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Abstract 

Mycobacterium tuberculosis (M.tb) results in 10 million active tuberculosis (TB) 

cases and 1.5 million deaths each year1, making it the world’s leading infectious cause 

of death2. Infection leads to either an asymptomatic latent state or TB disease. Memory 

T cells have been implicated in TB disease progression, but the specific cell states 

involved have not yet been delineated because of the limited scope of traditional 

profiling strategies. Furthermore, immune activation during infection confounds 

underlying differences in T cell state distributions that influence risk of progression. 

Here, we used a multimodal single-cell approach to integrate measurements of 

transcripts and 30 functionally relevant surface proteins to comprehensively define the 

memory T cell landscape at steady state (i.e., outside of active infection). We profiled 

500,000 memory T cells from 259 Peruvians > 4.7 years after they had either latent M.tb 

infection or active disease and defined 31 distinct memory T cell states, including a 

CD4+CD26+CD161+CCR6+ effector memory state that was significantly reduced in 

patients who had developed active TB (OR = 0.80, 95% CI: 0.73–0.87, p = 1.21 x 10-6). 

This state was also polyfunctional; in ex vivo stimulation, it was enriched for IL-17 and 

IL-22 production, consistent with a Th17-skewed phenotype, but also had more capacity 

to produce IFNγ than other CD161+CCR6+ Th17 cells. Additionally, in progressors, IL-

17 and IL-22 production in this cell state was significantly lower than in non-progressors. 

Reduced abundance and function of this state may be an important factor in failure to 

control M.tb infection. 
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Main text 

 Interindividual immune differences may underlie host variation in response to 

pathogens, such as M.tb. Only 5-15% of individuals who are infected with M.tb develop 

TB disease during their lifetime2. Disease progression is influenced by host immune and 

genetic factors that implicate T cells, which are major contributors to defense against 

intracellular pathogens3-11. These markedly different outcomes of infection raise the 

question of whether steady-state differences in T cell composition underlie divergent 

host response to M.tb. 

 Studies examining immunophenotypes in active TB have identified numerous 

memory T cell changes, including in the CD4+12, activated13, exhausted14-16, Th117,18, 

and IL-17+ compartments19-23. However, these studies typically profiled patients during 

ongoing infection and focused on antigen-specific T cells, rather than broad, intrinsic 

differences in memory T cell composition outside of acute infection or active disease. 

Moreover, it is challenging to acquire an adequate sample size, account for confounders 

influencing T cell composition24, and overcome limitations of surface marker or bulk 

RNA-seq-based technologies that only capture certain cell state changes. 

 Here, we profiled total memory T cells at single-cell resolution from patients more 

than four years after TB disease in order to identify broad steady-state differences in 

progressors with minimal interference from acute immune response. We re-recruited 

259 individuals from a larger epidemiological study (n = 14,044) in Lima, Peru that 

identified patients with active TB disease and followed their M.tb-infected household 

contacts for one year to monitor progression to active disease (Fig. 1)25. Participants 

who were diagnosed with microbiologically confirmed TB were classified as cases; 
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household contacts who were tuberculin skin test (TST)-positive and had not developed 

TB disease by time of re-recruitment (4.72–6.60 years [median: 5.7] after initial 

recruitment) were classified as controls. During this time, cases were treated for active 

disease, which has an estimated cure rate of at least 95%, so they were expected to 

return to an immune steady state12,26. The larger epidemiological cohort has been 

comprehensively characterized with a variety of socioeconomic and demographic traits. 

In our subset, TB progression was associated with host factors, such as age, height, 

weight, sex, and body mass index (BMI), consistent with the larger cohort 

(Supplementary Table 1 and 2). 

 

Multimodal sequencing produces 500K robust T cell profiles 

To profile memory T cells, we obtained peripheral blood mononuclear cells 

(PBMCs) from 131 cases and 133 controls, and used magnetic sorting to negatively 

select memory T cells at high purity (~98.4%, Supplementary Information, Fig. 1). 

Because T cell phenotypes can be characterized by both transcriptional and surface 

protein markers27-33, we profiled single cells with Cellular Indexing of Transcriptomes 

and Epitopes by Sequencing (CITE-seq), a multimodal method that combines unbiased 

single-cell RNA-seq with surface marker profiles obtained via oligonucleotide-tagged 

antibodies34,35. We optimized a panel of 31 surface markers (Supplementary Table 3), 

including markers of lineage (e.g., CD4, CD8), activation (e.g., CD25, HLA-DR), 

migration (e.g., CCR6, CXCR3), and other functions, and mouse immunoglobulin G 

(IgG) as a control. After cell- and sample-level quality control (Extended Data Fig. 1a-
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f), the final data set contained 500,089 memory T cells from 259 individuals (mean: 

1,845 cells/sample, 95% CI: 518–3,172, Extended Data Fig. 1g).  

As others have previously observed, mRNA-protein correlations were modest but 

positive, with Pearson r < 0.5 for most gene-protein pairs (Supplementary 

Information)34,35. To assess the accuracy of surface marker measurements with CITE-

seq, we examined 8 populations gated with both CITE-seq and flow cytometry in 

samples from the same donor (Supplementary Information, Supplementary Table 4). 

The average frequency of each gated population was concordant between platforms 

(Pearson r = 0.99), and for each population, frequencies measured by the two platforms 

were well-correlated across individuals (Pearson r = 0.73–0.94). 

 

Multimodal integration defines the memory T cell landscape 

To define high-resolution memory T cell states, we assume that biologically 

relevant states are reflected in both mRNA and surface protein signatures and can be 

more precisely defined by integrating both modalities. We used canonical correlation 

analysis (CCA) to project each cell into a low-dimensional space defined by correlated 

modules of transcripts and proteins (Extended Data Fig. 2a). This allows us to leverage 

signatures involving different modality-specific markers; for example, regulatory T cells 

have high surface expression of CD25 and absence of CD127 (IL-7R), but also express 

FOXP3 transcripts36,37. We selected the top 20 canonical variates (CVs) with highest 

mRNA-protein correlations and corrected them for donor and batch effects (Extended 

Data Fig. 2b, c)38. The first CV is computed such that it captures the most variation sha-

red between modalities, and accordingly, scores on this dimension correlated with a 
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previously defined signature of cytotoxic potential (Pearson r = 0.90)27 (Extended Data 

Fig. 2d, e). 

