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Abstract  

Binary classification using gene expression data is commonly used to stratify cancers into 

molecular subgroups that may have distinct prognoses and therapeutic options. A limitation of 

many such methods is the requirement for comparable training and testing data sets. Here, we 

describe and demonstrate a self-training implementation of probability ratio-based 

classification prediction score (PRPS-ST) that facilitates the porting of existing classification 

models to other gene expression data sets. We demonstrate its robustness through application 

to two binary classification problems in diffuse large B-cell lymphoma using a diverse variety of 

gene expression data types and normalization methods.  

Background 

The classification of tumors into molecular subgroups using gene expression features has 

been applied to numerous cancer types and can be used to identify high-risk patients and/or 
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determine suitable treatment options [1–4]. Accordingly, clinical-grade assays using such 

classifications can serve as robust prognostic or predictive biomarkers and in some cases aid in 

obtaining a molecular diagnosis for neoplasms that are histologically indistinguishable. The 

implementation of clinical assays, however, depends on the ability to accurately and 

reproducibly classify tumors in the research setting such that shared biological or genetic 

features underlying these subgroups can be characterized.  

A variety of machine learning or modeling approaches have been applied to the binary 

classification of cancers, such as support vector machines (SVM) [5], penalized regression [6,7], 

and k nearest neighbor clustering [8,9], to name a few. However, all of these methods require 

comparable training and testing data sets. Here, by comparable we mean that both data sets 

are sufficiently similar that they can be considered unbiased, random samples from the same 

population. As truly comparable data is rarely available due to inter-experimental variation and 

platform differences, expression data from unlabeled cases (testing cohorts) are commonly 

normalized to an available training cohort. Such normalization has the potential to remove 

signal and increase noise and can be intractable when working with data from distinct 

platforms [10,11]. Platform differences can also lead to incomplete matching of variables 

between data sets, for example when data are generated using different microarray designs or 

divergent protocols for RNA-seq library handling or post-processing. In these situations, 

classifiers can only be ported by re-modelling on the training data set using shared variables, 

which leads to differences in their coefficients (or weights).  

An established classification system in diffuse large B-cell lymphoma (DLBCL) is termed “cell 

of origin” (COO), in which the activated B-cell-like (ABC) subtype is associated with inferior 
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outcomes relative to the germinal centre B-cell-like (GCB) subtype, and cases are considered 

unclassified (U) when they cannot be confidently assigned to either group with an empirical 

Bayes probability cutoff of 0.9 [12–14] A further extension to COO was recently established that 

identifies predominantly GCB-DLBCL tumors expressing the double-hit gene expression 

signature (DHITsig), which also identifies a group of patients with inferior outcomes [15]. The 

conventional application of COO to separate ABC and GCB tumors relies on the linear predictor 

score (LPS) method, in which weights are obtained for genes that have been established as up- 

or down-regulated in one of the two subgroups using a training cohort [13]. Using these 

weights, a LPS can be obtained from additional cohorts that have been normalized to the 

training data [13]. The gene-wise normalization step assumes that the distribution of 

expression of each gene and the proportion of tumors of each subtype are roughly the same in 

both training and testing data sets, which may not be a valid assumption due to sample 

selection bias and variable representation of molecular subgroups in different populations. The 

Lymph2Cx and DLBCL90 NanoString assays apply the LPS method to a smaller number of fixed 

genes and uses housekeeping genes for normalization [15,16]. Importantly, when Lymph2Cx 

has a new codeset, a set of standards with known LPS scores are processed and linear 

regression is used to calibrate LPS scores for the new codeset. Although this is an effective 

approach for a robust clinical assay, it is not applicable in the context of discovery-based gene 

expression experiments.  

To eliminate the constraints associated with existing classification methods, we have 

extended our previously described binary classification method “probability ratio-based 

classification prediction score” (PRPS; pronounced “porpoise”) to allow self-training of cases in 
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each subgroup without any labels (PRPS-ST) [15]. The algorithm requires a set of weights for 

genes that distinguish the two classes, which can be derived from any gene expression dataset 

with high-confidence class labels. Importantly, we show that weights derived from RNA-seq 

data can be applied to accurately classify samples with RNA-seq data analyzed through 

disparate alignment and quantification pipelines. More strikingly, we show that PRPS self-

training facilitates robust porting of classifiers to data from hybridization-based gene expression 

platforms including microarray and Illumina DASL. While we have focused here on the 

application of the method to DLBCL classification, we expect this method could prove useful in 

any binary classification based on gene expression differences.  

Methods 

Self-training approach for PRPS 

The goal of the self-training algorithm is to identify cases in an unlabeled gene expression 

data set that can be confidently classified (“Self-training”, Figure 1), and to use those cases as 

pseudo training data thereby allowing classification of all cases in the cohort (“Empirical Bayes 

Classification”, Figure 1). Besides a gene expression matrix, the algorithm requires a set of 𝑚 

genes with a weight 𝑤! for each gene 𝑘. 

