Finally, we compare the similarity of drugs based on their diffusion profiles and their gene

expression signatures. We compare the similarity of drug diffusion profiles by the Canberra dis-

tance, multiplied by -1 so higher values indicate higher similarity. We compare the similarity of

drug gene expression signatures based on the overlap in the 25 most upregulated genes U and 25

most downregulated genes D:

1

2

„

|Udrug1 X Udrug2|

|Udrug1 Y Udrug2|
`
|Ddrug1 XDdrug2|

|Ddrug1 YDdrug2|



.

We use rank transformed gene expression signatures and diffusion profiles. We only allow the741

comparison of gene expression signatures that are in the same cell, with the same dose, and at the742

same exposure time. Ultimately, we measure the Spearman Correlation between the similarity of743

the drugs as described by the drug diffusion profiles and the similarity of the drugs as described744

the gene expression signatures.745
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Compiling genetic variants that alter treatment. We compile genetic variants that alter treat-746

ment by using the Pharmacogenomics Knowledgebase (PharmGKB) [64]. PharmGKB is a gold-747

standard database mapping the effect of genetic variants on treatments. PharmGKB is manually748

curated from a range of sources, including the published literature, the Allele Frequency Database,749

the Anatomical Therapeutic Chemical Classification, ChEBI, ClinicalTrials.gov, dbSNP, Drug-750

Bank, the European Medicines Agency, Ensembl, FDA Drug Labels at DailyMed, GeneCard,751

HC-SC, HGNC, HMDB, HumanCyc Gene, LS-SNP, MedDRA, MeSH, NCBI Gene, NDF-RT,752

PMDA, PubChem Compound, RxNorm, SnoMed Clinical Terminology, and UniProt KB.753

We use PharmGKB’s “Clinical Annotations” which detail how variants at the gene level al-754

ter treatments. PharmGKB’s “clinical ann metadata.tsv” file provides triplets of drugs, diseases,755

and genetic variants known to alter treatment. Treatment alteration occurs when a genetic vari-756

ant alters the efficacy, dosage, metabolism, or pharmacokinetics of treatment or otherwise causes757

toxicity or an adverse drug reaction. We map genes to their Entrez ID using HUGO, drugs to758

their DrugBank ID using PharmGKB’s “drugs.tsv” and “chemicals.tsv” files, and diseases to their759

UMLS CUIDs by using PharmGKB’s “phenotypes.tsv” file. To ensure consistency with the ap-760

proved drug-disease pairs we previously compiled, we only consider (drug, disease, gene) triplets761

in which the drug and disease are part of an FDA-approved treatment. Ultimately, we obtain 1,223762

drug-disease-gene triplets with 201 drugs, 94 diseases, and 455 genes. All drug-disease-gene763

triplets are provided in Supplementary Data 9.764

Computing treatment importance of a gene based on diffusion profiles. We define the treat-

ment importance (TI) of gene i as the product of the visitation frequency of the corresponding

protein in the drug and disease diffusion profiles. For a treatment composed of drug compound c

and disease d, the treatment importance of gene i is:

TIpi|c, dq “ rpcqi ˚ rpdqi .

We define the treatment importance percentile as the percentile rank of TIpi|c, dq compared765

to all other genes for the same drug and disease. Intuitively, gene i is important to a treatment if766

the corresponding protein is frequently visited in both the drug and disease diffusion profiles.767

Comparing treatment importance of treatment altering genetic mutations vs other genetic768

mutations. We compare the treatment importance of genes known to alter a treatment with the769
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treatment importance of other genes (Figure 3b). In particular, we compare the set of (drug, disease,770

gene) triplets where the gene is known to alter the drug-disease treatment with an equivalently sized771

set of (drug, disease, gene) triplets where the gene is not known to alter treatment. We construct772

the latter set by sampling drugs, diseases, and genes uniformly at random that are not known to773

alter treatment from PharmGKB [64]. The drugs and diseases in all triplets correspond to approved774

drug-disease pairs. Thereby, we construct a distribution of the treatment importance for “treatment775

altering genes” and a distribution of the treatment importance for “other genes” (Figure 3b).776

Predicting genes that alter a treatment based on treatment importance. We evaluate the abil-777

ity of treatment importance to predict the genes that will alter a given treatment (Figure 3c). For778

each (drug, disease, gene) triplet, we use the treatment importance of the gene TIpi|c, dq to predict779

whether the gene alters treatment or not for that drug-disease pair (i.e. binary classification). We780

use the set of positive and negative (drug, disease, gene) triplets constructed previously (see Meth-781

ods: Comparing treatment importance of treatment altering genetic mutations vs other genetic782

mutations). We assess performance using AUROC and Average Precision (Figure 3c).783

