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Abstract 

Understanding the neurophysiology underlying pain perception in infants is central to 

improving early life pain management. In this multimodal MRI study, we use resting-state 

functional and white matter diffusion MRI to investigate individual variability in infants’ 

noxious-evoked brain activity. In an 18-infant nociception-paradigm dataset, we show it is 

possible to predict infants’ cerebral haemodynamic responses to experimental noxious 

stimulation using their resting-state activity across nine networks from a separate stimulus-

free scan. In an independent 215-infant Developing Human Connectome Project dataset, we 

use this resting-state-based prediction model to generate noxious responses. We identify a 

significant correlation between these predicted noxious responses and infants’ white matter 

mean diffusivity, and this relationship is subsequently confirmed within our nociception-

paradigm dataset. These findings reveal that a newborn infant’s pain-related brain activity is 

tightly coupled to both their spontaneous resting-state activity and underlying white matter 

microstructure. This work provides proof-of-concept that knowledge of an infant’s functional 

and structural brain architecture could be used to predict pain responses, informing infant 

pain management strategies and facilitating evidence-based personalisation of care. 

 

Introduction 

Newborn infants routinely undergo numerous painful procedures as part of standard clinical 

care shortly after birth during their stay in hospital 1. Their lack of verbal communication, brief 

extra-uterine medical history, and ambiguity in the behavioural and physiological responses 

that underpin infant pain scales 2, lead to a high degree of uncertainty in clinical decision-

making related to the treatment of infant pain. Understanding and anticipating an individual 

infant’s response to nociceptive input would advance efforts of personalised pre-emptive 

pain minimisation in this vulnerable population. In the experimental setting, a multitude of 

complementary behavioural, physiological, and neural measures are used in an attempt to 

quantify infant pain and pain sensitivity, with a high degree of individual variability observed 

across all modalities 3–6. In this study, we focus on newborn infants' cerebral haemodynamic 

responses to experimental nociceptive input recorded using functional magnetic resonance 

imaging (fMRI). We test whether infants’ response amplitudes can be predicted from their 

resting-state brain activity and whether the amplitudes are associated with underlying white 
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matter microstructure. The inherent limitation of small sample sizes in infant fMRI pain 

studies is mitigated by identifying consistent findings in a large independent age-matched 

sample from the Developing Human Connectome Project (dHCP) dataset 

(http://www.developingconnectome.org). 

 

A high degree of correspondence between resting-state and task-related brain activities has 

been observed in adult fMRI studies 7,8. In adults, fMRI-recorded resting-state brain activity 

has been observed to be a distinguishing feature of an individual's brain functionality 9, and 

has been used to predict individuals' task-related brain activity under both experimental 10 

and clinical conditions 11. While analogous studies have not been conducted in the newborn 

infant population, large-scale resting-state networks are detectable using fMRI from birth and 

appear to correspond to adult canonical resting-state and task-response networks 12,13, 

suggesting a similar correspondence could exist at this early stage of development. Using a 

cohort of 18 healthy newborn infants, we replicate large-scale resting-state networks that 

have previously been characterised in an independent age-matched subset of the dHCP 

dataset 14. The amplitudes of spontaneous activity of these networks were then used to 

predict the infants' cerebral haemodynamic response amplitudes in response to an 

experimental nociceptive stimulus, in a cross-validated manner. 

 

Previous studies in infants have demonstrated the sensitivity of infant noxious-evoked 

cerebral activity to sleep state 15 and physiological stress 16. To disambiguate temporally 

stable trait effects, arguably of higher relevance for clinical pre-emptive decision making, 

from temporally transient state effects, we assessed the correlation between infants’ 

nociceptive haemodynamic response amplitude and underlying white matter microstructure 

using diffusion MRI (dMRI) data. These white matter microstructural features will reflect the 

integrity of developing structural connectivity, which constrains infants' noxious-evoked 

responses. Due to the dHCP dataset’s larger numbers, we used it to explored possible 

structure-function relationships across multiple white matter tracts for three microstructural 

parameters: mean diffusivity (MD), fractional anisotropy (FA), and mean kurtosis (MK). 

Predicted noxious-response amplitudes were generated from the dHCP infants’ resting-state 

data using the resting-state-based prediction model trained in our 18-infant nociception-

paradigm dataset. Structure-function associations identified in the dHCP dataset were 
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subsequently tested and validated in our nociception-paradigm dataset. Within the dHCP 

dataset, we found robust statistically significant negative correlations between (predicted) 

noxious-response amplitudes and the white matter MD of five bilateral tracts, suggesting 

infants with larger responses had more structurally mature connectivity. This negative 

correlation between (observed) noxious-response amplitudes and MD was directly confirmed 

within the nociception-paradigm dataset. This structure-function relationship, consistently 

identified in two independent datasets, suggests the infants’ haemodynamic responses are 

dependent on specific white matter microstructural features, likely white matter myelination 

or fibre packing density, and thus are temporally stable trait effects. 

 

This work provides new insight into the neurophysiological basis for normative variability in 

the cerebral response to nociceptive input in a group of healthy newborn infants. A 

nociception-related neural structure-function relationship is revealed, and tight coupling 

between an infant’s resting-state and noxious-response neural activities provides proof-of-

concept that an infant’s resting-state brain activity during periods which are free of 

nociceptive input can be used to make accurate predictions about their brain response to 

nociceptive stimuli. 

 

Results 

Infants displayed wide variability in haemodynamic response amplitude to nociceptive 

input 

We quantified the change in brain activity evoked by a mild experimental noxious stimulus to 

the foot in 18 healthy newborn infants (Figure 1). The cerebral haemodynamic response to 

the 128 mN pinprick was highly variable between infants, and included both negative (3 of 18 

infants) and positive (15 of 18 infants) blood oxygen level dependent (BOLD) responses 

(Figure 1 heat maps). Summarising each infant’s noxious-response map relative to the group 

average response map, the relative response amplitudes ranged from -0.87 to 5.60 (Figure 1 

scalar values). 

 

In each infant, the noxious-evoked BOLD response was well fit by the infant double gamma 

haemodynamic response function (HRF) for both non-negligible positive and negative 
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response amplitudes (Supplementary Information: Noxious-response HRF fit assessment). 

There were no obvious signs of gross artefactual errors, such as head motion-related spikes 

or variable response latencies, suggesting that the HRF-estimated noxious-response 

amplitudes reflect physiologically meaningful differences in the cerebral haemodynamic 

response amplitude to the noxious input. 