During the self-training stage, we iteratively divide tumors into two classes, enforcing the 

relative proportion of each class as 𝜌 and 1-	𝜌. This is performed over a range of ρ values 

spanning (0,1) individually for each gene. Here, we use the package default search range for ρ, 

0.05-0.95, at intervals of 0.05.  For each gene 𝑘 with a positive weight 𝑤! the samples are split 

into two groups representing tumors with the highest 𝜌	and lowest	1 − 𝜌 expression of 𝑘. If 𝑤! 
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is negative, the tumors are split according to the lowest 𝜌 and highest 1 − 𝜌 expression of 𝑘. 

Next, stabilized 𝑡 values  𝑡"!# and 𝑡"!$ are calculated for each tumor 𝑖 as follows:  

𝑠𝑡𝑎𝑏𝑙𝑖𝑧𝑒𝑑	𝑡"!# =	
%!"&	%̅"#)	*	
+,"#)	*

   

𝑠𝑡𝑎𝑏𝑙𝑖𝑧𝑒𝑑	𝑡"!$ =	
%!"&	%̅"$)	*	
+,"$)	*

   

[Eq. 1] 

Here, 𝑥"! is the expression of gene 𝑘 for the 𝑖-. tumor, and  𝑥̅! and 𝑠𝑑! are the mean and 

standard deviation of expression of gene 𝑘 within each group. We stabilize the 𝑡 values to avoid 

inflation and breaking up of continuity by adding a small number (by default, 0.01),  𝛿, to both 

the numerator and denominator. We then estimate the probability that sample 𝑖 belongs to 

group 1 (𝑝"!#) or group 2 (𝑝"!$) by comparing 𝑡"!# and 𝑡"!$  against 𝑡 distributions with degrees 

of freedom determined by the sample size of each group, respectively. These steps are 

repeated until all 𝑝"!#and 𝑝"!$have been calculated. A PRPS score is then calculated for each 

tumor as follows:  

𝑃𝑅𝑃𝑆" =9|𝑤!| ∗ <log#/(
𝑝"!#
𝑝"!$

)B

0

!1#

 

[Eq. 2] 

The PRPS scores are used to classify samples into two groups using Expectation 

Maximization (EM), performed with the mclust R package version 5.4.5 [17]. All of the above 

steps are repeated for each value of permutated 𝜌 spanning (0,1). To increase variation, this 

process is also repeated with the sign of all weights reversed. The samples that have the same 
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classification for all values of 𝜌 with original weights and sign-reversed weights are assigned a 

stable class label.  

During the Empirical Bayes classification portion, these stable class labels derived from self-

training portion are used to split the samples once again into two groups, and 𝑡"! and 𝑝"! are 

calculated for each group using the same method as in the self-training portion of the 

algorithm. PRPS scores are again calculated for each tumor using Eq. 2. Lastly, we calculate an 

empirical Bayes probability that a sample belongs to one of the two groups as follows:  

𝑃(𝑦" 	 ∈ 𝑓#(𝑌)) = 	
𝜑#(𝑦")

𝜑#(𝑦") +	𝜑$(𝑦")
 

𝑃(𝑦" 	 ∈ 𝑓$(𝑌)) = 	
𝜑$(𝑦")

𝜑#(𝑦") +	𝜑$(𝑦")
 

[Eq. 3] 

Here, 𝜑#(𝑦") is the estimated density value of the 𝑖-. sample under the normal distribution 

𝑓#(𝑌)	~	𝑁(𝜇#, 𝜎#$) of PRPS scores, where the mean and standard deviation (SD) are estimated 

from samples in the group 1 stable class. Similarly, 𝜑$(𝑦") is the estimated density value of the 

𝑖-. sample under the normal distribution 𝑓$(𝑌)	~	𝑁(𝜇$, 𝜎$$) of PRPS scores. A probability 

threshold of 0.9 is set for inclusion in either classification, and samples with probabilities below 

this threshold for both groups are unclassified. This step is identical to the estimation of 

probabilities from LPS scores [13]. Self-training functions are included in the PRPS R package, 

which is available from CRAN and on GitHub (https://github.com/ajiangsfu/prps).  

Obtaining feature weights 

The self-training algorithm requires a set of feature weights for genes whose expression 

levels vary significantly between groups. We previously described a method to obtain weights 
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for DHITsig classification by taking the mean of four scaled importance scores and we have used 

those weights here for the DHITsig binary classifications [15]. Weights for COO classification 

were generated using the Ennishi et al. RNAseq data for which Lymph2Cx-generated COO labels 

are available [15]. Briefly, the RNAseq reads were aligned with STAR and quantified using 

featureCounts followed by variance stabilizing transformation (VST) in DeSeq2 [18–20]. The 

weights are the t values from a t test comparing the expression of each gene between the ABC 

and GCB cases as determined by Lymph2Cx. This is comparable to how weights were derived 

for the original LPS COO classification method [13]. We generated weights for each of 153 

Wright genes as used by Morin et al., 2011 [21] and separately selected 100 genes with 

differential expression between the two COO groups based on smallest P value (“top 100”) for 

use in COO classification. All weights are provided in Supplemental Tables S1 and S2.  

