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Abstract

Near infrared spectroscopy is increasingly being used as an economical method to monitor
mosquito vector populations in support of disease control. Despite this rise in popularity,
strong geographical variation in spectra has proven an issue for generalising predictions from
one location to another. Here, we use a functional data analysis approach—which mod-
els spectra as smooth curves rather than as a discrete set of points—to develop a method
that is robust to geographic heterogeneity. Specifically, we use a penalised generalised linear
modelling framework which includes efficient functional representation of spectra, spectral
smoothing and regularisation. To ensure better generalisation of model predictions from
one training set to another, we use cross-validation procedures favouring smoother represen-
tation of spectra. To illustrate the performance of our approach, we collected spectra for
field-caught specimens of Anopheles gambiae complex mosquitoes – the most epidemiolog-
ically important vector species on the planet – in two sites in Burkina Faso. Using these
spectra, we show how models trained on data from one site can successfully classify mor-
phologically identical sibling species in another site, over 250km away. Whilst we apply our
framework to species prediction, our unified statistical framework can, alternatively, handle
regression analysis (for example, to determine mosquito age) and other types of multinomial
classification (for example, to determine infection status). To make our methods readily
available for field entomologists, we have created an open-source R package mlevcm. All
data used is publicly also available.

Keywords: entomological monitoring, functional data analysis, malaria, mosquito, near-
infrared spectroscopy.
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1 Introduction

Mosquito-borne diseases such as malaria, dengue and yellow fever are responsible for huge suffer-
ing, death and impose a considerable economic burden in Sub-Saharan Africa, Asia, and Latin
America (Sachs and Malaney, 2002; WHO, 2019). The World Health Organization estimated
228 million cases of malaria alone in 2018 resulting in approximately 405,000 deaths. Malaria
is transmitted from person to person by female mosquitoes of the Anopheles genus. Insecticides
which kill mosquitoes, either incorporated into bednets or sprayed on walls, are the most ef-
fective method of controlling the disease and prevent millions of cases each year (Bhatt et al.,
2015). However, differences in behaviour between mosquito species and the rise of insecticide
resistance mean that control interventions increasingly need to be tailored to the local mosquito
population. Factors such as species composition, the level of mosquito infection and age dis-
tribution in the mosquito population constitute an important direct measure of the efficacy of
disease control interventions.

Unfortunately, there is no easy way to cheaply monitor mosquito populations in the field. Molec-
ular techniques, like polymerase chain reaction, are required to determine mosquito species and
infection status, which are laborious and require highly trained staff, well equipped laborato-
ries and expensive reagents. By killing mosquitoes, the main effect of insecticides is to reduce
mosquito lifespan, shifting the age distribution towards younger mosquitoes. Insecticide re-
sistance may reduce the killing effect of insecticides, increasing the average age in mosquito
populations supposedly controlled by insecticides. Therefore, methods to monitor the local age
distribution in mosquito populations are critical for knowing whether insecticides remain effec-
tive. Yet, there are currently no fast, inexpensive methods for accurately surveying the age
distribution of mosquito populations.

Near-infrared spectroscopy (NIRS) is a new, rapid, reagent-free and non-destructive scanning
technique, which can determine the species of morphologically indistinguishable mosquitoes,
approximate mosquito age and the presence of malaria and dengue infections (Esperança et al.,
2018; Lambert et al., 2018; Mayagaya et al., 2009; Ong et al., 2020; Sikulu et al., 2010; Sikulu-
Lord et al., 2016). The instrument is portable and battery powered, which means scanning
can take place in remote locations. The scanning procedure itself does not require expensive
reagents, specialised lab-trained staff or non-portable laboratory equipment and is extremely
simple: mosquitoes are killed, placed under a light probe, and scanned to produce a spectrum
within seconds. Previous work has successfully predicted characteristics of interest (age, species,
infectiousness) from near-infrared (NIR) spectra, using only relatively basic machine learning
models based on Partial Least Squares (PLS) regression (Gerlach et al., 1979).

Despite their success in predicting characteristics of interest within a given population of mosquitoes,
it has been documented that these methods cannot predict these between populations: that is,
models trained to predict (say) age in population A cannot predict age in population B (Lambert
et al., 2018). This site specificity is not typically reported in NIRS studies of mosquitoes (e.g.
Esperança et al., 2018) and means the reported performance of the method may exceed that in
the field. Whilst the exact origins of this between-site performance are unknown, many possible
factors may contribute. In a ‘typical’ NIRS study, performance of the method is evaluated by
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predicting mosquito characteristics in independent test sets. Whilst different mosquitoes may
be used in the training and testing sets, they come from the same set of mosquitoes, poten-
tially from the same mother, and are kept in identical rearing conditions. These shared factors
mean mosquitoes comprising the test set are much more alike those in the training set than
any wild-caught specimens. Part of these issues could be addressed by training models using
F0 or F1 mosquitoes derived from collected individuals – although, admittedly, such restrictions
on experimental practices would limit the usefulness of NIRS. There is, hence, a demand for
machine learning methods that are robust to differences between laboratory training and wild
testing sets.

In this article, we use a functional data analysis (FDA) framework to build NIR spectra-based
machine learning models which maintain predictive accuracy between populations of mosquitoes.
In FDA, individual data points are modelled as originating from (noisy) sampling of unobserved
smooth, continuous functions at discrete intervals along them (Ramsay and Silverman, 2005).
Since the observed NIR spectra already appear quite smooth (see Fig. 1), this suggests that
an FDA approach should be applicable. The statistical framework for functional data has been
developed in the past two decades and has been used for both regression (i.e. continuous re-
sponse) and classification (i.e. categorical response) problems. The flexibility of FDA means
that modern techniques such as efficient function representations, smoothing, penalised estima-
tion and dimension reduction can be accommodated seamlessly—all of which we explore here
(Morris, 2015; Ramsay and Silverman, 2002, 2005; Reiss et al., 2017; Wang et al., 2016).

