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Abstract  

Brain cerebral cortical architecture encoding regionally differential dendritic arborization and 

synaptic formation at birth underlies human behavior emergence at 2 years of age. Brain changes 

in 0-2 years are most dynamic across lifespan. Effective prediction of future behavior with brain 

microstructure at birth will reveal structural basis of behavioral emergence in typical development, 

and identify biomarkers for early detection and tailored intervention in atypical development. Here, 

we aimed to evaluate the neonate whole-brain cortical microstructure quantified by diffusion MRI 

for predicting future behavior. We found that individual cognitive and language functions assessed 

at age of 2 years were robustly predicted by neonate cortical microstructure using support vector 

regression. Remarkably, cortical regions contributing heavily to the prediction models exhibited 

distinctive functional selectivity for cognition and language. These findings highlight regional 

cortical microstructure at birth as potential sensitive biomarker in predicting future 

neurodevelopmental outcomes and identifying individual risks of brain disorders. 
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Introduction 

Brain cerebral cortical microstructure underlies neuronal circuit formation and function 

emergence during brain maturation. Regionally distinctive cortical microstructural architecture 

profiles around birth result from immensely complicated and spatiotemporally heterogeneous 

underlying cellular and molecular processes (Silbereis et al., 2016), including neurogenesis, 

synapse formation, dendritic arborization, axonal growth, pruning and myelination. Disturbance 

of such precisely regulated maturational events is associated with mental disorders (Innocenti 

and Price, 2005). Diffusion magnetic resonance imaging (dMRI) has been widely used for 

quantifying microstructural changes in white matter maturation (e.g. Dubois et al., 2008; 

Mukherjee et al., 2001). Because of its sensitivity to organized cortical tissue (e.g. radial glial 

scaffold; Rakic, 1995; Sidman and Rakic, 1973) unique in the fetal and infant brain, dMRI also 

offers insights into maturation of cortical cytoarchitecture. Cortical fractional anisotropy (FA), a 

dMRI-derived measurement, of infant and fetal brain can effectively quantify local cortical 

microstructural architecture and can be used to infer specific brain circuit formation. In early 

cortical development, most of cortical neurons are generated in the ventricular and subventricular 

zone. These neurons migrate towards cortical surface along a radially arranged scaffolding of 

glial cells where relatively high FA values are usually observed (Huang et al., 2013; McKinstry et 

al., 2002). During emergence of brain circuits, increasing dendritic arborization (Bystron et al., 

2008; Sidman and Rakic, 1973), synapses formation (Huttenlocher and Dabholkar, 1997), and 

myelination of intracortical axons (Yakovlev and Lecours, 1967) disrupt the highly organized radial 

glia in the immature cortex and result in cortical FA decreases. Such reproducible cortical FA 

change patterns were documented in many studies of perinatal human brain development (Ball 

et al., 2013; Huang et al., 2006; Huang et al., 2009; Huang et al., 2013; Kroenke et al., 2007; 

McKinstry et al., 2002; Neil et al., 1998; Ouyang et al., 2019a; Ouyang et al., 2019b; Yu et al., 

2016), suggesting sensitivity of cortical FA measures to maturational processes of cortical 

microstructure. Diffusion-MRI-based regional cortical microstructure at birth, encoding rich 
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“footage” of regional cellular and molecular processes, may provide novel information regarding 

typical cortical development and biomarkers for neuropsychiatric disorders. 

The first 2 years of life is a critical period for behavioral development, with brain 

development in this period most rapid across lifespan. In parallel to rapid maturation of cortical 

architecture and establishment of complex neuronal connections (Hüppi et al., 1998; Ouyang et 

al., 2019a; Pfefferbaum et al., 1994), babies learn to walk, talk, and build the core capacities for 

lifetime. Infant behaviors including cognition, language and motor emerge during this time and 

become measurable at around 2 years of age. Reliable diagnosis for many neuropsychiatric 

disorders, such as autism spectrum disorder (ASD), can be made only around 2 years of age or 

later (Marín, 2016), as diagnoses rely on observing behavioral problems which are difficult to 

recognize in early infancy (Arpi and Ferrari, 2013; Ozonoff et al., 2010). On the other hand, early 

intervention for ASD, especially before 2 years of age, has demonstrated significant impacts on 

improving outcomes (Rogers et al., 2014). Given that infants cannot communicate with language 

or writing in early infancy, there may be no better way to assess their brain development other 

than neuroimaging. Prediction of future cognition and behavior at 2 years of age or later based 

on brain features around birth creates an invaluable time window for individualized biomarker 

detection and early tailored intervention leading to better outcomes.  

Individual differences in brain white matter microstructural architectures (Scholz et al., 

2009; Yu et al., 2019), behavior, and functions (Braga and Buckner, 2017; Xu et al., 2019) have 

been well recognized. Individual variability in brain structures and associated individual variability 

in future behaviors can be harnessed for robust prediction at the single-subject level (Kanai and 

Rees, 2011; Rosenberg et al., 2018), a step further than group classification. A few studies have 

been conducted previously to investigate within-sample imaging-outcome correlations (Ball et al., 

2015; Counsell et al., 2014; Deoni et al., 2016; Hintz et al., 2015; Keunen et al., 2017; Peyton  et 

al., 2020; Wee et al., 2017; Woodward et al., 2006), while such correlation approaches made it 

impossible to be applied to new and incoming subjects. Machine learning approach that can adopt 
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new subjects and yield continuous prediction values has been explored only recently based on 

white matter structural networks (Girault et al., 2019; Kawahara et al., 2017). Cortical 

microstructure quantified by FA is more directly associated with specific cortical regions and thus 

certain cortical functions, compared to association of structural networks to the cortical regions 

through end point connectivity. Our previous study (Ouyang et al., 2019b) demonstrated that 

cortical FA predicted neonate age with high accuracy. Regionally distinctive cortical 

microstructure around birth encodes the information that may predict distinctive functions 

manifested by future behavior and potentially identify the most sensitive regions as imaging 

markers to detect early behavioral abnormality. However, dMRI-based cortical microstructure has 

not been evaluated for predicting either discrete or continuous future behavioral measurement so 

far. And dMRI-based cortical microstructure has not been incorporated into a machine-learning-

based prediction model for predicting future behavior, either. 