Gene expression and mutation data 

Our objective in selecting cohorts was to demonstrate the transferability of the self-training 

algorithm to many different types of gene expression data using cancers with established 

binary classification systems. We used gene expression data from Reddy et al., Schmitz et al., 

and Scott et al. to test the accuracy of the PRPS self-training for COO classification, and the 

REMoDL-B data for DHITsig classification [16,22–24]. Details of each data set are in Table 1.  
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Table 1. Details of gene expression data used to test the PRPS self-training classification.  
Cohort Data type Additional Details 
Ennishi et al., 
2018 [15] 
 
 

RNAseq Three versions used: 1) fC-VST: aligned with STAR 
[20], counted with featureCounts [18], and variance 
stabilizing transformed (VST) with DESeq2 [19]; 2) 
Salmon-VST: quantified with Salmon and VST with 
DESeq2 [25]; 3) fc – log2(TPM+1): aligned with STAR, 
counted with featureCounts, and normalized as 
log2(TPM + 1).  
EGA Accession: EGAS00001002657 

Reddy et al., 
2017 [22] 
 

RNAseq fC-VST. Additionally filtered to remove low-coverage 
cases with total non-duplicate reads < 1M, or total 
coverage of ACTB < 1000 non-duplicate reads. 
RNAseq libraries were subjected to hybridization 
capture with exome baits. 
EGA Accession: EGAS00001002606 

Schmitz et al., 
2019 [23] 
 

RNAseq Aligned with STAR and quantified with HTseq [26]. 
Unmodified from Schmitz et al.  
NCI GDC: NCCICCR-DLBCL 

Scott et al., 2014 
[16]  

Affymetrix U133 
Plus 2.0 Array 

Unmodified from Scott et al.  
GEO Accession: GSE53786 

REMoDL-B (Sha 
et al., 2019) [24] 

Illumina DASL V4 Unmodified from Sha et al.  
GEO Accession: GSE117556 

 

Exome sequencing data from Reddy et al. and Schmitz et al. were obtained from the 

European Genome-Phenome Archive (Reddy: EGAS00001002606) and National Cancer Institute 

Genomic Data Commons (Schmitz: NCICCR-DLBCL). Using the original alignments, data were 

reanalyzed using a standardized variant calling pipeline for tumor samples with no matched 

constitutional DNA. Candidate simple somatic variants were identified using Strelka2 [27], 

utilizing small insertions and deletions identified using Manta [28]. Candidate variant positions 

were then converted to BED format and provided to GATK4 MuTect2 

(https://gatk.broadinstitute.org/hc/en-us/articles/360036730411-Mutect2), leveraging a panel 

of normals generated from 58 unrelated normal genomic samples. Variants were annotated 
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using vcf2maf (https://github.com/mskcc/vcf2maf), and any variants with a population allele 

frequency of >0.005 in gnomAD [29] were flagged as germline and removed. Variant calls were 

further post-filtered to remove those with 1) Less than 5 reads supporting the alternate allele, 

2) Read mean mapping quality < 50, 3) Read mapping strand bias p<0.01, determined using a 

Fisher’s exact test between the reference and alternate allele, 4) Base quality bias p<0.01, 

determined using a t-test on all bases at a variant position, and 5) variant allele 

frequency >0.01. Finally, variant calls generated from the Schmitz cohort were lifted over to 

hg19 using Crossmap [30]. BCL2 and MYC break apart fluorescence in situ hybridization (FISH) 

data were available for REMoDL-B.  

PRPS self-training and COO and DHITsig classification 

For COO classification in each cohort, expression matrices were subset to include only 

matched Wright or Top 100 genes (Supplemental Tables S1 and S2). In the Reddy cohort, many 

of the top 100 weighted genes had very low read counts. We attribute this to the hybridization 

capture methodology applied to RNAseq libraries prior to sequencing. To address this, we 

considered genes with low expression as missing data and included only the 71 genes having a 

mean variance stabilized expression value > 6. In the Scott cohort, only 69/100 genes matched, 

and 68/100 matched in the Schmitz cohort. At least 150 of the Wright genes were matched in 

each cohort. All genes used for COO classification, along with their weights and their 

representation in each cohort are shown in Supplemental Table S1. For DHITsig classification, 

97/104 DHITsig genes with weights from Ennishi et al. were represented in the Illumina DASL 

data of the REMoDL-B cohort (Supplemental Table S2). PRPS was run on each expression matrix 

using default parameters (ratio search range 0.05-0.95, probability cutoff of 0.9).  
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Evaluating the effect of sample size on accuracy of self-training 
 

To determine the lower cohort size limit for self-training, we applied a random sampling 

procedure using the Scott and Reddy cohorts for COO and REMoDL-B for DHITsig. The 

maximum number of cases in each sample was determined by cohort size. For the Scott cohort, 

our maximum total sampling sample size was 110 and we arbitrarily chose a minimum total 

sampling sample size of 20. For consistency, we used the same range of sample sizes for the 

Reddy cohort. Using steps of 10, we sampled across the range of sample sizes m = 20, 30, …, 

110. For each given sample size m, we randomly sampled m cases from a given cohort without 

any repeated cases. We repeated this procedure for 1000 times for each given sample size.  

