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Abstract 
Synchronization	of	neuronal	responses	over	large	distances	is	hypothesized	to	be	
important	for	many	cortical	functions.	However,	no	straightforward	methods	exist	to	
estimate	synchrony	non-invasively	in	the	living	human	brain.	MEG	and	EEG	measure	the	
whole	brain,	but	the	sensors	pool	over	large,	overlapping	cortical	regions,	obscuring	the	
underlying	neural	synchrony.	Here,	we	developed	a	model	from	stimulus	to	cortex	to	MEG	
sensors	to	disentangle	neural	synchrony	from	spatial	pooling	of	the	instrument.	We	find	
that	synchrony	across	cortex	has	a	surprisingly	large	and	systematic	effect	on	predicted	
MEG	spatial	topography.	We	then	conducted	visual	MEG	experiments	and	separated	
responses	into	stimulus-locked	and	broadband	components.	The	stimulus-locked	
topography	was	similar	to	model	predictions	assuming	synchronous	neural	sources,	
whereas	the	broadband	topography	was	similar	to	model	predictions	assuming	
asynchronous	sources.	We	infer	that	visual	stimulation	elicits	two	distinct	types	of	neural	
responses,	one	highly	synchronous	and	one	largely	asynchronous	across	cortex.	

Key words 
Synchrony,	visual	cortex,	stimulus-locked	response,	evoked	field,	evoked	potential,	MEG,	
computational	models	 	
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1. Introduction 
Two	of	the	most	widely	used	tools	to	study	dynamic	cognitive	processes	in	the	human	
brain	are	magnetoencephalography	(MEG)	and	electroencephalography	(EEG).	These	
measurement	techniques	provide	whole	brain	coverage	at	millisecond	time	resolution,	
allowing	researchers	to	extract	complex	spatiotemporal	dynamics	non-invasively	in	both	
healthy	and	clinical	populations.	The	electric	and	magnetic	fields	measured	by	these	
instruments	reflect	the	superposition	of	all	cellular	processes	that	generate	current.	These	
processes	span	temporal	scales	from	a	millisecond	or	less	(e.g.,	action	potentials)	to	slow	
cortical	potentials	(<	1	Hz;	(Birbaumer,	Elbert,	Canavan,	&	Rockstroh,	1990));	they	span	
cellular	scales	from	dendritic	spines	to	axons	and	dendrites;	and	they	span	circuitry	scales,	
from	the	idiosyncratic	fluctuations	in	the	membrane	potential	of	a	single	neuron	to	highly	
synchronized	responses	across	centimeters	of	brain	tissue	(Buzsaki,	Anastassiou,	&	Koch,	
2012).		

Much	of	the	MEG	and	EEG	literature	has	focused	on	neural	responses	that	are	
synchronized	across	extended	regions	of	cortex.	Widespread	neural	synchrony	has	been	
observed	in	many	tasks	and	states.	For	example,	rhythmic	responses	in	the	field	potential,	
believed	to	reflect	underlying	widespread	synchrony,	often	accompany	sensory	
information	processing	(Buzsaki	et	al.,	2012).	Changes	in	cortical	states	are	often	
characterized	by	changes	in	synchrony	(such	as	alertness	versus	asleep	(Steriade,	
McCormick,	&	Sejnowski,	1993)),	and	neurological	disorders	can	be	correlated	with	
changes	in	neural	synchrony	(Uhlhaas	&	Singer,	2006).		

It	is	thus	important	to	characterize	neural	synchrony	with	non-invasive	tools.	In	
recent	decades,	there	have	been	substantial	advances	in	measurement	methodology	such	
as	high-density	EEG	(Robinson	et	al.,	2017)	and	on-scalp	MEG	sensor	arrays	(Iivanainen,	
Stenroos,	&	Parkkonen,	2017),	and	in	biophysical	forward	modeling	of	neuronal	currents	to	
extracranial	sensor	responses	(Stenroos	&	Nummenmaa,	2016).	Nonetheless,	it	is	still	not	
possible	to	unambiguously	infer	the	spatiotemporal	pattern	of	neural	source	activity	from	
the	measured	sensor	responses.	This	is	because	each	sensor	pools	over	large	and	
overlapping	cortical	regions,	resulting	in	many	possible	combinations	of	source	activity	
that	could	explain	any	particular	observed	pattern	of	sensor	responses	(Hämäläinen,	Hari,	
Ilmoniemi,	Knuutila,	&	Lounasmaa,	1993).	In	some	cases,	increases	in	power	measured	
extracranially	are	explained	by	greater	coherence	across	cortex	(but,	on	average,	decreased	
power	in	cortical	fluctuations	(Musall,	von	Pfostl,	Rauch,	Logothetis,	&	Whittingstall,	
2014)).	In	other	cases,	increases	in	power	measured	extracranially	are	explained	by	
increases	in	the	power	of	local	cortical	fluctuations	without	accompanying	widespread	
synchronization	(Frauscher,	von	Ellenrieder,	Dubeau,	&	Gotman,	2015).		