 

Nine resting-state networks were replicable across the nociception-paradigm and dHCP 

datasets 

In the same cohort of 18 infants, nine resting-state networks were robustly identified from 

separate resting-state scans using probabilistic functional mode analysis 17,18 (Figure 2). These 

included three sensory and motor networks (two visual, two auditory, and two somatomotor 

networks) and three cognitive networks (default mode, dorsal attention, and executive 

control networks). To consider a network robust and suitable for inclusion in the subsequent 

analysis, networks needed to be consistent across both the nociception-paradigm cohort of 

18 infants (Figure 2 top row) and a large independent cohort of 242 age-matched infants that 

were collected as part of the dHCP and analysed using the same analytical approach (Figure 

2 bottom row). Matched networks were highly consistent between datasets with spatial 

Pearson correlation coefficients between unthresholded maps ranging from 0.63 to 0.90 

(mean = 0.78) (Figure 2 scalar values). 

 

Resting-state network amplitudes predicted noxious-response amplitudes 

Infants’ whole-brain noxious-response amplitudes (Figure 1 scalar values) were predicted 

from their task-free resting-state network amplitudes with statistically significant prediction 

accuracy (Figure 3 and Table 1 Resting state). The resting-state network amplitudes were 

quantified using multiple regression of the nine dHCP networks (Figure 2) onto each infant’s 

resting-state data, and each resulting network timeseries summarised as an amplitude using 

the median absolute deviation, which ensures robustness to outliers. Using a support vector 

regression (SVR) model, predictions were generated in a leave-one-out cross-validation (LOO-

CV) approach, including cross-validated confound regression for several confound variables. 

Measures of prediction accuracy (Table 1) were tested for statistical significance using 

permutation testing. 
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Three resting-state imaging confounds, which included head motion and cerebrospinal fluid 

(CSF) and white matter amplitudes, were additionally tested but were not predictive of the 

infants’ noxious-response amplitudes (Figure 3 and Table 1 Confounds). Similarly, six non-

fMRI variables (henceforth named clinical variables), which included postmenstrual age 

(PMA), gestational age (GA), postnatal age (PNA), birth weight, total brain volume (TBV), and 

sex, were tested and were not predictive (Figure 3 and Table 1 Clinical variables). For both 

the resting-state imaging confounds and the clinical variables, predictions were centred on 

the LOO-CV training set mean noxious-response amplitudes (Figure 3 Confounds and Clinical 

variables). The lack of association between the noxious-response amplitudes and the resting-

state imaging confounds suggested that the predictive capacity of the resting-state network 

amplitudes was not mediated by undesirable features of resting-state data, but rather 

appeared to be mediated by the correspondence between an individual infant’s resting-state 

and noxious-evoked brain activities. These brain function similarities could not be explained 

by the infant’s age, birth weight, brain volume, or sex. 

 

Additionally, the number of resting-state network timeseries outliers (an indicator of resting-

state network timeseries quality) was assessed and found to be unrelated to infants’ noxious-

response amplitudes (Supplementary Information: Resting-state network timeseries outlier 

assessment). Finally, univariate correlation analyses between noxious-response amplitudes 

and all individual resting-state network amplitudes revealed that the relationship was limited 

to positive correlations with specific sensory and motor networks, and thus unlikely driven by 

potentially undesirable global signal properties (Supplementary Information: Common fMRI 

global signal confound assessment). 

 

Noxious-response amplitudes were associated with underlying white matter mean 

diffusivity 

The SVR prediction model was trained on all infants in the nociception-paradigm dataset 

(n=18) to map from confound-adjusted resting-state network amplitudes to confound-

adjusted noxious-response amplitudes. Using this model, predicted noxious-response 

amplitudes were generated for a 215-infant age-matched sample from the dHCP dataset 

using an identical approach for extracting resting-state network amplitudes and imaging 

confounds. The distribution of predicted noxious-response amplitudes in the dHCP dataset 
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closely matched the distribution of the observed noxious-response amplitudes in the 

nociception-paradigm dataset (Figure 4 grey and blue histograms). These predicted noxious-

response amplitudes were used for the structure-function analysis exploratory arm due to 

the large sample size. Findings were subsequently confirmed in the smaller nociception-

paradigm dataset, which has true noxious-response amplitudes, constituting the structure-

function analysis confirmatory arm. 

 

In the dHCP dataset, we performed an exploratory analysis to assess three dMRI 

microstructural parameters (mean diffusivity, fractional anisotropy, and mean kurtosis) 

across 16 bilateral white matter tracts. We found that the predicted noxious-response 

amplitudes were statistically significantly negatively correlated with mean diffusivity (MD) in 

five white matter tracts: anterior thalamic radiation (atr), corticospinal tract (cst), forceps 

minor (fmi), superior thalamic radiation (str), and uncinate fasciculus (unc) (Figure 4 grey bar 

plot and three maps; Supplementary Information: Univariate correlations between noxious-

response amplitudes and dMRI features; Supplementary Figure 7). The first principal 

component of MD across these five tracts (MD PC1) accounted for 84.5% of the cross-infant 

variance, and as expected, was negatively correlated (r = –0.25) with the predicted noxious-

response amplitudes (Figure 4 grey scatter plot). In summary, we used the large dHCP 

exploratory dataset to identify a network of 5 white matter tracts that have specific 

microstructural properties (characterised by their MD) that relate to the infants’ predicted 

amplitudes of noxious-evoked brain activity. 

 

To validate these exploratory findings, we tested whether the actual noxious-evoked brain 

activity recorded in the infants in the nociception-paradigm dataset was also dependent on 

the same structural brain properties.  We found that for each of the 5 white matter tracts the 

negative correlation coefficients between the MD of these tracts and the noxious-response 

amplitudes were present (Figure 4 blue bar plot). Additionally, MD PC1 accounted for 88.28% 

of the between-infant variance, and was statistically significantly negatively correlated with 

infants’ noxious-response amplitudes: r = –0.45, p-value = 0.038 (Figure 4 blue scatter plot). 

Thus, within our nociception-paradigm dataset, 20% (Pearson r2) of the between-infant 

variation in noxious-response amplitudes could be explained by the mean diffusivity of these 

five specific white matter tracts. 
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Discussion 

This study demonstrates that individual variability in newborn infant pain-related brain 

activity is dependent on the structural and functional architectures of the brain. By applying 

a mild experimental noxious stimulus to the infant’s foot, we quantified pain-related changes 

in brain activity, which are known to be similarly evoked by a range of tissue-damaging 

medical procedures, such as blood sampling, vaccinations, and cannulations 3,19,20. The tightly-

controlled stimulus used in this study does not cause behavioural distress 3, but activates Ad-

fibres in the periphery and elicits noxious-evoked brain activity in the cerebral cortex 15,21,22, 

making it a useful experimental tool to better understand infant pain. 