In this study, we leveraged individual variability of cortical microstructure profiles of 

neonate brains for predicting future behavior. A novel machine-learning-based model using 

regional cortical microstructure markers from dMRI and capable of predicting continuous outcome 

values as well as incorporating new subjects was developed. We hypothesized that dMRI-based 

cortical microstructure at birth only (without inclusion of any white matter microstructure 

information) could robustly predict the future neurodevelopmental outcomes. Out of 107 recruited 

neonates, high-resolution (0.656x0.656x1.6 mm3) dMRI data were acquired from 87 neonates, of 

which 46 underwent a follow-up study at their two years of age for neurobehavioral assessments 

of cognitive, language and motor abilities. Cortical microstructural architectures at birth were 

quantified by cortical FA on the cortical skeleton to alleviate partial volume effects (Ouyang et al., 

2019b; Yu et al., 2016). Regional cortical FA measures were then used to form feature vectors to 

predict neurodevelopmental outcomes at 2 years of age. We further quantified the contribution of 

each cortical region in predicting different outcomes, as distinctive behaviors are likely encoded 

in uniquely distributed pattern across the cerebral cortex.   
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Results 

Cortical microstructure at birth and neurodevelopmental outcomes at 2 years of age. A 

cohort of 107 neonates were recruited for studying normal prenatal and perinatal human brain 

development (see more details in Materials and methods and Supplementary file 1). 

Neuroimaging data, including structural and diffusion MRI, were collected from 87 infants around 

birth in their natural sleep. 46 infants went through a follow-up visit at their 2 years of age to 

complete the cognitive, language and motor assessments with Bayley scales of infant and toddler 

development-Third Edition (Bayley-III; Bayley, 2006). Figure 1–figure supplement 1 and Figure 1-

figure supplement 2 demonstrate the cortical FA maps across parcellated cortical gyri in the left 

and right hemisphere from dMRI of all these 46 subjects scanned at birth, revealing individual 

variability of regional cortical microstructure. The Bayley-III composite scores from these 46 

subjects at 2 years of age range from 65 to 110 (mean±sd: 87.4±8.5) for cognition, 56 to 112 

(85.7±10.1) for language and 73 to 107 (91.2±7.1) for motor abilities (Figure 1-figure supplement 

3). No significant correlation between any specific age (i.e. birth age, MRI scan age and Bayley-

III exam age) and neurodevelopmental outcome score was found (all p>0.1, Supplementary file 

2).  

Robust prediction of cognitive and language outcomes based on cortical dMRI 

measurement. 52 cortical regions parcellated by transforming neonate atlas labels (Figure 1, see 

Materials and methods) were used to generate cortical FA feature vectors from each participant’s 

dMRI data at birth, representing the entire cortical microstructural architecture of an individual 

neonate. Heterogeneous distribution pattern of cortical FA can be appreciated from cortical FA 

maps (left panels of Figure 1), indicating regionally differentiated maturation level of cortical 

microstructure. An immature cerebral cortical region with highly organized radial glia scaffold is 

associated with high FA values, whereas a more mature cortical region with extensive dendritic 

arborizations and synapses formations is associated with low FA values. To determine whether 
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cortical microstructural features represented by FA measurements at birth are capable of 

predicting neurodevelopmental outcomes of an individual infant at a later age, we used support 

vector regression (SVR) with a fully leave-one-out cross-validated (LOOCV) approach (middle 

panels of Figure 1). With this approach, neurodevelopmental outcome of each infant was 

predicted from an independent training sample. That is, for each testing subject out of the 46 

participants, the cortical FA features of remaining 45 subjects were used to train prediction models 

for predicting cognitive or language outcomes of the testing subject at 2 years of age (right panels 

of Figure 1) only based on cortical FA of the testing subject at birth. A SVR model that best fits 

the training sample can be represented by a weighted contribution of all features, where the 

weight vector (𝑤⃗⃗ ) indicates the relative contribution of each feature, namely, cortical FA of each 

parcellated cortical region, to the prediction model. The feature contribution weights in the model 

predicting cognition or language were averaged across all leave-one-out SVR models and then 

normalized. These normalized feature contribution weights were projected back onto the cortical 

surface to demonstrate cortical regional contribution (right panels of Figure 1). 

Significant correlations between predicted and actual neurodevelopmental outcome were 

found for both cognitive (r=0.536, p=1.2x10-4) and language (r=0.474, p=8.8x10-4) scores, 

respectively (left panel of Figure 2a and Figure 2b), indicating robust prediction of cognitive and 

language outcomes at 2 years old based on cortical FA measures at birth. According to the 

permutation tests, these correlations were significantly higher than those obtained by chance 

(p<0.005). The mean absolute errors (MAE) between the predicted and actual scores are 5.49 

and 7 for cognitive and language outcomes respectively. These MAEs were significantly lower 

than those obtained by chance (p<0.01), based on permutation tests. The highly predictive 

models suggest that cortical microstructural architecture at birth plays an important role in 

predicting future behavioral and cognitive abilities. However, motor scores were not able to be 

predicted from cortical FA measures (r = 0.1, p = 0.52).  
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Evaluation of robustness of prediction models. Evaluation with different cortical parcellation 

schemes and age effects around birth. The prediction models are robust based on evaluation 

results of different cortical parcellation schemes; and the prediction results are still significant after 

age adjustment in the cortical FA features (Figure 2-figure supplement 1). To investigate the 

effects of different cortical parcellation schemes on prediction models, we measured regional 

cortical FA values with different cortical parcellation schemes that included higher number (128, 

256, 512, and 1024) of random cortical parcels. For each parcellation scheme, we calculated 

correlation coefficient and MAE between the actual and predicted neurodevelopmental scores 

shown in Figure 2-figure supplement 1. Across different cortical parcellation schemes, robust 

estimation of the cognitive and language scores was observed in all prediction models. We also 

investigated the effect of different scan ages on prediction models to demonstrate that high 

prediction performance remained intact after statistically controlling for age effect in cortical FA 

measures. Prediction performances before and after adjustment for the age effect are 

demonstrated in Figure 2-figure supplement 1b-1c. After adjustment for age effect, correlation 

between the predicted and actual cognitive or language scores is still significant (p<0.05) with 

original parcellation of 52 cortical regions. Furthermore, significant correlations after controlling 

for age effect were also observed across other tested cortical parcellation schemes (128, 256, 

512 and 1024 cortical parcels). Evaluation by categorizing subjects with normal and low scores. 

As Bayley-III is widely used to assess developmental delay with certain cut-off scores, we also 

evaluated the performance of cortical microstructural measures in classifying subjects with normal 

and low scores. High accuracy was achieved with a receiver operating characteristic (ROC) curve 

analysis. Cognitive and language scores of all infants were categorized into normal (>85, n = 22 

for cognitive scores and n = 24 for language scores) and low (≤85) scores groups. Cortical FA 

features were used to build classifiers with leave-one-out procedure to classify each infant into 

one of these two groups. The ROC curve analysis was used to test the ability of cortical FA 

measures at birth to distinguish infants with low 2-year-old outcomes from those with normal 
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outcomes (Figure 2-figure supplement 2a). Classification accuracy was 76.1% for cognitive and 

60.9% for language scores (Figure 2-figure supplement 2b). Our analysis revealed an area under 

curve (AUC) of 0.809 and 0.737 for cognitive and language classifications (Figure 2-figure 

supplement 2c), respectively, further supporting the cortical microstructural architecture at birth 

as a sensitive marker for prediction and potential detection of early behavioral abnormality. 