We used the REMoDL-B cohort to evaluate the accuracy of DHITsig classification, which 

naturally has a minority class (DHITsig+). We preserved the class ratios by sampling 

proportionately from DHITsig+ and DHITsig- GCB cases. Again, all samplings were random and 

without replacement. We repeated this procedure 1000 times for each given sample size. 

Identifying COO-enriched mutations 

Mutations from a targeted sequencing a panel of lymphoma-related genes [31] were 

reduced to a mutation matrix where known targets of non-synonymous or hotspot mutations 

were binary coded as mutated or unmutated. Known targets of aberrant somatic 

hypermutation (aSHM) were coded according to the number of mutations within the typical 

target region for aSHM, defined for each gene as the region proximal to the transcription start 

site containing high frequency of either coding and non-coding mutations. The matrix was 

filtered to include only genes, hotspots, or aSHM regions that were mutated in at least 10% of 

tumors. We used Fisher’s exact tests to identify features significantly enriched in either 
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subgroup using a Benjamini-Hochberg correction and a false discovery rate (FDR) threshold of 

0.1. From these data, we identified the six loci most enriched for mutations in the ABC 

subgroup (MYD88 Codon 273, ETV6 Any, PIM1 Hypermutated, NFKBIZ 3' UTR, TMSB4X 

Nonsynonymous, IRF4 Nonsynonymous) and five loci most enriched for mutations in the GCB 

subgroup (GNA13 Nonsynonymous, TNFRSF14 Nonsynonymous, BCL2 Hypermutated, EZH2 

Codon 646, P2RY8 Nonsynonymous), while excluding regions with insufficient coverage in the 

Reddy and Schmitz exome sequencing data. 

To allow comparison with the COO labels from PRPS, the Reddy and Schmitz cases were 

assigned as either ABC- or GCB-mutated if they were mutated in one or more of the defined 

regions. For regions known to be affected by aSHM, a case was considered mutated if it had >2 

mutations within the defined aSHM region regardless of the effect of the mutation on protein. 

McNemar’s tests were then used to compare the number of ABC- or GCB-mutated cases that 

were correctly classified by each subgrouping method.  

Statistical Analysis  

The Kaplan-Meier method was used to estimate progression-free survival (PFS) or overall 

survival (OS) within different COO or DHITsig classifications. Univariable and multivariable Cox 

proportional hazard models were used to evaluate and compare different classification 

methods. PRPS scores were tested for correlation with other scores using Pearson correlation. 

Two-class accuracy was calculated for samples that were classified (ABC/GCB or DHITsig+/-) by 

both methods being compared, while three-class accuracy included cases called “unclassified” 

by either method. Two-class accuracy was also calculated for samples that were classified for 

DHITsig+ vs others for sample size sampling experiments. A threshold for significance of 𝑃	< 
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0.05 was employed for all tests. Where appropriate, Benjamini-Hochberg multiple test 

correction was applied with a FDR threshold of 0.1. All statistical tests were performed in R-3.5.  

Results 

Self-training COO classification accuracy on digital and analog gene expression data 

We used our cohort of 272 DLBCLs with Lymph2Cx-determined COO labels from Ennishi et al., 

2019 [9] to obtain t values for 155 COO-distinguishing genes used in previous LPS-based 

classification models, herein referred to as the Wright genes. As these genes were selected 

using microarray data and are not necessarily ideal for RNA-seq, we separately identified the 

top 100 differentially expressed genes and used the t values of either gene set as weights. 45 of 

the top 100 differentially expressed genes were shared with the Wright list and, notably, many 

of those unique to the latter had small t values both in our cohort and the Reddy cohort, which 

has the potential to introduce noise in the classification (Figure S1).  

We compared the self-training algorithm on the Ennishi RNAseq data quantified using three 

commonly used read-counting methods, namely variance stabilized gene-level read counts 

from Salmon (Salmon-VST), log-transformed TPMs inferred by featureCounts (fc-log2(TPM+1)), 

and variance stabilized featureCounts data (fC-VST). The PRPS scores determined using all three 

data formats were highly correlated (Figure S2A). Accordingly, each data processing method 

yielded similar two-class accuracy (ABC and GCB), with all exceeding 0.97 (Supplemental Table 

S3). Three-class accuracy (ABC, GCB, and U) was generally lower due to variation in the number 

of cases deemed unclassifiable. Overall, this demonstrates the consistency of the self-training 

tool on RNA-seq data processed through different pipelines (Figure S2B and C).  
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We next validated the self-training algorithm using the microarray data from Scott et al. [16]. 