To demonstrate the utility of our approach, we generated training and testing samples that mim-
icked how NIRS could be used in the field: we collected wild Anopheles gambiae s.l. mosquito
larvae from two locations in Burkina Faso, separated by 283km, which were reared then scanned
using near-infrared spectrometers in the laboratory. After scanning, the mosquitoes were killed
and their species was determined by PCR. (Specimens were either An. gambiae s.s. or An.
arabiensis, which are morphologically identical species that have epidemiologically important
differences in ecology.) We then show that our FDA-based approach trained using paired species-
spectra data from each location in isolation can predict the species of individual specimens in the
other. To encourage others to replicate and build on our analysis, we make all data (Esperança,
2019a) and code (Esperança, 2019b) publicly available.

2 Methods

2.1 Mosquito data

To train and test our machine learning algorithm, we collected mosquito larvae from two loca-
tions in Burkina Faso: Klesso, in the southwest of the country, near Bobo-Dioulasso; and Longo,
in the Hauts-Basins region approximately 283km away. Adult mosquitoes were reared from field
collected larvae (F0 generation) or from wild, naturally fed mosquitoes caught resting in the
eaves of houses which were allowed to lay eggs which were then reared to adult (F1 generation).
All mosquitoes were kept in similar ‘laboratory colony’ conditions and killed using chloroform
four days after emergence. Mosquitoes were scanned using a LabSpec4 Standard-Res i (stan-
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Figure 1: The spectra of 30 mosquitoes within the Anopheles gambiae s.l. (sensu lato) species
complex, each sampled at discrete wavelengths in the interval [350, 2500]. Green lines show
Anopheles arabiensis whilst blue lines show Anopheles gambiae s.s. (sensu stricto).

dard resolution, integrated light source) near-infrared spectrometer and a bifurcated reflectance
probe mounted 2mm from a spectralon white reference panel (ASD Inc. (company), 2020).
Absorbance was recorded across 350nm–2500nm of the electromagnetic spectrum. Specimens
were laid on their side under the focus of the light probe and spectra were recorded with RS3
spectral acquisition software (ASD Inc. (company), 2020), which recorded the average spectra
from 20 scans. The light probe was centred on the head and thorax region of the mosquito and
each mosquito was scanned up to 4 times, picking the mosquito and replacing on their opposite
side after each scan. The average number of scans per mosquito is 2.5 (75% with 2 scans, 24%
with 4 scans, 1% with 1 or 3 scans). The mean absorbance across the multiple scans was then
used in the analyses (Figure 1). After mosquitoes have been scanned, species was determined
by Polymerase Chain Reaction (Fanello et al., 2002). This resulted in 224 spectra samples in
Klesso (50 An. arabiensis and 174 An. gambiae s.s.) and 126 Longo (61 An. arabiensis and 65
An. gambiae s.s.).

2.2 Statistical Methods

Our approach follows a unified framework for functional data analysis (FDA; Ramsay and Silver-
man, 2005). As pre-processing, we represent spectra efficiently using basis functions (§2.2.1) and
perform smoothing to eliminate measurement noise (§2.2.2). To classifying mosquito species we
use a regularised, generalised linear model framework (§2.2.3) with dimension reduction (§2.2.4),
and use a cross-validation procedure to optimise hyperparameters (§2.2.5). All variables that
we use to describe our method are summarised in Table 1.

2.2.1 Spectra as functional data

Mosquito spectra can be viewed as smooth curves or functions sampled at discrete wavelengths
in the near-infrared (NIR) region of the electromagnetic spectrum (Figure 1). Therefore, Func-
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Table 1: Notation. Description of variables and their ranges.

Notation Description Space

t = [t1, . . . , tp] Vector of discrete integer wavelengths from 350nm-2500nm NP
T Wavelength range surveyed by spectrometer R∞
P = |t| Number of discrete absorbance values measured N
Xi(t) Absorbance spectrum for mosquito i at wavelength t R∞
Xi(t) Vector of absorbances at discrete integer wavelengths RP
Oi(t) Observed absorbance at discrete integer wavelengths RP
Zi(t) Observed non-functional predictors RS
bk(t) kth basis function at wavelength t R∞
b(t) Basis function vector K × R∞
νik Coefficient for basis function k for mosquito i R
W Weighting matrix used in estimation RP×P
β(t) Function giving influence of wavelength t on predictions R∞
Ω Matrix used to penalise roughness of coefficient function RK×K
λ Parameter used to penalise roughness of coefficient function R+

0

tional Data Analysis (FDA) can be used to represent these data (Ramsay and Silverman, 2005).
Let X(t) represent the true, underlying absorbance spectrum of a mosquito as a function of
wavelength t ∈ T . For each spectra sample, absorbances are reported at all integer wave-
lengths between 350nm and 2500nm. We denote the vector of absorbances for mosquito i by
Xi(t) = [Xi(350), . . . , Xi(2500)], i ∈ [1:N ].

We follow the standard theoretical framework in FDA, which assumes that functions are real-
valued and belong to a Hilbert space containing square-integrable functions over the observed
range of wavelengths (Febrero-Bande et al., 2017; Reiss et al., 2017).

