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Abstract 9 

Reinforcement learning theories propose that humans choose based on the estimated values of 10 

available options, and that they learn from rewards by reducing the difference between the experienced 11 

and expected value. In the brain, such prediction errors are broadcasted by dopamine. However, choices 12 

are not only influenced by expected value, but also by risk. Like reinforcement learning, risk preferences 13 

are modulated by dopamine: enhanced dopamine levels induce risk-seeking. Learning and risk 14 

preferences have so far been studied independently, even though it is commonly assumed that they are 15 

(partly) regulated by the same neurotransmitter. Here, we use a novel learning task to look for 16 

prediction-error induced risk-seeking in human behavior and pupil responses. We find that prediction 17 

errors are positively correlated with risk-preferences in imminent choices. Physiologically, this effect is 18 

indexed by pupil dilation: only participants whose pupil response indicates that they experienced the 19 

prediction error also show the behavioral effect.  20 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2020. ; https://doi.org/10.1101/2020.04.29.067751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.29.067751
http://creativecommons.org/licenses/by/4.0/


 3 

Introduction 21 

Reward-guided learning in humans and animals can often be modelled simply as reducing the difference 22 

between the obtained and expected reward—a reward prediction error. This well-established 23 

behavioral phenomenon [Rescorla, 1972] has been linked to the neurotransmitter dopamine [Schultz, 24 

1997].  It has been shown that bursts of dopaminergic activity broadcast prediction errors to brain areas 25 

that are relevant for reward learning, such as the striatum, the amygdala, and the prefrontal cortex.  26 

Another behavioral phenomenon that has been well studied is the effect of uncertainty and risk on 27 

decision making [Kahneman, 2013]. Here again, a different line of research has established an 28 

association between dopamine and risk-taking: dopamine-enhancing medication has been shown to 29 

increase risk-seeking in rats [St Onge, 2009], and drive excessive gambling when used to treat 30 

Parkinson's disease [Voon, 2006] [Gallagher, 2007] [Weintraub, 2010]. More recently, it has been 31 

demonstrated that phasic responses in dopaminergic brain areas modulate moment-by-moment risk-32 

preference in humans: the tendency to take risks correlated positively with the magnitude of task-33 

related dopamine responses [Chew, 2019]. A family of mechanistic theories of the basal ganglia network 34 

provides an explanation for these risk effects [Mikhael, 2016] [Moeller, 2019]. According to these 35 

models, positive and negative outcomes of actions are encoded separately in direct and indirect 36 

pathways of the basal ganglia. The balance between those pathways is controlled by the dopamine 37 

level. An increased dopamine level promotes the direct pathway and hence puts emphasis on potential 38 

gains, thus rendering risky options more attractive. 39 

In summary, dopamine bursts are related to distinct behavioral phenomena—learning and risk-taking—40 

by way of 1) acting as reward prediction errors, affecting synaptic weights during reinforcement 41 

learning, and 2) inducing risk-seeking behavior directly. There is no obvious a priori reason for those 42 

functions to be bundled together; in fact, one would perhaps expect them to work independently, and 43 
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their conflation might lead to interactions, unless some separation mechanism exists. There have been 44 

different suggestions for such separation mechanisms: it has been proposed that the tonic level of 45 

dopamine might modulate behavior directly, while phasic dopamine bursts provide the prediction errors 46 

necessary for reward learning [Niv, 2007]. Alternatively, cholinergic interneurons might flag dopamine 47 

activity that is to be interpreted as prediction errors by striatal neurons [Berke, 2018]. However, it has 48 

also been suggested that the architecture of the basal ganglia is well set-up to both learn from reward-49 

prediction errors and use them to regulate risk-preferences [Mikhael, 2016] [Moeller, 2019]. 50 

Curiously, even though the multi-functionality of dopamine has been noted and separation mechanisms 51 

have been proposed, interference between the different functions has never been investigated 52 

experimentally. Here, we investigate this: if dopamine indeed provides both prediction errors for 53 

learning and modulates risk preferences, do these two processes interfere with each other, or are they 54 

cleanly separated by some mechanism? Can prediction errors induce risk-seeking? 55 

A proven method to provoke prediction-error related dopamine bursts in humans is to present cues and 56 

outcomes in sequential decision-making tasks, hence causing prediction errors both when options are 57 

presented, and at the time of outcome [Seymour, 2004] [Pessiglione, 2006] [Niv, 2012]. To test whether 58 

such prediction errors induce risk seeking, we used a learning task in which prediction errors are 59 

followed by choices between options with different levels of risk. If there was a clear separation of roles, 60 

then risk preferences should be independent of prediction errors. Incomplete separation, in contrast, 61 

should result in a correlation between risk preferences and preceding prediction errors. In particular, we 62 

hypothesized that positive prediction errors (expectations exceeded) should induce risk seeking, while 63 

negative prediction errors should lead to risk aversion. 64 

To consider the possibility that this effect might not appear equally strongly in all participants—which 65 

could be due to differences in behavioral strategy, neural information processing or risk- and learning-66 
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related traits—we also tracked pupil dilation, which is comparatively robust, and known to reflect 67 

surprising events such as prediction errors events [Preuschoff, 2011] [Browning, 2015] [Lawson, 2017] 68 

[Cavanagh, 2014]. In particular, we hypothesized that participants who experience stronger prediction 69 

errors, as indexed by pupil dilation, also show a stronger behavioral effect of risk preferences.  70 

Our analysis proceeds in three steps: first, we conduct a model-free analysis of behavioral data to look 71 

for effects on the group level—do prediction errors make participants more risk seeking on average? 72 

Second, we move on to uncover individual differences. The effect we are interested in is likely not 73 

expressed homogenously; therefore, we use a trial-by-trial learning model to determine the effect size 74 

for individuals. Thirdly, we harness these individual differences by linking the strength of the behavioral 75 

effect to pupil dilation. This way, we validate our model on independent data, as well as explore a 76 

potential reason for the identified individual differences.  77 
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Results 78 

The task 79 

Our task consisted of sequences of two-alternative forced choice trials. On each trial, after an inter-trial 80 

interval (ITI) of 1 s, two stimuli (fractal images, Fig 1A) were drawn from a set of four stimuli and shown 81 

to the participant, who had to choose one. Following the choice, after a short delay of 0.8 s a numerical 82 

reward between 1 and 99 was displayed under the chosen stimulus for 1.5 s. Then, the next trial began. 83 