In addition to Lymph2Cx calls, the Scott cohort has COO calls generated with the original LPS 

algorithm and is considered the “gold standard” [12]. Using expression data for the 151 

matched Wright genes and the 69 matched Top 100 genes we classified cases using the PRPS 

self-training algorithm and used heat maps to visualize expression patterns between subgroups 

(Figures 2A and S3A). Compared to the gold standard class labels, the self-training 

classifications with either the Top 100 (2 class accuracy: 98.95%, 3 class accuracy: 85.71%) or 

Wright gene weights (2 class accuracy: 100%, 3 class accuracy: 83.19%) were as accurate as 

Lymph2Cx (2 class accuracy: 98.86%, 3 class accuracy: 82.76%; Supplemental Table S3). 

Moreover, the PRPS scores determined by the self-training algorithm were strongly correlated 

with both gold standard and Lymph2Cx scores (Figure 2B-D, S3B-D). A high hazard ratio is 

maintained for the ABC class compared to the GCB class when these newly classified cases are 

considered, suggesting they have been classified appropriately (Figure 2E, Table 2).  

In the study by Reddy et al., COO labels were derived from their RNA-seq data using a bespoke 

algorithm based on the difference of mean standardized expression values of 11 ABC and 9 GCB 

genes (“RNAseq ABC/GCB”). The Lymph2Cx assay was also applied 137/468 cases. Using 

Lymph2Cx classifications as ground truth, our self-training PRPS classifications were more 

accurate (Top 100 genes: 2 class accuracy: 97.48%, 3 class accuracy: 86.13%; Wright genes: 2 

class accuracy: 96.67%, 3 class accuracy: 88.32%) than the RNAseq ABC/GCB (2 class accuracy: 

95.58%, 3 class accuracy: 82.48%) (Figure S4A, Supplemental Tables S16). PRPS scores correlate 

strongly with the RNAseq ABC/GCB and Lymph2Cx score with either the top 100 (Figure S4B) or 

Wright gene weights (Figure S4C).  
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The Schmitz data had COO labels generated using the original LPS method, but LPS scores 

were not provided and the Lymph2Cx assay was not used. To allow comparison of our self-

training results to LPS, we used our implementation of the LPS method with the Wright genes 

to generate LPS scores, which issued 100% 2 class accuracy and 93.95% 3 class accuracy 

(Supplemental Table S3). Two factors may account for the small difference in accuracy: first, the 

Schmitz LPS method used 195 genes to our 153; and second, they performed post-processing 

with adjusted weight normalization to their previous microarray U133+ data before LPS 

classification. Scores from our in-house LPS and self-training methods correlate strongly when 

either gene set is used for self-training classification (Figure S5A). Using the LPS COO labels 

assigned to these data as truth, the self-training COO labels generated with either gene set 

yielded very similar two-class accuracy but the latter gene list had inferior three-class accuracy 

(Figure S5B).  

Assessing accuracy using subgroup-restricted driver mutations 

In all of the cohorts described above, PRPS self-training COO classification had a very low frank 

misclassification rate, but the unclassified (U) group was consistently smaller relative to the 

other methods. To objectively assess whether this results from true ABC and GCB DLBCLs 

becoming correctly classified by PRPS, we examined whether tumor genetic features were 

consistent with their class assignment in the cohorts with available mutation data. Although 

many genes have been reported as more commonly mutated in either ABC or GCB DLBCL, the 

strength of these associations varies by gene. Using the targeted sequencing data from Ennishi 

et al., we first identified the 6 ABC and 5 GCB features most strongly enriched for mutations, 
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respectively, based on Lymph2Cx COO labels and used these for subsequent analyses (Figure 

S6).  

Using this gene list, the cases in both the Reddy and Schmitz cohorts were identified as either 

ABC- or GCB-mutated if each had at least one COO-characteristic mutation. In the Reddy 

cohort, self-training with the top 100 genes correctly classified significantly more GCB-mutated 

tumors than the RNAseq ABC/GCB method (McNemar’s test), while there was no significant 

difference in the number of correctly classified ABC-mutated tumors (Figure 3A, Table 3). 

Surprisingly, although the prognostic difference between patients stratified on COO is well 

established, none of the classification methods resulted in a significant survival difference 

between ABC and GCB in the Reddy cohort when all cases were included (Figure 3B, Table 2). In 

order to directly compare our classifications to Lymph2Cx, we also generated Cox models for 

the subset of cases with Lymph2Cx labels. The PRPS self-training classifications produced a HR 

as great as or greater than that obtained with the Lymph2Cx classification (Figure 3B).  

