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Abstract

Breast cancer prognosis is challenging due to the heterogeneity of the disease. Various

computational methods using bulk RNA-seq data have been proposed for breast cancer

prognosis. However, these methods suffer from limited performances or ambiguous

biological relevance, as a result of the neglect of intra-tumor heterogeneity. Recently,

single cell RNA-sequencing (scRNA-seq) has emerged for studying tumor heterogeneity

at cellular levels. In this paper, we propose a novel method, scPrognosis, to improve

breast cancer prognosis with scRNA-seq data. scPrognosis uses the scRNA-seq data of

the biological process Epithelial-to-Mesenchymal Transition (EMT). It firstly infers the

EMT pseudotime and a dynamic gene co-expression network, then uses an integrative

model to select genes important in EMT based on their expression variation and

differentiation in different stages of EMT, and their roles in the dynamic gene

co-expression network. To validate and apply the selected signatures to breast cancer

prognosis, we use them as the features to build a prediction model with bulk RNA-seq
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data. The experimental results show that scPrognosis outperforms other benchmark

breast cancer prognosis methods that use bulk RNA-seq data. Moreover, the dynamic

changes in the expression of the selected signature genes in EMT may provide clues to

the link between EMT and clinical outcomes of breast cancer. scPrognosis will also be

useful when applied to scRNA-seq datasets of different biological processes other than

EMT.

Author summary

Various computational methods have been developed for breast cancer prognosis.

However, those methods mainly use the gene expression data generated by the bulk

RNA sequencing techniques, which average the expression level of a gene across different

cell types. As breast cancer is a heterogenous disease, the bulk gene expression may not

be the ideal resource for cancer prognosis. In this study, we propose a novel method to

improve breast cancer prognosis using scRNA-seq data. The proposed method has been

applied to the EMT scRNA-seq dataset for identifying breast cancer signatures for

prognosis. In comparison with existing bulk expression data based methods in breast

cancer prognosis, our method shows a better performance. Our single-cell-based

signatures provide clues to the relation between EMT and clinical outcomes of breast

cancer. In addition, the proposed method can also be useful when applied to scRNA-seq

datasets of different biological processes other than EMT.

Introduction 1

Cancer prognosis plays an important role in clinical decision making. Traditionally, 2

cancer prognosis is based on several clinical and pathological variables such as tumor 3

size, lymph node status, histological grades, and so on [1]. However, these 4

clinicopathological factors are insufficient for cancer prognosis because cancer is 5

heterogeneous at the molecular (e.g., genes) level. Hence, recent clinical guidelines have 6

highlighted the importance of using multi-gene tests to select patients who should 7

receive adjuvant therapies [2]. The multiple genes in the tests are known as cancer 8

signatures, which are crucial to cancer prognosis. Cancer signatures can be identified by 9
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in vivo biological experiments. For example, the LM method [3] analyzed 10

transcriptomics in the cell lines and chose 54 genes associated with lung metastagenicity 11

and virulence. However, these experiments cannot be done on human beings. 12

Meanwhile, experiments on animals would not guarantee that the same conclusion can 13

be drawn for humans. Therefore, computational methods are needed to identify cancer 14

signatures from existing data, including gene expression data and clinical data. 15

Computational methods for breast cancer prognosis have shown some successes. 16

Generally, these methods select the prognostic genes from a large number of human 17

genes and then train survival models based on the selected genes. For instance, PAM50 18

starts with an extended intrinsic gene set from previous studies, then selects genes 19

based on their contributions in terms of distinguishing the five intrinsic breast cancer 20

subtypes [4]. The RS method selects 16 cancer signatures from 250 published candidate 21

genes [5]. Mamma [6] and GGI97 [7] use a statistical test to choose the genes which 22

differentially express between two distinct groups of tumors. Most of these methods use 23

supervised algorithms to select the candidate genes and only GGI97 ranks genes based 24

on the similarities between gene expression profiles and tumor histologic grades. Based 25

on the selected genes, most methods train linear regression models to predict the 26

outcomes of the new coming patients. The clinical benefits of these prognostic genes for 27

breast cancer are well studied on the traditional transcriptomics data, and some of the 28

methods have approved by the Food and Drug Administration for commercial use [2]. 29

The common feature of existing computational methods for breast cancer prognosis 30

is that they are based on bulk RNA-seq data, which can lead to the following problems. 31

Firstly, different tumor samples in bulk RNA-seq data have different proportions of 32

cancer cells (named tumor purities) that can bias the results of these methods [8]. The 33

traditional RNA sequencing technology measures the average expression levels of genes 34

for an ensemble of cells from a tumor sample to obtain the so called bulk RNA-seq data. 35

As a solid tumor tissue is a mixture of normal and cancer cells, the bulk RNA-seq data 36

hence contain mixed signals and the non-cancerous components may have influences on 37

genomic analysis of the bulk RNA-seq data or even bias the results [8]. There are works 38

to uncover tumor purity and correct the bias in the detecting of differential genes [9] 39

and identification of cancer subtypes [10]. It has been shown that differentially 40

expressed genes and cancer subtypes are crucial to the selection of cancer signatures. 41
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Secondly, with bulk RNA-seq data, we may not able to determine how gene signatures 42

are related to cell level perturbation during cancer progression. Increasing evidence 43

shows that the expression patterns of genes are heterogeneous from cell to cell [11]. 44