 

We took a multimodal MRI approach, using resting-state fMRI and white matter dMRI to 

understand between-subject differences in the amplitude of an infant’s cerebral response  to 

a nociceptive input. We have shown that noxious-evoked brain activity is tightly coupled to 

resting-state network activity, and that the strength of this coupling is sufficiently robust to 

drive out-of-sample predictions. By observing a structure-function relationship between 

noxious-response activity and white matter microstructure, replicable in two independent 

datasets, we show that the infants’ observed noxious-response amplitudes also reflect 

specific stable trait effects, such as white matter myelination and fibre packing density. The 

ability to predict an infant’s trait cerebral haemodynamic response to nociceptive input from 

their resting-state brain activity highlights the potential use of infant resting-state brain 

activity to inform decision-making regarding pain management strategies for newborn 

infants. 

 

Interpreting the newborn infant cerebral haemodynamic response amplitude to nociceptive 

input is challenging due to the lack of verbal report of the infants’ subjective experience. Here, 

the flexibility of MRI has allowed the identification of several novel neural correlates of the 

noxious-response amplitudes. In this study we observe a positive correlation between the 

amplitude of the noxious-response and the amplitude of resting-state network activity in 

sensory and motor networks in a group of healthy term-aged infants (Supplementary Figure 

4). Given that the developmental trend from infancy to adulthood (observed using fMRI) is 
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increasing haemodynamic response amplitude 23, this may suggest that the higher amplitude 

responses seen in some infants may reflect their increased structural and functional brain 

maturity. A number of published studies support this hypothesis. Using near-infrared 

spectroscopy to measure haemodynamic responses to pain in the perinatal period, the 

amplitude of these responses was also observed to progressively increase with age 15. And 

studies using fMRI to observe the developmental progression of resting-state activity have 

also found increased sensory and motor (and cognitive) network functional connectivity 

strength and activity amplitude with increasing age 24,25. While the structural correlates tested 

in our nociception-paradigm infant dataset demonstrated statistically significant negative 

correlation between noxious response amplitude and white matter MD, clear trends existed 

for both MD and FA. In both the nociception-paradigm and dHCP datasets, infants with larger 

noxious-response amplitudes (or for the dHCP data, larger predicted values) had smaller MD 

and larger FA values throughout the brain (Supplementary Figure 7). White matter MD 

decreases and FA increases throughout development into adulthood 26, and similar to the 

functional measures, these developmental trends are discernible within the perinatal period 
27. The combination of negative MD and positive FA correlations suggest specific structural 

maturational influences, such as increasing white matter myelination, or fibre packing 

density, or both. 

 

Taken together, the functional resting-state and structural white matter correlates suggest 

the infant noxious-response amplitude is a reflection of brain maturity, with larger response 

amplitudes indicating a more mature brain and negative and negligible response amplitudes 

indicating a more immature brain. This neural maturity hypothesis is consistent with the 

concept that infants’ noxious-response amplitudes are maturity dependent trait effects due 

to their dependency on underlying microstructure. This also suggests a plausible explanation 

as to why the infant’s resting-state activity can be used to predict the amplitude of the infants 

noxious-evoked brain response: both the activity levels recorded at rest and in response to 

stimulation are a function of each infant’s cerebral maturity and thus closely reflect each 

other due to a common underlying cause. Assuming increasing age is a reasonable proxy for 

increasing maturity, one can view an infant’s age as an imperfect indicator of the individual 

infant’s neural maturational state. Nevertheless, it is clear that two perfectly age-matched 

infants would not be expected to be perfectly matched for maturational state. The results of 
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the current study suggest that a specific subset of MRI-measurable features allow us to detect 

individual variability in the maturity of the structural and functional neural architecture of the 

infant brain, which is not fully captured by alternative proxy indicators of neural maturity, 

including age and brain volume (Supplementary Figure 6). How well this hypothesis 

generalises to infants outside of the studied age-range or to non-healthy non-normative 

populations, such as infants born very prematurely then studied at ages 36-42 weeks PMA, 

would be a highly informative route of enquiry. 

 

Further understanding of the biological interpretability of the noxious-response features will 

be required to appreciate the neurophysiological basis for this observed individual variability. 

The mild experimental stimulus used in this study likely evokes a multidimensional response 

profile in the infant brain including sensory discriminative aspects such as sharpness localised 

to the foot, cognitive aspects such as salience and attention, motor aspects such as post-

stimulus movement, and potentially emotional aspects such as mild negative emotional 

valence. Disambiguating which aspect of the cerebral response is predictable from resting-

state activity will be a challenge due to the limited behavioural repertoire of infants. However, 

it is possible to develop a principled approach for noxious-response feature extraction that 

could decrease this ambiguity and improve biological interpretability. There are now several 

candidate fMRI neural signatures for distinct components of adult pain and negative affect 

that could be applied to infant noxious-response data 28–32, and this is currently being actively 

researched by our group. Additionally, the reported functional coupling between infant 

resting-state and stimulus-response activities is currently limited to the nociceptive stimulus 

modality employed in this study. In adults, this functional coupling has been demonstrated 

for a wide range of tasks 7,10,33, and we imagine a similar generalisability of resting-state 

coupling to stimulus responses would be possible in newborn infants. While “task” fMRI 

experimental designs are severely limited in newborn infants, previous studies using non-

nociceptive stimuli, such as non-noxious touch 34, auditory 35, and visual 36 stimuli have 

demonstrated the feasibility of a multimodal experimental design to test this directly. Finally, 

the functional coupling results may not generalise to premature infants younger than 35.9 

weeks PMA, the youngest infant included in the present cohort. These younger infants will 

have less mature structural and functional brain architectures and poorer neurovascular 

coupling 37,38, which would need to be considered when investigating functional coupling. 
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A noteworthy feature of this study is the use of a larger publicly available multimodal dataset 

to enhance the findings within our smaller specialised nociception-paradigm dataset. This 

approach helps address three major challenges inherent to infant fMRI pain studies: limited 

sample size, limited literature base, and temporal stability. While these issues are not unique 

to infant fMRI pain studies, they are particularly challenging because of the combination of 

population and paradigm. First, small sample sizes are known to result in highly variable and 

unreliable accuracy in cross-validated prediction analyses 39,40. To validate the accuracy of our 

small sample size prediction model, we applied it to a sample of the dHCP dataset. Using 

predicted pinprick responses, we identified novel structure-function relationships that were 

subsequently confirmed in our nociception-paradigm dataset, underscoring the accuracy and 

meaningfulness of our prediction model’s outputs. Second, the limited literature base in 

newborn infant fMRI is highly problematic if researchers wish to engage in non-exploratory 

hypothesis-driven research. To date, there are only five newborn infant fMRI studies using 

nociception paradigms 21,41–44, two of which are technical papers looking at approaches to 

fMRI data acquisition 43 and analysis 41. To overcome the limited knowledge base in which we 

can formulate well-defined hypotheses to understand the noxious-related structure-function 

MRI associations in newborn infants, we used an exploratory-confirmatory analysis approach. 