One	way	to	make	inferences	about	the	spatiotemporal	pattern	of	neuronal	sources	
giving	rise	to	MEG	or	EEG	data	is	to	invert	the	biophysical	forward	model.	Because	there	
are	many	more	neural	sources	than	there	are	sensors,	the	problem	is	ill-posed	(there	are	
many	solutions).	Typically,	researchers	arrive	at	a	single	solution	by	applying	a	regularizer	
or	other	constraints.	For	example,	one	can	choose	the	source	activity	solution	with	the	
smallest	L2-norm	(e.g.	with	minimum	norm	estimation	(Hamalainen	&	Ilmoniemi,	1994)).	
This	may	be	appropriate	when	there	is	no	a	priori	knowledge	of	the	likely	pattern	of	source	
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activity.	However,	the	assumptions	implicit	in	the	regularizers	are,	at	best,	an	
approximation,	and	in	some	cases	may	be	highly	inaccurate.	For	example,	regularizers	will	
penalize	“silent	sources”,	such	as	simultaneous	neural	responses	from	opposite-facing	
dipoles,	even	though	such	neural	responses	may	be	present	and	even	the	largest	source	of	
activity.	In	the	extreme,	seizures	are	defined	by	widespread	and	highly	synchronous	neural	
activity.	Accurate	interpretation	of	the	cortical	sources	of	seizure	activity	has	important	
health	implications	and	is	an	active	area	of	study	(Acar,	Makeig,	&	Worrell,	2008).		

Here,	we	present	an	alternative	approach	that	makes	use	of	prior	knowledge	to	
predict	sensor	responses	from	visual	stimulation	by	combining	an	encoding	model	from	
stimulus	to	cortex	with	a	forward	model	from	cortex	to	sensors	(Figure	1).	This	approach	
allows	us	to	separate	the	contribution	of	neural	synchrony	on	the	cortex	from	the	pooling	
function	of	the	sensors.	By	doing	so,	we	can	test	specific	but	constrained	hypotheses	about	
the	spatiotemporal	pattern	of	neuronal	responses.		

	
Figure	1.	A	visual	encoding	model	for	MEG.	The	modeling	approach	predicts	sensor	responses	starting	
from	a	visual	stimulus	as	input.	The	first	stage	predicts	cortical	responses	from	the	stimulus.	The	second	stage	
predicts	sensor	responses	from	the	cortical	activity.	For	illustration	purposes,	only	the	left	hemisphere	(LH)	
is	depicted.	(The	forward	model	uses	both	hemispheres.)	

Specifically,	we	examine	two	components	of	the	MEG	response	to	visual	stimuli	
which	are	believed	to	reflect	different	kinds	of	neural	processes	with	different	degrees	of	
cortical	synchrony.	One	component	is	a	stimulus-locked	response,	fluctuations	in	the	MEG	
signal	at	the	frequency	of	stimulus	contrast-reversals.	The	second	component	is	a	
broadband	response,	a	spectrally	broad	increase	in	amplitude,	including	temporal	
frequencies	that	are	not	in	the	stimulus.	The	stimulus-locked	response	is	often	measured	
extracranially	(reviewed	by	(Norcia,	Appelbaum,	Ales,	Cottereau,	&	Rossion,	2015)),	
whereas	broadband	responses	are		more	typically	measured	intracranially	(Miller	et	al.,	
2014).		There	has	been	little	study	of	the	two	signal	components	in	the	same	individuals	in	
the	same	experiments	with	noninvasive	methods.	Here,	we	measure	both	of	these	signal	
components	in	the	same	subjects	and	compare	the	spatial	patterns	of	the	responses	across	
the	sensor	array	to	patterns	predicted	by	model-based	simulations.	Comparing	the	data	to	
simulations	with	known	ground	truth	helps	to	make	inferences	about	the	processes	that	
give	rise	to	the	data.	

To	generate	the	two	types	of	responses,	we	conducted	a	visual	steady-state	MEG	
experiment	where	subjects	viewed	a	large	high	contrast-reversing	dartboard	pattern.	This	
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is	a	widely	used	paradigm	to	study	stimulus-locked	responses,	also	known	as	the	steady-
state	visually	evoked	field	(‘SSVEF’)	or	steady-state	visually	evoked	potentials	in	EEG	
(‘SSVEP’)	(Adrian	&	Matthews,	1934;	Van	Der	Tweel	&	Lunel,	1965;	Norcia	&	Tyler,	1985;	
Regan,	1989;	Norcia	et	al.,	2015).	The	steady-state	paradigm	with	simple,	high-contrast	
patterns	has	also	been	shown	to	be	effective	for	eliciting	broadband	responses,	both	in	
intracranial	measurements	(Winawer	et	al.,	2013)	and	MEG	measurements	(Kupers	et	al.,	
2018).	While	present	in	the	gamma	band,	broadband	responses	show	different	response	
patterns	compared	to	narrow-band	gamma	oscillations,	for	example	to	visual	grating	
stimuli	(Henrie	&	Shapley,	2005;	Ray	&	Maunsell,	2011;	Hermes,	Miller,	Wandell,	&	
Winawer,	2015;	Bartoli	et	al.,	2019).	Increased	broadband	power	has	been	characterized	
across	the	brain	(Crone,	Miglioretti,	Gordon,	&	Lesser,	1998;	Miller	et	al.,	2007;	Miller,	
Sorensen,	Ojemann,	&	den	Nijs,	2009;	Miller	et	al.,	2014),	is	thought	to	be	generated	by	
different	neural	circuits	compared	to	evoked	responses	(Manning,	Jacobs,	Fried,	&	Kahana,	
2009;	Miller	et	al.,	2009;	Milstein,	Mormann,	Fried,	&	Koch,	2009),	and	correlates	well	with	
the	fMRI	BOLD	signal	(Mukamel	et	al.,	2005;	Hermes	et	al.,	2012;	Hermes,	Nguyen,	&	
Winawer,	2017).	Both	of	these	signal	components	are	likely	to	be	important	for	
understanding	how	cortical	circuits	encode	visual	information.	 	
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2. Results 