These stochastic expression patterns trigger cell fate decisions and can affect cancer 45

initiation and progress. However, based on the bulk RNA-seq data, the existing cancer 46

prognosis methods cannot determine the correlation between clinical outcomes and 47

dynamic gene behaviors along cellular trajectory. 48

Single cell RNA sequencing (scRNA-seq) has emerged recently and has many 49

advantages over bulk RNA sequencing. Firstly, scRNA-seq does not have the tumor 50

purity problem because it is possible to discover the existence of the micro-environment 51

cell populations from scRNA-Seq data (See a review on this in [12]). Secondly, 52

scRNA-seq is a powerful method to comprehensively characterize the cellular 53

perturbation or stages within tissues [13] as it measures the expression of genes in 54

individual cells. Additionally, scRNA-seq trajectory methods can provide a precise 55

understanding of dynamic cell fate differentiation (See a systematic comparison in [14]). 56

Through continuous cell stages along the pseudo-trajectory, we can observe the 57

stochastic nature of gene expression [15]. Currently, scRNA-seq data are mostly used to 58

detect cell types or to find novel biomarkers. As far as we know, there has been no work 59

conducted on using scRNA-seq data to improve breast cancer prognosis. 60

In this work, we develop a novel method called scPrognosis to use scRNA-seq data 61

to identify breast cancer signatures. Epithelial to Mesenchymal Transition (EMT) is a 62

biological process associated with carcinogenesis, invasion, metastasis, and resistance to 63

therapy in cancer [16]. We hypothesize that genes that play an important role in EMT 64

are associated with breast cancer prognosis. Hence, we use an EMT scRNA-seq dataset 65

for identifying the breast cancer signatures for prognosis. To fully exploit the scRNA-seq 66

data towards optimal identification of breast cancer signatures, we propose to assess the 67

importance of genes in the EMT process by integrating the following three measures: (1) 68

their median absolute deviation in expression level; (2) their differentiation in different 69

stages of EMT; (3) their roles in the dynamic gene co-expression network in EMT. 70

scPrognosis uses a linear model to integrate the three measures for inferring breast 71

cancer signatures. The significant difference between our method and the bulk RNA-seq 72

data based methods is that we reconstruct the pseudotemporal trajectory known as 73
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pseudotime of cells [17] in EMT and incorporate this information into differential gene 74

expression analysis and dynamic gene co-expression network construction. To validate 75

the prognostic ability of these discovered gene signatures and apply them to breast 76

cancer prognosis, we use them to build prediction models using bulk RNA-seq data as 77

the data contains matched clinical information (and there are no single cell data with 78

matched clinical information available). We apply scPrognosis to four independent bulk 79

breast cancer datasets, ranging from about 200 to 1200 patients. The experimental 80

results show that scPrognosis improves cancer prognosis compared with other 81

benchmark breast cancer prognosis methods based on bulk RNA-seq data. A significant 82

portion of the discovered prognostic genes is proved to be associated with breast cancer 83

prognosis. Moreover, the dynamic changes in the expression trends of the genes provide 84

clues to the link between EMT transition and clinical outcomes of breast cancer. 85

Materials and methods 86

Overview of scPrognosis 87

scPrognosis contains five steps as depicted in Fig 1. In step 1, MAGIC [18] and a gene 88

filter are used to pre-process the noisy and high-dimensional scRNA-seq data. In step 2, 89

EMT pseudotime, pseudotime series gene expression data, and dynamic gene 90

co-expression network are inferred from the scRNA-seq data. In this step, firstly VIM 91

gene expression level and pseudotemporal trajectory estimated by the Wanderlust 92

algorithm [19] are used to identify EMT pseudotime for all cells in the scRNA-seq 93

dataset. The EMT pseudotime describes the gradual transition of the single-cell 94

transcriptome during the EMT transition process and helps to study gene expression 95

dynamics in different EMT transition stages. Secondly, pseudotime series gene 96

expression data is obtained by ordering cells in the scRNA-seq dataset from epithelial 97

stage to mesenchymal stage according to the EMT pseudotime. Thirdly, from the 98

ordered scRNA-seq data, a dynamic gene co-expression network is constructed by using 99

the LEAP R package [20]. In step 3, based on the ordered scRNA-seq data, three 100

methods are adopted to obtain the different gene ranking measures, including Median 101

Absolute deviation (MAD), switchde [15] and Google PageRank. MAD and switchde 102
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Fig 1. Workflow of the proposed scPrognosis framework. There are five main
steps in scPrognosis, including: 1O Pre-processing scRNA-seq data; 2O Inferring EMT
pseudotime, pseudotime series gene expression data, and dynamic gene co-expression
network from the filtered scRNA-seq data; 3O Ranking genes by three measurements;
4O Prioritizing genes via an integrative model; 5O Cancer prognosis using the top N

ranked genes. The first four steps are based on scRNA-seq data while the last step uses
bulk RNA-seq data to select parameters.

are used to compute gene importance based on their expression level. Google PageRank 103

ranks genes based on their roles in the dynamic gene co-expression network. In step 4, 104

we integrate the three different rankings obtained in step 3 to prioritize genes. In step 5, 105

the top N ranked genes are selected as signatures to predict the survival outcomes of 106

breast cancer patients in bulk RNA-seq data. Details of each step are described in the 107

following sub-sections. 108
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Pre-processing scRNA-seq data 109

In the first step, scPrognosis pre-processes the input scRNA-seq dataset. The 110

scRNA-seq dataset is a data matrix with G rows and C columns, where each column 111

stores the expression levels of G genes in a single cell. Due to the low amounts of 112

transcripts in a cell, an expressed gene may not be detected during sequencing with 113

current scRNA-seq technology. This can lead to missing values of expressed genes, which 114

is called the ”dropout” phenomenon. For example, scRNA-seq data by the inDrops 115

platform only have about 30% effective reads for each cell. The dropout events can lead 116

to significant bias in gene-gene relationships and other downstream analyses [18]. 117

MAGIC [18] is a method to denoise scRNA-seq data and impute the missing gene 118

expression profiles. To overcome the sparsity and noise of the raw count matrix, 119