In the Schmitz cohort, PRPS self-training classification with the top 100 genes was not 

significantly more or less accurate than the original LPS COO classification (Table 3). However, 

self-training with the Wright genes accurately classified significantly more ABC-mutated tumors 

but significantly fewer GCB-mutated tumors than LPS (Figure 3C, Table 3), demonstrating that 

the Wright genes may lead to under-calling GCB tumors with self-training classification. All of 

the COO classifications on the Schmitz data maintained significant survival differences with a 

high hazard ratio associated with the ABC subtype relative to GCB (Figure 3D, Figure S5C, Table 

2).  
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Table 2. Cox models comparing overall survival between COO subgroups as determined by 
different methods. ***Cox models performed using only cases with Lymph2Cx labels.  
Cohort Biomarker Effect Total 

n 
Hazard 
ratio 

95% CI 
lower 

95% CI 
upper 

P-value 

Scott PRPS COO 
(Wright)  

U (vs GCB) 113 1.69 0.46 6.28 0.4312 
ABC (vs GCB) 2.59 1.22 5.5 0.0134 

PRPS COO  
(Top 100) 

U (vs GCB) 113 0.63 0.14 2.83 0.5465 
ABC (vs GCB) 3.06 1.52 6.15 0.0017 

Gold Standard 
COO 

U (vs GCB) 113 1.51 0.6 3.83 0.3854 
ABC (vs GCB) 2.8 1.31 5.99 0.0077 

Lymph2Cx 
COO 

U (vs GCB) 111 1.54 0.57 4.19 0.3931 
ABC (vs GCB) 3.13 1.5 6.51 0.0023 

Reddy PRPS COO 
(Wright) 

U (vs GCB) 454 1.73 1.02 2.93 0.0413 
ABC (vs GCB) 1.41 0.99 2.02 0.0593 

PRPS COO  
(Top 100) 

U (vs GCB) 454 1.43 0.82 2.48 0.2091 
ABC (vs GCB) 1.37 0.96 1.96 0.0795 

RNAseq COO U (vs GCB) 454 1.03 0.6 1.76 0.9178 
ABC (vs GCB) 1.4 0.97 2 0.0698 

PRPS COO 
(Wright) *** 

U (vs GCB) 136 2.65 0.88 7.96 0.0832 
ABC (vs GCB) 1.94 1.01 3.72 0.0459 

PRPS COO  
(Top 100) *** 

U (vs GCB) 136 2.03 0.58 7.08 0.2652 
ABC (vs GCB) 2.29 1.18 4.43 0.0138 

RNAseq  
COO *** 

U (vs GCB) 136 1.76 0.65 4.77 0.2664 
ABC (vs GCB) 2.35 1.15 4.81 0.0195 

Lymph2Cx 
COO 

U (vs GCB) 136 0.83 0.19 3.59 0.8025 
ABC (vs GCB) 1.93 1.03 3.64 0.0414 

Schmitz PRPS COO 
(Wright) 

U (vs GCB) 562 0.77 0.24 2.54 0.6715 
ABC (vs GCB) 2.44 1.57 3.79 <0.0001 

PRPS COO 
(Top 100) 

U (vs GCB) 562 1.10 0.46 2.63 0.8224 
ABC (vs GCB) 2.43 1.59 3.71 <0.0001 

LPS COO  U (vs GCB) 562 2.20 1.26 3.83 0.0053 
ABC (vs GCB) 2.59 1.64 4.08 <0.0001 
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Table 3. McNemar’s Tests comparing the number of correctly-classified cases based on 
mutation status achieved by different methods. *Significantly more correctly-classified cases.  
Cohort Comparison Number 

Mutated 
P-value Self-training 

correct 
Original 
correct 

Reddy ABC: PRPS (Top 100) vs. 
RNAseq ABC/GCB 

112 1 71 72 

ABC: PRPS (Wright) vs. 
RNAseq ABC/GCB 

0.0771 66 72 

GCB: PRPS (Top 100) vs. 
RNAseq ABC/GCB 

122 0.0093 98* 88 

GCB: PRPS (Wright) vs. 
RNAseq ABC/GCB 

0.0003 103* 88 

Schmitz ABC: PRPS (Top 100) vs. LPS 197 0.114 143 137 
ABC: PRPS (Wright) vs. LPS <0.0001 159* 137 
GCB: PRPS (Top 100) vs. LPS 121 0.45 86 83 
GCB: PRPS (Wright) vs. LPS 0.0412 77 83* 

 

Application of self-training to DHITsig sub-classification within GCB 

We next sought to validate the PRPS self-training method for sub-classification of GCB-DLBCL 

using the double hit signature (DHITsig) [15]. This signature was designed to identify DLBCLs 

with both MYC and BCL2 translocations (genetic double hit) along with tumors having similar 

biology that may lack one or both genetic features. In contrast to the COO classification shown 

here, where the ABC and GCB classes are similar in proportions, the DHITsig+ class is generally 

only present in about 20-40% of GCB-DLBCLs, providing an opportunity to determine accuracy 

of self-training with imbalanced classes. The REMoDL-B cohort was selected for validation 

because of its large size and the availability of MYC and BCL2 break apart FISH data for many 

tumors, providing opportunity for approximating accuracy. Of 543 GCB tumors, 152 (27%) were 

classified as DHITsig+, and, as expected, all genetic double hit tumors in this cohort were 

classified as DHITsig+ with PRPS self-training (Figure 4A). Of 98 DHITsig+ tumors with available 