Comparing treatment importance of genes that alter one drug indicated to treat a disease but784

not another. We analyze how often a gene has a higher treatment importance in the treatments it785

alters than in those it does not alter (Figure 3e).786

Formally, let i be a gene. Consider a triplet pd, caltered, cunalteredq of a disease d, a drug caltered

approved to treat the disease whose treatment is altered due to a mutation in i, and a drug cunaltered

approved to treat the disease whose treatment is not altered due to a mutation in i. Let ntriplets be

the total number of such triplets for gene i. For each gene i, we measure the fraction f of triplets

pd, caltered, cunalteredq for which the treatment importance of i is higher in the pcaltered, dq treatment than

in the pcunaltered, dq treatment, as shown below. We only consider genes for which ntriplets ě 100.

f
“

TIpi|caltered, d ą TIpi|cunaltered, dq
‰

“

ř

@pd,caltered,cunalteredq

1tTIpi|caltered, dq ą TIpi|cunaltered, dqu

ntriplets
.

Analyzing whether distant proteins can have common biological functions. We analyzed787

whether two proteins can be more distant than expected by random chance in a physical protein-788

protein interaction (PPI) network yet affect the same function (Supplementary Fig. 2). To run this789

analysis, we first compute the set of all protein pairs that are both present in the protein-protein790

interaction network described previously (Methods: Protein–protein interactions) and are also as-791
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sociated with a common biological function. We only consider direct associations of proteins to792

biological functions (i.e. we do not propagate associations up the GO hierarchy) in order to ensure793

that shared biological functions are specific and not generic (i.e. shared associations with the GO794

term ’Biological Process’).795

For each protein pair with a common biological function, we then:796

1. Compute the shortest path distance in the PPI network between these two proteins.797

2. Construct a reference distribution of shortest paths for these two protein pairs by following798

the approach in [10, 13]. Specifically, we randomly sample other proteins in the network799

with similar degree to the original proteins and measure the shortest path distance. These800

randomly sampled proteins do not necessarily share a common biological function.801

3. Using the true shortest path distance between the proteins and the random reference distribu-802

tion, we compute a z-score. The z-score captures whether the proteins with a shared function803

are closer or further away than expected by random chance in the PPI network.804

Construction of alternative multiscale interactomes that explicitly represent cells, tissues,805

and organs. We constructed three alternative multiscale interactomes which explicitly represent806

cells, tissues, and organs. In these alternative multiscale interactomes, the nodes and edges in the807

original multiscale interactome are all present. Additionally, (1) human cells, tissues, and organs808

are added as additional nodes; (2) edges between these cell, tissue, and organ nodes are added809

according to relationships defined in established anatomical ontologies; and (3) edges between GO810

biological function nodes and cell, tissue, and organ nodes are added according to relationships811

provided in Gene Ontology Plus (GO Plus) [104]. GO Plus maintains a curated set of relationships812

between the biological functions in GO and the cell, tissue, and organ nodes present in two key813

anatomical ontologies: Uberon and the Cell Ontology. We thus constructed three alternative mul-814

tiscale interactomes incorporating human subsets of Uberon, the Cell Ontology, and both Uberon815

and the Cell Ontology.816

1. Multiscale Interactome + Uberon: Uberon is an ontology covering anatomical struc-817

tures in animals [105, 106]. Uberon nodes include tissues (i.e. cardiac muscle tis-818

sue UBERON:0001133), organs (i.e. heart UBERON:0000948), and organ systems (i.e.819

cardiovascular system UBERON:0004535). We utilized GO Plus (i.e. “go-plus.owl”)820
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to link GO biological function nodes present in our original network to Uberon nodes821

present in a human-specific subset of Uberon (i.e. “subsets/human-view.obo”). Edges be-822

tween Uberon nodes, which encode anatomical relationships, were also added according to823

“subsets/human-view.obo”.824

2. Multiscale Interactome + Cell Ontology: The Cell Ontology is an ontology for the represen-825

tation of in vivo cell types [107, 108]. Nodes consist primarily of cell types and their hierar-826

chical relationships (i.e. epithelial cell CL:0000066, epithelial cell of pancreas CL:0000083,827

pancreatic A cell CL:0000171). We utilized a human-specific subset of the Cell Ontology828

previously prepared by the Human Cell Atlas Ontology [109]. We utilized GO Plus to link829

GO biological function nodes in our original network to Cell Ontology terms and the Cell830

Ontology (i.e. “cl-basic.obo”) to link Cell Ontology terms with one another.831

3. Multiscale Interactome + Uberon + Cell Ontology: The ”Multiscale Interactome + Uberon832

+ Cell Ontology” network contains all nodes and edges present in our original network as833

well as nodes and edges added via GO Plus, Uberon, and Cell Ontology as described above.834