Applying graph-based clustering to the top 20 CVs, we defined 31 clusters 

representing putative cell states characterized by marker genes and surface proteins 

(Fig. 2, Extended Data Fig. 3, Supplementary Table 5). Based on protein expression, 

the majority of clusters (23/31) were CD4+, while 5 were CD8+. One cluster (C-24) was 

a mixture of CD4+ and CD8+ cells, and two (C-30 and C-31) were CD4-CD8-. Most 

cells in these double-negative clusters expressed TRDC, the constant region of the T 

cell receptor (TCR) delta chain, but not the alpha beta TCR surface proteins, consistent 

with gamma delta (γδ) T cells. Some CD4+ clusters expressed surface markers of 

known T cell phenotypes: CD62L marked 4 clusters as central memory39. Clusters C-5 

and C-9 express CD25 and lack CD127 surface protein, resembling regulatory T cells37. 

Among the CD8+ clusters, we identified one central memory cluster (C-25) and distinct 

transitional GZMK+ (C-28) and cytotoxic GZMB+ (C-29) effector subsets40. Clusters C-

15 and C-27 have high expression of HLA-DR and CD38 surface protein and 

proliferation-associated transcript MKI67 and represent chronically activated CD4+ and 

CD8+ memory, respectively41. The observation of known cell types defined by 

coordinated expression of transcripts and surface markers validated our unbiased 

clustering approach for high-resolution dissection of the human memory T cell pool. 

 

Memory T cell states are associated with host factors 

T cell state abundances varied widely across individuals (e.g., C-14 range: 0.07–

35% of cells per donor) but were concordant between technical replicates from the 
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same donor (Pearson r = 0.44–1.00) (Extended Data Fig. 4, Supplementary 

Information), indicating that T cell states may be associated with other donor traits. We 

tested 38 demographic, socioeconomic, and genetic ancestry covariates 

(Supplementary Table 6) for association with T cell states with Mixed-effects modeling 

of Associations of Single Cells (MASC), a single-cell model that calculates the odds 

ratio of a cell being in each cluster given a covariate of interest, after correcting for other 

cell- and donor-level confounders32. We corrected for donor, batch, and total unique 

molecular identifiers (UMIs) and percent mitochondrial (MT) UMIs per cell, and 

confirmed with permutation analysis that this model obtained reliable type I error 

estimates (Supplementary Information). 

Age, sex, winter blood draw, and proportion of European ancestry were 

significantly and independently associated with T cell state composition (Extended 

Data Fig. 5). As previous studies suggest42, age influenced T cell states and was the 

most significant covariate (Methods, gamma p = 2.24 x 10-53), with 12/31 associated 

states after correcting for multiple hypothesis testing (LRT p < 1.6 x 10-3 = 0.05/31). 

Similar to findings in prior reports43,44, cytotoxic CD4+ T cells (C-23) were expanded 

~20% per decade of age (odds ratio [OR] = 1.19 per 10 years, 95% confidence interval 

[CI]: 1.10–1.28, p = 1.59 x 10-5), while Vδ1 T cells (C-31) were reduced by more than 

50% per decade (OR = 0.46 per 10 years, 95% CI: 0.39–0.54, p = 1.83 x 10-22, 

Extended Data Fig. 6a, Supplementary Table 6). Sex was also strongly associated 

with T cell states (gamma p-value = 8.40 x 10-28). For example, GZMB+ CD8+ T cells 

were expanded in males (C-29: OR = 1.88 M vs. F, 95% CI: 1.46–2.42, p = 5.51 x 10-5), 

and Th1s were expanded in females (e.g., C-17: OR = 0.77 M vs. F, 95% CI: 0.71–0.83, 
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p = 1.20 x 10-11) (Extended Data Fig. 6a, Supplementary Table 6), recapitulating 

previously published observations45,46.  

We also observed surprising associations of T cell states to season of blood 

draw (winter gamma p = 4.40 x 10-24). Th2 states were expanded in samples drawn in 

the winter (e.g., C-11: OR = 1.24, 95% CI: 1.10–1.39, p = 5.13 x 10-4) (Extended Data 

Fig. 6a, Supplementary Table 6). To our knowledge, this has not been reported 

previously, although studies have noted the seasonality of cytokine responses47. 

Immune function has also been shown to vary with ancestry48, and in our cohort, 

individuals with higher European ancestry showed nominal depletion of all three clusters 

of cytotoxic CD4+ T cells (European gamma p = 2.21 x 10-5, e.g., C-23: OR = 0.14 per 

percent European ancestry, 95% CI: 0.05–0.48, p = 0.03) (Extended Data Fig. 6a, 

Supplementary Table 6). Notably, age and sex were also associated with TB disease 

progression (Supplementary Table 1), but along with season of blood draw and 

ancestry, maintained associations with T cell state abundances even after adjusting for 

TB progression status (Extended Data Fig. 6b, Supplementary Table 7) and in a joint 

model (Extended Data Fig. 6c, Supplementary Table 8). 

 

An RORC-expressing effector state is reduced in TB progressors 

We used a MASC model to identify T cell states associated with TB disease 

progression, after adjusting for potentially confounding covariates (age, sex, winter 

blood draw, and proportion of European ancestry) and batch and single-cell technical 

factors (Methods). We observed a significant reduction in cluster C-12 in individuals 

with a history of TB disease after correction for multiple hypothesis testing (OR = 0.80, 
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95% CI: 0.73–0.87, p = 1.21 x 10-6) (Fig. 3a, Supplementary Table 8). Notably, C-12 

was also independently associated with other covariates in the full model, 

demonstrating depletion with increased age (OR = 0.82, p = 2.69 x 10-3) and in males 

(OR = 0.85, p = 4.30 x 10-4), and expansion in winter blood draws (OR = 1.16, p = 1.30 

x 10-3, Extended Data Fig. 6d). This covariate-aware multimodal approach is well-

powered to detect even a modest case-control difference in C-12 frequency (mean: 

3.0% in cases, and 3.6% in controls, Fig. 3b), which may have been obscured with 

unimodal clustering failing to precisely capture this cell state (Extended Data Fig. 7, 

Supplementary Table 9 and 10). 