Regionally heterogeneous contribution to the cognitive and language prediction. Regional 

cortical FA measures across entire cortex did not contribute equally to the prediction models. 

Heterogeneous feature contribution pattern can be clearly seen across cortex for either cognitive 

(Figure 2a) or language (Figure 2b) prediction. For instance, from distribution of normalized 

feature contribution weights in cognitive prediction model (center panel of Figure 2a), high 

contributions from right precuneus gyrus (PrCu) (indicated by black arrow) and bilateral rectus 

gyri (REC) (indicated by green arrows) are prominent, with bright red gyri associated with high 

feature contribution. To quantitatively demonstrate heterogeneous feature contribution of all 

cortical gyri, the normalized feature contribution weights from 52 cortical gyri categorized into 6 

cortices are shown in a circular bar plot (right panel of Figure 2a). Higher bar indicates higher 

feature contribution of a cortical region to the model. The normalized feature contribution weights 

of the frontal, parietal and limbic gyri (e.g. REC, postcentral and entorhinal gyri) are relatively 

higher than those of the occipital, temporal and insular cortex (e.g. superior temporal or occipital 

gyri) in cognitive prediction.  

Similar to cognitive prediction, regional variations of feature contribution can be observed 

in language prediction model, as demonstrated in cortical surface map and circular bar plot in 

Figure 2b. For example, higher feature contribution weight was found in the left postcentral gyrus 

(PoCG) (indicated by black arrow) than its counterpart in the right hemisphere. Feature 

contribution weights in the frontal and limbic gyri are also higher than those in the occipital and 
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temporal gyri. Differential normalized feature contribution weights in cognitive or language 

prediction model across all cortical gyri are listed in Supplementary file 3.  

Distinguishable regional contribution to predicting cognitive or language outcomes. 

Besides regionally heterogeneous contributions, distinguishable feature contribution patterns 

were found in predicting cognitive or language outcomes. The top 10 cortical regions where 

microstructural measures contributed most to the prediction of cognitive and language scores are 

listed in Figure 3a and mapped onto cortical surface in Figure 3b. Among these top 10 cortical 

regions, left REC, bilateral entorhinal gyrus (ENT), right middle/lateral fronto-orbital gyrus 

(MFOG/LFOG) and left PoCG are the common regions (highlighted in yellow in Figure 3b) for 

predicting both cognitive and language outcomes. Right REC, right PrCu, right parahippocampal 

gyrus (PHG) and left fusiform gyrus (FuG) are unique to cognitive prediction (highlighted in red in 

Figure 3b), and left inferior frontal gyrus (IFG), left cingular gyrus (CingG), left insular cortex (INS) 

and right angular gyrus (ANG) are unique to language prediction (highlighted in green in Figure 

3b). It is striking that left IFG, usually known as “Broca’s area” for language production, was 

uniquely found in the top contributing regions in language prediction model. Notably right PrCu, 

an important hub for default mode network, was uniquely found among the top contributing 

regions in cognitive prediction model. Bootstrapping analysis indicated that the top 10 cortical 

regions (Figure 3) where microstructural measures contributing most to prediction were highly 

reproducible from 1000 bootstrap resamples for predicting each behavioral outcome (Figure 3-

figure supplement 1). As shown in Figure 3-figure supplement 1, the cortical regions with higher 

percentages (indicating higher reproducibility) in red or brown color overlap with the top 10 cortical 

regions where microstructural measures contributed most to predicting cognition or language 

(from Figure 3; highlighted by dashed blue contours). Distinguishable regional contribution to 

predicting different outcomes (cognition or language) was quantified by a nonoverlapping index, 

ranging from 0 to 1 with 1 indicating completely distinctive regions and 0 indicating same regions. 
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The statistical significance of the observed nonoverlapping index 0.57 was confirmed with 

permutation tests.  Specifically, the permutation tests indicated that the observed nonoverlapping 

index of 0.57 was not likely to be obtained by chance from predicting the same outcome (p=0.001 

from testing with leave-one-out resamples; p=0.05 from testing with resamples by randomly 

selecting 90% of samples), supporting distinguishable regional contribution to predicting cognitive 

or language outcomes.   

Comparison between prediction based on cortical FA and prediction based on white matter 

FA. Since dMRI has been conventionally used mainly for measuring white matter microstructure, 

we also evaluated the prediction performance when only using regional white matter FA measures 

as features (Figure 4a). Both cognitive (r=0.516, p=2.4x10-4) and language (r=0.517, p=2.3x10-4) 

scores can be reliably predicted with white matter FA measures, indicated by significant 

correlations between predicted and actual scores (Figure 4b). More importantly, solely cortical FA 

measures at birth is as robust as white matter FA measures in predicting the cognitive and 

language scores at 2 years of age, demonstrated by similar correlation coefficient values between 

the predicted and actual scores (Figure 4c, all significant correlation with p<0.05). 
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Discussion 

We leveraged individual variability in the cortical microstructural architecture at birth for a 

robust prediction of individualized future behavioral outcomes in continuous values. Cortical 

microstructure at birth, encoding rich “footage” of regional cellular and molecular processes in 

early human brain development, was evaluated as the baseline measurements for prediction. Our 

previous studies (Huang et al., 2009; Ouyang et al., 2019b; Yu et al., 2016) found that individual 

neonate cortical microstructure profile characterized by different levels of dendritic arborization 

could be reliably quantified with dMRI-based cortical FA that reveals cortical maturation signature. 

In this study, we further demonstrated that individual variability of cortical microstructure profile 

around birth can be used to robustly predict the cognitive and language outcomes of individual 

infant at 2 years of age. By harnessing different encoding patterns of cognitive and language 

functions across the entire cortex, we quantified distinguishable contribution of each cortical 

region and highlighted the most sensitive regions for predicting different outcomes. Cortical 

regions contributing heavily to the prediction models exhibited distinctive functional selectivity for 

cognition and language. To our knowledge, this is the first study evaluating regional cortical 

microstructure for predicting future behavior, laying the foundation for future works using cortical 

microstructure profile as ‘neuromarkers’ to predict the risk of an individual developing health-

related behavioral abnormalities (e.g. ASD). The prediction model is also capable of incorporating 

new and incoming subjects, a step further than previous within-sample imaging-outcome 

correlation studies (Ball et al., 2015; Counsell et al., 2014; Deoni et al., 2016; Hintz et al., 2015; 