Participants were instructed to try to maximize the total number of reward points throughout the 84 

experiment. The reward on each trial depended on the participant’s choice: each stimulus was 85 

associated with a specific reward distribution from which rewards were sampled. The four reward 86 

distributions associated with the four stimuli were approximately Gaussian and followed a two-by-two 87 

design: the mean of the Gaussian could be either high or low (60 or 40), and the standard deviation 88 

could be either large or small (20 or 5), resulting in four reward distributions in total (risky-high, risky-89 

low, safe-high and safe-low, Fig 2B). Each participant (N=27, 3 excluded, see Methods and Fig S1) 90 

performed four blocks of 120 trials. During each block, all six possible stimuli pairings occurred equally 91 

often. Each block used a new set of four stimuli, mapped to the same four distributions.   92 
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A                                                                                          B 93 

 94 

Fig 1: A) Task structure. On each trial, participants were shown two out of four possible stimuli. They had 95 

to choose one of the two, which resulted in a reward. The reward was sampled from a distribution linked 96 

to the chosen stimulus. During each trial, prediction errors occurred at two times (indicated by purple 97 

lines). B) Reward structure. Each reward distribution is linked to one stimulus and is sampled from if that 98 

stimulus was chosen. The reward distributions are approximately normal; their parameters follow a two-99 

by-two design: the mean could either be at 40 or at 60, the standard deviation could either be 5 or 20. 100 

 101 

During each trial two distinct prediction errors occur. At stimulus onset it is revealed to participants 102 

whether the potential reward on this trial will likely be above or below average. This can be determined 103 

by considering the difference between the learned means of the two available options and the average 104 

reward associated with all four possible options. A positive prediction error occurs when the displayed 105 

options promise a higher than average reward, while a negative prediction error occurs when the 106 

expected reward is lower than average.  This update of the reward prediction at stimulus onset will be 107 

called stimulus prediction error 𝛿𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠. Stimulus prediction errors have previously been investigated: 108 
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they are associated with phasic responses of dopamine neurons [Schultz, 1997], and have, for example, 109 

been used to assess the impact of dopamine on the formation of episodic memories [Jang, 2019]. After 110 

considering the options, the participant will make a choice, and be presented with a reward. The 111 

difference between the expectation and the actual outcome corresponds to a second reward prediction 112 

error, which we call the outcome prediction error 𝛿𝑜𝑢𝑡𝑐𝑜𝑚𝑒.  113 

In our task, risk corresponds to the variability of the rewards associated with a stimulus. The reward 114 

distributions associated with some options are broad, while those related to other options are narrow 115 

(Fig 2B). It is "risky" to pick a stimulus associated with a broad reward distribution, since outcomes might 116 

deviate a lot from the expected outcome. Correspondingly, it is "safe" to pick a stimulus with a narrow 117 

distribution, since the outcomes will mostly be as expected.  Note that some stimuli were matched to 118 

produce the same reward on average, while differing in variability. If participants have accurately 119 

learned the average reward of these options, then choices between those stimuli cannot be based on a 120 

value difference (since on average there is none); residual preferences must therefore be interpreted as 121 

risk preferences. Those choices between matched-mean stimuli were our way of reading out risk 122 

preferences, and we refer to such trials as matched-mean trials. In the other trials, one of the options 123 

provides substantially more reward than the other option (20 points difference on average). We refer to 124 

those trials as different-mean trials. 125 

Behavior 126 

To confirm that participants had understood the task and had learned the values associated with the 127 

four options, we first analyzed their choices in different-means trials. We observed a gradual shift from 128 

initial indifference to a strong preference for the high mean stimuli (proportion of correct choices after 129 

trial 40 > 0.5, t-test, t = 38.6, p = 1.73 x 10-24; see Fig 2A, first column). This suggests that participants 130 

understood the instructions and learned values accurate enough to maximize reward points.   131 
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A                                                                                    B 132 

 133 

C                                                                                          D 134 

 135 

Fig 2: A) Choice proportions. The bars mark the mean proportion of choices across the entire cohort, the 136 

black dots mark mean choice proportions for each participant. Panel 1 shows the proportions of choices 137 

between the high-mean stimulus and the low-mean stimulus after trial 40. Panels 2 and 3 show the 138 

proportions between the two high-mean stimuli (2, risky-high versus safe-high) and the two low-mean 139 

stimuli (3, risky-low versus safe-low), respectively.  B) Correlation between choice proportions. Each point 140 

represents one participant. If a point falls below the diagonal, the participant was more risk seeking for 141 

high-mean stimuli than for low-mean stimuli. C) Impact of stimulus prediction errors on risk preference. 142 
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Prediction errors and value estimates were obtained by fitting a Rescorla-Wagner model to the choice 143 

data. Choices in matched-mean trials were binned by participant, value difference and stimulus 144 

prediction errors. The proportion of risky choices was then averaged across all but the prediction error 145 

bin. The solid green line shows the residual dependency of proportion of risky choices on stimulus 146 

prediction errors (error bars indicate the standard error of the mean). This binning method controls for 147 

confounding effects related to incidental differences in learned values and differences between 148 

individuals. The dashed line was obtained using the same binning method on predicted choice 149 

probabilities, obtained through a logistic regression fitted to predict choices from value differences, 150 

outcome prediction errors and participant ID (see Methods for details). D) Impact of outcome prediction 151 

errors on risk: identical to C), except this time using outcome prediction errors on the previous trial 152 

instead of stimulus prediction errors as predictor. 153 

 154 

In addition to this clear preference for high-mean options, we found a weak but significant preference 155 

towards the risky stimulus in risky-high versus safe-high choices (Fig 2A, second column; t-test: p = 156 

0.0343, t = 2.23), and a weak but significant preference against the risky stimulus in risky-low versus 157 

safe-low choices (Fig 2A, third column; t-test: p < 0.0317, t = -2.27). This suggests that on average, 158 

participants acted risk-seeking in high reward contexts, and risk-averse in low reward contexts. In 159 

addition to this group-level analysis, we investigated how preferences differed between the matched-160 

mean conditions within each participant. We found that most of the participants were more risk seeking 161 

in the high-mean condition than in the low mean condition (Fig 2B; paired t-test: t = 3.11, p = 0.0045). 162 

These results are in line with previous findings [Wulff, 2018] [Madan, 2014], see Discussion for details. 163 

Next, we investigated whether these risk preferences could be due to prediction errors. Our hypothesis 164 

was that the dopamine release triggered by prediction errors might bias the participants' preferences 165 
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towards the risky option. To test this hypothesis, we fitted a basic Rescorla-Wagner (RW) model to each 166 

participant’s behavior to obtain trial-by-trial estimates of subjective values and prediction errors (see 167 