MAGIC uses PCA (principal component analysis) components to calculate cell-cell 120

distance matrix. The distance matrix is converted to a cell-cell affinity (similarity) 121

matrix by an adaptive Gaussian kernel method. The affinity matrix is symmetrized and 122

Markov-normalized to construct a Markov transition matrix. The final denoised and 123

imputed data matrix is obtained by multiplying the exponentiated Markov transition 124

matrix by the raw count matrix. Based on the information sharing across similar cells, 125

MAGIC recovers gene expression from the dropout and other sources of noise. 126

After the imputation, we filter out genes with low coverage rates and low expression 127

levels because these genes are most likely not expressed. It is suggested that these genes 128

should be removed when searching for discriminative genes in microarray data [21] and 129

implementing the switchde method. More experimental details of MAGIC and the gene 130

filter method are provided in Section 2 in S1 File. 131

Inferring EMT pseudotime, pseudotime series gene expression 132

data, and dynamic gene co-expression network 133

Recently, it has been proposed that EMT transition occurs through continuum stages 134

and there are several intermediate stages known as hybrid (partial) 135

epithelial/mesenchymal (E/M) stages. Interestingly, these hybrid E/M stages are stable 136

and can be the endpoint of a transition [16]. This means that cells may not go through 137

the whole EMT transition and stop at a hybrid E/M stage. Switch-like genes that are 138
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up- or down-regulation along the EMT trajectory may induce cells to undergo a 139

transition from one hybrid E/M stage to another hybrid E/M stage. Applying the 140

proposition to the continuum stages of EMT transition, we could characterize the 141

nature of switch-like genes and dynamic gene-gene relationships along the EMT 142

trajectory. The strength of switch-like changes and the importance of genes in the 143

dynamic gene co-expression network will be used to rank genes in our methods. 144

In this step, we will firstly infer the EMT pseudotime, and then based on the 145

obtained pseudotime, we construct the pseudotime series gene expression dataset from 146

the scRNA-seq dataset, which will be used in Step 3 to capture the switch-like changes 147

along the pseudotime. At the same time, we also construct the dynamic gene 148

co-expression network based on the pseudotime series gene expression dataset. 149

Even we do not have the true time-series data of individual cells undergoing EMT 150

transition, we still can use scRNA-seq trajectory method to infer pseudotime from static 151

scRNA-seq data. We assume that the EMT trajectory is a linear topology of ordered 152

single cells, and cells represent the entire developmental process from E to M, i.e. each 153

cell in the ordered sequence represents a different stage of the E to M transition. The 154

trajectory then provides an indication of the timeline of the EMT transition, known as 155

the EMT pseudotime. The pseudotime can be obtained using different approaches. One 156

simple way to approximate the EMT pseudotime from a static scRNA-seq dataset is to 157

order cells by their expression values of VIM [18], and we denote this pseudotime as 158

VIM-time. Another way to infer the EMT pseudotime from a scRNA-seq dataset is by 159

using the Wanderlust algorithm [19]. Wanderlust is a graph-based method to infer a 160

linear tread to recapitulate cell trajectory. Wanderlust converts scRNA-seq data into a 161

k-nearest neighbor graph (k-NNG). In k-NNG, each node is a cell, and each cell is 162

connected to k cells that have similar expression profiles. Then Wanderlust generates 163

several l-out-of-k-nearest neighbor graphs (l-k-NNGs) by randomly keeping l of 164

k-nearest neighbors for each node in the k-NNG. For each l-k-NNG, Wanderlust 165

identifies a trajectory score for each cell using a repetitive randomized shortest path 166

algorithm. The final trajectory is computed by the average over all graph trajectories. 167

We use the final trajectory as the EMT pseudotime named W-time. All the parameter 168

assignments of Wanderlust can be found in Section 2 in S1 File. 169

After obtaining the EMT pseudotime, we have a trajectory score ranging from 0 to 1 170
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for each cell which indicates its developmental stage of the E to M transition. Therefore, 171

the scRNA-seq dataset (a data matrix) can be converted to a pseudotime series gene 172

expression dataset by sorting cells (columns) based on the EMT pseudotime. 173

Then we construct a dynamic gene co-expression network from the above obtained 174

pseudotime series expression dataset. Each node of the network represents a gene in the 175

dataset. To capture the dynamic regulatory relationship between two genes, we use 176

LEAP (lag-based Expression Association Pseudotime-series) [20] package to determine 177

if there is an edge between two nodes. Given C cells ordered by the EMT pseudotime, 178

the MAC counter() function in LEAP calculates the maximum absolute correlation 179

(MAC) between the two nodes across all the time lags l ∈ {0, 1, . . . , C/3} using the 180

pseudotime series expression data. If the MAC between two nodes g and tg is tested to 181

be statistically significant, an edge is added from g → tg. 182

The three measures for ranking genes 183

scPrognosis combines three measures to rank genes, including Median Absolute 184

Deviation (MAD) of gene expression profiles, the Switch-like Differentiation of genes in 185

different stages of EMT (SDE), and the roles played by genes in the gene co-expression 186

NETwork in EMT (NET). In this step, scPrognosis calculates the three measures 187

individually before they are integrated into the next step. In the following, we describe 188

the details of calculating each of the measures. 189

Let (e1, e2, . . . , eC) represents the expression profile of a gene g ∈ {1, . . . , G}, where 190

C is the number of cells. The MAD of the gene can be computed as: 191

mg = median(e1, e2, . . . , eC)

MAD(g) =median(|e1 −mg|, |e2 −mg|, . . . , |eC −mg|)
(1)

where median() is the function returning the median value of a given variable. 192