FISH data, 32 (33%) were MYC and BCL2 double hit. This is a smaller proportion of genetic 
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double hit tumors than we observed in the Ennishi cohort, where ~ 50% of DHITsig+ tumors are 

double hit. However, consistent with our initial description of this group, DHITsig+ GCB-DLBCL 

exhibited inferior PFS and OS relative to DHITsig- GCB-DLBCL (Figure 4B-C). In Cox models 

adjusted for genetic double hit status, the DHITsig+ class is the only group with significantly 

inferior outcomes (Table 4). These results are consistent with our observations of DHITsig in 

other cohorts [15].  

Table 4.  
Outcome Covariate Effect Total n Hazard 

ratio 
95% CI 
lower 

95% CI 
upper 

P-value 

OS 
 

PRPS Class INDETERMINATE 
 (vs DHITsig-) 

245 
 

1.33 0.28 6.28 0.7165 

DHITsig+  
(vs DHITsig-) 

4.31 1.86 9.99 0.0007 

Genetic DHIT POS (vs NEG) 245 1.60 0.76 3.36 0.2114 
PFS PRPS Class INDETERMINATE 

(vs DHITsig-) 
245 

 
0.84 0.25 2.83 0.7752 

DHITsig+  
(vs DHITsig-) 

2.51 1.36 4.60 0.0031 

Genetic DHIT POS (vs NEG) 245 1.73 0.91 3.27 0.0926 
 

Stability of self-training across sample/cohort sizes 

In order to establish the relationship between cohort size and self-training classification 

accuracy, we performed random sub-sampling and COO or DHITsig classification of the Reddy, 

Scott, and REMoDL-B cohorts. Random sampling and classification were repeated 1000 times 

for each sample size, and the classification results were compared to the PRPS self-training 

classifications obtained using the full cohort (Figure 5A). Overall, the samplings of the Scott 

cohort exhibited higher accuracy than the Reddy cohort for COO classification, which may be 

because the largest sample size (110) is a larger proportion of the total cohort size (119). Based 

on the results of the 3X3 accuracy tests, the 25th percentiles are all >= 80% when sample 
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sizes >= 40. Therefore, we recommend that the total sample size should be at least 40 for a 

balanced binary classification such as COO. 

To address the class imbalance in DHITsig classification, the REMoDL-B cohort was sampled 

to maintain the proportion of DHITsig+ cases (27%) in all tests. We observed that 2-class 

accuracy with DHITsig+ and DHITsig- classes was greater than 90% across the range of sample 

sizes, and 2x2 DHITsig+ vs others (DHITsig- and indeterminate) accuracy was greater than 85% 

across the range (Fig. 5B). Based on the 25th percentile of the 2X2 DHITsig+ vs others accuracy 

samplings, the sample sizes should not be smaller than 50 in tests with this degree of class 

imbalance. Larger sample sizes may be needed for classifications with more imbalance between 

classes.  

Discussion 

Traditional supervised classification requires a training data set with ground truth 

classification information whereby a model is derived from the labeled cases and then used to 

assign class labels to a testing data set. Importantly, the underlying assumption is that 

subsequent data sets are comparable to the initial training data. This is often not easy to be 

satisfied in practice, e.g., in cross-laboratory [32] and cross-platform situations [10,33]. This can 

limit the reproducibility of discoveries made on different gene expression platforms or in 

projects involving multiple laboratories. Various normalization methods are often used in an 

attempt to force compatibility between data sets, however, this introduces a risk of removing 

true signal and increasing noise, which may result in random or systematic classification errors 

[10,11]. Numerous classifiers initially developed for application to cancer were implemented 
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using training data from legacy platforms such as microarrays, including the popular COO 

classification used in DLBCL research [13]. 

Here, we have evaluated a new binary classifier that can be trained in the absence of 

comparable labeled training data through self-training. We have demonstrated that gene lists 

and weights derived from a single training set allow automatic class assignment even on data 

generated from different laboratories and distinct gene expression platforms. Our algorithm is 

robust even with incomplete correspondence in genes quantified by different assays, an issue 

that would require re-training of model-based classifiers such as multivariable regression or 

SVM.  Notably, in the process of porting the 104-gene DHITsig PRPS classification model to the 

NanoString DLBCL90 assay, we reduced the number of features to 30 without an appreciable 

decrease in the accuracy of the classifier [15], further supporting the robustness of this method.   