Keunen et al., 2017; Peyton  et al., 2020; Wee et al., 2017; Woodward et al., 2006). If given a 

larger sample size, this study has the potential to change the paradigm of identifying infants at 

risk of neurodevelopmental disorders (e.g. ASD) at a time when infant is pre-symptomatic in 

behavioral assessments and intervention can lead to better outcomes.  
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With cerebral cortex playing a central role in human cognition and behaviors, high 

performance achieved in prediction of cognition and language based on cortical FA measures 

(Figure 2) is probably due to sensitivity of cortical microstructural changes to maturational 

processes involving synaptic formation, dendritic arborization and axonal growth. Distinctive 

maturation processes manifested by differentiated cortical FA changes across cortical regions in 

fetal and infant brains were reproducibly reported development (Ball et al., 2013; Huang et al., 

2006; Huang et al., 2009; Huang et al., 2013; Kroenke et al., 2007; McKinstry et al., 2002; Neil et 

al., 1998; Ouyang et al., 2019a; Ouyang et al., 2019b; Yu et al., 2016). Although cortical thickness, 

volume or surface area from structural MRI scans (i.e. T1- or T2-weighted images) were 

conventionally primary structural measurements to characterize infant cerebral cortex 

development (Hazlett et al., 2017; Hill et al., 2010; Lyall et al., 2015), they cannot characterize 

the complex microstructural processes that take place inside the cortical mantle. Compared to 

macrostructural changes quantified by these conventional measurements, the underlying 

microstructural processes quantified by cortical FA may be more sensitive to infants with 

pathology such as those with risk of ASD. Because white matter microstructure (e.g. FA) 

measurement is more widely used in dMRI studies than cortical microstructure measurement, we 

also evaluated white matter FA at birth for predicting cognitive and language outcome at 2 years 

of age (Figure 4). Despite the fact that microstructural measures from solely cerebral cortex or 

white matter at birth have similar sensitivity in predicting neurodevelopment outcomes at 2 years 

old (Figure 4), cortical microstructure is more directly associated with specific cortical regions and 

thus certain cortical functions, compared to association of white matter to the cortical regions 

through end point connectivity.  

Human brain development in the first two years is most rapid across the lifespan. During 

first 2 years after birth, overall size of an infant brain increases dramatically, reaching close to 

90% of an adult brain volume by 2 years of age (Pfefferbaum et al., 1994). Despite rapid 
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development, infancy period (0-2 years) of human is probably the longest among all mammals 

with cognitive and language functions unique in human emerging during this critical period. For 

instance, infants start to learn their mother tongue from babbling to full sentences, during age of 

6-month to 2-3 years (Kuhl, 2004). This lengthy yet extremely dynamic brain development 

processes make the prediction of 2-year neurodevelopmental outcome with brain information at 

birth ultimately invaluable. DMRI-based cortical microstructure at birth, before any behavioral 

tests could be performed, can well predict both cognition and language outcomes at 2 years of 

age (Figure 2). A regionally heterogeneous distribution pattern across cerebral cortex was 

displayed (Figure 2). Furthermore, consistent to their functions documented in the literature, the 

cortical regions contributing heavily to the prediction models exhibited distinguishable functional 

selectivity for cognition and language (Figure 3 and Figure 3-figure supplement 1). The cognitive 

scale in Bayley-III estimates cognitive functions including object relatedness, memory, problem 

solving and manipulation on the basis of nonverbal activities (Bayley, 2006). Cortical regions with 

high weight in prediction model are tightly associated with cognitive functions. Right rectus, 

precuneus, parahippocampal and left fusiform gyri were among the top 10 cortical regions 

(painted red in Figure 3b) where microstructural measures contributed uniquely to the cognition 

prediction, but not to language prediction. Parahippocampal gyrus provides poly-sensory input to 

the hippocampus (Witter et al., 2000) and holds an essential position for mediating memory 

function (Young et al., 1997). Precuneus is a pivotal hub essential in brain’s default-mode network 

(Buckner et al., 2008) and involved in various higher-order cognitive functions (Cavanna and 

Trimble, 2006). Rectus and fusiform gyri are associated with higher-level social cognition 

processes (Viskontas et al., 2007). For regions contributing heavily to both cognition and 

language prediction and painted yellow in Figure 3b, bilateral entorhinal gyri likely serve as a pivot 

junctional region mediating the processes of different types of sensory information during the 

cortex-hippocampus interplay (Witter et al., 2000). Middle and lateral fronto-orbital gyrus are 

involved in cognitive processes including learning, memory and decision-making (Wikenheiser 
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and Schoenbaum, 2016). Left postcentral gyrus with high feature contribution weight in both 

prediction models is associated with the general motor demands of performing tasks. Besides 

higher-order cognitive functions, language functions are also unique in human beings. The first 

two years of life is a critical and sensitive period for the speech-perception and speech-production 

development (Kuhl, 2004; Werker and Hensch, 2015). The language scale from Bayley-III 

includes two subdomains: receptive communication and expressive communication. Here, the 

term “communication” refers to any way that a child uses to interact with others, and includes 

communication in prelinguistic stage (e.g. eye gaze, gesture, facial expression, vocalizations, 

words), social-emotional skills and communication in more advanced stage of language 

emergence (Bayley, 2006). The distinctive regions with high feature contribution weights only in 

language prediction model included left inferior frontal gyrus (IFG), cingular gyrus, insular cortex 

and right angular gyrus, painted green in Figure 3b. These regions are related to receptive and 

expressive communication. It is striking that left IFG, known as “Broca’s area”, was identified by 

this data-driven prediction model because it is well known that Broca’s area plays a pivotal role in 

producing language (Poeppel, 2014). Angular gyrus, another crucial language region in the 

parietal lobe, supports the integration of semantic information into context and transfers visually 

perceived words to Wernicke’s area. Left insula, a part of the articulatory network in the dual-

stream model of speech processing, is involved in translating acoustic speech signals into 

articulatory representations in the frontal lobe (Hickok and Poeppel, 2007). Since Bayley language 

scale also includes a number of items reflecting social-emotional skills, such as how a child 

responds to his/her name or reacts when interrupted in play, high feature contribution weight of 

insular cortex may be due to its important role in social emotions (Lamm and Singer, 2010). High 

feature contribution weight of cingular cortex might be related to its key involvement in emotion 

and social behavior (Bush et al., 2000). Taken together, identifying these regions with highest 

feature contribution weights sheds light on understanding local brain structural basis underlying 
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emergence of distinctive functions manifested by daily behavior, enhancing our knowledge of 

brain-behavior relationships.  

Motor scores from Bayley-III were not predicted reliably in this study possibly due to low 

variability and low signal-to-noise ratio of cortical FA measurement in primary sensorimotor 

cortical regions associated with motor function. Cortical FA measurements at primary 

sensorimotor cortex are relatively low compared to those at other cortices (Ball et al., 2013; 

Ouyang et al., 2019b) and are barely above the noise floor, as primary sensorimotor cortex 

develops earlier compared to cortical regions associated with higher-order brain functions. 