To calculate SDE, we use the software tool switchde [15] which can estimate the 193

differentiation of switch-like genes in different stages of EMT. switchde defines a sigmoid 194

function as shown in Eq 2 to fit the profile of a gene g with regard to a pseudotime tc (c 195

is the index of a cell and c ∈ {1, . . . , C}). In Eq 2, µ0
g, kg and t0g are the average peak 196
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expression value, the active strength and the active time of g. kg presents how quickly 197

the gene g is up or down regulated along the pseudotime. We define SDE(g) as the 198

switch-like differential expression level of the gene g, and SDE(g) = kg. 199

f(tc;µ
0
g; kg; t0g) =

2µ0
g

1 + exp(−kg(tc − t0g))
(2)

switchde adopts the gradient-based L-BFGS-B optimization algorithm [22] to obtain the 200

maximum likelihood estimates of the parameters µ0
g, kg, and t0g. switchde also do the 201

hypothesis testing associated with gene differential expression and adjust p-value by the 202

Benjamini-Hochberg method. 203

To calculate NET, we follow the modified Google PageRank algorithm presented 204

in [23]. The modified Google PageRank algorithm is used to calculate the regulatory 205

importance of a gene in the dynamic gene co-expression network. Suppose there are G 206

genes, the ranking of a gene g is defined as the following: 207

NET (g) =
1− d
G

+ d
∑

tg∈T (g)

NET (tg)

L(tg)
(3)

where d is the damping factor in PageRank and is set to 0.85 by default. tg is a target 208

of g and we use T(g) to denote the set of all targets of g. L(tg) is the number of genes 209

which regulate tg. From Eq 3, we can see that the rank of a gene depends on the rank of 210

all its target genes. NET(g) is initialized to the same value for all g, and can be 211

calculated using a iterative algorithm until it converges. 212

Prioritizing genes via an integrative model 213

Although all the three measures are all associated with the clinical outcomes of cancer, 214

none of the individual measure suffices to cancer prognosis. The expression variation 215

(MAD) helps with distinguishing different cell populations. Genes with high expression 216

variations are also of great clinical interest. The differentiation in different stages of 217

EMT is corresponding to the gene behavior along the trajectory of EMT. SDE helps 218

identify the genes that switch on and off alternatively during the trajectory to trigger 219

EMT. The gene co-expression network is important for us to better understand the 220

mechanisms of cell differentiation and carcinogenesis at a systems level. NET helps us 221
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discover hub regulatory genes that target the highest degree of a series of genes (called 222

targets) in the network. It is believed that the hub regulatory genes are more closely 223

related to cancer and have more biological significance compared with their targets [24]. 224

Because each of them only reflects one aspect of the importance of a gene, and a 225

combination of the three would be a more comprehensive measure. Therefore, we 226

propose a linear model to integrate the three measures to obtain the final score for each 227

gene. 228

Before integrating the three measures, we normalize them as follows: 229

MAD′(g) =
MAD(g)∑G
g=1MAD(g)

SDE′(g) =
SDE(g)∑G
g=1 SDE(g)

NET ′(g) =
NET (g)∑G
g=1NET (g)

(4)

Then we integrate the normalised individual measures as follows. 230

W (g) =α ·MAD(g) + β · SDE(g) + γ ·NET (g) (5)

where α, β, and γ are the weights of MAD, SDE and NET respectively, 231

α+ β + γ = 1, and 0 ≤ α, β, γ ≤ 1. Then we rank the genes in descending order of the 232

integrated measure. We use the grid search and cross validation methods to tune the 233

weights of the linear model in the experiments. The optimal weights can lead to the 234

best predictor of cancer prognosis on the bulk RNA-seq data. 235

Cancer prognosis using the top N ranked genes 236

From the list of ranked genes obtained in Step 4, we select the top N ranked genes as 237

cancer signatures. Then the Cox proportional hazards (PH) model [25] is trained based 238

on these cancer signatures and bulk RNA-seq data. The PH model assumes that the 239

effect of covariances on the survival outcomes is time-independent. Given survival time 240
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t, the general function of the PH model is defined as the following: 241

h(t|X) = h0(t)exp(β
′
X) (6)

where β
′

is a N × 1 vector that holds estimated regression coefficients, X is the 242

expression data of the top N genes, and h0(t) is the baseline hazard function. The risk 243

score of a new patient is calculated by 244

ri = β
′
(Xi −mean(X)) (7)

where Xi is the expression data of the top N genes of the new patient i, and mean() is 245

the function returning the average values of given data. 246

Performance evaluation 247

Concordance index (C-index) [26] is commonly used to validate the predictive 248

ability of cancer prognostic models. Let zi and ri be the potential survival time and the 249

risk score predicted using Eq 7 for patient i, respectively. C-index is equal to the 250

concordance probability P (ri > rj |zi < zj) for a randomly selected pair of patients i 251

and j. However, we cannot observe potential survival time for some patients who are 252

lost to follow-up or event free at the end of a study (right censored). Hence the actually 253

observed survival time ti = min(zi, ci), where ci is the potential right censoring time. 254