2.1 Visually driven MEG response can be separated into a stimulus-locked and broadband 
component 

Subjects	viewed	a	large-field	(22º	diameter)	dartboard	pattern	that	contrast-reversed	12	
times	per	second,	interspersed	with	blanks	(zero-contrast,	mean	luminance).	We	separated	
the	sensor	responses	into	two	components,	one	time-locked	to	the	stimulus	(stimulus-
locked)	and	one	that	is	not	(broadband),	using	the	same	method	as	in	(Kupers	et	al.,	2018).	
Because	the	acquisition	and	analysis	methods	were	the	same	as	in	the	prior	study,	we	
combined	data	from	that	study	(N=6)	with	the	newly	acquired	data	(N=6),	for	a	total	of	12	
datasets.	

The	stimulus-locked	response	tends	to	be	large	in	visually	responsive	sensors	and	is	
defined	as	the	difference	in	amplitude	between	stimulus	and	blank	periods	at	12	Hz	
(Figure	2,	left	panel).	The	second	component	is	a	spectrally	broad	increase	in	amplitude	
(Figure	2,	right	panel).	The	broadband	response	is	defined	as	the	elevation	in	amplitude	
over	baseline	from	60	to	150	Hz	(excluding	harmonics	of	the	contrast-reversal	rate).	By	
definition,	the	broadband	signal	is	not	time-locked	to	the	contrast-reversal	rate	of	the	
stimulus	(12	Hz	or	its	harmonics).	This	method	of	separating	the	responses	differs	from	the	
more	conventional	method	of	summing	the	amplitude	(or	power)	within	distinct	temporal	
frequency	bands.	For	example,	83	Hz	and	84	Hz	would	both	be	considered	part	of	the	
gamma	band,	but	we	include	83	Hz	and	exclude	84	Hz	in	the	broadband	computation,	since	
84	Hz	is	a	harmonic	of	the	contrast-reversal	rate.	

	
Figure	2.	Separating	the	MEG	response	into	a	stimulus-locked	and	asynchronous	component.	Left	
panel:	Average	amplitude	spectrum	of	a	single	posterior	MEG	sensor	for	a	contrast-reversing	pattern	and	
blank	(mean-luminance)	periods.	The	black	dot	in	the	gray	head	schematic	indicates	the	sensor	location.	The	
amplitude	spectrum	was	computed	in	one-second	epochs	and	averaged	across	~300	epochs	per	condition.	
The	response	at	12	Hz	(orange	arrow)	and	harmonics	are	time-locked	to	the	stimulus,	which	contrast-
reverses	12	times/s.	Right	panel:	Zoom	of	frequencies	from	60-150	Hz	reveals	a	broadband	elevation	(blue	
arrow).	The	calculation	of	broadband	responses	excludes	frequencies	that	are	multiples	of	the	stimulus	
frequency	(12	Hz).	Data	from	subject	S12.	
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2.2 Stimulus-locked and broadband responses differ in their sensor topography 

Both	stimulus-locked	and	broadband	responses	are	largest	in	posterior	sensors,	as	
expected	from	neural	activity	in	visual	cortex.	However,	the	two	components	show	distinct	
spatial	topographies	across	these	posterior	sensors	(Figure	3).	The	stimulus-locked	
response	is	split	into	two	groups	of	sensors,	extending	laterally	to	left	and	right.	There	is	a	
decreased	amplitude	in	the	central	posterior	sensors	(Figure	3,	top	row).	This	pattern	
holds	for	individual	subjects	and	data	that	are	sensor-wise	averaged	across	subjects.	
Because	we	define	the	stimulus-locked	responses	as	the	amplitude	component	of	the	
Fourier	transform	at	the	stimulus	frequency,	the	plots	do	not	show	phase	data.	The	phases	
of	the	left	and	right	two	regions	are	in	approximate	counter-phase	in	both	the	single	
subject	and	the	group	average	(see	the	script	makeFigure3PhaseMaps.m).	