Exploratory analyses were performed across a wide range of white matter tracts and diffusion 

parameters in the larger sample dHCP dataset in order to identify candidate associations, 

which were subsequently directly tested and confirmed in the smaller sample nociception-

paradigm dataset. This two-armed approach allowed us to formulate data-driven hypotheses 

that could subsequently be empirically confirmed without double-dipping. Third, directly 

establishing the temporal stability of infants’ haemodynamic response amplitude to 

nociceptive input would involve multiple within-subject recordings, which is often not a viable 

approach. While there are studies in adults 9,45 demonstrating the temporal stability of static 

resting-state functional connectivity metrics (given reasonable data quality), analogous 

studies in neonates do not exist. We tested for temporal stability of noxious-response 

amplitudes through association with white matter microstructure, which is insensitive to 

wakefulness and physiological stress states, but highly sensitive to the integrity of developing 

structural connectivity, which constrains infants' noxious-evoked responses. Using the large 

sample size dHCP dataset was, again, central to identifying the structure-function association 
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in our nociception-paradigm dataset that accounted for 20% of the total cross-infant variance 

in noxious-response amplitudes. We believe the close association with white matter 

microstructure, coupled with the predictability from resting-state features, strongly suggests 

the infants’ noxious-response amplitudes are stable trait features of the brain. 

 

Using multimodal MRI analyses, we have established that individual variability in pain-related 

brain activity in healthy peri-term-aged infants is tightly coupled to both the infants’ 

spontaneous resting-state activity and underlying white matter microstructure. Importantly, 

the amplitude of an individual infant’s noxious-response brain activity can be predicted from 

their spontaneous noxious-free resting-state brain activity. Even healthy newborn infants, 

within the first few days of postnatal life, display a wide range of responses to nociceptive 

input, likely a result of both genetic and environmental influences. This normative variability 

may reflect differences in individual resilience and vulnerability to environmental insults, such 

as clinical painful procedures that are frequently performed in hospitalised infants. The ability 

to predict an infant’s responses to pain and nociceptive input may have the potential to 

advance neonatal personalised pre-emptive pain management, and this study highlights the 

importance of understanding resting-state brain activity in achieving this goal. A better 

understanding of how individual differences in brain architecture influence pain processing is 

of paramount importance if we are to identify infants at increased risk of long-term 

alterations in brain structure and function and cognitive performance as a result of early life 

pain exposure. Early life pain and stress have the potential to alter an infant’s developmental 

trajectory and to influence their childhood well-being 46,47, but it may also increase the risk of 

developing chronic diseases in later life 48,49. The development of brain-based correlates of 

pain sensitivity could help identify vulnerable infants with the aim of tailoring pain relief 

treatments in a more principled, personalised, and evidence-based manner. 

 

Methods 

 

Part 1: Relating noxious-response amplitude to resting-state activity 

 

Subject information 
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We recruited healthy neonates from the postnatal ward at the John Radcliffe Hospital (Oxford 

University Hospital NHS Trust). Infants were considered healthy if they were inpatients on the 

postnatal ward that never required admission to the neonatal unit, had no history of 

congenital conditions or neurological problems, and were clinically stable at the time of study. 

Written informed consent was obtained from parents prior to the study. Ethical approval was 

obtained from an NHS Research Ethics Committee (National Research Ethics Service, REC 

reference: 12/SC/0447), and research was conducted in accordance with standards set by 

Good Clinical Practice guidelines and the Declaration of Helsinki. Demographic details of the 

18-infant sample are displayed in Table 2. Definitions of the age and total brain volume 

variables are detailed below (see Clinical variables). 

 

Experimental setup and design 

Neonates were transported to the Wellcome Centre for Integrative Neuroimaging (Oxford, 

UK), then fed and swaddled prior to scanning. Infants were fitted with ear plugs, ear-muffs, 

and ear-defenders, and placed on a vacuum-positioning mattress with additional soft padding 

around the head to restrict motion. Heart rate and blood oxygen saturation were monitored 

throughout scanning. An event-related experimental design was used for the nociception 

paradigm 21. The mild non-skin-breaking nociceptive stimulus was a 128 mN sharp-touch 

pinprick (PinPrick Stimulator, MRC Systems). Ten trials of the stimulus were delivered to the 

dorsum of the left foot, each trial was 1 s, and the minimum inter-stimulus interval was 25 s. 

This long inter-stimulus interval was used to minimise the influence of motion at the time of 

stimulus delivery. The stimuli were applied when the infants were naturally still. For all other 

scan types, infants lay passively in the scanner. No sedatives were used at any stage of this 

study. 

 

MRI data acquisition 

All data were collected on a 3T Siemens Prisma with an adult 32 channel receive coil. The 

structural data acquisition was: T2-weighted, TSE (factor 11), 150° flip angle, TE = 89 ms, TR = 

14,740 ms, parallel imaging GRAPPA 3, 192 × 192 in-plane matrix size, 126 slices, 1 mm 

isotropic voxels, and 2 mins 13 s acquisition time. The fieldmap data acquisition was: gradient 

echo, 2DFT readout, dual echo TE1/TE2 = 4.92/7.38 ms, TR = 550 ms, 46° flip angle, 90 × 90 

in-plane matrix size, 56 slices, 2 mm isotropic voxels, and 1 min 40 s acquisition time. Both 
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the resting-state and noxious-response fMRI data acquisitions were: T2* BOLD-weighted, 

gradient echo, EPI readout, 70° flip angle, TE = 50 ms 43, TR = 1,300 ms, multiband 4 50,51, 90 × 

90 in-plane matrix size, 56 slices, 2 mm isotropic voxels, AP phase encode direction, and a 

single-band reference (SBref) image was acquired at the start. Resting-state acquisition time 

was 10 mins 50 s (500 volumes), and noxious-response mean acquisition time was 

approximately 6 min (approximately 277 volumes). The dMRI data acquisition was: T2 

diffusion-weighted, spin echo, EPI readout, 90° flip angle, TE = 73 ms, TR = 2,900 ms, 

multiband 3, 102 × 102 in-plane matrix size, 60 slices, 1.75 mm isotropic voxels, AP phase 

encode direction, multishell (b = 500, 1000, 2000 s/mm2), a total of 140 directions uniformly 

distributed over the whole sphere, and approximately 8 mins acquisition time. Phase-

reversed b0 images were collected to derived a spin-echo fieldmap for distortion correction 

of the diffusion data. 

