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Abstract

Motivation: Pangenomics is a growing field within computational genomics. Many pangenomic analyses
use bidirected sequence graphs as their core data model. However, implementing and correctly using this
data model can be difficult, and the scale of pangenomic data sets can be challenging to work at. These

challenges have impeded progress in this field.

Results: Here we present a stack of two C++ libraries, 1ibbdsg and 1ibhandlegraph, which use a
simple, field-proven interface, designed to expose elementary features of these graphs while preventing
common graph manipulation mistakes. The libraries also provide a Python binding. Using a diverse
collection of pangenome graphs, we demonstrate that these tools allow for efficient construction and
manipulation of large genome graphs with dense variation. For instance, the speed and memory usage
is up to an order of magnitude better than the prior graph implementation in the vg toolkit, which has now

transitioned to using 1ibbdsg’s implementations.

Availability: 1ibhandlegraph and libbdsg are available under an MIT License from https:
//github.com/vgteam/libhandlegraph and https://github.com/vgteam/libbdsg.

Contact: erik.garrison@ucsc.edu

1 Introduction

With falling sequencing costs, the genomics community has sequenced
increasingly many individuals within certain species. For example,
hundreds of thousands of deeply-sequenced human genomes are now
available. The novel challenges of analyzing data sets of this scale have
led to the development of computational pangenomics, which focuses on
analyzing populations of genomes rather than individuals (Computational
pan-genomics consortium, 2016).

© The Author XXXX.

Much of the research in computational pangenomics has coalesced
around graph-based approaches for representing populations of genomes
(Paten et al., 2017). Unlike conventional string-based representations,
graph data structures provide a coherent modeling language to represent
different types of genomic variation like substitutions, insertions,
deletions, and more complex genomic events. They also compactly
represent many-way relationships between related genomes, such as whole
genome alignments (Kehr et al., 2014).

Graph-based data structures also present new computational
challenges. In addition to sequence, genome graphs must represent
topology. Given the size of many genomes of interest, this can be quite
demanding on computer memory. Furthermore, there is significant impetus
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to make the graph data structures computationally efficient, since they are
frequently the core data structure in pangenomics applications.

Genome graphs that include small variants and describe a large
population of eukaryotic genomes can contain hundreds of millions of
nodes and edges. Using naive data structures to identify and provide
random access to elements of these graphs has very high memory costs.
However, the total information content is only incrementally more than
in the total sequence set of the pangenome. This suggests that significant
memory savings should be possible.

Early versions variation graph toolkit (vg) (Garrison et al., 2018) have
provided a cautionary tale of such a naive implementation. vg used full-
width machine words as identifiers for graph elements, stored the elements
and graph topology in a set of hash tables, and linked identifiers to elements
with raw pointers. Loading the 1000 Genomes Project’s variant set into
the vg toolkit used to consume more than 300 GB of memory, which is
~30 times as large as the serialized representation (Garrison, 2019).

Although vg provided a memory-efficient succinct representation of
the graph (xg) that could be used during read mapping and variant calling,
the succinct representation did not allow for dynamic updates to the graph.
As a result, graph-modifying steps in vg pangenomic analysis pipelines
had to break large graphs into smaller pieces, often connected components
that correspond to chromosomes. Unfortunately, this strategy is not tenable
for all graphs. For instance, many whole genome alignment and assembly
graphs consist of a single giant component that cannot be partitioned easily.

To overcome this limitation, we have developed three new graph
genome data structures that are both dynamic, in that they allow efficient
updates and edits, and succinct, in that they require memory on the order
of the graph’s information content. Here, we compare the performance
of these data structures to those originally in vg as well as xg using a
diverse collection of genome graphs obtained during our work in graphical
pangenomics.

In addition to demonstrating the possibility of working with large,
complex graphs in small amounts of memory, these implementations
expose a common API based on the HandleGraph model described below.
This model provides a consistent, reliable interface to genome graphs based
on their fundamental elements. The vg toolkit has been refactored to use
this API as its default means of serializing and manipulating graphs since
version 1.22.0.

We package these implementations behind equivalent C++ and Python
APIsin 1ibbdsg. This software library will reduce the need for individual
research groups to continually reimplement these core data structures.
These dynamic HandleGraph libraries will ease the development of
algorithms that work on large, complex pangenome graphs by making
it easy to store them in reasonable amounts of working memory and
manipulate them in reasonable amounts of time.