Cells in this cluster have a CD4+ effector surface phenotype (CD62L: Expression 

fold change in vs. out of C-12 [FC] = 0.66, p = 2.99 x 10-7, CCR7: FC = 0.85, p = 9.72 x 

10-3) and lack surface markers for activation (CD38: FC = 0.56, p = 2.30 x 10-10, HLA-

DR: FC = 0.39, p = 1.86 x 10-18) or exhaustion (PD-1: FC = 0.76, p = 7.23 x 10-6, TIGIT: 

FC = 0.26, p = 1.10 x 10-33). The top surface protein markers were CD26, CCR6, and 

CD161 (Fig 3c, Supplementary Table 5) and the top mRNA markers were CCR6, 

CTSH, and KLRB1, with elevated expression of transcripts for Th17 lineage-defining 

transcription factor RORC (FC = 5.70, p = 2.37 x 10-187) and reduced expression of 

transcripts for Th1 lineage-defining TBX21 (FC = 0.52, p = 1.01 x 10-10) and IFNG (FC = 

0.30, p = 7.23 x 10-34). This combination of surface protein and mRNA markers 

suggests that C-12 represents a subset of Th17 cells49,50. The C-12 state was not 

changed by TB disease status; there were no differentially expressed genes between 

the cases and controls in this cluster. 
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We also observed less significant reduction of cluster C-20 in cases (OR = 0.76, 

95% CI: 0.65–0.89, p = 5.95 x 10-4, Extended Data Fig. 8). C-20 contained an average 

of 1.1% and 1.2% of cells in cases and controls, respectively, and expressed CD26, 

CD161, CCR6, and CCR5 surface markers and DPP4, KLRB1, and BHLHE40 mRNA 

markers. Transcripts for Th1 lineage-defining transcription factor TBX21 were also 

highly expressed (FC = 1.70, p = 1.65 x 10-7), as well as Th17 lineage-defining 

transcription factor RORC (FC = 5.11, p = 2.98 x 10-160). These findings suggest that C-

20 is distinct from C-12 and has a mixed Th1/17 phenotype51. 

Because our cohort was profiled several years after TB disease was diagnosed 

and treated, we did not expect differences in activated cell states. Using MASC, we 

verified that there were no differences in CD4+ HLA-DR memory T cells (OR = 1.02, CI 

= 0.86–1.22, p = 0.79, Supplementary Table 11). Additionally, because we profiled all 

memory T cells, it is unsurprising that other differences implicated in previous TB 

progression studies of M.tb antigen-specific cells were only weakly or marginally 

significant (Supplementary Table 11).  

 

C-12 matches a CD26+CD161+CCR6+ phenotype 

One advantage of multimodal profiling is that it enables targeted validation. To 

functionally characterize C-12 (the most significant association with TB disease 

progression), we used surface protein measurements from CITE-seq to identify sortable 

markers. We built a classification tree to identify a minimal set of candidate markers for 

C-12— CD26+, CD161+, and CCR6+—and confirmed with stepwise backward selection 

that removing any one of these markers reduced our sensitivity for C-12 (sensitivity = 
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54.8%, specificity = 95.5%, Fig. 3d, Methods, Supplementary Information). If this 

population corresponds to the C-12 state, it should be associated with TB progression 

when gated in CITE-seq data. Indeed, MASC modeling demonstrated reduction in TB 

cases (OR = 0.71, CI = 0.61–0.83, p-value = 2.47 x 10-6, Fig. 3e). Removing any 

individual gate weakens the association. 

 

C-12 produces IL-17 and IL-22 

To define the cytokine profile of C-12, we isolated CD4+ T cells from three 

Boston-based donors who had not been assessed for TB infection and sorted 

CD45RO+CD26+CD161+CCR6+ cells (Supplementary Information, Supplementary 

Table 12). For comparison, we sorted naive CD4+, other memory CD4+, and regulatory 

T cells (Methods). We stimulated each population with CD3/CD28 beads for pan-TCR 

activation and measured a broad range of T helper cytokines in the supernatant. 

Compared to all other memory CD4+ T cells, our target population had higher 

expression of IL-17A, IL-17F, and IL-22 and lower expression of IL-4 and IL-13 (two-

sided t test, IL-17A: t = 5.07, p = 0.04; IL-17F: t = 6.34, p = 0.02; IL-22: t = 8.00, p = 

0.012; IL-4: t = -6.96 p = 0.02; IL-13: t = -4.44, p = 0.02, Fig. 4a). To determine if this 

observation was robust to stimulation condition and assay, we stimulated cells from five 

Boston donors with phorbol 12-myristate 13-acetate (PMA) and ionomycin, and with 

intracellular staining, again found that our target population was more likely to produce 

IL-17A, IL-17F, and IL-22 than other CD4+ memory T cells (Cochran-Mantel-Haenszel 

[CMH] OR, IL-17A: 12.6, IL-17F: 18.1, IL-22: 6.0, all p < 0.001, Fig. 4b-d, Extended 

Data Fig. 9). Inverting any one of the three surface markers (CD26, CD161, and CCR6) 
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reduced the proportions of IL-17A, IL-17F, and IL-22 expression. This population was 

also polyfunctional and produced IFNγ and TNF at similar rates to CD4+ memory T cells 

overall (CMH OR, IFNγ: 0.72, TNF: 1.59, all p < 0.001). Notably, the target Th17 subset 

(CD26+CD161+CCR6+) had more than three times as many IFNγ-producing cells as 

the rest of the Th17 compartment (two-sided t test vs. CD26-CD161+CCR6+, p = 2.23 x 

10-5, Extended Data Fig. 9a). 

Because IL-17 and IL-22 best characterized this population’s functional 

phenotype in disease-unascertained non-Peruvian donors, we next measured these 

cytokines in Peruvian donors with a history of M.tb infection. We selected eight pairs of 

cases and controls from our original CITE-seq cohort, matched for age (+/- 5 years), 

sex, season of blood draw, and proportion of European ancestry (+/- 0.05); isolated 

CD4+ T cells and stimulated with PMA and ionomycin; and measured IL-17A and IL-22 

production in target (CD45RO+CD26+CD161+CCR6+) and control populations. The 

frequency of the target population correlated well with the per-donor abundance of 

cluster C-12 (r = 0.61, Fig. 4e) and with in silico-gated proportions (r = 0.62, Extended 

Data Fig. 10a) in our CITE-seq data.  

Similar to Boston samples, in Peruvians this population contained more cells that 

produce IL-17A (mean = 4.7 ± 1.5% of cells in gate) or IL-22 (mean = 2.9 ± 2.0%) in 

response to stimulation than any other Boolean combination of the three gates (Fig. 4f, 

Extended Data Fig. 10b). In fact, despite making up on average only 6.6% of CD4+ 

memory T cells, the target population comprised over one-third of total IL-17A or IL-22-

producing CD4+ memory cells (IL-17: 49.2%, IL-22: 33.2%) (Extended Data Fig. 10c), 
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and were 14.3 times as likely to produce IL-17A and 6.7 times as likely to produce IL-22 

(CMH OR, p < 0.001, Extended Data Fig. 10d). 

 

C-12 produces less IL-17 in people with a history of TB disease 

We hypothesized that in individuals who progress to TB disease, C-12 may not 

only be reduced in frequency, but in function as well. To test this, we compared cytokine 

production in our target population between matched cases and controls. We observed 

that, in response to PMA and ionomycin stimulation, only 3.8% of 

CD4+CD26+CD161+CCR6+ memory T cells in cases produced IL-17A, compared to 

5.5% in controls (one-sided paired Wilcoxon signed rank test p = 0.0039, Fig. 4g). This 

functional deficiency was specific to our target population, compared to broader 

populations, including CD4+ memory T cells overall (p = 0.097, Extended Data Fig. 