 

MRI data preprocessing 

All MRI data were preprocessed using analysis pipelines developed as part of the Developing 

Human Connectome Project (dHCP) (http://www.developingconnectome.org). The T2 

structural data were processed (brain extraction, bias field correction, and tissue 

segmentation) using the MIRTK Draw-EM neonatal pipeline 52, the tool forming the basis of 

the dHCP structural preprocessing pipeline 53. The GRE dual-echo fieldmap data were 

processed using a modified version of fsl_prepare_fieldmap. 

 

Both the noxious-response and resting-state fMRI data were preprocessed using an extended 

version of the dHCP fMRI preprocessing pipeline 24,41. The functional data were corrected for 

motion and distortion using FSL’s EDDY 54,55, which included slice-to-volume motion 

correction 56 and susceptibility-by-movement distortion correction 57. Noxious-response fMRI 

data were high-pass temporally filtered at 0.01 Hz, and resting-state fMRI data at 0.005 Hz. 

Data were then denoised using FSL’s FIX 58,59, low-pass spatially filtered with a 3 mm FWHM 

filter using FSL’s SUSAN 60, and grand mean scaled to a global spatiotemporal median of 

10,000. For spatial normalisation to standard space 61, the data were first registered from 

functional space to the infant’s T2 structural space, via the SBref, using 6 DoF rigid-body 

alignment, refined using BBR 62 with FSL’s FLIRT 63,64. The registration from structural space to 
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the 40-week template 61, via an age-matched standard template, was performed using ANTs’s 

SyN 65. 

 

The diffusion data were analysed using the dHCP dMRI preprocessing pipeline 27,66. The blip-

up and blip-down b0 images were used to generate the fieldmap using FSL’s TOPUP 67,68. The 

diffusion data were simultaneously corrected for motion, distortion, and eddy currents using 

FSL’s EDDY, which included outlier detection and replacement 69 as well as the slice-to-volume 

motion correction and susceptibility-by-movement distortion correction used in the fMRI 

data correction. Spatial normalisation followed the same sequence of registrations as the 

functional data. 

 

Noxious-response amplitudes 

For each infant, a noxious-response map was generated using standard subject-level 

voxelwise GLM analysis in FSL’s FEAT 70, fitting the term-neonate double-gamma HRF 23,41. A 

group average t-statistic map was generated using the 18 infants’ noxious-response 

regression parameter maps. Individual infants’ regression parameter maps were used as the 

subject-level noxious-response maps; the group-average t-statistic map was used as the 

group-level noxious-response map. To summarise an individual infant’s noxious-response 

map to a single scalar measure of noxious-response amplitude, the group-level noxious-

response map was regressed onto the infant’s noxious-response map. Thus, an infant’s 

noxious-response amplitude was defined as this spatial regression coefficient. Assessment of 

the potential influence of HRF goodness-of-fit on noxious-response amplitudes is detailed in 

Supplementary Information (Noxious-response HRF fit assessment and Supplementary Figure 

1,3) 

 

As detailed below, our prediction analyses examined associations between these noxious-

response amplitudes and three sets of predictors (resting-state network amplitudes, resting-

state imaging confounds, and clinical variables), and our structure-function analyses 

examined associations between noxious-response amplitudes and a dMRI model parameter 

(mean diffusivity).  In all these analyses, the noxious-response amplitudes were adjusted for 

a set of three noxious-response imaging confounds extracted from each infant’s noxious-

response fMRI data: mean head motion, stimulus-correlated head motion, and CSF signal 
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amplitude. These three metrics were intended to capture cross-infant noxious-response 

variability due to subject motion (mean and stimulus-correlated head motion) and cardiac 

pulsatility (CSF amplitude). Mean head motion was defined as the mean framewise 

displacement across the entire noxious-response fMRI scan session. Stimulus-correlated head 

motion was estimated as a multiple correlation coefficient z-statistic (Fisher r-to-z 

transformation) between the predicted BOLD response (stimulus application timeseries 

convolved with the HRF) and the 24 head motion parameter timeseries (estimated by EDDY 

during motion correction). CSF amplitude was estimated from each infant’s noxious-response 

map as the mean regression coefficient within the CSF ROI. Details on the CSF ROI 

construction are provided in Supplementary Information (CSF and white matter regions-of-

interest definition and Supplementary Figure 9). 

 

Resting-state network amplitudes 

To define a robust set of core resting-state networks in the infants’ resting-state fMRI data, 

resting-state networks identified in the 18-infant nociception-paradigm dataset were 

compared to those identified in a subset of the dHCP dataset, which had previously been 

produced as part of the dHCP 14. A robust set of core resting-state networks was defined as 

those replicated across datasets. Demonstrating replicability in the dHCP dataset confirmed 

the set of core networks were robust and not unique to our nociception-paradigm dataset. 

The dHCP data subset included 242 healthy term-aged infants: mean GA at birth = 38.6 weeks; 

mean PMA at scan = 40.4 weeks; 112 females and 124 males. The resting-state network 

analysis performed on the 18-infant nociception-paradigm dataset was closely matched to 

that described for the dHCP dataset 24. In brief, probabilistic functional mode (PFM) analysis 

using FSL’s PROFUMO 17,18 was run on both datasets with a pre-specified dimensionality of 

25, and using the infant double-gamma HRF 23,41 as the temporal prior. PROFUMO’s Bayesian 

model complexity penalties can eliminate modes, thus returning a number of group-level 

modes that can be less than the pre-specified dimensionality. This is noted, as the data-

determined dimensionality of the nociception-paradigm dataset was 11 despite a pre-

specified dimensionality of 25. Due to the larger sample size, the data-determined 

dimensionality of the dHCP dataset was equal to the pre-specified dimensionality. The dHCP 

resting-state network maps had greater SNR due to the significantly larger sample size. Thus, 

the dHCP resting-state network maps forming the set of core resting-state networks were 
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used as the template maps to extract resting-state network amplitudes from the resting-state 

fMRI data. 