Individual variability of cortical microstructure at primary sensorimotor cortex cannot be well 

captured with relatively low signal-to-noise ratio for the cortical FA measurements at these 

regions. High individual variability enables reliable prediction. Low functional variability at primary 

sensorimotor cortex was found in a largely overlapped cohort in a separate study (Xu et al., 2019) 

from our group, and was reproducibly found in another cohort (http://developingconnectome.org). 

With strict exclusion criteria of participating cohort around birth, higher average and lower 

variance of motor scores than those of cognition or language scores play an important role in poor 

prediction of motor scores. Larger group variability in motor scores and larger sample size can 

offset the limitations elaborated above and enhance the prediction of motor scores.  

Technical considerations, limitations and future directions are discussed below. The 

capacity of cortical microstructural profile at birth to predict an individual infant’s later behavior is 

substantial (Figure 2). We trained models to classify the low and normal outcomes. The ROC 

curves and accuracy measurements in Figure 2-figure supplement 2 demonstrated high accuracy 

of the classification models. Robustness of the prediction model was further tested against various 

factors. These factors included different cortical parcellation schemes (random and finer 

parcellations versus parcellation based on an atlas) for measuring feature vectors, and individual 

age adjustment (Figure 2-figure supplement 1). Importantly, high performance of the prediction 
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models is reproducible after taking above-mentioned factors into consideration. Despite relatively 

high dMRI resolution (0.656x0.656x1.6 mm3) being used, partial volume effects (Jeon et al., 2012) 

cannot be ignored for measuring cortical FA. The partial volume effects are different across brain 

with thinner cortical regions more severely affected. To maximally alleviate the partial volume 

effects and enhance the measurement accuracy, we adopted a “cortical skeleton” approach 

(Ouyang et al., 2019b; Yu et al., 2016), demonstrated in the left panel of Figure 1, to measure 

cortical microstructure at the center or “core” of the cortical plate. Although both preterm and term-

born infants are included, none of them were clinically referred. All infants had been recruited 

solely for brain research and rigorously screened by a neonatologist and a pediatric 

neuroradiologist to exclude any infants with signs of brain injury (see Materials and method for 

more details). To limit the effects of exposure to the extrauterine environment, this study was 

designed to make the interval between birth and scan age as short as possible. As a result, we 

did not find any significant correlation between birth age or MRI scan age and 

neurodevelopmental outcomes (see Supplementary file 2). The literature (Bonifacio et al., 2010) 

also indicated that the effects of premature birth on brain development are considered to be 

relatively trivial compared with the effects of brain injury and co-morbid condition which was not 

presented in any recruited infant due to strict exclusion criteria. Although we have taken many 

precautions to extract cortical FA measures and test internal validity of our prediction analysis, 

several limitations will need to be addressed in future research. Despite the fact that relatively 

high performance of behavioral prediction was achieved with current cohort of infants, the 

prediction model will benefit from validation (e.g. k-fold cross-validation) and replication with an 

independent infant cohort of a larger sample size for generalization. Thus, prediction model with 

individual variability representing a general population from a much larger cohort is warranted in 

future research. Future research will also benefit from incorporating other markers such as 

functional neuroimaging, multimodal imaging and genetic factors (e.g. Kwon et al., 2014; Smyser 

et al., 2016) as well as adopting more advanced machine learning algorithms such as multi-kernel 
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and deep learning to further improve prediction. This study included a healthy cohort of infants for 

evaluating cortical microstructure for predicting future behavior. Such evaluation in the setting of 

pathology needs to be further validated. The observed neurodevelopmental outcomes were also 

contributed by unmeasured factors such as maternal age and tertiary educational level as well as 

other home environment variable following discharge from the hospital, all of which should be 

taken into consideration in the future prediction model. 

In conclusion, whole-brain cortical FA at birth, encoding rich information of dendritic 

arborization and synaptic formation, could be reliably used for predicting neurodevelopmental 

outcomes of 2-years-old infants by leveraging individual variability of these measures. Feature 

contribution weight in cognitive or language prediction is heterogeneous across brain regions. 

The cortical regions contributing heavily to the prediction models exhibited distinguishable 

functional selectivity for cognition and language. Identifying regions with highest feature 

contribution weights offers preliminary findings on understanding local brain microstructural basis 

underlying emergence of future behavior, enhancing our knowledge of brain-behavior 

relationships. These findings also suggest that cortical microstructural information at birth may be 

potentially used for prediction of behavioral abnormality in infants with high risk for brain disorders 

early at a time when infant is pre-symptomatic in behavioral assessments and intervention may 

be most effective.  
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Materials and methods 

Participants. The study was approved by the Institutional Review Board (IRB) at the University 

of Texas Southwestern Medical Center. 107 neonates were recruited from the Parkland Hospital 

and scanned at Children’s Medical Center at Dallas. Evaluable MRI was obtained from 87 

neonates (58 M/ 29 F; post-menstrual ages at scan: 31.9 to 41.7 postmenstrual weeks (PMW); 

post-menstrual ages at birth: 26 to 41.4 PMW). All recruited infants were not clinically indicated, 

and they were recruited completely for research purpose which was studying the normal prenatal 

and perinatal human brain development. These neonates were selected through rigorous 

screening procedures by a board-certified neonatologist (LC) and an experienced pediatric 

radiologist, based on subjects’ ultrasound, clinical MRI and medical record of the subjects and 

mothers. The exclusion criteria included evidence of bleeding or intracranial abnormality by serial 

sonography; the mother's excessive drug or alcohol abuse during pregnancy; periventricular 

leukomalacia; hypoxic–ischemic encephalopathy; Grade III–IV intraventricular hemorrhage; body 

or heart malformations; chromosomal abnormalities, lung disease or bronchopulmonary 

dysplasia; necrotizing enterocolitis requiring intestinal resection or complex feeding/nutritional 

disorders; defects or anomalies of the brain; brain tissue dysplasia or hypoplasia; abnormal 

meninges; alterations in the pial or ventricular surface; or white matter lesions. Informed parental 

consents were obtained from the subject’s parent. More demographic information of the 

participants can be found in Supplementary file 1. 

Neonate brain MRI. All neonates were scanned with a 3T Philips Achieva System (ages at scan: 

31.9 to 41.7 PMW). Neonates were fed before the MRI scan and wrapped with a vacuum 

immobilizer to minimize motion. During scan, all neonates were asleep naturally without sedation. 

Earplugs, earphones and extra foam padding were applied to reduce the sound of the scanner. 