10e). IL-22 production was also lower in cases than controls in 

CD4+CD26+CD161+CCR6+ memory cells, but with weaker difference (p=0.025, 

Extended Data Fig. 10e). 

 

Discussion 

In this study, we survey the full spectrum of memory T cells in TB cases and 

infected controls outside the context of active disease, and show that the most 

significant steady-state differences reside in a relatively rare (~3% of memory T cells) 

Th17 subset (C-12) marked by a CD4+CD45RO+CD26+CD161+CCR6+ surface 

phenotype, production of IL-17 and IL-22 upon stimulation, and higher IFNγ production 
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than other Th17s. This cell state is not only less abundant in progressors but also 

produces significantly less IL-17 and IL-22.   

We observe both of these differences in patients who recovered from TB and 

without restricting analysis to antigen-specific cells, which suggests that observed 

differences in C-12’s abundance and functionality may (1) be a long-term consequence 

of prior TB disease, or (2) predispose individuals to TB disease progression. This latter 

hypothesis is plausible, first, because T cell phenotypes previously identified in antigen-

specific cells during TB disease share aspects of the C-12 phenotype. Human 

immunoprofiling studies have shown that M.tb antigen-responsive cells produce less IL-

17 and IL-22 in TB cases compared to healthy controls19, and are reduced in 

progressors during disease compared to latency21. The bulk of M.tb antigen-specific 

cells have been mapped to a Th1/17 polyfunctional CCR6+CXCR3+ state that is 

expanded in latent individuals compared to progressors during active disease22,49,52. 

Although studies have emphasized that CCR6+CXCR3+ cells produce IFNγ upon M.tb 

antigen stimulation, in non-human primates this cell state also produces IL-17 in 

bronchoalveolar lavage and is expanded in the lungs during latent infection compared to 

TB disease53. Second, mutations in RORC—the Th17 lineage-defining transcription 

factor that is highly expressed in C-12—increase susceptibility to mycobacterial 

diseases5. Third, C-12 is also depleted with increased age, in males, and outside of 

winter (Extended Data Fig. 6d), all of which have been associated with elevated TB 

risk2,54. These host variables may in part increase TB risk by reducing C-12 frequencies. 

Finally, C-12 also does not have an activated or exhausted phenotype, arguing that they 

are not the consequence of chronic stimulation.  
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Prospective studies profiling the immune system prior to infection are required in 

order to conclusively establish a causal link. Our results demonstrate the power of high-

dimensional T cell profiling in human cohorts to multimodally define novel cell states 

and identify steady-state differences in the immune system that underlie divergent 

disease outcomes. 
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Figures 

 
Fig. 1. Study design. We obtained PBMCs from a Peruvian TB cohort, profiled memory 
T cells with CITE-seq, and integrated multimodal single-cell profiles to define cell states 
and case-control differences. 
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Fig. 2. Landscape of memory T cell states. a, UMAP colored by 31 multimodal 
clusters. Cluster annotations are based on top differentially expressed genes and 
surface proteins. Clusters boxed in red are CD4+, purple are mixed CD4+ and CD8+, 
blue are CD8+, and green are CD4-CD8-. b, Expression of major lineage-defining 
surface markers measured through CITE-seq. Colors are scaled independently for each 
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marker from minimum (blue) to maximum (yellow) expression. c, Heatmap of selected 
marker genes. Surface protein heatmap colors are uniformly scaled for each protein. 
mRNA heatmap colors reflect z-scores for each gene. 
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Fig. 3. Identification and isolation of a depleted memory T cell state in TB cases. 
a, Associations between TB disease status and memory T cell states. Each multimodal 
cluster is plotted based on the MASC odds ratio of a cell being in that cluster for cases 
vs. controls, and the -log(LRT p-value) of the association. Error bars show the 95% 
confidence interval. The red dashed horizontal line corresponds to a Bonferroni-
adjusted p-value threshold of 0.05/31 = 1.6 x 10-3. Labeled clusters are significant at a 
nominal p-value threshold of p < 0.05. b, Abundance of C-12 in 128 cases and 131 
controls. c, Surface protein markers of C-12. Colors are scaled independently for each 
marker from minimum (blue) to maximum (yellow) expression. Boxplot center line = 
median, box limits = 25th and 75th percentile, whiskers = 1.5x interquartile range. d, 
Distribution of each gate across clusters. e, Association of gated populations with TB 
progression status. For each gated population, we plotted the MASC odds ratio of a cell 
having that phenotype for cases vs. controls. P-values are from an LRT with 1 degree of 
freedom (d.f.). Error bars show the 95% confidence interval. 
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Fig. 4. Characterizing C-12 as an IL-17+ state with reduced function in Peruvian 
TB cases. a, Cytokine expression in supernatant for four CD4+ T cell subsets after 
CD3/CD28 bead stimulation. We estimated cytokine concentrations and averaged 
across donors (n = 3), scaled by cytokine, and binned into sextiles. b, Odds ratio of 
cytokine expression in gated population based on ICS (n = 5). We used the Cochran-
Mantel-Haenszel method to calculate the odds ratio of cytokine production inside vs. 
outside the gate. Bars show the 95% confidence interval. c, Gating strategy to isolate 
CD26+CD161+CCR6+ memory CD4+ T cells. Intracellular staining for IL-17A and IL-22 
is shown without stimulation. d, Intracellular staining for IL-17A and IL-22 after 
stimulation with PMA/ionomycin. e, Correlation between abundance of flow-gated 
population and C-12, per donor. We calculated a linear best fit and the Pearson 
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correlation coefficient. f, Per-donor percent of cells producing IL-17A in populations 
gated in Peruvian TB cohort donors. Bars represent the mean and error bars show 
standard error of the mean across 16 donors. g, Case-control comparison of per-donor 
percent of cells in gated population producing IL-17A. Paired samples were matched for 
age, sex, season of blood draw, and proportion of European ancestry. We calculated p-
values from a one-sided Wilcoxon signed-rank test (test statistic V for IL-17A = 0). 
Boxplot center line = median, box limits = 25th and 75th percentile, whiskers = 1.5x 
interquartile range. 
 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2020. ; https://doi.org/10.1101/2020.04.23.057828doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.23.057828
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods  

Clinical cohort. 

Our cohort is a selected subset of 14,044 individuals from a large epidemiological 

parent study of risk factors for TB infection and disease conducted between 2008 and 

2012 (protocol approved by the Harvard University Institutional Review Board [#19332] 

and by the Research Ethics Committee of the National Institute of Health of Peru)25. All 

study participants were recruited from 106 district health centers in Lima, Peru and 

provided written informed consent. We enrolled index patients aged 16 or older with 

microbiologically confirmed pulmonary TB. Within two weeks of enrolling an index 

patient, we enrolled their household contacts who were assessed for co-prevalent TB 

disease by clinical evaluation and for TB infection by a tuberculin skin test (TST). 