Let δi be the censoring status. An event (e.g. death or relapse) is developed within the 255

study period when δi = 1. For the right censoring data, C-index can be defined as the 256

following: 257

C-index =

∑∑
i<j [I(ti < tj)I(ri > rj)I(δi ≡ 1) + I(ti > tj)I(ri < rj)I(δj ≡ 1)]∑∑

i<j [I(ti < tj)I(δi ≡ 1) + I(ti > tj)I(δj ≡ 1)]
(8)

where I() is an indication function. C-index ranges from 0 to 1. The bigger the C-index 258

is, the more accurate of a model will be. 259

Hazard ratio. To assist clinicians in tailoring treatment strategy, we often need to 260

stratify patients into the high-risk group and the low-risk group via dichotomizing the 261

predicted risk scores around their median value. Therefore, we need an accuracy 262
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measure to compare different methods. We use the hazard ratio (HR) as a accuracy 263

measure, similar to other work [27]. We binarize the predicted risk scores to obtain the 264

predicted groups R for patients. Then we estimate the risk difference between the two 265

survival groups by Cox’s proportional hazards model as: 266

h(t|R) = h0(t)exp(βR) (9)

where h0(t) is the same as that in Eq 9. The quantity exp(β) is defined as HR, which 267

indicates the risk difference between the two groups of patients. The larger the HR is, 268

the larger discrimination between the low- and high-risk group becomes, and therefore 269

the better the prediction method will be. 270

Kaplan-Meier survival curve. The Kaplan-Meier (KM) survival curve [28] 271

combined with the Log-rank [29] test can identify whether the two risk groups show 272

significantly different survival patterns. In the KM curve plot, the Y-axis is the 273

probability of surviving in a given length of time, and the X-axis is survival time. The 274

KM curves should have different characteristics and should not overlap for different 275

groups predicted by a good method. The Log-rank test determines whether the survival 276

curve estimated for each group is identical or not. If the p-value of the Log-rank rest is 277

less than 0.05, the survival curves are statistically significantly different. 278

Implementation 279

scPrognosis has been implemented using MATLAB and R packages. All the datasets 280

and the R scripts to reproduce the results in this paper are available online 281

at https://github.com/XiaomeiLi1/scPrognosis. 282

Results 283

Data sources and preparation 284

scRNA-seq data. In this paper, we use the scRNA-seq data of HMLE breast cancer 285

cell lines from [18] to identify the EMT pseudotime for each cell and then select cancer 286

signatures. The cells were stimulated with TGF-beta to induce EMT transition and the 287
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single-cell sequencing was performed using the inDrops platform. There are 28910 288

transcripts effectively measured in 7523 single cells. The scRNA-seq data can be 289

download from the Gene Expression Omnibus (GEO) database 290

(https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE114397. 291

Bulk RNA-seq data. For training and validating the cancer prognosis model based 292

on the selected signatures, we use bulk RNA-seq data of 2979 breast cancer patients 293

from four different repositories, including TCGA (753 samples), METABRIC (1283 294

samples), GEO (736 samples) and UK (207 samples). Most of the breast cancer samples 295

possess detailed clinical data, such as age, nodal, stage, grade, survival time, and event 296

status. The TCGA and METABRIC datasets contain both overall survival time (OS) 297

and relapse-free survival (RF) endpoints. The GEO and UK datasets only have the 298

endpoints of relapse-free survival. The TCGA dataset was downloaded from the TCGA 299

data portal (http://firebrowse.org/) and the dataset consists of level 3 mRNA 300

expression data of primary breast cancer. The METABRIC dataset [30] was downloaded 301

from the European Genome-phenome Archive (https://www.ebi.ac.uk/ega/ 302

accession number EGAS00000000083, approval needed). The GEO dataset consists of 5 303

datasets: GSE12276 (204 samples), GSE19615 (115 samples), GSE20711 (88 samples), 304

GSE21653 (252 samples) and GSE9195 (77 samples). We merge the five GEO datasets 305

into a bigger dataset and adjusted the batch effects by the ComBat algorithm from the 306

sva library [31]. The UK (known as GSE22219) dataset contains 207 early-invasive 307

breast cancer cases with complete follow-up clinical data in 10 years. Both the GEO 308

and UK datasets were downloaded from the Gene Expression Omnibus repository 309

(https://www.ncbi.nlm.nih.gov/geo/). We summarize the details of these bulk 310

RNA-seq datasets in Table 1. 311

Table 1. The description of bulk RNA-seq datasets.
Dataset Platform Sample size #transcripts
TCGA Illumina RNA-seq 753 13088
METABRIC Illumina RNA-seq 1283 25191
GEO Affymetrix microarray 736 18503
UK Illumina microarray 207 22172
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scPrognosis is better than benchmark methods for risk score 312

prediction 313

As discussed in the previous section, the SDE and NET measures have a considerable 314

dependency on the pseudotime. We investigate the performance of two versions of 315

scPrognosis based on different pseudotime, including VIM-time and W-time which are 316

based on the expression profile of gene VIM and the Wanderlust algorithm, respectively. 317

Section 2 in S1 File has more experiment details of calculating VIM-time and W-time. 318

We denote the two versions of the implementations of scPrognosis as scP.V and scP.W, 319

corresponding to the use of VIM-time and W-time, respectively. 320

To illustrate that scRNA-seq data can help to select prognostic signatures of breast 321

cancer, we choose six widely used breast cancer prognosis benchmark methods that are 322

based on the signatures selected from bulk RNA-seq data. More information about the 323

benchmark methods can be found in Section 1 and Table 1 in S1 File. We compare the 324

performance of the two versions of scPrognosis (scP.V and scP.W) with the benchmark 325

methods on the datasets listed in Table 1. We report the results on TCGA and 326

METABRIC according to the overall survival (OS) and relapse-free (RF) time. For the 327

GEO and UK datasets, we report the results on the relapse-free time. Table 2 shows the 328

C-indices and the mean ranking scores of all the methods compared. The C-index 329

shown is the average of 100 times 10-fold cross-validation on a dataset. Based on the 330

C-indices, mean ranking scores are calculated by Friedman’s test, which is a two-way 331

analysis of variance by ranks for related samples. scP.W is better than other methods 332

since it wins three times. Compared to the benchmark methods, scP.W outperforms all 333

the methods for the prediction of the risk of RF time on the TCGA and UK datasets. 334

Moreover, from the mean ranking results, we can see that scPrognosis overall 335

outperforms the benchmark methods. 336

To test whether a method performs significantly better than the other, we conduct 337

the Wilcoxon signed-rank test based on the C-indices of scPrognosis and the benchmark 338

methods. The result shows that both scP.V and scP.W perform significantly better than 339

Mamma (the p-values are 0.017 and 0.018, respectively) and GGI97 (the p-values are 340

0.016 and 0.017, respectively). scP.V significantly outperforms LM (p-value = 0.03) 341

while scP.W is superior to RS significantly (p-value = 0.046). Moreover, as previously 342
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Table 2. Performance Comparison of cancer prognosis using benchmark
methods and the proposed methods (scP.V and scP.W).