	
Figure	3.	The	stimulus-locked	and	broadband	responses	show	different	spatial	topographies.	Top	
row:	The	stimulus-locked	responses	on	topographic	MEG	sensor	maps	and	1-dimensional	summary	
representations	of	posterior	sensors.	The	black	contour	lines	indicate	the	10	sensors	with	the	largest	
response	amplitudes.	Amplitudes	are	set	to	0	if	the	signal-to-noise	ratio	was	below	1	(see	Methods).	In	both	
single	subject	and	group	average	maps,	the	topography	shows	two	laterally	displaced	regions	with	large	
responses.	Line	plots	show	the	average	across	posterior	MEG	sensors	from	left	to	right	in	100	bins	(red	line)	
with	gray	error	bars	representing	the	standard	deviation	across	bootstraps	for	the	individual	subject	(left	
column)	or	standard	error	of	the	mean	across	subjects	for	the	group	average	(right	column).	Bottom	row:	
Same	as	top	row	but	for	broadband	response.	The	broadband	topography	differs	from	the	stimulus-locked	
topographies,	with	the	largest	responses	in	the	central	posterior	sensors.	Data	from	single	subject	S12.	Group	
average	topographic	maps	depicts	sensor-wise	averaging.	(See	Supplementary	Figure	S1	for	individual	data	
from	all	subjects).	For	a	movie	of	the	responses	unfolding	over	time,	see	makeFigure3movie.m.		
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The	broadband	responses	differ	in	their	spatial	topography:	the	largest	response	is	
in	the	central	posterior	sensors,	at	approximately	the	same	location	where	the	stimulus-
locked	responses	show	a	decrement	in	amplitude	(Figure	3,	bottom	row).	The	overall	
spatial	pattern	of	broadband	responses	is	unimodal,	whereas	the	stimulus-locked	
responses	tend	to	be	bimodal.	These	differences	in	spatial	topographies	can	be	seen	at	both	
group	level	and	in	individual	subjects	(Figure	3	and	Supplementary	Figure	S1).	

We	considered	whether	the	difference	in	response	pattern	could	be	due	to	the	fact	
that	the	stimulus-locked	response	is	defined	at	a	single	frequency,	whereas	the	broadband	
response	is	spread	across	a	large	frequency	band.	For	example,	if	the	broadband	response	
was	also	bimodal,	but	the	specific	pattern	differed	across	temporal	frequency	bands,	then	
combining	across	bands	might	blur	out	the	distinct	spatial	peaks.	We	checked	for	this	
possibility	by	analyzing	the	spatial	pattern	of	the	broadband	response	in	separate,	narrow	
frequency	bands,	and	find	that	each	band	tends	to	show	unimodal	patterns,	similar	to	what	
we	find	for	the	analysis	combined	across	60-150	Hz	(Supplementary	Figure	S2).	
Moreover,	when	the	stimulus-locked	response	is	analyzed	to	include	harmonics	of	12	Hz	up	
to	144	Hz,	combining	across	many	frequencies,	it	retains	a	bimodal	distribution	
(Supplementary	Figure	S3).	Thus,	the	difference	in	pattern	does	not	appear	to	arise	from	
the	bandwidth	of	the	signals.	

Why	are	the	spatial	topographies	of	stimulus-locked	and	broadband	responses	
different?	Typically,	a	difference	in	sensor	topography	would	be	interpreted	as	a	difference	
in	source	topography.	For	example,	the	broadband	responses	might	arise	from	one	set	of	
visual	areas	and	the	stimulus-locked	response	from	a	different	set.	However	this	
interpretation	is	unlikely	given	prior	measurements	from	intracranial	ECoG	electrodes:	
both	stimulus-locked	and	broadband	responses	are	reliably	measured	from	the	same	
electrodes	spanning	multiple	early	visual	areas	(Winawer	et	al.,	2013).	

Instead,	we	hypothesize	that	the	stimulus-locked	and	broadband	responses	
measured	in	the	MEG	sensors	both	originate	from	sources	in	early	visual	cortex,	differing	in	
their	temporal	properties	rather	than	spatial	properties.	Specifically,	we	speculate	that	the	
same	(or	similar)	cortical	locations	generate	both	types	of	responses,	but	that	the	sources	
generating	the	stimulus-locked	response	are	synchronized	across	a	large	spatial	extent,	
whereas	those	generating	the	broadband	response	are	not.	

2.3 An MEG encoding model: predicting sensor responses from the stimulus 

To	assess	whether	a	difference	in	temporal	properties	alone	could	account	for	the	observed	
differences	in	spatial	topographies,	we	simulate	two	types	of	cortical	activity,	one	with	
widespread	neural	synchrony	(synchronous)	and	one	without	(asynchronous),	with	both	
types	of	activity	arising	from	the	identical	set	of	cortical	locations.	For	the	synchronous	and	
asynchronous	simulations,	we	separately	compute	the	predicted	spatial	topographies	in	
the	MEG	sensors.	We	then	compare	these	predicted	topographies	to	the	observed	MEG	
topographies	from	the	stimulus-locked	and	broadband	data	components.	

Importantly,	whether	or	not	there	is	widespread	neural	synchrony	is	an	
independent	question	from	whether	or	not	the	responses	are	time-locked	to	the	stimulus.	
For	example,	it	is	possible	that	neuronal	responses	contain	frequencies	not	in	the	stimulus,	
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but	that	are	synchronized	across	space.	These	responses	would	be	synchronous	but	not	
time-locked	to	the	stimulus.	This	might	occur	if	multiple	cortical	locations	respond	with	the	
same	temporal	non-linearities.	The	converse	is	also	possible:	each	local	region	could	be	
time-locked	to	the	stimulus,	but	differ	in	phase,	rendering	the	responses	asynchronous	(out	
of	phase)	across	space.	