Modelling and Methods for model specifications and fitting procedure). We then extracted both the 168 

stimulus prediction error 𝛿𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠 and the outcome prediction error 𝛿𝑂𝑢𝑡𝑐𝑜𝑚𝑒, and checked whether 169 

these prediction errors were correlated with the risk preference displayed in the following choice. This 170 

was done by fitting logistic regressions to the choices recorded in matched-mean trials (see Methods for 171 

details of the procedure). We found that the probability of choosing the risky option was predicted by 172 

the stimulus prediction error, but not by the previous trial’s outcome prediction error (Stimulus 173 

prediction error: Fig 2C; chi-squared test, chi-squared = 8.00, df = 1, p: 0.00468. Outcome prediction 174 

error: Fig 2D; chi-squared test, chi-squared = 2.11, df = 1, p = 0.146). This suggests that the stimulus 175 

prediction error immediately before the choice (0.97 s delay on average, with standard deviation 0.51) 176 

but not the outcome prediction error on the previous trial (3.47 s delay on average, with standard 177 

deviation 0.51) modulates risk preferences on a trial-by-trial basis. 178 

Modelling  179 

Having established that there was a correlation between prediction errors and risk-seeking, we tried to 180 

capture the effect in a reinforcement learning model. We designed a model that tracks the stimulus-181 

specific mean rewards Q, as well as the stimulus-specific spreads S. More explicitly: 𝑄𝑖 represents an 182 

estimate of the average reward obtained after choosing stimulus 𝑖, while 𝑆𝑖 represents an estimate of 183 

the mean absolute deviation or “spread” of that reward. Spread is one way to quantify risk, since it 184 

measures how unpredictable the stimulus is. Our model updates Q using a conventional Rescorla-185 

Wagner rule, 186 

Δ𝑄𝑖 = 𝛼𝑄𝛿𝑜𝑢𝑡𝑐𝑜𝑚𝑒, 187 
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where 𝛿𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 𝑟 − 𝑄𝑖 is the outcome prediction error, and 𝛼𝑄 is the learning rate for value. The 188 

model updates the estimated spread S using a similar rule, 189 

Δ𝑆𝑖 =  𝛼𝑆(|𝛿𝑜𝑢𝑡𝑐𝑜𝑚𝑒| − 𝑆𝑖), 190 

where 𝛼𝑆 is the learning rate for risk. After sufficient burn-in, this rule produces S that fluctuate around 191 

the mean absolute deviation of the reward distributions, and hence provides an estimate of the risk 192 

associated with each stimulus. Our learning rules are analogous to plasticity rules that feature in a 193 

computational model of the basal ganglia (where the mean is encoded in the difference between 194 

synaptic weights of the direct and indirect pathway, while the spread is encoded in the sum of these 195 

weights) [Mikhael, 2016] [Moeller, 2019]. In those models, choices are based on subjective values V 196 

which are assembled from the mean rewards Q and the dopamine-weighted spreads S. Following these 197 

models, we define the subjective value of reward in the following equation, where the spread is 198 

weighted by the stimulus prediction error—which is indicative of dopamine activity—on that trial: 199 

𝑉𝑖 =  𝑄𝑖 + 𝛾  𝛿𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑆𝑖  (Eq. 1) 200 

where 𝛿𝑆𝑡𝑖𝑚𝑢𝑙𝑖𝑢𝑠 =
1

2
∑ 𝑄𝑖 − 𝑖∈𝑜𝑝𝑡𝑖𝑜𝑛𝑠  

1

4
∑ 𝑄𝑗𝑗  (the stimulus prediction error represents the change in 201 

reward expectation before and after the presentation of the options). Note that we include the stimulus 202 

prediction error, but not the outcome prediction error on the previous trial, because only the former 203 

showed an effect on choices in our previous analysis (see Fig 2C and 2D). The parameter 𝛾 thus captures 204 

the extent to which recent dopaminergic prediction errors might modulate risk preference.  205 

On every trial, subjective values V are computed from the learned Q and S for both available options. 206 

Those values are then softmax-transformed into a probability distribution, from which choices are 207 

sampled. This model, which we call Prediction Error Induced Risk Seeking (PEIRS), can be understood as 208 
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a generalization of the RW model, which is contained in it as a special case (𝛾 = 0 decouples risk from 209 

choices and recovers the conventional value based RW model). 210 

We fitted our PEIRS model (as well as a conventional RW model) to the choice data of each participant 211 

individually, to obtain estimates on the strength and direction of prediction error induced risk seeking 212 

for each participant (see Methods for details). A model comparison for each participant individually 213 

showed that 11 out of 27 participants were better described by PEIRS than by RW (Fig 3B). This means 214 

that for 11 out of 27 participants in our cohort (about 40 %), prediction error induced risk seeking is 215 

strong enough to merit extra parameters.  216 

We next investigated the posterior parameter distributions for 𝛾 that we obtained from the fit. We 217 

found that they are grouped around a positive mean significantly different from zero (Fig 3C; one-tailed 218 

t-test: t = 2.67, p = 0.0064). That 𝛾 tends to be positive across the cohort is in line with the dopaminergic 219 

interaction we propose. Note that the model did not feature any bias for 𝛾 to be positive; the positive 220 

tendency that we observe in the fitted values is due entirely to biases in our participant’s behavior. 221 

Overall, our basic analysis of behavior as well as the model comparison both suggest that there is a 222 

significant positive interaction between prediction errors and ensuing risk-seeking.  223 
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A                                                         B                                                                            C 224 

 225 

D                                                                                 E 226 

 227 

Fig 3: A) Schematic representation of our generative model. The latent variables (estimated mean 228 

rewards Q and mean spreads S) are depicted as pale-green circles; the observable variables (rewards r 229 

and choices c) correspond to white circles. Black arrows represent the dependencies between those 230 

variables. The model parameters are annotated in dark green. B) Probabilities that participant shows 231 

prediction-error induced risk seeking. Each bar indicates the probability that single a participant 232 

generated data according to the PEIRS model rather than generating data according to an RW model. 233 

Participants were sorted according to this probability. C) Parameter estimates extracted from the fit. 234 
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Estimates of the parameter 𝛾 from all participants are shown (green dots). The error bars represent the 235 

standard deviation of the corresponding posterior distribution. D) Prediction-error induced risk seeking in 236 

participants for which PEIRS wins the model comparison. The red solid line represents choice data of 237 

these participants, the dashed lines represent choice predictions extracted from model fits. Choice data 238 

and choice predictions are plotted in the same way as in Fig 2C and 2D, merely displaying posterior 239 

predictions from our generative models instead of predictions of simple logistic models. D) Prediction-240 

error induced risk seeking in participants for which RW wins the model comparison. Similar to C), but 241 

based on a complementary subgroup of participants. 242 

 243 

To check whether the model indeed captured the effect that it was intended to capture, we performed 244 

post-hoc simulations [Palminteri, 2017]. Using the posterior predictive density over choices that the we 245 

obtain as an output of the fit, we generated post-hoc predictions for all choices (i.e. we used the fitted 246 

models to predict probabilities for all choices). Such predictions were generated for all participants, both 247 

from the PEIRS model and the RW model, leaving us with three data sets: a data set simulated from the 248 

fitted RW model, a data set simulated from the fitted PEIRS model and the data set obtained from 249 

humans in our experiment. We then split all these data sets according to the model comparison results 250 