All 87 neonates underwent high-resolution diffusion MRI (dMRI) and structural MRI scans. A 

single-shot echo-planar imaging (EPI) sequence with Sensitivity Encoding parallel imaging 
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(SENSE factor = 2.5) was used for dMRI. Other dMRI imaging parameters were as follows: time 

of repetition (TR) = 6850ms, echo time (TE) = 78ms, in-plane field of view = 168x168 mm2, in-

plane imaging matrix = 112x112 reconstructed to 256x256 with zero filling, in-plane resolution = 

0.656x0.656 mm2 (nominal imaging resolution 1.5x1.5 mm2), slice thickness = 1.6mm without 

gap, slice number = 60, and 30 independent diffusion encoding directions with b value = 1000s/ 

mm2. Two repetitions were conducted for dMRI acquisition to improve the signal to noise ratio 

(SNR), resulting in a scan time of 11 minutes.  

Quality control and quality assurance of MRI. General MRI slice and slice-time integral 

measures for quality control (QC) were determined daily using ADNI and BIRN phantoms. Any 

systematic anomaly identified by significant deflections from normal variation was addressed 

immediately with technical support and/or the in-house MR physicist team. As is the laboratory 

practice, test-retest reliability of the MR imaging protocol was assessed with a 4 subject X 4 repeat 

estimation on intra- and inter-subject variation for quality assurance (QA).  

Measurement of cortical microstructure with brain MRI at birth. Diffusion tensor of each brain 

voxel was calculated with routine tensor fitting procedures. With 30 scanned diffusion weighted 

image (DWI) volumes and 2 repetitions, we accepted those scanned diffusion MRI datasets with 

less than 5 DWI volumes affected by motion more commonly seen in scanning of neonates and 

toddlers. Diffusion MRI datasets from all neonates were preprocessed using DTIstudio 

(http://www.mristudio.org) (Jiang et al., 2006). Small motion and eddy current of dMRI for each 

neonate were corrected by registering all the DWIs to the non-diffusion weighted b0 image using 

a 12-parameter (affine) linear image registration with automated image registration algorithm. Six 

elements of diffusion tensor were fitted in each voxel. Maps of fractional anisotropy (FA) derived 

from diffusion tensor were obtained for all neonates (Figure 1). DTI-derived FA maps were used 

to obtain the cortical skeleton FA measurements at specific cortical gyral region of interests (ROI) 

identified by certain gyral label from a neonate atlas (Feng et al., 2019). To alleviate partial volume 
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effects, the cortical FA values were measured on the cortical skeleton, i.e. the center of the cortical 

mantle, demonstrated as green skeletons in the left panels of Figure 1. This procedure was 

elaborated in our previous studies (Ouyang et al., 2019b; Yu et al., 2016). The cortical skeleton 

was created from averaged FA maps in three age-specific templates at 33, 36 and 39PMW due 

to dramatic anatomical changes of the neonate brain from 31.9 to 41.7 PMW. Based on the scan 

age, individual subject brain was categorized into 3 age groups at 33, 36 and 39PMW, and 

registered to the corresponding templates using the registration protocol described in details in 

the literature (Feng et al., 2019; Oishi et al., 2011). By applying the skeletonization function in 

TBSS of FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS), cortical skeleton of the 33PMW or 36PMW 

brain was extracted from the averaged cortical FA map and cortical skeleton of the 39PMW brain 

was obtained with averaged cortical segmentation map due to low cortical FA in 39PMW brains. 

The cortical skeleton in the 33, 36 and 39PMW space was then inversely transferred to each 

subject’s native space, to which the 52 cortical gyral labels of a neonate atlas (Feng et al., 2019) 

were also mapped to parcellate the cortex (Figure 1). By directly overlapping the cortical skeleton 

with the neonate atlas, the cortical skeleton was parcellated into 52 gyri. The FA measurement at 

each cortical gyrus was calculated by averaging the measurements on the cortical skeleton voxels 

with this cortical label. In this way, feature vectors consisting cortical FA values from 52 

parcellated cortical gyri and measured at the cortical skeleton were obtained for the following 

support vector regression (SVR) procedures. 

Neurodevelopmental assessments at 2 years of age. Out of 87 neonates with evaluable MRI 

scanned around birth, a follow-up neurodevelopmental assessment was obtained from 46 

neonates (32M/14F, scan age of 36.7±2.8PMW) at their 2 years of age (20-29months, 

23.5±2.3months) corrected for prematurity, with gestational age taken into account. Cognitive, 

language and motor development were assessed using the Bayley-III (Bayley, 2006). Specifically, 

the cognitive scale estimates general cognitive functioning on the basis of nonverbal activities 
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(i.e. object relatedness, memory, problem solving, and manipulation); the language scale 

estimates receptive communication (i.e. verbal understanding and concept development) as well 

as expressive communication including the ability to communicate through words and gestures; 

and the motor scale estimates both fine motor (i.e. grasping, perceptual-motor integration, motor 

planning and speed) and gross motor (i.e. sitting, standing, locomotion and balance) (Bayley, 

2006). The Bayley-III is age standardized and widely used in both research and clinical settings. 

It has published norms with a mean (standard deviation) of 100 (15), with higher scores indicating 

better performance. This neurodevelopmental assessment was conducted by a certified 

neurodevelopmental psychologist, who was blinded to clinical details of infants as well as the 

neonate MR findings. Unlike cognitive, language and motor scales reliably obtained using items 

administered to the child by a certified neurodevelopmental psychologist, other two scales from 

Bayley-III (social-emotional and adaptive scales) obtained from primary caregiver heterogeneous 

responses to questionnaires were not included in this study.  

Prediction of neurodevelopmental outcome with cortical FA as features. To determine 

whether cortical FA at birth could serve as a biomarker for individualized prediction of 

neurodevelopmental outcomes at 2 years of age, we performed pattern analysis using SVR 

algorithm implemented in LIBSVM (Chang and Lin, 2011). SVR is a supervised learning technique 

based on the concept of support vector machine (SVM) to predict continuous variables such as 

cognitive, language or motor composite score from Bayley-III. Leave-one-out cross-validation 

(LOOCV) was adopted to evaluate performance of the SVR model for each score. Cortical FA at 

birth from one individual subject was used as the testing data and the information of remaining 45 

subjects including their cortical FA at birth and Bayley scores at 2 years of age were used as 

training data. In this procedure, the neurodevelopmental outcome of each infant was predicted 

from an independent training sample. Cortical FA measurements from 52 parcellated cortical gyri 

formed the feature vectors of each subject and were used as the SVR predictor. Feature vectors 
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for all subjects were concatenated (Feature vectors in Figure 1) to obtain the input data for SVR 

prediction models with linear kernel function (Figure 1). Each feature represented by FA 

measurement at each cortical gyrus was independently normalized across training data. Only 

training data was used to compute the normalization scaling parameters, which were then applied 

to the testing data. After predicted continuous cognitive or language scores were estimated by 

the prediction model, Pearson correlation coefficient (r) and mean absolute error (MAE) between 

the actual and predicted continuous score were computed to evaluate cognition or language 

prediction models. The normalized feature contribution weights (|𝑤𝑖|/∑|𝑤𝑖| with i indicating ith 

cortical gyrus) were calculated to represent contribution of all parcellated cortical gyri to the 

cognition or language prediction model. These normalized feature contribution weights of all 

parcellated cortical gyri in cognition or language prediction model were then mapped to the 

cortical surface to reveal heterogeneous regional contribution across entire cortex and 

distinguishable regional contribution distribution in a specific prediction model. 