We	developed	an	encoding	model	that	takes	a	visual	stimulus	as	input,	generates	a	
predicted	response	on	the	cortical	surface,	and	projects	these	predicted	cortical	responses	
to	MEG	sensors.	To	do	so,	we	first	extract	a	spatial	and	temporal	feature	from	the	stimulus:	
the	contrast	aperture	and	the	contrast-reversals	(Figure	4,	Step	1.1).	

	
Figure	4.	Stimulus-referred	modeling	approach.	From	stimulus	to	cortex.	Step	1.1:	The	high	contrast-
reversing	dartboard	pattern	is	reduced	to	two	features:	a	spatial	and	a	temporal	feature.	The	spatial	feature	is	
the	contrast	aperture,	by	reducing	the	stimulus	to	a	single	image	which	will	be	binarized.	The	temporal	
feature	is	the	contrast-reversal	rate	(12	reversals/s),	by	treating	each	pixel’s	luminance	change	as	a	single	
contrast-reversal	(thus	luminance	changes	from	black-to-white	as	well	as	white-to-black).	Step	1.2:	The	
contrast	image	is	used	to	build	a	cortical	mask:	select	cortical	locations	in	V1-V3	which	preferred	population	
receptive	field	(pRF)	center	falls	within	the	stimulus	aperture,	by	applying	the	anatomical	retinotopy	
template	developed	by	Benson	et	al.	(2014)	to	every	individual’s	cortical	surface.	Step	1.3:	V1-V3	cortical	
activity	is	simulated	as	sine	waves	or	zeros	and	can	be	described	as	a	matrix	with	k	time	points	by	n	locations	
(represented	as	green	vertices).	The	degree	of	neural	synchrony	is	set	by	a	binary	synchrony	parameter.	This	
parameter	defines	whether	simulated	cortical	activity	will	be	synchronous	(phase-locked)	or	asynchronous	
(phase	randomized)	across	cortical	locations.	In	both	simulations,	sine	waves	have	unit	amplitude,	a	
frequency	equal	to	the	contrast-reversal	rate	and	identical	cortical	locations	(i.e.,	the	only	difference	is	their	
relative	phase).	From	cortex	to	sensors.	Step	2:	To	project	the	neural	activity	from	cortex	to	MEG	sensors,	
we	multiply	the	cortical	activity	matrix	by	the	gain	matrix.	This	gain	matrix	contains	a	set	of	weights	(n	
locations	by	m	sensors)	which	defines	the	contribution	of	each	source	to	each	sensor,	derived	from	the	
cortical	geometry	and	the	sensor	locations.	This	multiplication	results	in	predicted	MEG	responses	(k	time	
points	by	m	sensors).	

The	contrast	aperture	is	then	used	to	select	cortical	locations	(surface	vertices)	in	
visual	areas	V1,	V2	and	V3	with	preferred	visual	field	centers	falling	within	the	aperture	
(Figure	4,	Step	1.2).	These	visual	field	preferences	are	computed	for	each	individual	
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subject	by	applying	the	anatomical	retinotopy	templates	by	Benson	et	al.	(2014)	to	the	
reconstructed	cortical	surface	of	a	T1-weighted	anatomical	image.	

The	contrast-reversals	are	used	to	simulate	the	neural	time	series,	which	we	assume	
to	be	a	harmonic	at	the	contrast-reversal	rate	(Figure	4,	Step	1.3).	For	all	the	selected	
surface	vertices,	we	assume	unit	amplitude	and	a	fixed	frequency.	Other	sources	(locations	
outside	V1-V3	or	with	visual	field	locations	outside	the	stimulus	aperture)	have	a	time	
series	with	no	modulation	(all	zeros).	For	the	synchronous	simulation,	the	harmonics	for	all	
cortical	locations	have	the	same	phase.	For	the	asynchronous	simulation,	the	phases	are	
randomized	across	cortical	locations.	This	distinction	is	specified	by	a	binary	synchrony	
parameter.	

The	simulated	cortical	activity	matrix	is	then	multiplied	by	the	gain	matrix	to	
generate	predicted	sensor	responses	(Figure	4,	Step	2).	The	gain	matrix,	also	referred	to	as	
the	‘volume	conductor	model’	or	‘forward	model’,	describes	the	weighted	sum	of	cortical	
locations	that	contribute	to	each	MEG	sensor	based	on	the	cortical	geometry,	the	sensor	
locations,	and	the	physics	of	magnetic	fields.	Because	the	geometry	of	cortex	and	position	
in	the	MEG	differs	across	subjects,	the	gain	matrix	and	predicted	sensor	maps	also	differ	
between	subjects.	For	each	subject,	and	on	the	average	across	subjects,	we	compare	the	
predicted	MEG	sensor	responses	with	the	observed	MEG	sensor	responses	by	summarizing	
the	predictions	as	the	average	amplitude	at	the	input	frequency	across	simulated	epochs.	