2.2.2 Basis function representation and spectra smoothing

Basis functions provide an accurate and efficient way of representing complex functions as com-
binations of simpler functions, and constitute also to a natural framework for smoothing.

Representation. We express spectra as a linear combination of a set ofK basis functions,

Xi(t) =
K∑
k=1

νikbk(t) = νTi b(t), (1)

where b(t) = [b1(t), . . . , bK(t)]T is a basis function vector, with bk(t) denoting the kth basis
function evaluated at wavelength t; and νi = [νi1, . . . , νiK ]T is a basis coefficient vector, with νik
denoting the kth basis function coefficient for the ith mosquito spectra. The basis coefficients
are estimated from the data, as detailed below, while the basis functions can be either data-
dependent (e.g. principal components) or data-independent (e.g. B-splines and wavelets).

B-splines are a natural choice of basis system for NIR spectra. These are constructed from
piecewise polynomial functions, typically of low degree n, with continuous derivatives up to
derivative degree n − 1, which makes them appealing both theoretically and computationally
(de Boor, 2001; Eubank, 1999; Green and Silverman, 1994; Silverman, 1985). We use cubic B-
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Figure 2: Representing near-infrared spectra using basis functions. Bottom: a
number of unweighted cubic B-spline basis functions (coloured lines); the sets of points show the
largest components of the basis function design matrix in two of its rows (corresponding to two
measured wavelengths). Top: The absorbance spectra (black line) at two wavelengths (black
points) is obtained by summing the contributions from weighted individual splines (coloured
lines) as in (1).

splines (n = 3), which are sufficiently flexible to represent spectra accurately. Figure 2 illustrates
how spectral data can be represented using cubic B-splines.

Smoothing. Spectral observations are subject to measurement error due to imperfections in
the spectrometer’s detection sensors (see Figure 1). Poor signal-to-noise ratios make it harder
to avoid overfitting—especially, if noise varies between training and test sets. The measurement
error is assumed to be Gaussian and independent for each sample i and wavelength t,

Oi(t) = Xi(t) + εi(t) with εi(t)
i.i.d.∼ N (0, σt), (2)

where Oi(t) and Xi(t) represent, respectively, the observed noisy measurements and the under-
lying unobserved functional process, and Σ = diag(σ1, . . . , σP ) represents a diagonal covariance
matrix to allow for heteroscedastic measurement noise (Ramsay and Silverman, 2005).

We estimate the unobserved absorbance Xi(t) from the vector of observations Oi(t). Using
the basis representation of Xi(t) in (1), the measurement error model in (2) reduces to a linear
regression model, E[Oi(t)] = Bν, where B = [b(t1), . . . , b(tP )]T is the P × K basis function
design matrix and ν is the basis coefficient vector which can be estimated via least squares.

To correct for heteroscedastic measurement noise we introduce a P×P weight matrixW = Σ−1.
Additionally, we penalise discontinuous jumps in consecutive basis coefficient values through a
K ×K regularisation matrix Ω, and estimate ν by solving

arg min
νi∈RK

{∥∥∥W 1/2(Oi −Bνi)
∥∥∥2

+ λνTi Ωνi
}
, (3)

where || · || denotes the L2 norm. The K × K penalty matrix Ω has elements (k, l) equal
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to
∫
T b
′′
k(t)b′′l (t)dt, such that νTi Ωνi approximates the curvature of Xi(t) as measured by the

integrated squared second derivative,
∫
T [X ′′i (t)]2dt (Cardot et al., 2003; Eubank, 1999; Green

and Silverman, 1994; Marx and Eilers, 1999; Ramsay and Silverman, 2005). The criterion (3)
therefore enforces smoothness by penalising roughness in the least-squares estimate of Xi(t).
The penalty parameter λ ≥ 0 regulates the degree of smoothness and is optimally chosen using
cross-validation (Wahba, 1990).

2.2.3 Statistical Model

Model specification. The exponential family of statistical models can be extended to the case
of functional data, providing a comprehensible and unified framework to tackle regression and
classification tasks (Cardot and Sarda, 2005; Goldsmith et al., 2011; James, 2002; Müller and
Stadtmüller, 2005). These models can be written as follows:

yi = g−1(ηi) where ηi = α+
∫
T
Xi(t)β(t)dt+

S∑
s=1

γsUis, (4)

where α is a constant intercept; Xi(t) is the spectrum of mosquito i (represented as a function);
β(t) is a functional slope coefficient giving the influence of different wavelength regions on the
response; yi is a scalar response with distribution belonging to the exponential family; Uis is a
real-valued non-functional predictor; and γs is the corresponding slope coefficient.

The invertible link function g relates the subject-specific mean response µi to the linear predictor
ηi as follows: g(E[yi|Xi(t)]) = ηi, or, equivalently, µi = E[yi|Xi(t)] = g−1(ηi). The functional
form of g depends on the distribution of the response, and determines the type of statistical
model, as follows:

I. regression: when the response is real-valued and assumed to follow a Gaussian
distribution, the link function is just the identity, that is g(µi) = µi, and so µi =
ηi, leading to the functional linear model (“functional LM”). This is the case when
determining mosquito age.

II. classification: when the response is binary and assumed to follow a Bernoulli distri-
bution, the link function is equal to g(µi) = log(µi/(1−µi)), and so µi = 1/(1+e−ηi),
leading to the logistic-link functional generalised linear model (“functional GLM”).
This is the case when determining mosquito species or infection.

In some applications, we may also be interested in the multi-class classification problem, for
instance when information on the severity of infection is available (e.g. low, medium and high
levels) or differentiating between more than two mosquito species. This corresponds to a multi-
nomial distribution for the response, which can be reduced to a set of binary functional logistic
models and therefore tackled within this same framework (McCullagh and Nelder, 1989).