PAM50 Mamma RS GGI97 Endo LM scP.V scP.W

TCGA(OS) 0.63 0.55 0.58 0.51 0.54 0.63 0.63 0.61
TCGA(RF) 0.61 0.58 0.63 0.57 0.59 0.56 0.61 0.68
METABRIC(OS) 0.59 0.57 0.58 0.55 0.60 0.58 0.59 0.60
METABRIC(RF) 0.63 0.61 0.63 0.58 0.65 0.61 0.63 0.64
GEO 0.53 0.54 0.58 0.48 0.55 0.51 0.56 0.56
UK 0.60 0.62 0.63 0.61 0.63 0.64 0.67 0.70

Mean rank 4.50 2.92 5.33 1.33 5.17 3.67 6.08 7.00

The top-performing result is highlighted for each dataset. The result of C-index is the average
of 100 times 10-fold cross-validation on each dataset.

shown (Table 2), according to the mean ranking scores, our methods still marginally 343

improve the other two methods, PAM50 and Endo. 344

In summary, we only use scRNA-seq data to measure the importance of genes, 345

whereas the benchmark methods use signatures directly obtained from breast cancer 346

clinical data and prior knowledge. Even so, the results have shown that both scP.V and 347

scP.W achieve better or competitive performance compared with the benchmark 348

methods. This indicates scRNA-seq data can improve the performance of breast cancer 349

prognosis, and the signatures of EMT potentially are high quality predictors for breast 350

cancer prognosis. 351

scPrognosis is better than benchmark methods for risk group 352

prediction 353

In this section, we evaluate scPrognosis using the Hazard Ratio (HR) criterion, in 354

comparison with the six benchmark methods. For each method, we stratify patients into 355

two groups using the risk scores calculated by the method. If a patient’s risk score 356

bigger than the median value the patient is put into the high-risk group, otherwise the 357

patient is put into the low-risk group. The HRs for all the methods are reported in 358

Table 3. We observe that the two versions of scPrognosis (scP.V and scP.W) win once 359

and twice, respectively, but PAM50, RS, and Endo each wines once this time. Based on 360

the mean ranking results, we can conclude that overall scPrognosis outperforms the 361

benchmark methods in stratifying patients into two risk groups. 362

Then we use the Wilcoxon signed-rank test to test the significance of the results on 363

the HR criterion. Again, both scP.V and scP.W have perform significantly better than 364
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Table 3. Comparison of the performances of risk group predictions using
benchmark methods and the proposed methods (scP.V and scP.W).

PAM50 Mamma RS GGI97 Endo LM scP.V scP.W

TCGA(OS) 1.45 0.95 1.33 0.87 0.87 1.43 1.76 1.32
TCGA(RF) 1.61 1.01 1.26 0.97 1.17 1.09 1.30 1.45
METABRIC(OS) 4.90 4.67 5.99 2.51 4.80 3.60 4.71 6.07
METABRIC(RF) 5.17 3.87 5.29 2.47 7.16 3.95 5.93 5.45
GEO 1.20 1.52 2.50 0.91 1.85 0.86 1.37 1.51
UK 1.54 1.72 1.62 1.68 2.17 1.74 2.90 3.27

Mean rank 4.83 3.33 5.33 1.58 5.25 3.33 6.00 6.33

The top-performing result is highlighted for each dataset. The result of hazard ratio is the
average of 100 times 10-fold cross-validation on each dataset.

Mamma (the p-values are 0.047 and 0.031, respectively), GGI97 (the p-values are 0.016 365

and 0.016, respectively) and LM (the p-values are 0.016 and 0.030, respectively). 366

Evaluation using independent test 367

According to the results in Tables 2 and 3, among the two different implementations of 368

scPrognosis, scP.W outperforms scP.V. So we choose scP.W as our final method to 369

identify breast cancer signatures. For further evaluating the robust of scP.W in breast 370

cancer prognosis, we conduct independent tests on three bulk RNA-seq datasets. Due to 371

the small sizes of the GEO, and UK datasets, we don’t train scP.W based on these 372

datasets. Fig 2 shows the independent test results on TCGA when training on 373

METABRIC. Figs 2(A) and 2(C) show the comparison of scP.W and the benchmark 374

methods. In these two figures, the Y-axis is the C-index, and the X-axis is the category 375

of methods. Based on C-index, scP.W achieves the best results in predicting overall 376

survival and relapse-free survival time. Figs 2(B) and 2(D) are the KM curves and the 377

Log-rank test of risk group prediction using scP.W on the TCGA dataset. The results 378

show that scP.W successfully stratifies patients into two risk groups of relapse and 379

overall survival. The p-values by the Log-rank test are less than 0.05, which indicates 380

that two risk groups have significantly different survival patterns, and the high-risk 381

group has lower survival probability than that of the low-risk group. The TCGA 382

dataset is the second-largest dataset in breast cancer and widely used in breast cancer 383

research. We report the comparison results of our method based on the TCGA dataset 384

and the current breast cancer prognostic methods in Table 3 in S1 File. The results also 385

show that scP.W achieves the best results in cancer prognosis. 386
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Fig 2. scP.W outperforms benchmark methods. (A) The bar chart of C-indices
of scP.W and the benchmark methods on TCGA(OS); (B)The KM curve and Log-rank
test of scP.W on TCGA(OS); (C)The bar chart of C-indices of scP.W and the
benchmark methods on TCGA(RF); (D)The KM curve and Log-rank test of scP.W on
TCGA(RF).