 

These resting-state network template maps were spatially regressed onto each infant’s 

resting-state functional data using multiple regression, resulting in network timeseries. While 

the timeseries standard deviation is the typical amplitude metric used and is the default in 

FSL’s FSLNets 71, the standard deviation is sensitive to outliers, which in this context, typically 

appear as head motion-related timeseries spikes. Resting-state network amplitudes were 

thus quantified using the median absolute deviation (MAD), due to the MAD’s increased 

robustness to outliers. This set of resting-state network amplitudes was directly tested for 

association with noxious-response amplitudes after adjusting for resting-state imaging 

confounds (defined below). Assessment of the potential influence of resting-state network 

timeseries outliers on noxious-response amplitudes is detailed in Supplementary Information 

(Resting-state network timeseries outlier assessment and Supplementary Figure 2,3). 

 

Resting-state imaging confounds 

A set of resting-state imaging confounds was directly tested for association with noxious-

response amplitudes and used for confound-adjusting the resting-state network amplitudes. 

These confounds included three metrics extracted from each infant’s resting-state fMRI data: 

mean head motion, CSF amplitude, and white matter amplitude. These three metrics were 

intended to capture cross-infant resting-state variability due to subject motion (mean head 

motion), cardiac pulsatility (CSF amplitude), and global signal (white matter amplitude). 

Directly testing these resting-state imaging confounds assessed whether associations 

between resting-state network amplitudes and noxious-response amplitudes could be 

explained by undesirable artefactual features of the resting-state data.  Mean head motion 

was defined as the mean framewise displacement across the entire resting-state fMRI scan 

session. Mean CSF and white matter timeseries were extracted from each infant’s resting-

state data, and the timeseries amplitudes were defined as the MAD of these timeseries. 

Details on the CSF and white matter ROI construction are provided in Supplementary 

Information (CSF and white matter regions-of-interest definition and Supplementary Figure 

9). 
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Clinical variables 

A set of clinical variables was directly tested for association with noxious-response amplitudes 

and included the six variables in Table 2: postmenstrual age (PMA), gestational age (GA), 

postnatal age (PNA, also called chronological age), birth weight (BW), total brain volume 

(TBV), and sex. The three age variables are defined according to the American Academy of 

Paediatrics 72, and the TBV was calculated from the infants’ structural MRI data using the 

tissue segmentation outputs of the structural preprocessing pipeline. Testing the clinical 

variables assessed whether associations between resting-state network amplitudes and 

noxious-response amplitudes could be explained by biologically interesting underlying 

variables. 

 

Predicting noxious-response amplitudes 

For all prediction analyses, the responses to be predicted were the infants’ whole-brain 

noxious-response amplitudes (Figure 1 scalar values). Three sets of predictors were tested for 

predictive capacity: nine resting-state network amplitudes, six clinical variables, and three 

resting-state imaging confounds. For all three sets of predictors, a support vector regression 

(SVR) model with a linear kernel was used. Linear SVR was selected over a linear regression 

via ordinary least squares, due to the SVR cost function’s greater robustness to outliers. Out-

of-sample predictions were generated using leave-one-out cross validation (LOO-CV). The 

noxious-response amplitudes were confound-adjusted for the three noxious-response 

imaging confounds (mean head motion, stimulus-correlated head motion, and CSF 

amplitude). When generating predictions using the resting-state network amplitudes, this set 

of predictors was confound-adjusted for the three resting-state imaging confounds (mean 

head motion, CSF amplitude, and white matter amplitude). 

 

The linear SVR model was fit in Python using scikit-learn packages 73, with all steps performed 

in a LOO-CV manner. Confound adjustment of the resting-state network amplitudes and 

noxious-response amplitudes was performed using cross-validated confound regression, 

implemented using the publicly available code by Lukas Snoek 

(https://github.com/lukassnoek/MVCA), as described in the author’s article 74. Responses 

were z-scaled using training set means and standard deviations. The scikit-learn SVR 

parameters were: kernel = linear, loss function = epsilon insensitive, epsilon = 0.1, 
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regularization = ridge, regularization strength = {0.001, 0.01, 0.1, 1}. Optimisation of the 

regularization strength parameter was performed using an initial LOO-CV grid search over this 

set of values. Regularisation tuning and SVR model training were optimised to minimise mean 

squared error. 

 

The prediction accuracy was assessed using three summary metrics: root mean squared error 

(RMSE), sums-of-squares formulation of the coefficient of determination (R2), and 

Spearman’s rank correlation coefficient (RSp). The RMSE was selected as the primary metric 

of prediction accuracy, as it directly quantifies the error (the difference between predicted 

and actual observed values) and is in original units. The R2 was also reported, as its value is 

interpreted as the proportion of the total variation of the response (about its mean) that is 

accounted for by the fitted model, and is thus an intuitive metric to assess success of the 

predictions. The RSp between predicted and observed noxious-response amplitudes was also 

reported, as it may be valuable to know the model’s ability to correctly rank infants’ noxious-

response amplitudes, on a relative scale, from lowest to highest. To test the statistical 

significance of the RMSE, R2, and RSp measures using null hypothesis testing, one-tailed 

significance tests were performed using permutation analysis, running 1,000 permutations 

through the full prediction pipeline. Assessment of the potential influence of an fMRI global 

signal confound (common to both resting-state and noxious-response data) on noxious-

response amplitudes is detailed in Supplementary Information (Common fMRI global signal 

confound assessment and Supplementary Figure 4) 

 

 

Part 2: Relating noxious-response amplitude to white matter microstructure 

 

Structure-function analysis using an exploratory-confirmatory approach 

The infants’ noxious-response amplitudes were assessed for structure-function associations 

by analysing white matter microstructure to better understand the biological basis for 

individual variability in noxious-response amplitude and to evaluate the temporal stability of 

the observed responses. Due to the insensitivity of white matter microstructure to 

wakefulness and emotional state, an observed structure-function relationship would suggest 
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the infants’ noxious-response amplitudes were temporally stable trait effects. Temporal 

stability was assessed using this structure-function approach rather than looking at stability 

across multiple test occasions, as infants could only be tested on a single occasion. Due to the 

lack of knowledge regarding the brain’s structural basis for noxious responses in healthy 

newborn infants, an exploratory analysis was required. However, due to the small sample size 

of the nociception-paradigm dataset (n=17 with dMRI data, Table 2), the appropriate 

statistical multiple testing corrections to control the false positive rate would prohibit the 

identification of a true positive. To overcome this issue, we adopted an exploratory-

confirmatory analysis approach. We used a large age-matched sample from the dHCP dataset 

(n=215, sample defined below) for the exploratory arm, in which a wide range of white matter 

tracts and dMRI model parameters were studied in order to identify candidate nociception-

relevant microstructural features. Structure-function relationships identified in this 

exploratory arm facilitated the formulation of specific well-defined hypotheses. These  were 

subsequently tested in the nociception-paradigm dataset (n=17) for validation, which 

constituted the confirmatory arm of the analysis. 