Basis functions for β(t). The coefficient function β(t) is modelled as a smooth function (like
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the spectra themselves) using cubic B-splines,

β(t) =
K∑
k=1

ζkbk(t) = ζTb(t), (5)

where b(t) is the basis function vector defined as in (1); and ζ = [ζ1, . . . , ζK ]T is a basis coefficient
vector. The functional term in (4) then becomes:

∫
T
Xi(t)β(t)dt =

K∑
k=1

ζk

∫
T
Xi(t)bk(t)dt ≈

K∑
k=1

ζkx̄ik, (6)

where x̄ik =
∑P
j=1 xijbk(tj) is a discretised approximation to

∫
T Xi(t)bk(t)dt. In this way, the

functional model can be reduced to a multivariate model, for which estimation and inference
procedures are well known. Notice that despite this discretisation, the functional representation
of β(t) is easily recovered from (5), given estimates ζ̂ of ζ.

Model estimation. We assume independent and identically distributed pairs of observations
{(Xi(t), yi)}i∈{1:N}. Let y = [y1, . . . , yN ]T denote the responses vector of length N ; and let
X = [x1, . . . ,xN ]T denote the functional predictor design matrix of size N × P , where xi =
[xi1, . . . , xiP ] and xij = Xi(tj) for all i ∈ {1:N} and j ∈ {1:P}. The design matrix X can
denote the raw observations of the functional predictor or the corresponding smoothed version
as in §2.2.2. Also, let B = [b(t1), . . . , b(tP )]T denote a P × K basis function design matrix,
with b(tj) = [b1(tj), . . . , bK(tj)] for all j ∈ {1:P}. Finally, let Z = [z1, . . . ,zN ]T denote the non-
functional predictor design matrix of size N×S, where zi = [zi1, . . . , ziS ] for all i ∈ {1:N}.

Estimation. Projecting the coefficient function onto the space spanned by the K B-splines,
as defined in (5), leads to a model with design matrix XB instead of X. Here we consider
penalised likelihood estimation. In the linear case, the least squares solution gives the maximum
likelihood estimator:

arg min
α∈R,ζ∈RK ,γ∈RS

{
||y − α1 −XBζ −Zγ||2 + λζTΩζ

}
(7)

where λ and Ω are as in (3) and the term ζTΩζ gives the curvature of the projected coefficient
function ζ̇ = Bζ, which approximates the curvature of the original coefficient function β(t) as
measured by the integrated squared second derivative,

∫
T [β′′(t)]2dt (Cardot et al., 2003; Marx

and Eilers, 1999; Reiss and Ogden, 2007). In the generalised linear case, the squared norm term
in (7) is replaced with the negative of the model likelihood and the resulting penalised likelihood
criterion is optimised (Gertheiss et al., 2013).

The problem (7) will typically be ill-posed as a result of the high dimensional nature of spectral
data and the small sample sizes usually available (N � P ). Variable selection and/or dimension
reduction techniques provide a solution which we explore below.
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2.2.4 Dimension reduction and feature selection

The projection of β(t) onto a B-spline system defined in (5) can provide some dimension reduc-
tion when K < P . However, this comes at a cost of loss of information which can lead to poor
predictive performance. Here we assume a rich basis system, capable of representing spectra
without any considerable loss of information. In practice, this means that the design matrix
XB may still present an ill-posed problem (K > N) and further dimension reduction is then
required.

We consider projecting the coefficient function onto D after the projection onto B. The di-
mension reduction projection matrix D, with dimension Q < K, is derived from the data such
that XBD captures the essential features of XB (and therefore of X), but in a lower dimen-
sional space. Below we give details on two methods to compute D, namely functional principal
component analysis and functional partial least squares. For further comparisons of the two
methods see for instance Febrero-Bande et al. (2017); Frank and Friedman (1993); Reiss and
Ogden (2007).

These two projection-based dimension reduction approaches can be viewed as plug-in methods
since D is independent of the parameters in the statistical model (details are given in Ap-
pendix A). Parameter estimation follows essentially the same approach as in (7), except that we
now use the reduced spectral data XBD instead of XB:

arg min
α∈R,ω∈RQ,γ∈RS

{
||y − α1 −XBDω −Zγ||2 + λωTDTΩDω

}
(8)

where λ and Ω are as in (3) and the term ωTDTΩDω gives the curvature of projected coefficient
function ω̇ = BDω. Provided that Q+S < N , the problem is well-posed and a solution can be
found via either penalised least squares or penalised likelihood estimation as before, depending
on the distribution of the response.

Importantly, note that from the estimation procedure in (8) it is possible to recover the coefficient
function β(t) by first computing ζ̂ = Dω̂ and then plugging this into (5). This tells us which
regions of the spectra—in the original P -dimensional space—are more important.

2.2.5 Cross-validation

We use a two-stage cross-validation procedure which explicitly enforces a smooth coefficient
function β(t). Performance is measured by RMSD for the functional LM and by AUC for the
functional GLM.

Datasets. To show the full potential of the techniques proposed—functional representation,
smoothing, penalisation—we use two datasets. The first, called the cross-validation dataset, is
split into training, validating and testing subsets, respectively used to train the models, cross-
validate model parameters as detailed below, and estimate the generalisation error. The second,
called the alternative dataset, is composed of a testing set which is used to evaluate the quality
of predictions on slightly different samples using the model trained with the cross-validation
dataset. For the application presented in this paper, this means samples collected from different
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regions (see §3 for more details).