2 Implementation
2.1 Data model

Our libraries adopt node-labeled bidirected graphs as a formalism for
sequence graphs. In a bidirected graph, nodes are considered to have left
and right “sides”, and edges connect two sides rather than two nodes. In
bidirected sequence graphs, a node’s sides correspond to the 5° and 3’ ends
of its DNA sequence.

Paths through a bidirected graph must leave a node out of the side
opposite the side through which they enter it. We interpret paths that
traverse a node from the 3’ side to the 5° as using the node’s reverse
complement strand, which provides a natural means to encode DNA
strandedness. Some paths correspond to sequences of interest, such as
reference genomes or annotations of the reference. Because paths like
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Fig. 1. Entities in the bidirected sequence graph. Top: a variation graph showing nodes
(yellow rectangles), each of which contain a forward and reverse strand (red solid and
dashed rectangles, respectively). Strands show the node identifier, the direction (+ or —),
and the sequence of the strand. Note that reverse strands show the reverse complement
sequence of the forward strand. All edges are shown as connections between nodes, with
forward-to-forward edges denoted by solid lines, while reverse-to-reverse edges denoted by
dotted lines. Two edges that invert from forward to reverse and reverse to forward are shown
with dotted lines. Edges run from the strand at their beginning to their end, as indicated by
the arrowhead. Bottom: an illustration of four paths. (Each has an implicit handle, and a
name, which are omitted for brevity.) Each path is shown in its natural direction as a series
of connected steps that refer to strands in the graph. The first two paths differ by a SNP,
with one passing through 2+ : T, and the other through 3+ : G. The third path is the reverse
complement of the first. The fourth is the same as the first, but contains an inversion, passing
through 5-:AATC rather than 5+ : GATT.

these are so frequently important in practice, our formalism also includes
paths as a first class object, embedded in the graph.

2.2 The HandleGraph interface

The 1ibhandlegraph library describes a generic interface that exposes
basic operations on our sequence graph data model. The interface uses
“handles” (opaque references modeled after the concept of a file handle)
in order to remain agnostic about the backing implementation of the graph.

The HandleGraph model focuses on five fundamental entities in
bidirected sequence graphs (Figure 1):

e Nodes identify pairs of complementary DNA strands and have unique
numerical identifiers (IDs).

e Strands identify one strand of a node’s DNA sequence.

e Edges link pairs of strands, in order.

e Paths represent sequences as walks through the graph.

e Steps describe paths’ visits to nodes’ strands.

The defining feature of the model is that none of these entities are
accessed directly. Instead, only handles, or references, to strands, edges,
paths, and steps are available. The 1ibhandlegraph interface requires
sequence graph implementations to be able to provide or consume these
handles for all queries. For instance, we might obtain a handle to a
strand from an implementation by querying a node’s ID and providing an
orientation, while another function provided in the implementation would
map the handle back to a given node ID. Alternatively, we can obtain a
handle to a path from its name (e.g. “chr22”), and then iterate over handles
to the path’s steps to follow its course through the graph. Or, starting from
a given handle to a strand, we can follow its outgoing or incoming edges
to explore the topology of the graph.

The actual contents of a handle are unspecified, which gives significant
flexibility to the implementation. One benefit of this design is that any
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algorithm designed for one HandleGraph implementation can be applied
to all other implementations. Another is that, since the user works only
through handles that they cannot forge or modify, their ability to make
mistakes can be restricted. For example, the interface can enforce the
constraints on paths through bidirected graphs during edge traversal.
Furthermore, the interface is able to be memory-safe by eliminating raw
pointers and other direct access to graph elements.

2.3 Graph implementations

We consider five implementations of the HandleGraph model. To ground
our experimental results, here we we provide a high-level overview
of each implementation. Two implementations, vg and xg, have been
described previously (Garrison et al., 2018; Garrison, 2019). The others
are combined in the libbdsg library (https://github.com/
vgteam/1libbdsg), which provides three concrete implementations:
HashGraph, odgi, and PackedGraph. Each implementation represents
a different tradeoff in terms of speed, memory use, and capabilities.
All of the implementations except xg are dynamic. Since all of these
implementations use the same interface, the 1ibhandlegraph header
files serve as the most effective developer documentation for their
functionality.