Despite the clear importance of the set of genes used in developing a classifier, there is no 

consistent approach for selecting an optimal set of genes. Here, we applied COO self-training 

classification using two gene lists: Wright and top 100. All 153 Wright genes were significantly 

differentially expressed between COO groups respectively in the three cohorts, but many of 

those unique to this gene set had more modest t values (Figure S1). This observation likely 

relates to differences in gene expression platform used in the process of defining COO. Among 

both gene sets there is variation in the magnitude of t values between RNA-seq cohorts, which 

also suggests that technical variation can affect the relative importance of these genes. Many of 

the genes unique to the Wright list thus naturally have a smaller influence on the classifier due 

to lower weights, such that the results are consistent with either gene list (Figure 2-3, Table 2-3, 

Figure S3-S5, Supplemental Tables S15-17). 
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While retaining comparable accuracy to standard methods for COO assignment, our 

approach consistently left fewer cases unclassified (Figure 2, Figure S3-S4). Relying on the 

presence of COO-associated mutations, we demonstrated that the mutation status of cases 

classified as ABC and GCB was consistent with the genetics of these subgroups in both the 

Reddy and Schmitz cohorts (Figure 6, Table 3). This confirms that the increased classification 

rate did not cause a decrease in accuracy, and the higher classification rate can be considered 

another benefit of this method. Similarly, for the REMoDL-B cohort, we assessed the accuracy 

of DHITsig classification using the presence of genetic features that underlie many DHITsig+ 

cases. As expected, all tumors with MYC and BCL2 translocations (genetic double hit) were 

classified into DHITsig+ group (Figure 4).  

To obtain sufficient pseudo training data, PRPS self-training requires a sufficiently large 

sample size and representation of both classes. However, many situations naturally impose 

limits on the number of samples available. For scenarios in which both classes are naturally 

represented in approximately equal proportions, our data indicate that a sample size of at least 

40 is sufficient for adequate self-training (Figure 5A). Our sampling experiments show that, for 

situations in which there is a minor class representing ~20% of cases (DHITsig+), a sample size 

of 50 is sufficient (Figure 5B). We expect self-training to work in more extreme cases of class 

imbalance, although this would require a larger sample size.  

Taken together, we have shown that our new self-training method is an effective tool for 

binary classification in the absence of comparable training and testing data sets. Our method 

represents a significant advance over existing classification methods, addressing many of the 

caveats usually associated with porting classification models to new data. We expect it to 
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improve the consistency of gene expression-based binary classification across many different 

cancers.  
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Figures 

Figure 1: Flow chart of self-training algorithm illustrated by PRPS classification. The self-

training process (left) searches for stable classes; Empirical Bayes classification (right) performs 

binary classification based on stable classes. 

Figure 2: Comparing the performance of self-training PRPS COO classification to gold 

standard LPS and Lymph2Cx on the Scott cohort. A. Heatmap of 69 matched “top 100” COO 

genes. Samples are ordered by PRPS score. Expression data are normalized per gene to a mean 

of 0 and standard deviation of 1. B. Two- and three-class accuracy comparisons between 

classification methods. Error bars represent 95% confidence interval. C. Scatter plots comparing 

scores derived from different classification methods. R and p values from Pearson correlation. 

D. An alluvial plot reveals how cases move between classes with different classification 

methods. The lines between classifications are colored according to their gold standard 

classification. E. Kaplan-Meier OS survival curves for each COO classification method.  

Figure 3: Performance of self-training PRPS COO classification on the Reddy and Schmitz 

cohorts based on matched top 100 genes and Wright COO genes. A. Heatmap of 69 matched 

“top 100” COO genes from Reddy et al. Samples are ordered by PRPS score. Expression data are 

normalized per gene to a mean of 0 and standard deviation of 1.  B. Kaplan–Meier OS (overall 

survival) survival curves for different COO classifications with Reddy data. C. Heatmap of 

matched 153 Wright COO genes from Schmitz et al. Expression data are normalized per gene to 

a mean of 0 and standard deviation of 1. D. Kaplan–Meier OS (overall survival) survival curves 

for different COO classifications with Schmitz data. 
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Figure 4: Self-training performance of DHITsig classification on the REMoDL-B GCB cohort. 

A. Heatmap of 97 matched DHITsig genes. Expression data are normalized per gene to a mean 

of 0 and standard deviation of 1. B. Kaplan–Meier PFS (Progression-free survival) and OS 

(overall survival) survival curves of DHITsig classification.  

Figure 5: Accuracy distribution of 1000 random samplings for a variety of sample sizes. A. 

COO classification accuracy plots for Reddy and Scott cohorts.   B. DHITsig classification 

accuracy plots for the REMoDL-B GCB cohort. 

Availability of data and materials 

PRPS is an open-source R package available at GitHub (https://github.com/ajiangsfu/PRPS). 

PRPS self-training function is “PRPSstableSLwithWeights”.  

Gene expression data used to test PRPS self-training algorithm are from Ennishi et al., Reddy 

et al., Schmitz et al., Scott et al., and Sha et al. [15,16,23,24].  

The datasets supporting the conclusions of this article are included within the article and its 

additional files. 
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