(i.e. whether a participant’s choices are best described by the PEIRS or by the RW model), and used the 251 

same binning scheme as for the recorded choices to check whether the two models predicted any 252 

dependency of risk preferences on reward prediction errors (Fig 3D and 3E, dashed lines).  253 

The behavior simulated from the RW model did not show any substantial dependency between 254 

prediction errors and risk-taking, even when fitted to participants whose choices were better explained 255 

by the PEIRS model (blue dashed lines in Fig 3D and 3E). The PEIRS model, on the other hand, produced 256 

an approximately linear dependency between risk-taking and prediction errors for the participants best 257 
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described by the PEIRS model, but did not produce any dependency for the participants best described 258 

by the RW model (red dashed lines in Fig 3D and 3E). The tendencies simulated from the PEIRS model 259 

coincide with the tendencies that were observed (experimentally observed tendencies correspond to 260 

the solid lines in Fig 3D and 3E; compare the thick lines to the blue dashed lines). We concluded that the 261 

PEIRS model successfully captured our participant’s risk preferences both qualitatively (linear upwards 262 

trend) and quantitatively (both intercept and slope coincide). The RW model, on the other hand, was 263 

not able to capture the risk preferences, even with fitted parameters.  264 

We ran three additional tests to check the robustness of our results and the validity of our conclusions. 265 

First, we assessed the reliability of our parameter estimates by performing a standard parameter 266 

recovery analysis for both models. We found that all parameters could be recovered with little 267 

distortion, for both models and realistic parameter settings (see Fig S2). Second, we tested whether 268 

reward predictions (rather than prediction errors) might be the cause of risk-seeking. A model where 269 

reward predictions induced risk-seeking did not fit the data as well as the PEIRS model. Additional 270 

analyses based on linear models confirmed that prediction errors are more likely than reward 271 

predictions to cause the observed risk preferences (see Fig S3). Third, we tested whether our results 272 

depended on of the linearity of the utility function. We found that the interaction between risk-seeking 273 

and reward prediction errors was present even when we accounted for a nonlinear utility function (see 274 

Fig S4). These tests suggest that our results are robust if assumptions are modified, and provide 275 

additional support for our conclusions. 276 

Pupillometry 277 

A range of studies have demonstrated a dilation of the pupil in response to surprising events 278 

[Preuschoff, 2011] [Browning, 2015] [Lawson, 2017] [Cavanagh, 2014]. Those phenomena have recently 279 

been synthesized into a coherent theory: pupil dilation is triggered by belief updates and scales with the 280 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2020. ; https://doi.org/10.1101/2020.04.29.067751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.29.067751
http://creativecommons.org/licenses/by/4.0/


 17 

mismatch between prior and posterior beliefs [Zénon, 2019]. We sought to capitalize on this effect, to 1) 281 

establish the occurrence of the two prediction errors during our task through a physiological marker, 282 

and 2) to understand the individual differences suggested by our behavioral modelling better. 283 

As a first step, we investigated whether pupil dilation reflected updates in reward expectation (i.e. 284 

prediction errors). We used the absolute value of the two task-related prediction errors, |𝛿𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠| and 285 

|𝛿𝑂𝑢𝑡𝑐𝑜𝑚𝑒|, as a measure of mismatch between prior and posterior reward expectation. Trial-by-trial 286 

estimates of those prediction errors were extracted from the PEIRS model fits. Regression analyses were 287 

used to determine whether pupil dilation after stimulus onset encoded |𝛿𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠|, and whether dilation 288 

after reward presentation encoded |𝛿𝑂𝑢𝑡𝑐𝑜𝑚𝑒|. To avoid confounding factors such as reward or outcome 289 

prediction errors, we censored all data points collected after reward presentation in the analysis of the 290 

stimulus prediction error. For both prediction errors, we found delayed phasic responses which peaked 291 

1.6 s after stimulus onset and 0.9 s after reward presentation, respectively (Stimulus prediction error: 292 

Fig 4A; t-test: t = 2.89, p = 0.0079. Outcome prediction error: Fig 4B; t-test: t = 4.61, p = 0.00010. 293 

Statistical significance was established through leave-one-out unbiased peak detection, see Methods). 294 

The responses were similar for both prediction errors, except for a longer delay between stimulus 295 

prediction error onset and the peak of the pupil response. There might be many reasons for this 296 

difference in delay. Among those, differences in information processing might play a role: generating a 297 

stimulus prediction error involves two stimuli, hence attention mechanisms, in addition to retrieval of 298 

value estimates from memory. Generating the outcome prediction error, on the other hand, just 299 

requires the processing of a number.  300 

We concluded that both prediction errors occur as assumed in our modelling, not only as cognitive 301 

variables, but as measurable physiological events with appropriate timing. This means that our model 302 

must at least partially represent the neural processes that occur during decision making, since it 303 

provided us with latent variables that are correlated with physiological variables in a meaningful way.  304 
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A                                                                                        B 305 

 306 

C                                                                                        D 307 

 308 

Fig 4: A) Pupil dilation encodes the magnitude of the stimulus prediction errors. The green line represents 309 

the regression coefficient across participants as a function of time, extracted from a mixed-effects model. 310 

Responses were aligned at stimulus onset. The shaded area indicates the standard error of the estimate, 311 

as provided by the regression model. For display, the trace was smoothed using spline interpolation. B) 312 

Pupil dilation encodes the magnitude of the outcome prediction errors. Similar to A), with responses 313 

aligned at reward presentation. C) Effect strength in behavior predicts effect strength in pupil dilation. 314 