Household contacts were reassessed at 2, 6, and 12 months for evidence of new TB 

infection or TB disease.   

At the time of enrollment, we collected demographic, health, and socioeconomic 

data from both index patients and household contacts, including age, sex, height, 

weight, alcohol use, smoking, prior incarceration, Bacillus Calmette-Guérin (BCG) 

vaccination scars, isoniazid preventative therapy, and previous TB diagnosis. Nutritional 

status was determined for children based on the World Health Organization BMI z-score 

tables, and for adults based on BMI thresholds. Individuals were categorized as 

underweight (children, age ≤ 19: z-score ≤ -2; adults: BMI < 18.5), normal weight 

(children: -2 < z-score ≤ 2; adults: 18.5 ≤ BMI < 25), or overweight (children: z-score > 

2; adults: BMI ≥ 25). Alcohol use was categorized as non-drinker (0 alcoholic drinks per 

day), light (< 40 grams or < 3 alcoholic drinks per day), or heavy (≥ 40 grams or ≥ 3 
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alcoholic drinks per day). Smoking was categorized as non-smoker (0 cigarettes per 

day), light (1 cigarette per day), or heavy (> 1 cigarette per day). BCG vaccination status 

was self-reported. Number of BCG scars was based on physician’s observation. 

Socioeconomic status (SES) was categorized into tertiles based on a principal 

component analysis (PCA) that included type of housing, access to a water supply, and 

sanitation. Season of blood draw was classified based on local temperatures: winter 

(June-September), spring (October-December), and summer (January-May) 

For this study, we re-consented and enrolled a subset of 264 participants from 

the parent study whom we visited to obtain information on their TB history subsequent 

to the completion of the parent study and to obtain PBMCs. We considered index 

patients and household contacts who develop TB disease during follow up as cases, 

and TST-positive household contacts who did not develop TB disease as controls. We 

excluded participants if they did not consent to re-enrollment or were HIV-positive. We 

collected blood a median of 5.7 years after enrollment in the parent study (range 4.72–

6.60). All cases had been infected with drug-sensitive strains, and received treatment 

before re-recruitment. Controls were excluded if they were first-degree relatives of their 

index patient. 

We calculated associations between each covariate and TB disease status with 

either a two-sided t test (continuous covariates) or a Chi-squared test (categorical 

covariates). For significantly associated covariates, we re-estimated associations in a 

multivariate logistic regression model, and determined significance based on coefficient 

p-values. 
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Sample Processing  

PBMC Sample Preparation. Within 6–8 hours of obtaining blood samples, we purified 

PBMCs using Ficoll-Hypaque as described55, followed by cryopreservation at a 

concentration of 5 million cells/mL for shipping to Boston.  

We quickly thawed cryopreserved PBMCs (10 million cells) and added each 

sample dropwise to pre-warmed complete RPMI (cRPMI) (RPMI 1640 supplemented 

with 10% heat inactivated fetal bovine serum (Gemini), nonessential amino acids 

(Gibco), 2-mercaptoethanol (Gibco), penicillin/streptomycin (Gibco), L-glutamine 

(Gibco)). We washed and resuspended cells in 1 mL of cRPMI, and saved an aliquot of 

each sample (5% of total cells) at 4° C for flow cytometry staining. 

 

Flow Cytometry. We processed 12 samples per day on 23 days over a 15-week period. 

In total, we collected flow cytometric data on 276 samples (264 unique donors, with 12 

technical replicates run in separate batches on consecutive weeks). We washed 

PBMCs in PBS and stained with blue fluorescent Live/Dead fixable dead cell stain 

(1:1000) (Invitrogen). We covered each sample in foil, and incubated for 20 minutes at 

room temperature. After centrifugation, we stained samples with an antibody master mix 

(Supplementary Table 4) in Brilliant Stain buffer (BD Bioscience, Cat #566349). We 

covered in foil and incubated for 25 min at 4° C. We washed samples with MACS buffer 

(pH 7.4 PBS, 2mM EDTA , 2% FBS) and filtered through 40um mesh prior to flow 

cytometry using a BD LSRFortessaTM and analysis with FlowJo Version 10.6.2. We 

used the gating strategy shown in Supplementary Information to identify lymphocytes 

and memory subpopulations. 
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CITE-seq. We applied an optimized version of CITE-seq to memory T cells from 276 

samples (264 unique donors, with 12 technical replicates)35. We processed 12 samples 

per day on 23 days over a 15-week period. We ran technical replicates in separate 

batches on consecutive weeks.  

To isolate memory T cells, we modified the Pan T cell negative Isolation 

magnetic-activated cell sorting (MACSR) kit (Miltenyi Biotec, Cat #130-096-535) by 

adding anti-CD45RA biotin (Miltenyi Biotec, Clone REA1047, 2 uL per stain) to the 

antibody cocktail. For 10 million cells (our expected input), we used 2x reagents to 

achieve memory T cell purity of 98.4% (Supplementary Information). After isolating 

memory T cells, we stained up to 300,000 memory T cells per donor. Then we 

centrifuged and stained each sample with FcX True Stain (BioLegend) with 0.2 ug/uL 

dextran sulfate sodium (Sigma-Aldrich, Cat #RES2029D-A707X) in labeling buffer (PBS 

7.4 with 1% UltraPure Bovine Serum Albumin (BSA)) for 10 min at 4° C. 

We then added a TotalSeqTM-A (BioLegend) oligonucleotide-labeled antibody mix 

(anti-CCR6 suspended in 10 uL of labeling buffer) and incubated all samples at room 

temperature for 25 min. Next, we stained with the remaining 30 TotalSeqTM-A antibodies 

(Supplementary Table 3) for 25 min at 4° C and washed cells three times with 2 mL, 1 

mL, and 1mL of labeling buffer sequentially. Each sample was passed through a 40um 

filter and kept on ice prior to sorting on a BD FACSAria™ Fusion cell sorter.  

  We sorted up to 10,000 live cells from each sample based on forward and side 

scatter gating to remove non-lymphocytes, dead cells, and other impurities. We then 

pooled cells into batches of six donors. Batch assignments were randomized while 
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requiring that no two donors in the same batch had a relatedness estimation in admixed 

populations (REAP) kinship score greater than 0.125 (at most, second cousins) based 

on genotype, to facilitate post hoc demultiplexing56. Pools of 6 samples were sorted into 

one Eppendorf tube prepared with 200 uL of 0.4% BSA in PBS, and each pool was 

processed as one scRNA-seq sample. 