23.1vg

‘We have extended the data model in vg, previously described in (Garrison
et al., 2018), to match the HandleGraph API. The backing data structures
used by the model remain the same. The graph entities are stored as objects
in a backing vector, and referred to internally by hash tables that map
between node identifiers and pointers into this vector. Edges are indexed in
a hash table mapping pairs of handles to edge objects. Paths are stored in a
set of linked lists, with a hash table mapping between nodes and path steps.
This arrangement was tenable for the early development of algorithms
working on variation graphs. Its inefficiency, caused by unnecessary
overheads and data duplication, has generated significant difficulty for
groups working with vg. The other HandleGraph implementations respond
to the limitations of this approach. In version 1.22.0, vg was updated to use
HashGraph (below) as the default format, though it remains compatible
with all implementations described in this paper via the HandleGraph API.

2.3.2xg

xg was initially developed in response to the memory and runtime costs of
vg, which prevent its application to large graphs. It additionally provides
positional indexes over paths that are required for read mapping and variant
calling, and is the graph data model used in most established bioinformatic
operations on variation graphs (Garrison et al., 2018; Hickey et al., 2020).
Unlike other HandleGraph implementations, xg is a static graph index.
This permits a more powerful set of efficient queries against the graph,
especially for paths. The encoding is designed to balance speed and low
memory usage. The topology of the graph is encoded in a single vector
of bit-compressed integers, which promotes cache-efficiency. Rank and
select operations on succinct bit vectors are used to provide random access
over the variable-length records, which each encode a node’s sequence, ID,
and edges. Embedded paths are encoded in variable-length integer vectors
with Elias gamma encoding. Rank and select operations on succinct bit
vectors also provide queries by base-pair position along paths.

2.3.3 HashGraph

HashGraph has speed as its primary goal. It represents the graph as
a collection of node objects in a high performance hash table, while
embedded paths are implemented as doubly-linked lists. Edges are
recorded in vectors attached to each node that they connect. This adjacency
list encoding is appropriate for genome graphs, which are typically very

sparse. Each node object maintains a vector of pointers to the path steps
that traverse it. Most of HashGraph’s component data structures are
uncompressed STL objects which can be used efficiently in their native
in-memory arrangement. HashGraph trades memory for time, and thus is
most appropriate for small graphs (from small genomes or small regions
of larger genomes) or for high-memory compute environments.

2.3.4 odgi

odgi (Optimized Dynamic Graph Implementation) is based on a node-
centric encoding of the graph that is designed to improve cache coherency
when traversing or modifying the graph. This encoding is split between
graph topology and paths, which is important for achieving a good balance
of runtime performance and memory usage on real-world graphs with large
path sets. Each node’s sequence and edges are encoded in a byte array using
avariable-length integer encoding scheme. Edges are described in terms of
arelative offset between the rank of this node in the sorted array of nodes of
the graph and the node to which the edge arrives. The set of steps traversing
the node is recorded in a second dynamic integer vector, compressed so
that only the largest integer entry is stored at full bit-width (Prezza, 2017).
Each step contains a path identifier, relative ranks of the previous and next
nodes on the path, and the ranks of the previous and next steps among the
path steps recorded at their nodes. This path encoding scheme is similar
to that used in the dynamic GBWT (Sirén et al., 2020), but differs in that
the paths are not prefix-sorted. If each path step tends to move only a
short distance in the sorted nodes of the graph (e.g. from ns — n7), then
the maximum bit-width of the path vector will be low, resulting in good
compression.

2.3.5 PackedGraph

PackedGraph is designed to have a very low memory footprint. Most of
its component data structures are—conceptually speaking—Iinked lists.
However, they are implemented using vectors of bit-compressed integers,
where pointers are produced by treating some of the integer entries as
indexes into the vector that contains them. The bit-width can be determined
dynamically. Doing so does not affect the amortized asymptotic run time
of graph operations in the typical case that the value of i-th entry in the
vector is O(%). The vector uses a windowed bit compression scheme in
which only one value within a window is maintained at its full bit-width.
The remaining entries are represented as differences from this value. In
the typical case where adjacent entries in the vector are highly correlated,
this helps keep the bit-width low and the compression high.