Prediction of what drugs treat a given disease in alternative multiscale interactomes. We835

evaluate the ability of diffusion profiles to predict what drugs treat a given disease in the alternative836

multiscale interactomes (see Methods: Construction of alternative multiscale interactomes that837

explicitly represent cells, tissues, and organs). Given the presence of new node types, we modify838

the edge weight hyperparameters used in the calculation of diffusion profiles. We then sweep839

over the full set of edge weight hyperparameters according to the broad hyperparameter sweep840

described in Supplementary Note 2, in which we sample 586 combinations of hyperparameters841

sampled linearly in the range [1, 100]. The new sets of edge weight hyperparameters and their842

optimal values are present below:843

1. Multiscale Interactome + Uberon: The optimal weights for “Multiscale Interactome +844

Uberon” are wdrug “ 55.2, wdisease “ 27.3, wprotein “ 76.8, wbiological function “ 66.1, wuberon “845

82.2, whigher-level biological function or uberon “ 67.1, wlower-level biological function or uberon “ 45.7 with α “846

0.76 and use the correlation distance to compare rpcq and rpdq.847

2. Multiscale Interactome + Cell Ontology: The optimal weights for “Multiscale In-848

teractome + Cell Ontology” are wdrug “ 39.0, wdisease “ 17.1, wprotein “849
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72.4, wbiological function “ 60.0, wcell ontology “ 23.1, whigher-level biological function or cell ontology “850

25.7, wlower-level biological function or cell ontology “ 22.8 with α “ 0.83 and use the correlation dis-851

tance to compare rpcq and rpdq.852

3. Multiscale Interactome + Uberon + Cell Ontology: The optimal weights853

for “Multiscale Interactome + Uberon + Cell Ontology” are wdrug “854

60.2, wdisease “ 12.8, wprotein “ 42.3, wbiological function “ 78.4, wuberon “855

70.0, wcell ontology “ 91.7, whigher-level biological function or uberon or cell ontology “856

26.7, wlower-level biological function or uberon or cell ontology “ 76.1 with α “ 0.82 and use the cor-857

relation distance to compare rpcq and rpdq.858
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13. Guney, E., Menche, J., Vidal, M. & Barábasi, A.-L. Network-based in silico drug efficacy887

screening. Nature Communications 7, 10331 (2016).888

14. Wang, W., Yang, S., Zhang, X. & Li, J. Drug repositioning by integrating target information889

through a heterogeneous network model. Bioinformatics 30, 2923–2930 (2014).890

15. Luo, Y. et al. A network integration approach for drug-target interaction prediction and891

computational drug repositioning from heterogeneous information. Nature Communications892

8, 573 (2017).893

16. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph894

convolutional networks. Bioinformatics 34, i457–i466 (2018).895

17. Cheng, F., Kovacs, I. A. & Barabasi, A.-L. Network-based prediction of drug combinations.896

Nature Communications 10, 1197 (2019).897

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2020. ; https://doi.org/10.1101/2020.04.30.069690doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.30.069690
http://creativecommons.org/licenses/by-nc-nd/4.0/


18. Hu, Y. et al. Optimal control nodes in disease-perturbed networks as targets for combination898

therapy. Nature Communications 10, 2180 (2019).899

19. Firestone, A. J. & Settleman, J. A three-drug combination to treat BRAF-mutant cancers.900

Nature Medicine 23, 913–914 (2017).901

20. Zhao, S. & Iyengar, R. Systems pharmacology: network analysis to identify multiscale902

mechanisms of drug action. Annual Review of Pharmacology and Toxicology 52, 505–521903

(2012).904

21. Walpole, J., Papin, J. A. & Peirce, S. M. Multiscale computational models of complex905

biological systems. Annual Review of Biomedical Engineering 15, 137–154 (2013).906

22. van Hasselt, J. C. & Iyengar, R. Systems pharmacology: defining the interactions of drug907

combinations. Annual Review of Pharmacology and Toxicology 59, 21–40 (2019).908

23. Han, K. et al. Synergistic drug combinations for cancer identified in a CRISPR screen for909

pairwise genetic interactions. Nature Biotechnology 35, 463–474 (2017).910

24. Jia, J. et al. Mechanisms of drug combinations: interaction and network perspectives. Nature911

Reviews Drug Discovery 8, 111–128 (2009).912

25. Yu, M. K. et al. Translation of genotype to phenotype by a hierarchy of cell subsystems. Cell913

Systems 2, 77–88 (2016).914
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