We prepared mRNA and surface marker libraries for each batch at the Brigham 

and Women’s Hospital Single Cell Genomics Core using the Chromium Single Cell 3' v3 

kit (10x Genomics). Pairs of libraries prepared on the same day were pooled and 

sequenced to a depth of 400 million reads per lane on an Illumina HiSeq X with paired-

end 150 base-pair reads. In total, we sequenced 276 samples across 46 pooled 

libraries in 6 sequencing runs. 

 

Genotyping and genetic data processing. We genotyped all individuals on the 

LIMAArray, a previously described custom Affymetrix array designed based on whole-

exome sequencing from 116 Peruvian individuals with active TB8. Genotypes were 

called for all 4002 individuals in the original genetic study with the apt-genotype-axiom 

program. We excluded individuals with high genotype missingness (≥ 5% of loci) or high 

heterozygosity rate (±3 standard deviations). We excluded loci with significant 

association with batch (p < 1 × 10−5), low call rate (< 95%), large difference in per-single 

nucleotide polymorphism (SNP) missingness rate between cases and controls (> 10−5), 

Hardy-Weinberg (HWE) p-value below 10−5 in controls, and duplicated position markers. 

After individual and SNP-level quality control, there were 263 donors and 677,385 SNPs 

remaining. 
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To measure global ancestry proportions for each donor, we joined our cohort with 

previously published genotypes from the 1000 Genomes Project phase 3 (2,054 

individuals from 26 populations)57, Siberians (245 individuals from 17 populations, and 

Native Americans (493 individuals from 57 populations) based on variant-level 

matching58. After removing variants with minor allele frequency (MAF) < 1%, 34,936 

variants remained. We performed PCA and pruned for linkage disequilibrium (LD, r2 > 

0.1 between any pair of markers within a sliding window of 50 markers with 10-marker 

offset) with PLINK (version 1.90b3w). We used the 22,266 remaining variants to 

measure global ancestry with ADMIXTURE (version 1.3) at K = 459,60. Because of the 

admixed nature of the cohort, we calculated an admixture-aware genetic relatedness 

matrix with the REAP kinship score to account for linkage disequilibrium differences56.  

We pre-phased genotypes with SHAPEIT2 and imputed genotypes at untyped 

autosomal loci with IMPUTE2, using the 1000 Genomes Project Phase 3 dataset as a 

reference panel61,62. After removing SNPs with INFO scores less than 1, 738,194 SNPs 

remained. 

 

Statistical Analysis of Genomic Data. 

Quantifying surface markers and genes. We used Cell Ranger (version 3.1.0) to 

conduct all alignment and feature quantification of multimodal single-cell sequencing 

data. For mRNA, we aligned reads to the human genome (GRCh38 for transcriptomic 

analysis and hg19 for genotype-based demultiplexing). We aligned surface protein 

reads to a dictionary of feature tags. We collapsed reads mapping to the same gene or 

surface marker in the same cell to a single unique molecular identifier (UMI). 
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Single-cell sample demultiplexing. We demultiplexed the six samples within each 

pooled batch based on genotypes at 738,194 SNPs. We used Demuxlet with default 

parameters and removed cells with ambiguous or doublet assignments63, and verified 

the accuracy by correlating the number of cells demultiplexed per sample with the 

number of live cells sorted after memory T cell isolation.  

 

Single-cell sequencing data quality control. We removed cells that expressed fewer than 

500 genes or had more than 20% of their UMIs mapping to MT genes (Extended Data 

Fig. 1a, b). Gene expression UMI counts were normalized per cell for library size and 

log-transformed: ln #$%&'($	*+',&-	.	/0000
&+&%1	*+',&-

 

For samples with high live cell counts but low numbers of demultiplexed cells, we 

merged single-cell sequencing reads assigned to each donor, and called variants from 

merged data using bcftools (v1.9)64. We quantified the concordance between 

sequencing-based genotypes and array-based genotypes and corrected the donor 

labels for 4 samples. We identified and removed an additional 4 mislabeled samples. 

One more sample was removed for high genotype missingness and high heterozygosity 

rate. 

We normalized the surface marker UMI counts using a centered log ratio 

transformation for each cell. We used an in silico gating strategy to identify and remove 

contaminating non-memory T cells with low CD3 and/or low CD45RO surface marker 

expression. We biaxially plotted cells based on their normalized expression of CD3 and 

CD45RO, manually determined thresholds of each marker’s expression to separate 
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discrete subpopulations, and removed cells with expression of either marker below 

those thresholds (Extended Data Fig. 1c-e). We additionally removed cells that were in 

clusters dominated by non-memory T cells. 

 

Unimodal pipeline for dimensionality reduction. For each modality, we selected the 

union of the top 1000 features with highest variance in each library preparation pool, 

and scaled the expression of each feature across all cells to have mean = 0 and 

variance = 1. For the mRNA expression, we also cosine normalized the scaled 

expression values. We used PCA to reduce the data into 20 dimensions, and then 

corrected these PCs for donor and library preparation batch effects using Harmony38. 

With uniform manifold approximation and projection (UMAP), we reduced the batch-

corrected embeddings into two dimensions for improved visualization65. 

  

Multimodal pipeline for dimensionality reduction. For each modality, we selected the 

union of the top 1000 features with highest variance in each library preparation pool, 

and scaled the normalized expression of each feature across all cells to have mean = 0 

and variance = 1. We excluded T cell receptor genes because of potential mapping 

errors due to recombination and sequence similarity. Then, we used CCA as 

implemented in the cc function from the CCA R package to calculate canonical 

dimensions defined by correlated gene and protein expression66 (Extended Data Fig. 

2a). This method finds maximally correlated linear combinations of features from each 

modality, i.e., calculates vectors 𝑎 and 𝑏 for mRNA matrix 𝑋 and surface protein matrix 

𝑌 to maximize 𝑐𝑜𝑟(𝑋𝑎, 𝑌𝑏) subject to the constraint that 𝑣𝑎𝑟 𝑋𝑎 = 𝑣𝑎𝑟 𝑌𝑏 = 	1. We 
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defined canonical variates by projecting cells onto each canonical dimension in the 

mRNA space (𝐶𝑉1 = 𝑋𝑎/) and selecting the top 20 dimensions defined by highest 

canonical correlations 𝑐𝑜𝑟(𝑋𝑎A, 𝑌𝑏A) between mRNA and protein. We corrected donor 

and batch effects with Harmony and reduced the batch-corrected embeddings into two 

dimensions with UMAP. 

  

Clustering and annotating cell states. Cells were clustered based on their low 

dimensional embeddings (either PCs or CVs). We constructed a shared nearest 

neighbor graph and conducted Louvain modularity clustering at a range of resolutions. 