Choosing K. In the first stage of cross-validation, the number of basis functions K used to
represent the spectra is chosen to maximise the performance in a model without penalisation.
To do this, K is decreased from P until the loss in accuracy exceeds the threshold τK . This
guarantees that there is virtually no information loss while at the same time giving the most ef-
ficient representation of the spectra. The technique provides non only an efficient representation
but also a small degree of smoothing. We use τK = 0.01 in the following.

Choosing Q and λ. In the second stage of cross-validation, the number of PCA/PLS compo-
nents Q and the penalty parameter λ are chosen jointly to give the smoothest coefficient function
whose predictive performance is within a margin τλ,Q of the predictive performance of the op-
timal non-penalised model, which we denote by a?. That is, we compute models with different
combinations of parameters (λ,Q) and from those with acceptable performance we select the one
having the smoothest coefficient function β(t), as measured by the integrated squared second
derivative, Rβ =

∫
T [β′′(t)]2dt, where larger values correspond to rougher coefficient functions.

Acceptable performance is defined here as an RMSD between [a?, a? + τλ,Q] in the case of the
functional LM, or an AUC between [a? − τλ,Q, a?] in the case of the functional GLM. We use
τλ,Q = 0.01 in the following.

Ensemble models. We also test the performance of ensemble models where the error rate is
averaged over a set of models, chosen as follows: first, we select the top na models that perform
within a margin τλ,Q of the optimal non-penalised model (similarly to the procedure used to
choose λ and Q); and from this set of acceptable models we select the smoothest ne models. We
use na = 25 and ne = 5 in the following.

Cross-validation details. We average the cross-validation results over 100 randomisation of
the data subsets to reduce the effect of sampling error. The proportions of observations used in
each subset of the cross-validation dataset were: 50% for training, 25% for validating, and 25%
for testing. We use as the benchmark the Generalised Linear Model (GLM in Table 2).

3 Results

We compare the performance of 16 different models, arising from the use of the two different
dimension reduction methods (PLS and PCA) and the use, or not, of the FDA techniques
presented. We will show results for a classification task, thus all models will be generalised linear
models (GLM), prefixed as follows: f (e.g., fGLM) when making use of the functional representation
in (1); s (e.g., sGLM) when making use of spectra smoothing as in (3); p (e.g., pGLM) when making
use of penalisation for the coefficient function estimation as in (8). Additionally we evaluate
ensembles of the smoothest models that use penalisation.

3.1 Improving generalisation

The techniques used—spectra smoothing, functional representation and penalised estimation of
the coefficient function—all improve the AUC and test error on the testing subset of the cross-
validation dataset, if only slightly, with the exception of penalisation-only (pGLM) with PLS
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Table 2: Performance of different GLM models and different feature selection methods (details
in §2.2) for determining mosquito species (An. arabiensis vs. An. gambiae s.s.). Measures
given are: number of basis functions as a fraction of the number of predictors/wavelengths
(K/P ), number of features (Q), roughness of the coefficient function (Rβ), penalty parameter
(λ), area under the ROC curve (AUC; 0–100), and cross-validation/alternative testing set errors
(ERRcv/ERRalt, % misclassification rate with standard deviation in parenthesis). We show two
sets of models: best-performing (highest AUC) and smoothest (lowest Rβ) as determined by
their performance on the cross-validation dataset.

PLS
best-performing smoothest

K/P Q Rβ λ AUC ERRcv ERRalt Q Rβ λ AUC ERRcv ERRalt
GLM 1 2 11.62 − 72 34 (.08) 32 (.04) − − − − − −

sGLM 1 8 0.04 − 75 30 (.07) 30 (.05) − − − − − −
pGLM 1 37 0.20 8.9 65 53 (.07) 62 (.25) 32 0.07 6.8 75 44 (.11) 38 (.24)

spGLM 1 19 0.001 61.1 76 30 (.08) 24 (.05) 20 0.001 94.4 76 30 (.08) 25 (.05)
fGLM 0.1 8 2.00 − 75 29 (.07) 30 (.06) − − − − − −

fsGLM 0.1 8 2.11 − 75 30 (.07) 30 (.06) − − − − − −
fpGLM 0.1 22 0.09 58.3 75 32 (.08) 24 (.06) 23 0.09 58.3 75 32 (.09) 24 (.06)

fspGLM 0.1 23 0.08 102 75 32 (.09) 24 (.05) 23 0.07 134 75 32 (.08) 24 (.07)
PCA

best-performing smoothest
K/P Q Rβ λ AUC ERRcv ERRalt Q Rβ λ AUC ERRcv ERRalt

GLM 1 2 35.07 − 71 36 (.08) 30 (.05) − − − − − −
sGLM 1 10 0.18 − 75 30 (.08) 29 (.06) − − − − − −
pGLM 1 48 0.02 3.9 73 34 (.08) 29 (.04) 63 0.02 3.2 74 33 (.08) 27 (.04)

spGLM 1 31 0.001 53.4 76 29 (.08) 26 (.04) 27 0.001 53.4 77 29 (.08) 26 (.04)
fGLM 0.1 10 3.30 − 75 30 (.08) 30 (.05) − − − − − −

fsGLM 0.1 10 1.38 − 75 30 (.08) 30 (.06) − − − − − −
fpGLM 0.1 30 0.09 7.8 75 32 (.09) 25 (.04) 22 0.10 9.3 75 32 (.08) 26 (.04)

fspGLM 0.1 30 0.09 7.8 75 32 (.08) 24 (.04) 25 0.10 6.2 75 31 (.08) 25 (.04)

reduction which introduces considerable variation in the estimates as shown by the standard
error of the error rate (Table 2). More importantly, however, substantial improvement of the
error rate can be observed on alternative testing set, from 32/30% for the benchmark model (GLM)
to 24/25% for the model using all three techniques (fspGLM) with PLS/PCA reduction.