Breast cancer signatures identified by scPrognosis 387

From the previous sections, we see the EMT signatures discovered by our methods are 388

good breast cancer signatures too. To further validate these signatures, we compare the 389

signatures discovered by our method with those discovered by benchmark methods. The 390

EMT signatures are the top N ranked genes based on the scores calculated by Eq 5. 391

Parameters N, α, β, and γ are determined by the 10-fold cross-validation results on bulk 392

RNA-seq data. 393

scP.W selects 10 genes as breast cancer signatures, KRT15, UBE2C, TOP2A, 394

KRT6B, MKI67, HMGB2, ASPM, CDC20, KIF20A and CDK, when trained on 395
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Fig 3. Overlap of signatures among different methods. The bottom left bar
shows the number of signatures in each method. The dotted lines and the diagram on
top show that the interaction overlaps among different methods. There are three genes
(UBE2C, MKI67, and CDC20 ) in common with the scP.W, PAM50, and GGI97.
Besides, scP.W has another two genes that only overlap with GGI97 (ASPM and
KIF20A). 5 out of 10 genes using scP.W have proved to associate with breast cancer
prognosis.

METABRIC. Comparing the 10 genes with the signatures used by the benchmark 396

methods, we find 5 genes (UBE2C, MKI67, ASPM, CDC20, and KIF20A) showed up in 397

one or more benchmark methods. ASPM is the common signature when scP.W is 398

trained on TCGA and METABRIC. In our model, high ASPM levels are associated 399

with adverse prognostic factors and shorter survival and relapse-free time. Recent 400

evidence suggests that ASPM promotes prostate cancer stemness and progression and 401

has important clinical and therapeutic significance [32]. Besides ASPM, other common 402

signatures also have been proved to relate to breast cancer prognosis. For instance, high 403

UBE2C expression is associated with poor prognosis in breast cancer, especially 404

basal-like breast cancer [33]. CDC20 over-expression means short-term breast cancer 405

survival [34]. Fig 3 shows the diagram of overlapping genes among different methods. 406

The diagram shows that a significant portion of the prognostic genes discovered by our 407

method is overlapped with the current signatures of breast cancer prognosis. Though 408

the clinical significance of the other five signature genes discovered by our method 409
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(KRT15, TOP2A, KRT6B, HMGB2, and CDK1 ) is not clear at present, they can be 410

novel signatures for human breast cancer. There have been researches investigating the 411

relationship between these genes and breast cancer. For example, KRT6B and KRT15 412

were found to be the makers of basal-like breast cancers [35], and TOP2A expression 413

levels were reported to have a significant association with metastasis-free survival in 414

node-negative breast cancer [36]. 415

Correlation between EMT markers, breast cancer signatures 416

and the EMT pseudotime 417

KRT15

KRT6B

FXYD3
VIM

CDK1

UBE2C

TOP2A

CDC20

KIF20A
HMGB2

MKI67

ASPM

Pseudotime

0
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1

E (0) M (1)

Fig 4. The heatmap of EMT markers and signatures along the EMT
pseudotime. The bottom arrowed line is the W-time, and it indicates E stage, hybrid
E/M stages, and M stage from left to right on the line. The scale of the color bar on
heatmap is from 0 to 1, and the color gradually changes from blue to red. The color of
each cell of the colormap is based on the average expression level of a gene in a bin.

This paper is the first work to identify switch-like differential expression genes along 418

the EMT pseudotime to understand their efficacy in deciphering the survival of breast 419

cancer patients. No matter we use VIM-time or W-time, the models built have a good 420

agreement on the performance. This is because W-time is highly related to the 421

expression profile of VIM (the Pearson correlation is 0.46). For visualizing the dynamic 422

behavior of genes in different stages of EMT, we divide W-time into 10 equal sized bins 423

that present pseudo-stages of EMT. The expression level of a gene in a bin is calculated 424

by the average of the profile during the time interval. Fig 4 shows the tendencies of the 425

10 cancer signatures along the pseudo-stages. We also plot the expression profiles of 426
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genes along W-time in Fig 1 in S1 File. Only KRT15 and KRT6B are down-regulated 427

by the EMT transition while other signatures do not vary at the E and M stages, but 428

peak at the hybrid E/M stages. Recent experimental and theoretical evidence suggests 429

that the hybrid E/M stages are stable phenotypes and is associated with aggressive 430

tumor progression [37]. Our method demonstrates the relevance of the hybrid E/M 431

phenotypes to patient survival in breast cancer. 432

We also visualize the EMT markers’ dynamic behavior to determine whether the 433

W-time could successfully model the cell evolved from the E stage to the M stage. The 434

results from Fig 4 and Fig 1 in S1 File both show that the marker of epithelial 435

(FXYD3 ) is down-regulated along W-time, while the marker of mesenchymal (VIM ) is 436

up-regulated along W-time. The tendencies of EMT markers along the W-time are 437

consistent with prior knowledge that the expression of VIM increases while the 438

expression of FXYD3 decreases during the E to M transition. Therefore, W-time can 439

successfully model the continuum of the E to M transition, and the results about the 440

correlation between breast cancer signatures and EMT are reliable. 441

Enrichment analysis of the signatures discovered by scPrognosis 442

We validate discovered breast cancer signature genes against the literature knowledge of 443

pathways using the WikiPathways (http://www.wikipathways.org) platform [38]. 444

The results in Table 4 show that the 10 signatures are highly relevant to the regulation 445

of cancer. For instance, pathways 1, 2, 3, and 8 are direct pathways of cancer, and 446

others are important pathways involved in the process of tumorigeneses. 447

We also conduct gene ontology enrichment analysis for the 10 breast cancer 448

signatures. From Table 4 in S1 File, we can see that they are regulators of cell cycle 449

progress and ubiquitin-protein ligase activities. Table 1 in S1 File shows that current 450

signatures based on bulk RNA-seq data are also enriched in cell cycle regulation. Recent 451

studies reveal the important roles of ubiquitin-protein ligase activity played in breast 452

cancer [39,40]. 453
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Table 4. WikiPathways mapped pathways for the 10 breast cancer
signatures.