Results are shown at a resolution of 2.00, which yielded 31 CCA-based clusters with at 

least 10 cells from more than five donors. 

To annotate clusters as cell states, we identified differentially expressed mRNA 

and surface protein features between cells inside and outside of each cluster. Because 

single-cell mRNA features are sparse, we collapsed single-cell expression profiles for 

each modality into pseudo-bulk profiles by summing the raw UMI counts for each gene 

or surface protein across all cells from the same donor, batch, and cluster. For mRNA, 

we limited differential expression analysis to genes that had at least 30 UMIs detected 

in at least 120 pseudo-bulk samples (n = 4,540), and for both modalities, we normalized 

counts for each feature in each pseudo-bulk sample into counts per million (CPM). We 

used linear models to model the effect of each cluster individually on pseudo-bulk 

expression of each gene, accounting for donor, batch, and the number of UMIs 

assigned to each pseudo-bulk sample. P-values were obtained through a likelihood ratio 

test (LRT) between the models with and without the cluster term. We considered a gene 
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or surface protein to be a marker of a cluster if it had a p-value < 0.05/(4,540 genes x 31 

clusters) = 3.6 x 10-7 and a fold-change > 2. We manually annotated each cell state 

based on literature about its markers. 

 

Testing cell populations for association with TB disease progression 

We tested the association of each cell state with TB disease status with MASC32. 

We specified the number of UMIs and percent MT UMIs as cell-level covariates, and 

donor and library preparation batch as random effects, and fit the following logistic 

model for each cluster 𝑗: 

𝑙𝑜𝑔
𝑌A,E

1 − 𝑌A,E
= 	𝜃E +	𝛽*%-$𝑋A,*%-$ +	𝛽*+J𝑋K,*+J +	𝛽&$*L𝑋A,&$*L +	 𝜙K	|	𝑑 + 𝜅Q	|	𝑏  

where 𝑌A,E is the odds of cell 𝑖 being in cluster 𝑗, 𝜃E is the intercept for cluster 𝑗, 𝛽*%-$ is 

the effect estimate (log(OR)) for case-control status, 𝛽*+J is a vector of effect estimates 

for each donor-level covariate, 𝛽&$*L is a vector of effect estimates for each technical 

cell-level covariate, and 𝑋s are the corresponding values for either cell 𝑖 or donor 𝑑, as 

appropriate. 𝜙K	|	𝑑  is a random effect for cell 𝑖 from donor 𝑑, and 𝜅Q	|	𝑏  is a random 

effect for cell 𝑖 from batch 𝑏. 

With stepwise forward selection, we identified donor-level covariates that 

significantly influence cell state abundance. We used MASC to test for differentially 

abundant clusters associated with each covariate individually, after correcting for the 

cell-level and batch covariates. For each covariate, this test yielded 31 cluster-specific 

LRT p-values. Under a null hypothesis, where the covariate is not significantly 

associated with cell state abundance, these cluster p-values should follow a gamma 

distribution parametrized by rate = 31 (the number of clusters) and scale = 1. We 
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calculated a gamma test statistic and p-value quantifying how much the distribution of p-

values for each of the 38 donor-level covariates deviates from this null, and selected the 

most significant covariate to add to the model. Then, we repeated this process for each 

remaining covariate with the expanded model, for a total of 5 iterations. 

Based on this model selection process, we specified age, sex, winter blood draw, 

and percentage of European ancestry as donor-level fixed effects, number of UMIs and 

percent MT UMIs as cell-level fixed effects, and donor and library preparation batch as 

random effects in our full MASC model: 

𝑙𝑜𝑔
𝑌A,E

1 − 𝑌A,E
= 	𝜃E +	𝛽*%-$𝑋A,*%-$ +	𝛽%S$𝑋K,%S$ +	𝛽%S$T𝑋K,%S$T +	𝛽-$.𝑋K,-$.

+	𝛽UA,&$(𝑋K,UA,&$( +	𝛽VWX𝑋K,VWX +	𝛽,WYZ𝑋A,,WYZ +	𝛽Y[𝑋A,Y[ 	+	 𝜙K	|	𝑑

+ 𝜅Q	|	𝑏  

 Age was included as both a linear and a quadratic effect to capture non-linear 

effects of age. We used Bonferroni correction to account for multiple hypothesis testing. 

To verify that MASC has a well-controlled type 1 error, we ran 1,000 trials of a MASC 

model testing the association of cluster abundances with permuted TB disease status, 

adjusting for age, sex, donor, batch, percent MT UMIs per cell and number of UMIs per 

cell. We binned percent MT UMIs and number of UMIs into quintiles. To measure case-

control associations with populations from previous TB disease progression studies 

(Supplementary Table 11), we gated these populations based on normalized surface 

protein expression measured in CITE-seq, and used the same MASC model specified 

above to estimate the OR. 

 

Defining surface marker gates in silico 
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We used the single-cell surface marker expression to define flow-cytometry gates 

to isolate the CCA-defined cluster shown to be expanded in latent controls. We started 

with TCRαβ+, CD4+, and CD8- gates based on observed protein markers in the CITE-

seq data (Fig. 2b, Supplementary Table 5). Then, using a classification and regression 

tree (CART) model implemented in R with the rpart package, we defined a classification 

tree trained on the normalized expression of individual surface markers to partition the 

cells into subsets with the goal of isolating the cells in the cluster of interest 

(Supplementary Information). We sequentially added gates until including another 

gate would reduce our sensitivity below 50%. We defined eight populations from every 

Boolean combination of these three gates: CD26+CD161+CCR6+, CD26-

CD161+CCR6+, CD26+CD161-CCR6+, CD26+CD161+CCR6-, CD26-CD161-CCR6+, 

CD26-CD161+CCR6-, CD26+CD161-CCR6-, CD26-CD161-CCR6-. 

 

Disease unascertained Boston donor sample processing 

  PBMCs were isolated from <6hr leukoreduction collars from the Specimen Bank 

at Brigham and Women's Hospital using Ficoll-Hypaque as described above. All were 

discarded samples, collected under IRB protocol 2002P00127, and cryopreserved at 

100 million or 50 million cells/mL in 50% FBS, cRPMI, and 5% DMSO in a Freezer 

buddy. 

 

Quantification of cytokine production 

We thawed aliquots of 150–200 million PBMCs from 3 Boston donors as 

described above. Samples were washed twice and resuspended in MACS buffer. We 
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magnetically isolated all CD4+ T cells from each sample using a human CD4+ T cell 

negative isolation kit (Miltenyi biotec, Cat #130-096-533) per manufacturer instructions. 

We counted CD4+ T cells in each sample after isolation using a CountessTM II 

Automated Cell Counter and plated each in cRPMI at a concentration of 12.5 million/mL 

in a 96-well round bottom plate. Cells were incubated overnight at 37°C. After resting 

the cells, we combined all wells per donor and aliquoted 20 million cells from each 

donor for flow cytometry staining. 