The fpGLM and fspGLM are the best performing models with very similar error rates on the alter-
native test set, showing that smoothing becomes only marginally important when a functional
representation is used. This is not surprising seeing that a functional representation provides
smoothing alongside dimension reduction. It is worth noting that a functional representation
provides marginally better results then smoothing when only one of the techniques is used in
conjunction with penalisation, which can be seen by comparing spGLM and fpGLM.

The relationship between smoothness and performance is as expected. Specifically, the smoothest
models—here defined by a low value of Rβ, the roughness of the coefficient function—tend to
perform better on the alternative testing set than rougher models.

The ensemble approach does not improve results w.r.t. the corresponding smoothest models with
the exception of the pGLM with PLS reduction, where both error rate and standard deviation are
improved substantially (Table 3). However, this still does not constitute an improvement w.r.t.
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Table 3: Performance of different penalised ensemble models. See Table 2 for a description of
the measures reported.

PLS PCA
K/P Q Rβ λ AUC ERRcv ERRalt Q Rβ λ AUC ERRcv ERRalt

pGLM 1 31 0.09 4.5 75 41 (.11) 33 (.18) 60 0.02 3.3 74 33 (.08) 27 (.04)
spGLM 1 20 0.001 87.8 76 30 (.08) 25 (.05) 28 0.001 53.4 77 29 (.08) 26 (.04)
fpGLM 0.1 22 0.09 51.7 75 32 (.08) 24 (.06) 24 0.11 6.5 75 31 (.08) 26 (.04)

fspGLM 0.1 23 0.08 105 75 32 (.09) 24 (.05) 23 0.10 8.1 75 31 (.08) 25 (.04)

the smoothest GLM (the benchmark). Additionally, the ensemble pGLM does not outperform sGLM,
fGLM or fsGLM, suggesting that smoothing spectra is essential to avoid overfitting.

The optimal (i.e. lossless) functional representation affords a 90% compression level, which
reduces the computational costs of computing the dimension reduction matrix D. The resulting
optimal number of PLS components Q increases although only marginally, for instance from 20
in the spGLM to 23 in the fspGLM. For the model using PCA components this number decreases
from 27 to 25.

Importantly, the standard deviation of error rate on the alternative test set is left virtually
unchanged or only minimally increased as a result of the three techniques used, again with the
exception of the pGLM with PLS reduction.

In general, PLS gives slightly smaller error rates than PCA on the alternative testing set and
requires a smaller number of components, thus performing better in both accuracy and effi-
ciency.

The AUC is a less important performance measure since it is computed with the testing subset
of the cross-validation dataset, while we are primarily interested in the performance of the model
on the alternative testing set. Nonetheless, we also see an improvement between 3–4 p.p. in the
AUC with the use of functional techniques.

3.2 Visualisation and Diagnostics

Cross-validation illustrated. The results of (λ,Q) cross-validation evaluated on the testing
subset of the cross-validation dataset are illustrated in Figure 3. Accuracy is measured by the
AUC and the models with acceptable performance, as defined in §2.2.5, are shown within the
boxed area (Figure 3a). From the set of acceptable models, the smoothest or an ensemble are
picked to produce the predictions on the alternative dataset, reported in Table 2.

Diagnostics and results illustrated. We provide extensively annotated plots for quick assess-
ment of model fit and prediction accuracy. These are designed to be as informative as possible so
that potential issues with the training process can be easily identified. An example is shown in
Figure 4 for a binary classification problem. Multinomial classification and regression problems
have similar outputs.

The Q cross-validation curves evaluated on the validating subset of the cross-validation dataset
shows the performance achieved for a given number of PLS/PCA components (Figure 4a). When
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Figure 3: Maps showing (a) Area under the ROC curve (AUC) and (b) roughness of the
coefficient function (Rβ), for fspGLM with different numbers of PLS components and penalty
parameter, on the validating subset of the cross-validation dataset. The boxed area denotes
the na models with acceptable performance, and the black circle denotes the smoothest model
among those.

these curves are close to flat, it is useful to set a margin parameter τQopt so that we choose not
the Q corresponding to the largest AUC but one that gives an AUC within τQopt of the optimal.
A small value such as τQopt = 0.01 can often reduce the number of components substantially
without considerable loss in performance, and furthermore can help prevent overfitting.

The classification cutoff–error curves depict the optimal probability cutoff that minimises the
misclassification rate, giving equal weight to false positives and false negatives (Figure 4b).
Models with optimal probability cutoff equal to 0 or 1 will always predict the same class, which
can mean that a particular split of the dataset has come out highly imbalanced in terms of the
responses classes and the model minimises the error by always predicting the majority frequency.
Such models may deserve further investigation. The package also includes an option to enforce
balanced dataset splits. An important quality requirement for any classifier using predictors
(Cp) is that it outperforms a naive classifier (CN ) trained only on the frequency of the response
variable (i.e., without predictors). The later will always predict the majority class, and so if our
classifier outperforms this naive strategy we can be assured that the predictors contain valuable
information. In other words, if the spectra is predictive of mosquito species, Cp must outperform
Cn. The color-coded dot in Figure 4b provides this information: green if Cp outperforms the
Cn; red otherwise. To fairly access performance we compute the misclassification rate using the
average probability cutoff, although we also show the curve-specific cutoff for reference.