Id Maps P-value
1 Gastric Cancer Network 1 WP2361 9.07E-05
2 Gastric Cancer Network 2 WP2363 1.04E-04
3 Retinoblastoma Gene in Cancer

WP2446
9.33E-06

4 Regulation of sister chromatid separa-
tion at the metaphase-anaphase transi-
tion WP4240

7.48E-03

5 PPAR Alpha Pathway WP2878 1.29E-02
6 Cell Cycle WP179 1.56E-03
7 ATM Signaling Pathway WP2516 1.98E-02
8 Integrated Cancer Pathway WP1971 2.18E-02
9 ATM Signaling Network in Develop-

ment and Disease WP3878
2.23E-02

10 Regulation of Microtubule Cytoskele-
ton WP2038

2.28E-02

The pathways are highly relevant to the regulation of cancer.

Discussion and conclusion 454

Breast cancer is a complex disease caused by intricate genetic and molecular alterations. 455

Thus traditional clinicopathological factors are not sufficient for the accurate prognosis 456

of breast cancer. Recently, a wide range of computational methods have been proposed 457

to identify multi-genes for breast cancer prognosis, and some of the methods have been 458

approved for commercial use, including PAM50, Mamma, and RS test. These methods 459

lead to a revolution in the breast cancer treatment paradigm. However, all of the 460

progress in cancer prognosis has not been enough to overcome therapy resistance in 461

breast cancer under current cancer therapeutics. Some tumor cells acquire resistance to 462

targeted cancer therapy, which leads to worse survival of cancer patients. scRNA-seq 463

can reveal genes that affect cell fate decision by monitoring the expression of genes in 464

different cell states and sub-populations. In this paper, we use scRNA-seq data to detect 465

signatures related to EMT that affect the clinical outcomes of breast cancer patients. 466

For almost two decades, the prospect that EMT may play an important role in 467

tumor stemness, metastasis, and drug resistance has been vigorously debated. However, 468

evidence demonstrating the prognosis power of EMT markers in breast cancer clinical 469

studies has not been identified. Recently scRNA-seq is used to identify the continuum 470

of EMT transition. We try to use the EMT scRNA-seq data to link the EMT related 471

genes to breast cancer survival. To investigate how genes are related to cell level 472

perturbation during EMT, we use the computational method Wanderlust to infer the 473
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EMT pseudotime. We integrate multiple measurements, MAD, SDE, and NET to 474

measure the importance of a gene based on its expression variance, its dynamic 475

differentiation, and its role in the dynamic gene co-expression network. We apply our 476

method to four breast cancer cohorts. The experimental results illustrate that 477

scPrognosis is more efficient than the benchmark methods based on bulk RNA-seq data 478

and single-cell based methods only using individual measurements (Table 2 in S1 File). 479

Our work also emphasizes the benefit of EMT mechanisms that incorporate background 480

knowledge for identifying biologically relevant signatures of cancer prognosis. And the 481

results show the good performance of the signatures in breast cancer prognosis. 482

Moreover, the results of scPrognosis may give us some clues for interpreting the 483

EMT process. We look at the dynamic change of the gene expression along the EMT 484

pseudotime. Interestingly, only two identified breast cancer signature genes are 485

down-regulated along the EMT pseudotime, while the remaining genes peak at the 486

intermediate of the E to M transition. These genes could be novel biomarkers for the 487

hybrid E/M stages. We assume that the hybrid E/M stage is more relevant to patient 488

survival as supported by the recent study in [41]. 489

To identify the activity of EMT-related breast cancer signatures, we conduct a 490

pathway analysis of the discovered breast cancer signatures. The results show that a 491

significant number of the identified signatures are enriched in the pathways associated 492

with cancer. Through the GO enrichment analysis, the signatures found by our method 493

are closely related to the biological functions of cell cycle activity and ubiquitin-protein 494

ligase activity, and the latter activity is not showing up in most of the current 495

signatures. 496

However, there is no universal method that outperforms all the other methods. We 497

still need to discover novel mechanisms involved in breast cancer progress, metastasis or 498

resistance. In the future, our method can be extended to improve breast cancer 499

prognosis by immune cell trajectories. Understanding immune cell development and 500

response to disease is a crucial step for conquering cancer metastasis by immunotherapy. 501

Recently there are some single cell experiments for investigating cellular dynamics in 502

the context of immunology [42]. 503

In conclusion, we have proposed a novel method scPrognosis for breast cancer 504

prognosis based on scRNA-seq data. scPrognosis uses an integrative model to infer 505
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breast cancer signatures based on MAD, SDE, and NET measurements. We empirically 506

compared our method with the existing methods on four breast cancer datasets. The 507

results show that the scRNA-seq based method is a good and useful method for breast 508

cancer prognosis. The signatures detected by our method show the link between EMT 509

and the clinical outcomes of breast cancer, which may give some clues for current cancer 510

therapeutics. 511

Supporting information 512

S1 File. Supplementary information. 513
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