  We centrifuged the samples and resuspended each in 1 mL of an antibody 

master mix consisting of Brilliant Buffer (BD Biosciences) and anti-CCR6 - PECy7 

(BioLegend, Clone G03409). We covered in foil and incubated for 25 min at room 

temperature. Then we added 1 mL of a second antibody master mix consisting of 

Brilliant Buffer (BD Biosciences) and 9 markers for four-way sorting (Supplementary 

Table 12). We incubated the samples for 25 minutes at 4°C. After staining, we washed 

the samples twice in 5 mL of MACS buffer, filtered through a 40um mesh filter, 

resuspended each in 1 mL MACS buffer, and kept all samples on ice in preparation for 

cell sorting. 

We sorted each sample into 4 populations using a BD FACSAria™ Fusion cell 

sorter. Cells were collected in FACS tubes containing 50% FBS and 50% MACS buffer. 

Each population was gated on lymphocytes using forward and side scatter and further 

sorted as follows: 1) Naïve CD4 T cells: CD3+CD4+CD45RO-CD62L+, 2) Other 

memory CD4 T cells: CD3+CD4+CD45RO+CCR6-/+CD26-/+CD161-/+, 3) Tregs: 

CD3+CD4+CD25+CD127low, 4) Target population: 

CD3+CD4+CD45RO+CCR6+CD26+CD161+. 
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After sorting, we resuspended each sample in cRPMI, counted using a 

CountessTM II Automated Cell Counter, and plated each sample population at 125,000–

250,000 cells per well in a 96-well round bottom plate. We stimulated one well per 

population per sample with an equal volume of cRPMI containing a 1:1 ratio of washed 

CD3/CD28 DynabeadsTM (Thermofisher, Cat #11131D) or with cRPMI for non-

stimulated controls. All conditions were incubated overnight at 37°C. 

After incubation, we transferred the supernatant from each well into a new 96-well round 

bottom plate and froze the plate at -20°C. We followed manufacturer instructions for the 

LEGENDplex™ Human Th Panel (13-plex) kit (BioLegend, Cat #740722) in a 96-well V 

bottom plate. We tested for IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, IL-17F, IL-21, 

IL-22, IFNγ, and TNF. After thawing the supernatants, we diluted our samples 1:10 

using Assay Buffer and collected data on a BD LSRFortessaTM. We analyzed data using 

LEGENDplex™ Data Analysis Software. To estimate cytokine concentration in each 

sorted population, we averaged measurements across 2 technical replicates for each of 

3 donors. We compared estimated cytokine concentration between populations with a 

two-sided t test. 

 

Intracellular flow cytometry staining 

In two experiments, we thawed aliquots of 50–200 million PBMCs from 5 Boston 

donors and magnetically isolated CD4+ T cells as described previously. We counted the 

remaining CD4+ T cells in each sample using Trypan blue and a hemocytometer. Then 

we plated each in cRPMI at a concentration of 10–12.5 million/mL in a 96-well round 

bottom plate and incubated samples overnight at 37°C. After resting the cells, we 
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recombined all wells per donor and aliquoted 800,000 - 1,000,000 cells into new wells 

for stimulation. We stimulated cells with an equal volume of 2X PIM (81 nM PMA, 

1.34uM ionomycin, and 5 ug/mL brefeldin), and kept the remaining wells unstimulated 

by adding only an equal volume of 2X brefeldin (5 ug/mL, BioLegend). We incubated 

plates at 37°C for 4 hours. 

After stimulation, we transferred the samples to FACS tubes and washed twice 

with 500 uL cRPMI. We resuspended the samples in 500 uL of blue fluorescent 

Live/Dead fixable dead cell stain with PBS (1:1000) (Invitrogen) for 20 min at room 

temperature. After washing, we resuspended in 50 uL of the first antibody master mix 

consisting of Brilliant Stain Buffer (BD Biosciences) and CCR6 - PE/Cy7 (BioLegend, 

Clone G03409). We covered each in foil and incubated for 25 min at room temperature. 

Then we added 50 uL of a second antibody master mix consisting of Brilliant Stain 

Buffer (BD Biosciences) and 11 surface markers (Supplementary Table 12). We 

incubated the samples for 25 minutes at 4°C. After staining, we washed the samples 

once in MACS buffer. 

Next, we followed manufacturer instructions to fix and permeabilize the samples 

using a Cyto-Fast™ Fix/Perm Buffer Set from BioLegend (Cat #426803). We divided 

the unstimulated cells per donor in half and stained one tube of unstimulated cells and 

one tube of stimulated cells per donor with an intracellular antibody master mix 

consisting of anti-IL17A – APC (BioLegend, Clone BL168) and PE conjugated to either 

anti-IL-4, anti-IFNy, anti-IL2, anti-IL5, anti-IL9, anti-IL10, anti-IL13, anti-IL17F, anti-IL21, 

anti-IL22, or anti-TNF in the provided wash buffer (Supplementary Table 12). Samples 

were covered in foil and incubated for 20 min at room temperature. Samples were 
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washed twice in 1 mL of wash buffer and run on a BD LSRFortessaTM. Data was 

analyzed using FlowJo version 10.6.2. The gating structure is shown in Supplementary 

Information.  

  In two subsequent experiments, we repeated the intracellular staining experiment 

above using 5 million PBMCs from 8 matched pairs of cases and controls from our 

Peruvian cohort. We stimulated 500,000 cells per condition and, after extracellular 

staining, we stained all samples with anti-IL17A – APC (BioLegend, Clone BL168) and 

anti-IL22 – PE (BioLegend, Clone 2G12A41). We collected data using two BD 

LSRFortessaTM analyzers. 

 To compare cytokine production across CD4+ T cell subsets, we gated all CD4+ 

T cells, all memory CD4+ T cells, all naïve CD4+ T cells, Tregs, and eight populations 

on Boolean combinations of three surface markers: CD26+CD161+CCR6+, CD26-

CD161+CCR6+, CD26+CD161-CCR6+, CD26+CD161+CCR6-, CD26-CD161-CCR6+, 

CD26-CD161+CCR6-, CD26+CD161-CCR6-, CD26-CD161-CCR6-. We calculated the 

OR of cells in a given population producing each cytokine, across all donors, with the 

Cochran-Mantel-Haenszel method. We compared the percent of cells producing IL-17A 

or IL-22 between cases and controls with a one-sided Wilcoxon signed rank test. 

 

Data availability 

Upon acceptance, all single-cell sequencing data will be made available on GEO. 

Genotype data will be available on dbGAP. 
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Upon acceptance, scripts to reproduce analyses will be made available on GitHub. 
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