The plot shows the correlation between the log-odds that a participant generated choices according to 315 
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the PEIRS model (x-axis) and the regression coefficient for the stimulus prediction error as a predictor of 316 

pupil dilation, at time of maximum effect strength (y-axis).  The coloring of the dots corresponds to the 317 

split of the cohort used in D). D) Group split to illustrate how behavior predicts pupil response. The red 318 

curve represents the mean pupil response across those participants that show strong prediction error 319 

induced risk-seeking (p(PEIRS) > 0.95); the blue curve represents the mean pupil response of all other 320 

participants. 321 

 322 

Next, we aimed to correlate individual differences in behavior with individual differences in pupil 323 

responses. Our behavioral modelling allowed us to stratify our cohort with respect to the strength of 324 

individual prediction-error induced risk seeking (see section Modelling). We quantified the effect 325 

strength through the logarithmic odds ratios of the probability that a participant is better described by 326 

the PEIRS model than by the RW model (see Fig 3A for a plot of those probabilities).  The strength of the 327 

pupil response was quantified through the respective correlation coefficient at the time of strongest 328 

effect (determined though leave-one-out peak detection to avoid bias). Using a linear model to relate 329 

pupil effect strength and behavioral effect strength, we found that participants responded stronger to 330 

stimulus prediction errors if they showed more pronounced prediction-error induced risk seeking in 331 

their behavior (Fig 4C, adjusted 𝑅2: 0.1864, p < 0.05). To better illustrate this, we split our cohort into 332 

two groups: those that showed significant prediction error induced risk seeking (i.e. p(RW) < 0.05, PEIRS 333 

group) and the rest (p(RW) > 0.05, RW group). While there is no noticeable response in the RW group, 334 

the PEIRS group shows a very pronounced effect (Fig 4D). Overall, this suggests that the degree to which 335 

some individual responds to the stimulus prediction error (as measured through the strength of the 336 

pupil response) is correlated to the strength of prediction error induced risk-seeking in the behavior of 337 

that individual.  338 
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To rule out a possible circularity that might confound these results (both the log-odds-ratio and the 339 

predictor variable for the response come from the same model fit), we conducted additional analyses 340 

based on estimates of the stimulus prediction error that were independent from the model 341 

(Supplemental Materials, Fig S5). We found that the effect appears unchanged for model-free estimates 342 

of the stimulus prediction error, which rules out the possibility of a model artefact.  343 
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Discussion 344 

Different behavioral phenomena—learning from prediction errors and biased risk-preferences --are 345 

attributed to the same neuromodulator, dopamine. Using a task where reward prediction errors are 346 

immediately followed by decisions that involve risk, we showed that reward prediction errors and the 347 

probability of risk-taking are positively correlated: positive reward prediction errors induce risk seeking, 348 

negative ones inhibit it. In particular, our results show that the strength of the reward prediction error 349 

(as indexed by pupil dilation) determines the effect on risk-preferences. This result suggests that the two 350 

roles of dopamine (teaching signal and risk modulator) interfere with each other. It provides evidence 351 

against the conjecture that the roles are well separated.   352 

Decision making under uncertainty has been extensively studied in behavioral economics. One main 353 

finding in this field, codified in prospect theory, is that humans tend to be risk-averse if decisions 354 

concern gains, and risk-seeking if decisions concern losses [Kahneman, 2013]. However, those classic 355 

findings rely on explicit knowledge about the probabilities involved in the decisions. Several more recent 356 

studies indicate that those tendencies reverse when risks and probabilities are learned from experience 357 

(i.e. by trial and error): if learning is incremental and based on feedback, humans tend to make risky 358 

decisions about gains and risk-averse decisions about losses [Wulff, 2018]. This phenomenon has been 359 

termed the description-experience gap. In cognitive neuroscience and psychology, some studies have 360 

reproduced this phenomenon [Madan, 2014], while others report risk aversion in the gain domain [Niv, 361 

2012]. This diversity might be associated with the degree of implicitness of the knowledge that is gained 362 

during the task: [Niv, 2012] used classical bimodal reward distributions (e.g. 40 points with probability 363 

50 %, 0 points otherwise) which participants might be able to resolve after a few trials. Here, we used a 364 

strongly random reward schedule (normal distributions, see Fig. 1B), which made anything but implicit 365 
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learning intractable. Our main behavioral findings (Fig. 2A and 2B) are in line with the description-366 

experience-gap, and differ to those of [Niv, 2012]. 367 

The dopamine-related interpretation of our results is based on previously reported causes and 368 

consequences of phasic dopamine signaling. On the causes side, it is well established that changes in 369 

reward anticipation, brought about by reward-predicting cues, provoke dopamine bursts that originate 370 

in brain areas such as VTA, and are broadcast to structures such as the striatum and the medial 371 

prefrontal cortex [Schultz, 1997][Seymour, 2004] [Pessiglione, 2006] [Niv, 2012]. In our task, such 372 

prediction errors occurred at the presentation of the available options. On the consequences side, it has 373 

been shown that phasic dopamine activity can affect risk-preferences in decision making [Chew, 2019]. 374 

Our task featured decisions between options that provided the same average reward, but different 375 

spreads of the individual rewards. Choices on those trials were not biased by value differences, and 376 

hence well suited to read out risk preferences. The simultaneous occurrence of these two dopamine-377 

related phenomena explains our result: risk-seeking followed positive prediction errors and risk aversion 378 

followed negative prediction errors.  379 

For our behavioral results, interpretations other than our dopaminergic explanation may be evoked: the 380 

behavior in a similar task [Madan, 2014] was interpreted as the result of memory replay: experiences 381 

("Obtained reward X after choosing option Y") might not only be used for immediate value updates but 382 

might also be stored in a memory buffer. This buffer can then be used for offline learning from past 383 

experiences in times of inactivity, such as during the inter-trial interval. It was proposed by [Madan, 384 

2014] that experiences are more likely to enter the buffer if they are extreme. If entering the buffer is 385 

biased in this way, then so are the values learned from replaying those experiences.  In our task, 386 

extreme might mean that the reward was extremely high or low. The corresponding bias would drive 387 

choice towards the stimuli that produce the highest rewards, and away from those that produce the 388 

lowest, and thereby lead to a pattern similar to the one we observed.  389 
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Which theory is closer to the truth? It is difficult to compare the memory theory directly to prediction-390 

error induced risk-seeking; it is unclear how to obtain trial-by-trial choice predictions from the memory 391 

model, which rules out a formal model comparison. Indeed, the memory model has so far only been 392 

fitted to and assessed based on summary statistics of a large collection of trials. Further, the memory 393 

model has so far not been equipped with a mechanistic underpinning and was therefore not validated 394 

on physiological variables such as pupil dilation. In contrast, prediction-error induced risk-seeking can be 395 

fitted trial-by-trail, allowing it to make predictions not only about summary statistics but about the 396 

evolution of preferences during the task as well as about the immediate impact of extreme events such 397 

as large prediction errors. The corresponding latent variables can be correlated with physiological 398 

variables, proving that they can explain aspects of pupil dilation in addition to behavior (Fig. 3C and 3D). 399 