2.4 Source synchrony affects predicted MEG sensor topography 

Our	model	predictions	show	qualitatively	different	spatial	topographies	depending	on	the	
underlying	synchrony.	For	synchronous	sources,	the	model	predicts	the	largest	amplitudes	
in	two	lateralized	groups	of	posterior	sensors,	separated	by	a	decrease	in	amplitude	in	the	
central	posterior	sensors	(Figure	5,	top	row).	In	contrast,	model	predictions	for	
asynchronous	sources	can	be	characterized	as	a	single	region	of	large	response,	located	at	
the	central	posterior	sensors	(Figure	5,	bottom	row).	The	differences	in	predicted	
topographic	sensor	maps	for	synchronous	versus	asynchronous	simulations	are	clear	at	
both	the	group	level	and	in	individual	subjects.	The	general	patterns	hold	for	different	
methods	used	to	derive	the	gain	matrix	(for	predictions	using	the	Boundary	Element	Model	
method,	see	Supplementary	Figure	S7).	
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Figure	5.	Visual	encoding	model	predicts	different	spatial	topography	depending	on	synchrony,	
matching	observed	MEG	data.	Left	column:	Sensor-wise	average	for	a	single	subject	(S12).	The	first	column	
shows	the	model	output	for	sources	that	are	synchronous	(top)	or	asynchronous	(bottom)	across	space.	The	
synchronous	sources	in	the	model	result	in	two	laterally	displaced	response	peaks	in	the	sensor	map	and	1-
dimensional	summary	representations	of	posterior	sensors,	as	do	the	stimulus-locked	responses	in	the	data.	
The	asynchronous	sources	in	the	model	result	in	a	single	central	response	peak,	approximately	matching	
broadband	responses.	Predicted	sensor	responses	for	both	synchronous	and	asynchronous	simulations	are	
normalized	to	the	largest	response	in	the	synchronous	spatial	map.	Line	plots	show	weighted	average	across	
posterior	MEG	sensors	in	100	bins	from	left	to	right.	In	contrast	to	Figure	3,	individual	subject’s	line	plots	do	
not	have	error	bars	as	the	simulation	does	not	include	noise.	Right	column:	Same	as	panel	A	but	sensor-wise	
group	average	across	all	12	subjects.	For	all	individual	subject	model	predictions,	see	Supplementary	Figure	
S4.	For	a	comparison	of	model	predictions	using	only	V1	or	V2-V3	without	V1	sources	see	Supplementary	
Figure	S5.	For	a	movie	of	the	predicted	responses	unfolding	over	time,	see	makeFigure5Movie.m.	

2.5 There are shared topographic features between the two model predictions and the 
two data components 

The	difference	in	spatial	topography	across	MEG	sensors	between	the	synchronous	and	
asynchronous	model	predictions	bears	some	similarity	to	the	observed	difference	between	
the	stimulus-locked	and	broadband	responses.	First,	the	asynchronous	simulation	predicts	
one	centralized	response	region,	similar	to	the	topography	of	broadband	responses	
(compare	Figures	3	and	5,	bottom	rows).	Second,	the	synchronous	simulation	predicts	two	
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lateralized	response	regions,	also	observed	in	the	stimulus-locked	sensor	topography	
(compare	Figures	3	and	5,	top	rows).	The	precise	locations	of	the	lateralized	regions	differ	
between	the	model	predictions	and	the	stimulus-locked	data,	with	the	model	outputs	being	
more	lateralized	than	the	stimulus-locked	data.	There	are	several	possibilities	for	this	
discrepancy,	which	we	return	to	in	the	Discussion.	Nonetheless,	the	fact	that	the	two	
distinct	data	topographies	are	qualitatively	predicted	from	the	two	simulations	is	
surprising,	given	that	the	two	simulations	use	exactly	the	same	cortical	sources,	with	
exactly	the	same	frequency	and	amplitude,	differing	only	in	their	relative	phase	across	
cortical	locations	(single	phase	versus	randomized	phases).	

The	two	simulations	differ	in	predicted	amplitude	as	well	as	spatial	topography,	
with	larger	sensor	responses	for	the	synchronous	than	the	asynchronous	simulation.	In	
particular,	the	peak	response	from	the	synchronous	simulations	is	about	2x	larger	than	the	
peak	response	from	the	asynchronous	simulation.	These	peaks	are	at	different	sensors,	
with	the	synchronous	peak	lateral	and	the	asynchronous	peak	more	central.	Comparing	the	
same	sensors	within	the	lateral	regions,	the	responses	are	about	10x	larger	for	the	
synchronous	than	the	asynchronous	sources.	

Differences	in	response	amplitude	are	also	observed	for	the	two	components	of	the	
MEG	data,	with	the	stimulus-locked	responses	much	larger	than	the	broadband	responses.	
For	example,	for	the	sensor	in	Figure	2,	there	is	an	approximate	2-fold	(189%)	increase	in	
stimulus-locked	amplitude	and	only	a	14%	increase	in	broadband	amplitudes,	consistent	
with	our	previous	observations	comparing	these	two	signal	components	(Kupers	et	al.,	
2018).	

This	observed	amplitude	difference	is	in	line	with	the	hypothesis	that	stimulus-
locked	responses	arise	from	widespread	synchronous	cortical	activity	while	the	broadband	
responses	arise	from	largely	phase-randomized	activity:	The	sum	of	synchronous	activity	
will	tend	to	be	larger	than	the	sum	of	asynchronous	activity	(Krusienski,	McFarland,	&	
Wolpaw,	2012;	Winawer	et	al.,	2013;	Hermes	et	al.,	2017;	Kupers	et	al.,	2018).	