The ROC curves evaluated on the testing subset of the cross-validation dataset, together with
dispersion measures and the AUC corresponding to the optimal classification cutoff as given in
panel 4b give an overview of the performance of the model (Figure 4c).
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The coefficient function β(t) can be used to identify the spectral regions of more importance for
prediction, and is the key output of the model (Figure 4d).

A histogram of the estimated linear predictor for the test observations illustrates the models’
ability to separate the two classes (Figure 4e). The shaded area corresponds to misclassified
observations, with false negatives to the left of the optimal cutoff line (An. gambiae incorrectly
predicted to be An. arabiensis) and false positives to the right (An. arabiensis incorrectly
predicted to be An. gambiae). The inset plot shows the confusion matrix with the breakdown
of the classification results: true negative rate (tnr), false negative rate (fnr), true positive rate
(tpr), false positive rate (fpr).

3.3 Identifying important predictors

Experiments to generate spectra from laboratory-reared mosquitoes remain relatively time-
consuming, although necessary to train predictive models. With the view of simplifying and
accelerating the process of gathering data, it is of interest to determine which variables under
the experimenter’s control have an effect on spectra. The statistical framework presented, en-
capsulated in (8), can handle this type of hypothesis testing straightforwardly by testing the
significance of the parameters γ associated with the non-functional predictors Z.

To to illustrate this using the same dataset, we can determine whether the location of collection
is a statistically significant. We use a binary variable Location encoding the location where
samples were collected (Longo or Klesso). The average p-value for this variable in a fsGLM with
balanced classes (N = 222) is p = 0.04, which provides some evidence that mosquitoes from
the two collection locations have some differences which are not captured by the spectra. This
result supports the use of penalised estimation and smoothing methods to prevent overfitting
when doing cross-location prediction.

4 Discussion

NIRS has the potential to revolutionise entomological monitoring of mosquito-borne diseases
though there is a need to refine the statistical methods used to translate spectral information
into quantities of epidemiological interest. Spectra from mosquitoes with the same characteris-
tics are also likely to vary from site to site reflecting the genetic heterogeneity in the mosquito
population, local environmental factors and procedural differences between teams collecting and
processing samples. If the NIRS is to become a widely used there is therefore a need to prevent
statistical models converting spectra into mosquito characteristics to be generalizable and not
overfitting to the local training dataset. Here we have identified a number of statistical techniques
to support this process which should be adopted to increase the rigour of NIRS entomological
monitoring. Spectra functional representation, spectra smoothing and penalisation for the co-
efficient function all improve the accuracy of NIRS models predicting mosquito species in the
test dataset (independent mosquitoes collected from the same location) and more importantly
on the alternative test dataset (mosquitoes collected 283km away). All the techniques provide a
level of spectra smoothing, though the optimum use of these different methods (in combination
or individually) will vary depending on the characteristics of the training and unknown dataset.
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Figure 4: Diagnostic plots for a fsGLM with PLS components, showing (a) cross-validation for
the number of components (Q); (b) cutoff-error plot displaying the choice of probability cutoff
for classification; (c) ROC curves with variability shown in the boxplots (black line, box edges,
inner and outer whiskers show 50th (median), 25th/75th, 15th/85th and 5th/95th percentiles,
respectively); (d) coefficient function β(t); (e) histogram of the estimated linear predictor for the
test observations, colour-coded by the true class. Results are averaged over 100 randomisations
of the training/validating/testing subsets, shown individually in grey.
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Smoother coefficient functions tend to give conservative estimates and therefore prevent overfit-
ting to individual peaks which may result from measurement error generated by the machinery
or represent a minor deviation specific to the local mosquito population. We would recommend
all these methods are trialled with new and expanded datasets and the optimum model chosen
using the methods outlined here.

The regularisation framework proposed here has several advantages over the standard methods
used in the literature. The functional representation of spectra is more computationally efficient
allowing models to be trained and fit quicker. Though this isn’t necessarily an issue with the
dataset presented here (with single models being fit within a few minutes) this is likely to get
more important as datasets grow and samples from multiple sites are used within the same
model. Regularisation also provides a smoother coefficient functions which generalises better
preventing overfitting to noisy spectra. This is particularly important when sample sizes are
small and where instruments have high noise-to-signal ratio in some regions of the spectrum (for
example at the ends their spectral ranges).

In these data both PCA and PLS as a method of dimension reduction tend to give similar
results, but in some cases PLS requires fewer components than PCA to achieve a given accuracy
as has been seen previously (de Jong, 1993a). In addition to the standard penalisation approach,
the methods presented here also enable predictions to be made using either the smoothest or
top 5 smoothest models selected from the best performing models. Here they were selected
for by choosing the models with either the smoothest or the 5 smoothest coefficient functions
which were drawn from the top 25 most accurate models as evaluated on the validating subset
of the cross-validation dataset (from mosquitoes within the same village). In these data this
did not substantially improve the accuracy when predicted the species of the second village.
This confirms the robustness of the strategy employed here of selecting the most appropriate
smoothing method in order to obtain good generalizability. Further work with larger more
diverse datasets are needed to understand the benefit of selecting the smoothest over the best
fitting models. Here we defined an acceptably accurate model as being within 1 percentage
point of the most accurate model, although this parameter will need to be refined according
to the question under investigation which will determine the trade-off between accuracy and
generalisability. Similarly, the ensemble method proposed here which selected the 5 smoothest
models from the top 25 most accurate did not perform better than the single best fit model. The
added benefit of this ensemble approach needs to be investigated further using larger datasets
collected from more diverse geographical locations as it may be expected to perform better in
these scenarios.