 

Noxious-response amplitudes in the dHCP dataset 

The dHCP fMRI data includes resting-state data only. To analyse nociception-relevant 

structure-function relationships in this dataset, the dHCP resting-state data were mapped to 

noxious-response amplitudes using the SVR prediction model described previously – see 

Predicting noxious-response amplitudes above. This prediction model was trained on the 

nociception-paradigm dataset (n=18) using the nine resting-state network amplitudes as 

predictors (adjusted for resting-state imaging confounds) and the noxious-response 

amplitudes as responses (adjusted for noxious-response imaging confounds). In a sample 

from the dHCP dataset (defined below), the nine resting-state network amplitudes and three 

resting-state imaging confounds were extracted in an identical manner to the analysis 

performed in the nociception-paradigm dataset – see Resting-state network amplitudes and 

Resting-state imaging confounds above. The resting-state network amplitudes were adjusted 

for the resting-state imaging confounds, and the adjusted amplitudes were used to generate 

predicted noxious-response amplitudes. Frequency distribution histograms of the predicted 

noxious-response amplitudes from the dHCP dataset and the observed noxious-response 

amplitudes from the nociception-paradigm dataset were qualitatively compared. 
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Sample selection in the dHCP dataset 

Infants in the dHCP dataset were included in our sample if they satisfied three quality control 

(QC) criteria and two age criteria to ensure the sample data were of reasonable quality and 

were age-matched to the prediction model training set. The three QC criteria were: (i) both 

an infant’s fMRI and dMRI data had to pass basic dHCP QC pipelines 24,66, (ii) both scan 

sessions had to have completed fully (300 volumes for dMRI data; 2,300 volumes for fMRI 

data) to remove inter-subject variability due to data quantity related to scan length (all infants 

in the nociception-paradigm dataset satisfy this criterion), and (iii) the vertex of the cerebral 

cortex had to remain within the scan field of view (FOV) for at least 95% of scan session (all 

infants in the nociception-paradigm dataset satisfy this criterion). This last QC criterion 

excluded infants in which primary somatosensory and motor brain regions, demonstrated in 

the nociception-paradigm dataset to be of central importance to noxious stimulus processing 

(Supplementary Figure 4), would have unreliable data. The two age criteria were: (i) infants 

had to have both a gestational age and a postmenstrual age at time of scan between 36–42 

weeks, and (ii) infants had to have been scanned within the first 10 days of postnatal life. 

These selection criteria resulted in a dHCP dataset sample size of n=215 infants. 

 

White matter microstructural features 

Analogous to the pre-existing dHCP resting-state network templates used for resting-state 

network amplitude feature extraction (see Resting-state network amplitudes above), our 215-

infant dHCP sample was used to generate a set of 16 bilateral white matter tract regions-of-

interest (ROIs). These tracts were generated using the “baby autoPtx” approach established 

as part of the dHCP dMRI preprocessing pipeline development 27. In brief, FSL’s probabilistic 

multi-shell ball and zeppelins model 75 is fit as part of the dHCP dMRI preprocessing pipeline. 

Probabilistic tractography using FSL’s PROBTRACKX 76,77 is run using pre-defined seed, target, 

and exclusion masks. At the time of analysis, masks for 29 white matter tracts were available, 

of which 13 were unilateral and three bilateral. To create bilateral white matter ROIs 

analogous to our bilateral resting-state networks, the unilateral tracts were fused, resulting 

in a total of 16 bilateral tracts. In our 215-infant dHCP sample, the normalised probability 

value results of each tract were group-averaged in standard space and thresholded at a 

probability of 0.01. As part of the dHCP preprocessing pipeline, FSL’s DTIFIT is used to 
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generate mean diffusivity (MD), fractional anisotropy (FA), and mean kurtosis (MK) parameter 

maps for each infant. We thresholded each infant’s parameter maps to remove noisy voxels 

with values falling outside the expected theoretical range, which can happen in practice due 

to poor SNR or head motion: for MD, this included negative values; for FA, this included values 

outside the interval [0,1]; for MK, this included values outside the interval [0,3]. The 16 

bilateral white matter ROIs were used to extract mean parameter values for each tract. These 

48 values (16 tracts x 3 parameters) per subject constituted the white matter microstructural 

features for our structure-function analyses. 

 

Identifying a valid structure-function association 

Using the 215-infant dHCP sample, univariate correlations between predicted noxious-

response amplitudes and each microstructural feature was assessed using permutation 

testing with FSL’s PALM 78. These correlations were adjusted for three dMRI imaging 

confounds: mean head motion (estimated by EDDY during preprocessing), number of noisy 

voxels falling outside the expected theoretical range (see White matter microstructural 

features above), and TBV (see Clinical variables above). Our dMRI parameters-of-interest are 

influenced by tissue density and partial voluming artefacts due to brain volume variance 

across infants, so adjustment for TBV was included to mitigate these global confounds. There 

is no need to adjust for fMRI imaging confounds, as the SVR prediction model maps to 

confound-adjusted noxious-response amplitudes. Statistical significance was assessed using 

two-tailed Pearson correlations with 10,000 permutations and FWER-corrected for multiple 

testing across all 48 tests 79. While the observed statistically significant negative correlations 

with the MD of five tracts (Figure 4 and Supplementary Figure 7) are statistically valid due to 

appropriate FWER-adjustment of false positive rate, these findings are tentative due to the 

use of predicted noxious-response amplitudes. The dHCP dataset has no noxious-response 

amplitude ground truth, so the results of this exploratory arm need confirmation in the 

nociception-paradigm dataset, for which ground truth observed noxious-response 

amplitudes exist. 

 

In the confirmatory arm, the negative correlation between predicted noxious-response 

amplitudes and MD identified in the dHCP dataset was assessed in the nociception-paradigm 

dataset using two approaches. In both approaches, correlations were adjusted for both 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2020. ; https://doi.org/10.1101/2020.04.28.065730doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.28.065730
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

noxious-response imaging confounds (mean head motion, stimulus-correlated head motion, 

and CSF amplitude) and dMRI imaging confounds (mean head motion, number of noisy 

voxels, and TBV). First, the correlation polarities between observed noxious-response 

amplitudes and MD of the five statistically significant tracts were qualitatively compared 

across datasets. Thus, confirmatory arm question one was: “are the correlation coefficient 

polarities (positive or negative) between noxious-response amplitudes and MD consistent 

between datasets for these five tracts?” Second, in the dHCP dataset, principal component 

analysis was run across the MD values of the five tracts of all 215 infants. The first principal 

component (PC1) accounted for 84.5% of the total MD variance with a negative correlation 

with predicted noxious-response amplitudes (r = –0.25). Due to the double-dipping circularity 

of this analysis in the dHCP dataset 80, this negative correlation between MD PC1 and 

predicted noxious-response amplitude will be biased toward high statistical significance. 