2.6 Cancellation of synchronous source activity explains lateral sensor topography 
predicted by encoding model 

Why	do	the	model	predictions	from	synchronous	neural	sources	show	bimodal	activation	
peaks	in	the	sensor	topography,	whereas	predictions	from	asynchronous	sources	do	not?	
One	possibility	is	that	the	predicted	‘gap’	between	the	two	activation	peaks	for	
synchronous	sources	(but	not	asynchronous	sources)	is	caused	by	large-scale	cancellation	
of	neuroelectric	fields	from	opposite-facing	dipoles,	arising	from	the	cortical	geometry	
(folding	pattern).		Occipital	cortex	is	highly	folded	(Duvernoy,	1999)	and	each	of	the	early	
visual	maps,	V1-V3,	contain	deep	sulci.	As	a	result,	a	large	stimulus	such	as	the	one	in	our	
experiments,	will	activate	a	broad	swath	of	these	maps,	resulting	in	many	locations	where	
there	are	opposite-facing	dipoles	from	either	side	of	the	sulcus.	For	example,	in	Subject	
S12,	there	are	large	regions	in	each	of	V1,	V2,	and	V3	which	include	two	opposing	sulcal	
banks	(Figure	6).	Because	multiple	visual	field	maps	could	contribute	to	signal	
cancellation,	we	consider	the	effects	of	simulations	with	only	subsets	of	the	maps	
(Supplementary	Figure	S5).	These	show	that	simulations	with	V2	and	V3	(without	V1)	
tend	to	show	model	predictions	similar	to	those	that	include	V1-V3,	indicating	a	likely	
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contribution	from	V2	and	V3	in	terms	of	large-scale	signal	cancellation,	consistent	with	
previous	analyses	(Ales,	Yates,	&	Norcia,	2010).	

 
Figure	6.	An	example	folding	pattern	in	occipital	cortex.		The	figure	shows	an	oblique	slice	perpendicular	
to	the	calcarine	sulcus	(purple	line)	from	a	T1-weigthed	image	of	subject	S12.	In	each	of	the	V1-V3	maps,	
there	are	regions	containing	opposite-facing	sulcal	walls.	Three	examples	are	indicated	by	the	white	arrows.		

The	cortical	folding	pattern	interacts	with	synchronous	and	asynchronous	sources	
differently.	Synchronous	source	activity	will	add	when	the	dipoles	are	parallel,	causing	a	
large	response	at	the	sensor	level,	and	cancel	when	the	dipoles	are	opposite	facing	(Figure	
7,	top	row).	For	asynchronous	sources,	there	is	partial	cancellation	regardless	of	whether	
the	dipoles	are	parallel	or	opposite	facing	(Figure	7,	bottom	row).	Overall,	the	largest	
sensor	signals	will	come	from	synchronous	sources	that	are	parallel,	with	lower	signal	from	
asynchronous	sources	(Figure	7,	upper	left	vs	lower	left).	
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Figure	7.	The	effect	of	cortical	geometry	and	neural	synchrony	on	MEG	sensor	responses.	The	
cancellation	hypothesis	predicts	that	a	difference	in	spatial	topographies	across	MEG	sensors	is	caused	by	an	
interaction	between	the	geometry	of	the	cortex	and	the	degree	of	neural	synchrony.	First	column:	If	
neighboring	sources	(S1	and	S2,	green	sine	waves)	are	located	such	that	their	dipole	orientations	are	parallel	
to	each	other,	their	responses	will	add	at	the	sensor	level.	Second	column:	In	contrast,	if	sources	are	located	
such	that	their	dipole	orientations	are	opposite-facing	their	source	responses	will	interfere	at	the	sensor	
level.	Besides	the	relative	dipole	orientation,	the	summation	or	cancellation	of	underlying	source	response	
also	depends	on	the	time-locking	(or	relative	phase)	of	sources	contributing	to	the	MEG	sensor	responses	
(red	sine	waves):	synchronous	sources	will	largely	sum	or	cancel	at	the	sensor	level	(first	row,	yellow	
gradient),	whereas	asynchronous	sources	will	partially	cancel	at	the	sensor	level	(second	row,	blue	gradient).	

To	test	whether	the	bimodal	distribution	in	sensor	topography	from	the	
synchronous	simulation	is	caused	by	cancellation	arising	from	the	cortical	geometry,	we	
modified	our	encoding	model	by	making	the	gain	matrix	positive	only.	A	positive-only	gain	
matrix	preserves	the	sign	of	the	source	activity	when	projected	to	the	sensors	so	that	
synchronized	source	activity	cannot	cancel.	Changing	the	gain	matrix	in	this	way	has	a	big	
effect	on	the	sensor	predictions	from	synchronous	sources	(Figure	8,	top	row),	but	not	
asynchronous	sources	(Figure	8,	bottom	row).	For	this	positive-only	gain	matrix,	the	
difference	in	topography	between	the	synchronous	and	asynchronous	simulations	
disappears	(Figure	8,	2nd	column).	This	topography	closely	resembles	the	observed	
topographic	maps	for	the	broadband	component	of	the	MEG	responses	(Figure	3,	bottom	
row).	These	results	indicate	that	the	idiosyncratic	‘gap’	in	the	spatial	pattern	of	the	
synchronous	simulation	is	caused	by	cancellation	of	neuroelectric	fields,	presumably	from	
opposite	facing	dipoles	in	upper	and	lower	bank	of	the	Calcarine	sulcus.	When	preserving	
the	sign	of	dipoles	our	encoding	model,	we	showed	that	spatial	topography	predicted	by	
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synchronous	sources	is	caused	by	signal	cancellation	due	to	the	cortical	folding	in	early	
visual	cortex.	