2.4 Python binding

We have implemented a Python binding to the graph implementations
in 1ibbdsg using Pybind11 (Jakob et al., 2017). This allows the data
structures to be used in Python applications, significantly lowering the
barrier-to-entry for pangenomic application developers. This functionality
is documented at https://bdsg.readthedocs. io, including a
tutorial. This documentation also serves as useful introduction to the
HandleGraph API.

2.5 Code availability

Both libhandlegraph and libbdsg are open source under an
MIT License. They are available on GitHub at https://github.
com/vgteam/libhandlegraph and https://github.com/
vgteam/1libbdsg. Extensive documentation of these libraries and
their respective graph implementations is available at https://
pangenome.github.io/.
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Fig. 2. Performance on a graph of structural variants from the HGSVC. Abbreviations
used here and in subsequent figures and tables: vg = vg, hg = HashGraph, og = odgi, pg
= PackedGraph, xg = xg. All four new graph implementations compare favorably to vg.
PackedGraph tends to be the most memory efficient, HashGraph tends to be the fastest, and
odgi is balanced in between. xg provides good performance on both memory usage and
speed, but it is static.

3 Evaluation
3.1 Human genome with structural variants

We measured the core operation performance of the four graph
implementations and the graph class from the popular vg software (as
implemented prior to version 1.22.0). In particular, we measured 1)
memory usage to construct a graph, 2) time to construct a graph, 3)
memory usage to load an already-constructed graph, and 4) time to access
nodes, edges, and steps of a path. The presented results are from a
graph describing the structural variants of the Human Genome Structural
Variation Consortium (Chaisson et al., 2019). The results generally match
our expectations based on the implementations’ design goals (Figure 2).

3.2 Genome graph collection

To compare the methods’ performances across a wide variety of different
graphs, we applied each to a collection of 2299 graphs collected during
our research on graphical pangenomics. For each graph and graph
implementation, we measured the same metrics described in the previous
section as well as various graph properties including size, edge count,
cyclicity, and path depth. We summarize these results in Figures 3 and 4.

For graph construction and loading, we observe similar trends as for
the HGSVC graph. vg’s performance in terms of memory usage is very
poor, both during construction and load. For construction and load, all
models exhibit largely linear scaling characteristics, outside of very small
graphs where static memory overheads dominate. PackedGraph yields
the best memory performance for larger graphs (which are mostly the
chromosomes of the 1000 Genomes Project graph), while for the medium-
sized graphs in the collection (~1 Mbp), odgi requires less memory.

For graph queries and iteration, the relative performance of the models
is largely maintained across the entire range of graph sizes. However,

1e+01  1e+02 1403  1e+04 1e+05 1e+06 1e+07 1e+08 1e+09
graph sequence length (bp)

Fig. 3. Memory requirements for model construction and loading. Memory costs versus
graph sequence size for the graph collection, colored by HandleGraph model. The memory
requirements for graph construction tend to be higher than those for loading the graph
model. All methods show fixed overheads of several megabytes, seen in the flat tail to the
left of both plots. Outside of this region, all methods show roughly linear scaling in both
build and load costs per input base pair. The relative differences in memory costs appear
to be stable between different methods across many orders of magnitude in graph size.
Notably, vg has approximately the same build and load costs, as the data structures used
are the same. The other methods tend to use auxiliary data structures at build time, and so
require more memory to build the data structure than to load it.

we observe that the hash-based models (vg and HashGraph) have very
good performance for smaller graphs (in handle and edge enumeration) but
decrease in throughput as the graph size increases. Smaller, less dramatic
decreases in performance can be seen for the other implementations. For
path enumeration, the highest-performing methods are xg and HashGraph
at approximately 10 times faster than odgi, whose relative path storage is
costly to traverse.