If one interprets our results as resulting from dopaminergic interaction, one is forced to give up on the 400 

idea that direct and indirect dopaminergic effects are strictly separated. This conclusion is consistent 401 

with other recent findings: it has been shown that phasic dopamine correlates with motivational 402 

variables [Hamid, 2016] and movement vigor [da Silva, 2018] just as well as with reward prediction 403 

errors. These findings cast doubt on the separation into tonic and phasic and on separations in general. 404 

In summary, our findings show that there is an interaction between prediction errors and risk seeking 405 

that matches what one would expect from dopaminergic interactions. We further show that this effect 406 

is detectable even on the individual level in a sizable part of our group, and that between-participant 407 

variability in behavior can be linked to differences in pupil responses—the stronger the pupil response 408 

to stimulus prediction errors, the stronger the prediction error induced risk seeking.  409 
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Methods 410 

Participants  411 

We tested 30 participants (15 female, median age: 26, range: 18-42). Our participants did not suffer 412 

from visual, motor or cognitive impairments. They were recruited and tested voluntarily, all 413 

experimental procedures were approved by the local ethics committee. Our results are based on 27 of 414 

the 30 participants. Three participants were excluded from the analysis due to their failure to 415 

understand the task. We evaluated the participants’ understanding of the task by scoring their 416 

preferences in mixed-mean choices during the second half of the blocks. Participants were included in 417 

the analysis if they chose the high-valued option in more than 70 % of those trials (Fig S1). 418 

Logistic regressions 419 

Logistic regressions were conducted using mixed-effects modelling. The target variable 𝑦 was defined as 420 

𝑦 = 1 if the risky option was chosen and 𝑦 = 0 else. The predictors of interest were the prediction 421 

errors 𝛿𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠 and 𝛿𝑂𝑢𝑡𝑐𝑜𝑚𝑒 that preceded the choice. We further included 𝑄𝑟𝑖𝑠𝑘𝑦 𝑜𝑝𝑡𝑖𝑜𝑛 −422 

𝑄𝑠𝑎𝑣𝑒 𝑜𝑝𝑡𝑖𝑜𝑛  as a predictor to control for residual value differences. Individual differences were 423 

accounted for by a random intercept and random slopes for each predictor. The p-values we report for 424 

single predictors were obtained from chi-squared tests on likelihood ratio statistics. Those were 425 

computed through comparisons between the fit with all predictors included and the fit without the 426 

predictor of interest (but with the respective random slope). 427 

Models 428 

The RW model as well as the PEIRS model feature a softmax choice rule: 429 

𝑃(𝑐ℎ𝑜𝑖𝑐𝑒 =  𝑖) =
𝑒𝛽𝑉𝑖

∑ 𝑒𝛽𝑉𝑗
𝑗

 430 
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The models differ in how those subjective values V are constructed. In the RW model, the subjective 431 

value of an option is simply the learned value of this option: 𝑉𝑅𝑊,𝑖 = 𝑄𝑖. In the PEIRS model, the 432 

subjective value is determined according to Eq. 1. For both the PEIRS and the RW model we set the 433 

initial value 𝑄0 to the empirical mean of 50. For the PEIRS model the initial value of the spread 𝑆0 is left 434 

as a free parameter.All in all, the RW model features two free parameters (𝛼𝑄, 𝛽), while the PEIRS 435 

model features five (𝛼𝑄,  𝛼𝑆, 𝛽, 𝛾, 𝑆0).  436 

Model fit, comparison and regularization 437 

Fits and model comparisons were performed using the VBA toolbox [Daunizeau, 2014]. This toolbox 438 

implements a Variational Bayes scheme. It takes a set of measurements, a generative probabilistic 439 

model that describes how the measurements arise (which usually contains some latent, i.e. unobserved, 440 

variables) and prior distributions over the model parameters as input, and outputs among other things 441 

an approximate posterior distribution over model parameters, an approximate posterior distribution 442 

over the latent variables, and an upper bound for the model evidence. We fitted both models to each 443 

participant. 444 

Our model comparison is based on the approximate model evidences 𝐿(𝑚𝑜𝑑𝑒𝑙|𝑑𝑎𝑡𝑎) that the toolbox 445 

provides. Assuming that a participant generated data according one of the models, the probability of 446 

that participant using model 𝑚 is given by 𝑝(𝑚|𝑑𝑎𝑡𝑎) =
𝐿(𝑚|𝑑𝑎𝑡𝑎)

∑ 𝐿(𝑚′|𝑑𝑎𝑡𝑎)𝑚′  
 (see the documentation of the 447 

VBA toolbox or [Stephan, 2009] for reference). We use these probabilities as an index of effect strength. 448 

We estimate parameters using the posterior distributions over parameters that the toolbox outputs. 449 

Point estimates of parameters are obtained by computing the expected value of the posterior 450 

distributions. The same procedure is applied for latent variables, such as values and prediction errors. 451 
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The questions we pursue in this study involve physiological factors, such as dopamine and pupil dilation. 452 

To be useful to answer our questions and make valid predictions, it is important that our models 453 

operate in a physiologically plausible regime. One important requirement was that strong, systematic 454 

prediction errors should only occur during the learning phase at the beginning of each block, and not 455 

persist after choice behavior has stabilized. We found that our models did not fulfil this requirement by 456 

default, and hence introduced a regularization: from trial 61 onwards, we penalized prediction errors by 457 

introducing a prior centered around zero. This was implemented by adding an additional observed 458 

variable which was normally distributed around the outcome prediction error: 𝛿𝑜𝑢𝑡𝑐𝑜𝑚𝑒
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ∼459 

𝑁 (𝛿𝑜𝑢𝑡𝑐𝑜𝑚𝑒 , 𝜎2). We then provided the model with “measurements” 𝛿𝑜𝑢𝑡𝑐𝑜𝑚𝑒
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 0 for trials 61 to 100. 460 

During model inversion, those “observations” penalized  𝛿𝑜𝑢𝑡𝑐𝑜𝑚𝑒 that differed strongly from zero. This 461 

regularization applies to both the RW and the PEIRS model. 462 

Pupillometry 463 

We recorded time series of pupil diameters for every trial, using an EyeLink 1000 system. The raw 464 

measurements where preprocessed (smoothing, blink correction) using standard methods [Manohar, 465 

2019]. Then, the traces were aligned to the relevant temporal markers (stimulus onset, or reward 466 

onset). We used the mean over 500 ms prior to the alignment point to define a trial-wise baseline. All 467 

traces were divided and shifted by that baseline, resulting in traces reflecting the relative change of 468 

pupil diameter after the alignment point. Finally, traces were downsampled to 10 Hz. 469 