Assessment of robustness of prediction. Permutation test was conducted to assess LOOCV 

prediction performance. Specifically, cognitive or language outcomes were randomly shuffled 

across subjects 1000 times. Prediction procedure was carried out with each set of randomized 

outcomes, generating null distributions. Pearson correlation was conducted for each set of 

randomized outcome. MAE between predicted and observed outcome from randomly shuffled 

distributions was also calculated. The p values of observed correlation coefficient (r) value in 

LOOCV prediction, calculated as the ratio of number of permutation tests with correlation 

coefficient greater than observed r value over number of all permutation tests, are the probability 

of observing the reported r values by chance. Similarly, the p values of MAE in LOOCV prediction, 

calculated as the ratio of number of permutation tests with MAE value lower than observed MAE 

value over number of all permutation tests, are the probability of observing the reported MAE by 

chance.  
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To investigate effect of cortical parcellation schemes on the cortical FA measures in 

prediction model, various cortical parcellation schemes, including 52 cortical regions from the 

neonate atlas labeling (Feng et al., 2019), 128, 256, 512 and 1024 randomly parcellated cortical 

regions with equal size (Zalesky et al., 2010) were tested. For each parcellation scheme, 

averaged value of skeletonized FA measurements in each cortical ROI was used as a feature in 

the SVR model to test prediction performance. To address a possible confounding factor of 

various neonate gestational ages at scan, we evaluated if the prediction performance of cortical 

FA measures remained high after controlling for ages at scan following the age correction 

methods described in the literature (Dukart et al., 2011). Specifically, age effect in the cortical FA 

of each gyrus (Ouyang et al., 2019) or each parcellated ROI was adjusted with linear regression 

between cortical FA and age. The cortical FA residuals in the linear regression model, considered 

as age adjusted cortical FA measures, were then used as features in SVR models for predicting 

the Bayley-III scores. To validate the capability of cortical FA in behavioral predictions, individual’s 

Bayley composite scores were categorized into normal (>85) and low scores (≤85). Cortical FA 

measures were used as features to classify each subject’s score into normal- or low-score groups 

using SVM algorithm with LOOCV. Classification accuracy and area under the receiver operating 

characteristic (ROC) curves were used to evaluate the performance of classification models. 

Bootstrap analysis for assessing reproducibility of top 10 cortical regions identified by 

LOOCV analysis. We used a bootstrap sampling approach to assess reproducibility of top 10 

cortical regions where microstructural measures contributed most to predicting each outcome in 

LOOCV analysis. Specifically, we randomly selected 90% of the total 46 samples 1000 times. We 

then built cognition or language prediction model with each set of selected samples and identified 

top 10 cortical regions with highest contribution to the prediction of cognitive or language outcome. 

In each of 1000 bootstrap resamples, if any cortical region was identified as top 10 cortical regions 

contributing to predicting cognition outcome, the count for this specific cortical region was added 

by 1. After testing with 1000 resamples, a percentage of a certain cortical region was calculated 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.04.22.054114doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.054114
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

as the total count for this region divided by 1000. In this way, a percentage map of all cortical gyri 

for predicting cognitive outcome can be created. The same procedure was repeated with 1000 

bootstrap resamples for predicting language outcome. If the top 10 cortical regions where 

microstructural measures contributed most to predicting each outcome in LOOCV analysis 

(Figure 3) overlaps with the cortical regions with high percentage, it indicated that the top 10 

cortical regions identified by LOOCV analysis were highly reproducible.  

Permutation tests to assess distinguishable regional contribution to predicting cognitive 

or language outcomes. To quantify the extent of distinction between the set of top 10 cortical 

regions in cognition prediction model and the set of top 10 cortical regions in language prediction 

model, we defined a nonoverlapping index as the number of nonoverlapped regions between 

these two sets divided by the number of regions in their union set. This nonoverlapping index 

ranges from 0 to 1, with 1 indicating completely distinctive sets of regions and 0 indicating 

completely same sets of regions. A permutation test was used to evaluate the statistical 

significance of the observed nonoverlapping index. The null hypothesis is that the observed 

nonoverlapping index from predicting two different outcomes is not different from a distribution of 

nonoverlapping index calculated from predicting same (cognitive or language) outcome. The null 

distribution of nonoverlapping indices was generated by calculating 2070 nonoverlapping indices 

with each corresponding to one of 1035 pairs of cognitive-cognitive outcome or one of 1035 pairs 

of language-language outcome using leave-one-out resamples. The p value of reported 

nonoverlapping index is the probability of observing the reported nonoverlapping index by chance, 

and was calculated as the number of permutations with higher index value than reported index 

divided by the number of total permutations. We also conducted a more strict permutation test by 

increasing variability of the resamples. Specifically, the bootstrap resamples used in the section 

of “bootstrap analysis for assessing reproducibility of top 10 cortical regions identified by LOOCV 

analysis” above was adopted to generate another null distribution of nonoverlapping indices and 
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calculate the p value of observed nonoverlapping index by using the same procedures described 

above.  

Prediction of neurodevelopmental outcome with white matter FA as features. White matter 

microstructure quantified with dMRI was tested for predicting neurodevelopmental outcomes. 