3.3 1000 Genome Project chromosome graphs

Variation graphs built from the 1000 Genomes Project (1000GP) variant
catalog and the human reference genome have fairly homogenous and
regular features. In addition, they have connected components of very
different sizes, each corresponding to a chromosome. This provides a
natural, fairly controlled means to explore the scaling behavior of our
data structures. Moreover, graphs of this form are seeing increasing use in
variant-aware resequencing analyses (Crysnanto and Pausch, 2019). Thus,
the performance of data structures on these graphs is of general interest.
We first evaluated the scaling performance of the various HandleGraph
implementations relative to node count for each of the nuclear
chromosomes in the 1000GP (Figure 5). We find that for all methods, load
memory scales almost perfectly with node count, with an average R? =
0.998. Due to differences in variant density among the chromosomes, the
average correlation relative to sequence length is lower (R? = 0.986).
In Table 1, we report the average memory performance of the methods
relative to graph sequence length, and also the iteration performance in
terms of elements per second. We find that the best-performing method in
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Fig. 4. Graph element enumeration performance. Iteration performance for edges, nodes,
and path steps for the full graph collection, shown in terms of elements per second.
HashGraph provides the highest performance for all element iteration types on smaller
graphs, but this performance falls of with larger graphs, presumably due to scaling properties
of the backing hash tables. The same pattern can be seen for vg, although the overall
performance is worse. Although it has the worst edge iteration performance, PackedGraph
provides good performance on node and path step iteration. The relative path encoding
in odgi yields poor performance on path iteration, and node decoding overheads appear to
reduce its node iteration performance, but it has good graph topology traversal performance,
perhaps due to cache coherency of the edge encoding. xg provides excellent iteration

performance in all cases.
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length (R2 = 0.986). Although the memory requirements are dominated by graph sequence
size, node count will increase with variant density. Methods generally incur an overhead
for each node that is larger than the sequence length. Linear scales clarify that the absolute
difference in performance between vg and the other methods is significant.

Model

Build B/bp

Load B/bp

Node/s

Edges/s

Steps/s

vg
hg
og
pg
xg

80.2
36.7
30.3
37.6
54.3

712
239
13.7
3.80
9.31

24610804
59523906
24143220
63652595
54223417

2818795
18944603
11518919

4554284
20487877

2862661
127232984
8186908
24298536
116951120

Table 1. Performance on 1000 Genomes Project chromosome graphs. Average
build memory, load memory, and iteration times for graph elements for the
chromosome-level graphs built from all the variants in the 1000 Genomes
Project and the GRCh37 reference genome against which the variant set was
originally reported. vg requires ~ 20 times as much memory to load the graphs
as PackedGraph, while even the most costly HandleGraph model (HashGraph)
requires ~ 1/3 as much memory. In these graphs, odgi provides the lowest
performance for handle iteration. However, in all other metrics, vg performs
significantly worse than the other models.

terms of memory usage is PackedGraph, which consumes around 1/20th
the memory of vg per base-pair of graph in the 1000GP set. However, it
provides significantly better iteration performance for nodes, edges, and
path steps. HashGraph and xg have similar iteration performance, but xg,
by virtue of its use of compressed, static data structures, requires less than
half as much memory. odgi optimized for efficient dynamic operations on
graphs with higher path coverage, and in general is not as performant as
other methods on this set.

4 Discussion

We have presented a set of simple formalisms, the HandleGraph
abstraction, which provides a coherent interface to address and manipulate
the components of a genome variation graph. To explore the utility of this
model, we implemented data structures to encode variation graphs and
matched them to this interface. This allowed us to directly compare these
HandleGraph implementations on a diverse set of genome graphs obtained
during our research. These experiments reveal that genome graphs need
not pay the computational expense of the early versions of vg. The best-
performing models require an order of magnitude less memory than vg
while providing higher performance for basic graph access operation and
element iteration. For these reasons, vg has transitioned to using these
newer graph implementations.

The efficiency of these methods and their encapsulation within a
coherent programming interface will support their reuse within a diverse
set of application domains. Variation graphs have deep similarity with
graphs used in assembly; these libraries could be used as the basis for
assembly methods. They could also be used for genotyping and haplotype
inference methods based on graphs (Garg et al., 2018).

Ongoing work is establishing large numbers of highly-contiguous
whole genome assemblies for humans (https://humanpangenome.
org/). Improvements in sequencing technology are likely to make such
surveys routine. It is natural to consider a pangenome reference system,
based on the whole genome alignments of such assemblies, as the output
of these pangenome projects. Recent results demonstrate that many basic
bioinformatic problems can be generalized to operate on such structures.
Should these pangenome representations become common or standard,
then variation graph data structures like those we have presented here will
form the basis for a wide range of pangenomic methods.
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