To uncover the pupil response to the stimulus prediction error, we aligned the pupil time courses at 470 

stimulus onset. After stimulus onset, participants would eventually make a choice (with variable delay, 471 

the median reaction time was 0.86 s) and receive a reward (with a 1 s delay) after their choice. Since the 472 

reward or the resulting outcome prediction error might confound our regression analysis, we censored 473 

out all data after reward presentation. This means that the number of observations on which 474 
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regressions can be based rapidly declines after the median reward presentation time, which is at 1.86 s 475 

after stimulus onset. Estimates obtained later are increasingly unreliable, since they are based on 476 

insufficient data. We hence conducted our analyses for the interval 0 s to 1.9 s after stimulus onset. This 477 

allows us to obtain reliable estimates of the statistics, while still avoiding confounding effects related to 478 

reward presentation. 479 

To test whether the pupil responses to the prediction errors are statistically significant, we needed to 480 

perform a test in a single time-point corresponding to the largest effect. To avoid circularity, the time of 481 

peak effect was identified using a leave-one-out method: We first calculated time-series of regression 482 

weights for each participant individually. Then, for each participant, we determined the peak effect 483 

strength of the response. To achieve this without introducing bias, we temporarily excluded the 484 

participant in question and determined the time bin in which the responses of the other participants 485 

where most significant. This was achieved by executing t-tests on the response strengths in each time 486 

bin, and selecting the bin with the smallest p-value. We then took the left-out participant’s response 487 

strength from that time bin, considering it their response strength at the peak of the group response.  In 488 

a final step, we pooled all those individual response strengths at peak effect and used a t-test to check 489 

whether they deviated significantly from zero.  490 
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 2 

Performance evaluation 9 

We assessed individual performances post-hoc, using the proportion of correct choices after trial 60 as 10 

the criterion. The data are provided in Fig S1. 11 

 12 

Fig S1: Individual performance evaluation. Every bar represents one participant. The height of the bar 13 

indicates the proportion of correct choices (i.e. choosing the high-valued option over the low-valued 14 

option) in the last 60 trials of each block. Three participants (corresponding to the first three bars in this 15 

graph) fell below our cutoff of 70 % and were hence excluded from the study. 16 

 17 

Parameter recovery 18 

To assess the reliability of the parameter estimates produced by our fitting procedure, and hence build 19 

confidence in the conclusions based on the fits, we conducted a parameter recovery analysis for both 20 

models. For each model and participant, we used the posterior distributions over parameter space 21 

obtained from the fit to get point estimates of the parameters that best describe the recorded behavior. 22 

The resulting parameter set was then used to run a simulation, aiming to produce simulated data with 23 

characteristics like those of the empirical data. As a next step, we fitted the same model that was used 24 
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 3 

for simulation to the simulated data, and again obtained estimates of the parameters, which could now 25 

be compared with the ground truth (the parameters that were used to simulate, and that were 26 

supposed to be recovered). For both models, we could robustly recover all parameters with minimal 27 

distortion (Fig S2). 28 

A 29 

               30 

B 31 

 32 

Fig S2: Parameter recovery for reinforcement learning models. A) RW model. Each panel corresponds to 33 

one parameter of the RW model. The x-axes correspond to the ground truth values (those used for the 34 

simulations), the y-axes correspond to the recovered parameters extracted from fits to the simulated 35 

data. Every dot corresponds to one participant. Above the plot, we report the correlation coefficient 36 

between the actual and the recovered parameters across the population. The black line indicates 37 

equality, i.e. 𝑥 = 𝑦. B) Parameter recovery for the PEIRS model. Same conventions as in A). 38 

 39 
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 4 

We conclude that our models do not suffer from ambiguity or under-determination/over-40 

parametrization. This means that both estimates of parameters and latent variables are to be taken as 41 

meaningful, unambiguous quantities. 42 

Might reward predictions cause risk preferences? 43 

We showed that seemingly irrational risk preferences can be explained by reward prediction errors 44 

(RPEs, changes in reward expectation) that occur immediately before the choice. A confounding variable 45 

in this analysis is the reward prediction (RP) itself: it could be that the anticipation of high rewards 46 

causes risk-seeking, while anticipating low rewards causes risk-aversion. If so, it would still seem as if 47 

RPEs cause risk preferences, since RPEs and RPs are highly correlated in our experiment (Fig S3 A). 48 

 49 

Fig S3: Reward predictions as a confounding variable. A) Correlation between trial-wise reward 50 

prediction errors (RPE) and the reward predictions (RP) that followed stimulus presentation. These 51 

prediction errors were estimated by fitting a standard RW model to each participant individually. B) 52 
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Model fitted to residual preferences. Risk preferences were predicted with a linear mixed effects model. 53 

Preference was modelled as a linear function of RP and RPE. Individual differences in regression 54 

coefficients were modelled as random effects of subject ID (𝑒 ~ 1 + 𝑅𝑃 + 𝑅𝑃𝐸 + (1 + 𝑅𝑃 + 𝑅𝑃𝐸|𝐼𝐷), 55 

the last term corresponds to individual differences in slopes and intercept). Residual preferences were 56 

binned according to predicted preferences, averaged per bin and are displayed as green bars. The 57 

predicted preferences are represented by the blue line. C) Relative log likelihoods of models with different 58 

sets of predictor variables. The bars indicate the increase in likelihood relative to a baseline model that 59 

used only random effects. D) Model comparison results on participant level. The bars represent the 60 

likelihood that the data recorded from a given participant was generated from the PEIRS model rather 61 

than the PIRS model. 62 

 63 

To test whether risk preferences are due to RPEs rather than RPs, we conducted two additional 64 

analyses. First, we used linear models to test which signal—RPEs or RPs—is a better predictor for risk 65 

preferences. We started by extracting preferences 𝑒 that could not be explained by standard learning 66 

effects. This was done by predicting choices 𝑐̂ on matched-mean trials with a standard RW model, and 67 

subtracting them from the measured choices 𝑐 (𝑐 = 1 when the risky option was chosen, and 𝑐 = 0 68 

otherwise). The residual preferences 𝑒 = 𝑐 −  𝑐̂ contain the risk preferences we seek to explain. Next, 69 

we used linear models to predict the residual preferences 𝑒. As predictors, we considered RPE, RP and 70 

the corresponding random effects. Taken together, those signals partially explain the residual 71 

preferences (adjusted R2: 0.0603, Fig S3 B). Finally, we checked how much explanatory power each 72 

signal contributes by comparing log likelihoods (LL) corresponding to different predictors. If risk 73 

preferences were due to RPEs, we should expect that 1) adding only RPEs should increase LL more than 74 

adding only RPs, and that 2) adding RPs on top of RPEs should not increase LL substantially. Point 2) 75 

specifically holds if RP does not contain additional relevant information about risk-preferences over and 76 
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above those that it shares with RPE. We found that 1) and 2) hold (Fig S3 C). This suggests that risk 77 

preferences are best explained by RPEs. In our experiment, they can also be predicted by RPs, but only 78 

because RPs are correlated with RPEs and thereby gain some of the RPEs’ predictive power. 79 