However, the demonstration in the dHCP dataset that MD PC1 accounts for a major portion 

of the variance in these tracts and has a statistically significant negative correlation with 

predicted noxious-response amplitudes serves as a single straight-forward quantitative test 

that can be directly confirmed (or not) in the nociception-paradigm dataset in an unbiased 

and non-circular manner. Thus, confirmatory arm question two was: “is the statistically 

significant negative correlation between noxious-response amplitudes and MD PC1 (across 

these five tracts) consistent between datasets?”. Statistical significance was assessed in PALM 

using a one-tailed Pearson correlation with 10,000 permutations. 
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Figures 
 

 
Figure 1: Newborn infants’ noxious-response amplitudes. A noxious-response BOLD activity 
map is presented for each infant (n=18) and ordered according to the response amplitude 
relative to the group average. The maps are general linear model regression parameter maps 
i.e. effect size maps. The scalar value presented below each map is a summary measure that 
represents the whole-brain noxious-response amplitude relative to the group average. It is 
calculated by spatially regressing the group-average noxious-response map onto each 
individual infant’s noxious-response map. Red-yellow indicates positive values and blue-cyan 
indicates negative values. The anatomical reference (left) provides structural detail for 
orientation. All noxious-response maps are displayed at this slice position. 
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Figure 2: Nine resting-state networks replicated across two independent datasets. Each 
resting-state network map is a thresholded group-level probabilistic functional mode (PFM) 
map identified in the locally collected 18-infant nociception-paradigm dataset (top row, Local) 
and the 242-infant dHCP dataset (bottom row, dHCP). These PFM posterior probability maps 
are thresholded to highlight qualitative correspondence. The scalar value shown between 
matched maps is the spatial Pearson correlation coefficient between unthresholded maps 
highlighting quantitative correspondence. Abbreviations: VNm = medial visual network; VNop 
= occipital pole visual network; ANr = right auditory network; ANl = left auditory network; 
SMN = somatomotor network; DMN = default mode network; DAN = dorsal attention 
network; ECN = executive control network. 
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Figure 3: Predicting noxious-response amplitudes from non-noxious data. For all plots, each 
blue dot represents an out-of-sample cross-validated prediction for a single infant (n=18), and 
the dashed grey line is the y=x line along which perfect predictions would lie. The x-axis is the 
observed noxious-response amplitude (after cross-validated confound regression), and the y-
axis is the predicted noxious-response amplitude. Predictions were generated based on three 
sets of predictors: (left) the resting-state network amplitudes; (middle) resting-state imaging 
confounds, which included head motion, CSF amplitude, and white matter amplitude; and 
(right) clinical variables, which included age (GA, PMA, and PNA), birth weight, TBV, and sex. 
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Figure 4: The relationship between noxious-response amplitude and white matter mean 
diffusivity. Top row: These three plots in grey (histogram, bar plot, scatter plot) are using the 
215-infant dHCP dataset. Middle row: These three plots in blue are using the 17-infant 
nociception-paradigm dataset. Bottom row: These three maps display the five bilateral white 
matter tracts identified in the structure-function analysis exploratory arm (see 
Supplementary Figure 7). The histograms display the frequency distributions of the noxious-
response amplitudes – predicted responses in dHCP dataset and observed responses in 
nociception-paradigm dataset. The bar plots display the Pearson correlation coefficients 
between noxious-response amplitudes and MD for the five white matter tracts. The scatter 
plots display the negative correlation between noxious-response amplitudes (y-axis) and MD 
PC 1. Abbreviations: atr = anterior thalamic radiation; cst = corticospinal tract; fmi = forceps 
minor; str = superior thalamic radiation; unc = uncinate fasciculus. 
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Tables 
 
Table 1: Noxious-response amplitude prediction accuracies. Each row contains results for a 
specific set of predictors. Each column contains prediction accuracy assessed using a specific 
metric: RMSE = root mean squared error; R2 = coefficient of determination (sums-of-squares 
formulation); RSp = Spearman’s rank correlation coefficient. P-values are presented in 
parentheses. * = statistically significant. 

 RMSE R2 RSp 

Resting state 1.55* (0.004) 0.64* (0.004) 0.77* (0.003) 
Confounds 2.46 (0.60) 0.081 (0.60) 0.14 (0.40) 
Clinical variables 2.71 (0.47) -0.12 (0.47) 0.0031 (0.51) 
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Table 2: Demographic details of the 18-infant nociception-paradigm dataset. PMA = 
postmenstrual age; GA = gestational age; PNA = postnatal age; BW = birth weight; TBV = total 
brain volume; µ = mean; s = standard deviation. * = excluded from dMRI analysis due to 
incomplete dMRI data. 

Infant PMA 
(weeks) 

GA 
(weeks) 

PNA 
(days) 

BW 
(grams) 

TBV 
(mm3) 

Sex 

1 40.6 40.3 2 3,880 283,685 M 
2 37.4 37.1 2 4,570 276,222 M 
3 35.9 35.3 4 1,910 212,410 F 
4 35.9 35.6 2 3,180 284,623 M 
5 38.3 38 2 3,400 309,632 M 
6 38 37.3 4 3,410 306,530 F 
7 39.6 39.3 2 3,250 301,086 F 
8 36.4 36 3 3,510 260,268 F 
9 38 37.9 1 2,490 221,792 M 
10 40.7 40.6 1 4,300 346,861 M 
11 40.4 40.1 2 4,040 356,454 M 
12 39.3 39 2 3,775 300,094 F 
13 38.9 38.6 2 2,950 286,714 F 
14* 41.7 41.4 2 3,400 297,004 M 
15 40.4 39 10 3,750 416,904 F 
16 38.3 38 2 2,780 247,199 M 
17 37.4 36.4 7 2,235 257,069 F 
18 39 38.9 1 3,350 252,271 M 
µ 38.7 38.3 2.8 3,343.3 289,823.2 --- 
s 1.7 1.8 2.3 690.4 49,020.8 --- 
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