White matter skeleton FA values at the core were measured to alleviate the partial volume effects 

(Figure 4a). White matter skeleton was further parcellated into 40 tracts with the tract labeling 

transformed from a neonate atlas (Feng et al., 2019). Details of tract-wise FA measurement at 

the white matter skeleton were described in our previous publication (Huang et al., 2012). White 

matter FA measurements of the 40 tracts were used to generate the feature vectors of each 

subject. Similar to the procedures of predicting neurodevelopmental outcomes with cortical FA 

feature vectors, these white matter FA feature vectors were the input of the SVR predictor with 

LOOCV for predicting neurodevelopmental outcome. 
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Figures and figure supplements 

 

Figure 1: Workflow of predicting neurodevelopmental outcomes at 2 years based on cortical 

microstructural architecture at birth. Cortical microstructure at birth (0yr) quantified with cortical 

fractional anisotropy (FA) measures from diffusion MRI (dMRI) was used to predict cognitive and 

language abilities assessed with Bayley-III Scales at 2 years of age (2yr). The prediction workflow 

includes the following steps: (1) Cortical microstructure was measured at the “core” of cortical 

mantle, shown as green skeleton overlaid on a FA map and projected on a neonate cortical 

surface, to alleviate the partial volume effects. Schematic depiction of dendritic arborization and 

synaptic formation underlying cortical FA decreases during cortical microstructural maturation is 

shown. (2) Feature vectors were obtained by measuring cortical skeleton FA at parcellated 

cortical gyri with the gyral labeling transformed from a neonate atlas. Each parcellated cortical 

gyrus is a region-of-interests (ROI). (3) Prediction models were established and tested with 

support vector regression (SVR) and cross-validation. Feature vectors from all subjects were 

concatenated to obtain the input data of prediction models. (4) Prediction model accuracy was 

evaluated by correlation between predicted and actual scores. Feature contributions from different 

gyri in the model were quantified by normalized feature contribution weights which were projected 

back on a cortical surface for visualization. 
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Figure 1-figure supplement 1. Cortical FA distribution across parcellated cortical gyri in the left 

hemisphere from 46 infants who also went through neurodevelopmental assessments with Bayley 

III at their 2-years of age. Colorbar on the upper left corner encodes the cortical FA values. The 

dashed lines demonstrate the boundaries among the parcellated cortical gyri. 
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Figure 1-figure supplement 2. Cortical FA distribution across parcellated cortical gyri in the right 

hemisphere from 46 infants who also went through neurodevelopmental assessments with Bayley 

III at their 2-years of age. Colorbar on the upper left corner encodes the cortical FA values. The 

dashed lines demonstrate the boundaries among the parcellated cortical gyri. 
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Figure 1-figure supplement 3. Distribution of the Bayley-III cognitive, language and motor 

composite scores of the studied population.  
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Figure 2: Cortical microstructural measures from neonate dMRI predict cognitive (a) and 

language (b) scores at 2 years of age with different feature contribution weights from various 

cortical gyri. Left panels: The scatter plots show significant correlation between actual scores and 

cognitive (r=0.536, p=1.2x10-4) or language (r=0.474, p=8.8x10-4) scores predicted based on 

cortical FA measures. Each dot represents one subject and linear regression was used to assess 

predictive accuracy of the model. The width of the line denotes the 95% confidence interval 

around the linear model fit between predicted and observed scores. Center panels: Normalized 

feature contribution weights of all cortical gyri in the prediction models are projected on a cortical 

surface. Right panels: Normalized feature contribution weights from all cortical gyri are 

demonstrated in the circular bar. These gyri were grouped into frontal, parietal, temporal, occipital, 

limbic and insular cortex. Abbreviation: 𝑟 : right hemisphere. 𝑙  : left hemisphere. See 

Supplementary file 3 for abbreviations of cortical regions and values of normalized feature 

contribution weights from all cortical gyri. 
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Figure 2-figure supplement 1. Evaluation of robustness of prediction models with different 

cortical region-of-interest (ROI) schemes, and age adjustments. a, Various cortical ROI schemes, 

including 52 cortical regions from the neonate atlas labeling, 128, 256, 512 and 1024 randomly 

parcellated cortical regions with equal size, were tested by using cortical FA measured at these 

ROIs as features in prediction models. The scatter plots show the linear regressions between 

actual scores and the predicted cognitive or language scores based on the cortical FA measures 

obtained with various ROI schemes. b, Significant correlations between the predicted and actual 

cognitive and language scores were found for all ROI schemes before age adjustment, and all 

ROI schemes after age adjustments. Dashed lines indicate critical r value corresponding to 

p=0.05. * in the panel indicates significant (p<0.05) correlation. c, Mean absolute error with all 

ROI schemes, and age adjustment are shown. 
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Figure 2-figure supplement 2. Evaluation of the prediction models. a, The receiver-operating-

characteristic (ROC) plots show specificity and sensitivity with cortical microstructural measures 

used as features to classify normal (>85) versus low (≤ 85) cognitive or language scores. b and 

c show accuracy and area under ROC curve for language and cognitive classification model. 
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Figure 3: Distinguishable top 10 cortical regions where microstructural measures contributed 

most to the prediction of cognitive or language scores. a, List of top 10 cortical regions with highest 

feature contribution weights in predicting cognitive (left) or language (right) scores. b, Maps of 

cortical regions listed in a. Cortical regions contributing most to predicting both cognition and 

language are painted in yellow (𝑟MFOG, 𝑟LFOG, 𝑙REC, 𝑙PoCG, 𝑟ENT and 𝑙ENT); Cortical 

regions contributing most to predicting uniquely cognition and language are painted in red (𝑟REC, 

𝑟PrCu, 𝑙FuG and 𝑟PHG) and in green (𝑙IFG, 𝑙CingG, 𝑟ANG and 𝑙INS), respectively. Abbreviation: 

𝑟 : right hemisphere. 𝑙  : left hemisphere. ANG: angular gyrus. CingG: cingular gyrus. ENT: 

entorhinal gyrus. FuG: fusiform gyrus. IFG: inferior frontal gyrus. INS: insular cortex. LFOG: lateral 

fronto-orbital gyrus. MFOG: middle fronto-orbital gyrus. PHG: parahippocampal gyrus. PoCG: 

postcentral gyrus. PrCu: precuneus gyrus. REC: Rectus gyrus.  
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Figure 3-figure supplement 1. Percentage maps for evaluating reproducibility of top 10 cortical 

regions with highest feature contribution to predicting cognition (a) and language (b) outcomes 

from bootstrap analysis. Regions with high percentage (highlighted by red and brown) are 

consistent with the top 10 cortical regions (from Figure 3, highlighted by dashed blue contour), 

demonstrating high regional reproducibility for contributing to predicting a specific (cognitive or 

language) outcome.      
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Figure 4: Prediction of neurodevelopmental outcomes using white matter (WM) FA features, 

compared with prediction using cortical FA features. a, WM microstructure was measured at the 

core WM regions, shown as yellow skeleton overlaid on a FA map of a neonate brain, to alleviate 

the partial volume effects. Feature vectors were obtained by measuring WM skeleton FA at 40 

tracts transformed from WM labeling of a neonate atlas. b, Scatter plots show linear regressions 

between actual scores and the predicted cognitive or language scores based on WM FA 

measures with LOOCV. c, Significant correlation between the predicted and actual cognitive or 

language outcomes was found based on both cortical FA and WM FA feature vectors. Dashed 

line indicates critical r value corresponding to p=0.05. * in the panel indicates significant (p<0.05) 

correlation. 
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