We run another analysis to corroborate this result: to test whether RPs could explain our data better 80 

than RPEs, we defined another trial-by-trial model (PIRS, “Predictions Induce Risk Seeking”) similar to 81 

the PEIRS model. PIRS is identical to PEIRS with one exception: it is the prediction and not the prediction 82 

error that interacts with risk in the decision rule (Eq. 1 in the main text). We then performed a model 83 

comparison between PIRS and PEIRS. We found that our data is more likely to be generated by PEIRS 84 

than by PIRS (odds ratio about 3:1 for PEIRS), and that most participants are better fitted by PEIRS (Fig 85 

S3 D). This result aligns with the result we obtained using linear models to predict residual preferences, 86 

and suggests that it is the RPE, and not the RP, that might cause risk preferences. 87 

Nonlinear utility  88 

To set up models such as ours, one must choose a way to relate the point score that participants are 89 

shown to the abstract reward signal that features in RL models (i.e. one must chose a utility function 90 

that maps points to reward). For our analysis, we chose a simple linear mapping. Thus, we implicitly 91 

assume that points would directly translate into reward. However, it has been shown that often, utility 92 

functions are not as simple—for example, in behavioral economics the utility of money is frequently 93 

modeled using concave functions. Crucially, nonlinear utility functions can lead to apparent risk 94 

preferences. Do our results and conclusions still hold if we drop the assumption of a linear utility 95 

function, and allow for non-linear utility curves? 96 

To test this, we started by choosing a parametric family of utility functions. We then determined the 97 

most likely utility function for each participant by fitting a RW-model with parametric utility to their 98 
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 7 

choices. Finally, we checked whether there was still a correlation between risk preferences and 99 

preceding prediction errors after the nonlinear utility curves were considered. 100 

To model non-linear utility curves, we chose an exponential family centered at 50 points, defined by 101 

𝑢𝜅(𝑥) = 50 +  
50

𝜅
( 1 −  𝑒−𝜅(

𝑥

50
−1)). 102 

The functions are shifted such that 𝑢(50) =  50 for all values of 𝜅, to keep initial values independent of 103 

𝜅 (see Fig S4 A for some exemplars). Next, we fitted standard RW models to the choices of each 104 

participants, using 𝑟𝜅 = 𝑢𝜅(𝑥). From this, we obtained estimates of 𝜅 for each participant. We found 105 

that almost all 𝜅 were positive (Fig S4 B), suggesting concave mappings from points to subjective value 106 

for almost all participants (Fig S4 C). Finally, we performed the same analysis as in Fig 2C in the main 107 

manuscript, checking whether there was a correlation between the likelihood of risk-seeking and the 108 

magnitude of the prediction error immediately before the choice. We found a significant correlation 109 

similar to the corresponding curve based on linear utility (Fig S4 D). This suggests that our findings are 110 

robust, and hold even when the assumption of linear utility is relaxed. 111 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2020. ; https://doi.org/10.1101/2020.04.29.067751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.29.067751
http://creativecommons.org/licenses/by/4.0/


 8 

 112 

Fig S4: Robustness under nonlinear utility mappings. A) Family of utility functions. The parameter 𝜅 113 

which controls the curvature is represented by color. B) Estimates for 𝜅. Mean and standard deviation of 114 

the posterior distribution of 𝜅 are indicated by a green dot and black lines. The statistics for the posterior 115 

distribution are provided for each participant individually, ordered by the mean of the posterior. C) 116 

Estimated utility curves. Posterior estimates in C) were converted in utility functions and superimposed. 117 

Each green line corresponds to the most likely utility function of one participant. The lines are 118 

transparent to aid visibility. D) Similar to Fig 2C in the main text, but with stimulus prediction errors and 119 

values taken form a RW model with the non-linear utility functions depicted in C). 120 

Ground truth pupillometry 121 

The predictor variables of our pupil-related regression analyses (the absolute stimulus prediction error 122 

and the absolute outcome prediction error) are model-dependent variables. One might thus suspect 123 

that the correlations displayed in Fig 4C and Fig 4D might be spurious: pupil responses are defined with 124 
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respect to a model variable (the stimulus prediction error) and are predicted by another model-125 

depended quantity (the logarithmic odds ratio). To rule out potential confounding effects, and to make 126 

sure that the pupil responses do in fact provide an external validation of our behavioral modelling, we 127 

conducted the same analyses based on the ground truth (model-free) prediction error instead of the 128 

model-based stimulus prediction error (Fig S5).  129 
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A                                                                                              B 130 

 131 

C 132 

 133 

Fig S5: Ground truth pupillometry results. A, B and C) same as Fig 4 A, C and D) but using model-134 

independent ground truth prediction error instead of the prediction error extracted from the model fit. 135 

 136 

We found that all results described in the main text hold similarly if the analysis is conducted based on 137 

the ground truth instead of the model-based variable. Our reasoning is thus not circular, and the result 138 

are not due to modelling artifacts. 139 
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The ground truth stimulus prediction error is defined as  140 

𝛿𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠,𝐺𝑇 = 𝐸 𝑜𝑝𝑡𝑖𝑜𝑛 𝑠ℎ𝑜𝑤𝑛(𝑅) −  𝐸 𝑎𝑙𝑙 𝑜𝑝𝑡𝑖𝑜𝑛(𝑅) =  𝐸 𝑜𝑝𝑡𝑖𝑜𝑛 𝑠ℎ𝑜𝑤𝑛(𝑅) − 50 141 

Since 𝐸 𝑜𝑝𝑡𝑖𝑜𝑛 𝑠ℎ𝑜𝑤𝑛(𝑅) could only take the values 40, 50 or 60 by experimental design, 𝛿𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠,𝐺𝑇 142 

could only take the values -10, 0 or 10, and the predictor variable |𝛿𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠,𝐺𝑇| could only take the 143 

values 0 or 10. Therefore, the ground-truth prediction error used for the control analyses is equivalent 144 

to a contrast between matched-mean and different-mean conditions. 145 
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