Our results indicate that the accuracy of NIRS ability to determine the sibling species of
mosquito within the An. gambiae complex is lower than previous estimates. This work was
intended to showcase the different statistical methods and not evaluate the technique and there
are a number of reasons why the moderate accuracy should not be overly interpreted. Firstly,
the sample size used in this study is very small with only 126 samples available. This means that
only 63 samples were used to train each model (a different set of 63 samples for each of the 100
models), which is a very low number given the diversity of spectra. Future work may have sam-
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ple sizes an order or two of magnitude larger if the technique is adopted further. Secondly, there
were a mixture of F0 and F1 mosquitoes used in this analysis. Spectra collected from mosquitoes
which were caught in different ways may vary, though the number of mosquitoes available for
this analysis was insufficient to test this here. Lastly, other characteristics of interest which
might influence spectra were not collected or included in the model. For example the level of
insecticide resistance may vary substantially within the same species within the same population
and has been shown to influence specta ( ). It is worth noting however that high accuracy isn’t
necessarily a prerequisite for NIRS to be a useful tool (Lambert et al., 2018). NIRS could also be
used as a pre-scanning tool, for instance to determine if mosquitoes are infected before parasite
genetic sequencing. In that case, we are interested in maximising the ratio of truly infected to
truly uninfected TP/(TP +FP) in order to minimise the cost per mosquito sequenced. This can
be done with ROCR package by choosing the ppv (positive predictive value) criterion in the
function performance(). Additionally, there can be class imbalance which leads to imbalanced
misclassification rates. Tuning the importance of false positive rates to false negative rates can
help giving balanced misclassification rates for the different classes according to the question
under investigation.
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Appendix

A Dimension reduction
Functional principal component analysis (fPCA). Principal component analysis was
originally used to overcome multicollinearity in the linear model (Jolliffe, 2002; Massy, 1965)
and subsequently extended to functional data (Cai and Hall, 2006; Cardot et al., 1999; Hall
and Hosseini-Nasab, 2006; Müller and Stadtmüller, 2005; Shang, 2014; Wang et al., 2016). The
objective of fPCA is to compute directions that maximise the variance of the functional dataX(t)
when projected onto these directions. Assuming E[X(t)] = 0,∀t ∈ T for notational simplicity,
we can formalise fPCA as solving the following problem:

φk = arg max
φ∈L2(T )

Var
[∫
T
X(t)φ(t)dt

]
(9)

subject to ||φ|| = 1 (normalisation) and
∫
T φl(t)φ(t) = 0, ∀l < k (orthogonality). Here, φk is

the kth orthogonal fPCA direction (loading) associated with the covariance function K(s, t) =
Cov[X(s), X(t)]; and vik =

∫
T Xi(t)φk(t)dt is the kth fPCA component (score), that is, the

projection of Xi onto φk. By construction, φ1 gives the direction of highest variation; φ2 the
direction of next highest variation that is orthogonal (uncorrelated) to φ1; and so on.

Even in high dimensional data, often a small number of these components is sufficient to cap-
ture most of the variation in X. This feature selection procedure can therefore accommodate
dimension reduction with minimal information loss, the trade-off being regulated by the tuning
parameter Q, which can be chosen by cross-validation.

Computation. Following (5), we derive the fPCA components not from X but from XB.
The fPCA components are estimated by singular value decomposition, XB = UΣV T . This
produces a matrix V whose columns [v1,v2, . . . , ] are the fPCA components or eigenvectors
of the covariance matrix of XB, approximating the eigenfunctions [φ1, φ2, . . . ]. The dimension
reduction projection matrix in (8) is thenD = VQ, where VQ denotes the matrix whose columns
are the first Q columns of V .

Functional partial least squares (fPLS). Partial least squares was also originally used to
solve multicollinearity among predictors in the context of linear models, and has been widely
used in chemometrics (Geladi and Kowlaski, 1986; Wold et al., 1984, 2001) and extended to
functional data (Aguilera et al., 2010; Delaigle and Hall, 2012; Preda and Saporta, 2005). The
objective of fPLS is to identify directions which maximise the covariance between the response
y and the functional data X(t) when projected onto those directions:

ψk = arg max
ψ∈L2(T )

Cov2
[
y,

∫
T
X(t)ψ(t)dt

]
(10)

subject to ||ψ|| = 1 (normalisation) and
∫
T
∫
T ψl(s)Σ(s, t)ψ(t)ds dt = 0, ∀l < k (covariance-

orthogonality), where Σ(s, t) denotes the covariance function ofX. Here, ψk is the kth covariance-
orthogonal fPLS direction; and rik =

∫
T Xi(t)ψk(t)dt is the kth fPLS component, that is, the

projection of Xi onto ψk.

The interpretation of the sequential optimisation problem is similar to the case of fPCA, except
that fPLS maximises the covariance between response and predictor instead of the predictor
variance. This addresses an important concern, namely that in fPCA the response is not consid-
ered and, therefore, there are no guarantees that the components explaining the most variation
in the functional predictor are also the best at explaining the relation between the predictor and
the response—which is the ultimate goal of the analysis—although the two tend to be related
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(de Jong, 1993a; Mevik and Wehrens, 2015).

Computation. As before, we derive the fPLS components from XB. Several algorithms
have been proposed, for example NIPALS (Wold et al., 1984) or SIMPLS (de Jong, 1993b).
These produce a matrix R whose columns [r1, r2, . . . , ] are the fPLS components approximating
[ψ1, ψ2, . . . ]. The dimension reduction projection matrix in (8) is then D = RQ, where RQ

denotes the matrix whose columns are the first Q columns of R.
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