	
Figure	8.	Preventing	cancellation	in	visual	encoding	model	affects	predicted	MEG	sensor	responses	for	
synchronous,	but	not	asynchronous	sources	in	early	visual	cortex.	First	column:	Predicted	MEG	sensor	
amplitudes	using	a	standard	forward	model	which	allows	for	neural	sources	to	cancel	their	current	density.	
Data	are	identical	to	first	column	of	Figure	5.	Second	column:	Predicted	sensor	amplitudes	using	modified	
forward	model,	i.e.,	using	the	absolute	values	of	gain	matrix,	preventing	neural	sources	to	cancel	their	current	
density.	Data	are	plotted	to	with	the	same	scaling	as	in	the	left	column.	Third	column:	Ratio	of	predicted	
sensor	amplitudes	predict	by	the	standard	and	modified	encoding	model	(modified	model	divided	by	
standard	model).	Preventing	cancellation	affects	the	topography	of	synchronous,	but	not	asynchronous	of	V1-
V3	sources.	The	contour	lines	are	drawn	at	93.6th	percentile	of	the	model	predictions,	corresponding	to	the	10	
sensors	with	the	largest	response.	Data	are	from	group	average.	 	
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3. Discussion 
We	developed	a	visual	encoding	model	for	MEG	that	predicts	sensor	responses	to	stimuli	
and	showed	that	the	predicted	topographies	in	MEG	sensors	depend	on	whether	cortical	
responses	are	synchronous	or	asynchronous.	We	compared	these	model	predictions	to	
observed	MEG	data	from	subjects	viewing	a	contrast-reversing	pattern	separated	into	a	
stimulus-locked	and	a	broadband	component.	We	found	that	the	two	data	components	
have	different	spatial	topographies	in	the	MEG	sensors,	where	the	topography	of	the	
stimulus-locked	data	component	was	similar	to	the	synchronous	simulation,	and	the	
topography	of	the	broadband	data	component	was	similar	to	the	asynchronous	simulation.	

3.1 Cortical geometry mediates the relationship between source synchrony and sensor 
topography 

The	simulations	support	the	interpretation	that	the	differences	in	spatial	topography	
between	the	two	data	components	lie	in	the	temporal	properties	of	source	activity,	not	
spatial	properties.	To	understand	how	temporal	properties	of	the	neural	responses	
influence	spatial	topography	in	the	sensor	data,	it	is	necessary	to	consider	the	cortical	
geometry.	

Previous	studies	have	argued	that	the	geometry	of	primary	visual	cortex	results	in	a	
peculiar	property	of	the	V1-driven	evoked	(time-locked)	EEG	response.	Specifically,	
according	to	‘the	cruciform	hypothesis’,	responses	to	stimuli	in	the	lower	visual	field	and	
upper	field	can	result	in	a	similar	voltage	time	series	except	with	opposite	polarity	
(Jeffreys,	1971;	Jeffreys	&	Axford,	1972b,	1972a).	This	result	has	been	attributed	to	the	fact	
that	the	upper	and	lower	field	representations	of	V1	lie	on	opposite	sides	of	the	Calcarine	
sulcus,	resulting	in	opposing	dipoles.	This	explanation	is	consistent	with	our	observation	
that	the	time-locked	portion	of	the	MEG	response	to	a	large	stimulus	(containing	contrast	
in	both	lower	and	upper	visual	field)	tends	to	result	in	a	spatial	gap	in	the	topography:	the	
gap	is	where	signals	from	opposite-facing	dipoles	cancel.	This	interpretation	is	supported	
by	our	simulations	showing	that	when	the	effect	of	dipole	cancellation	is	removed,	there	is	
no	gap	(Figure	7).	

Related	questions	have	received	considerable	interest	in	recent	years:	namely,	
whether	the	upper	and	lower	field	representations	of	V1	perfectly	cancel	in	EEG	sensor	
responses,	and	if	V1	is	the	only	visual	area	that	can	exhibit	this	phenomenon	(Ales,	Yates,	et	
al.,	2010;	Ales,	Yates,	&	Norcia,	2013;	Kelly,	Schroeder,	&	Lalor,	2013;	Kelly,	Vanegas,	
Schroeder,	&	Lalor,	2013).	Our	observation	that	the	stimulus-locked	signal	has	a	
systematically	different	spatial	topography	than	the	broadband	signal	does	not	depend	on	
whether	the	cancellation	comes	from	V1	only,	or	also	from	V2	and	V3.	In	fact,	sensor	
cancellation	in	both	EEG	and	MEG	can	result	from	spatially	extended	source	activity	in	any	
cortical	location,	or	even	from	small	patches	of	randomly	distributed	responses	across	
cortex	(Ahlfors	et	al.,	2010).	The	question	of	whether	synchronous	source	activity	causes	
cancellation	at	the	sensor	level	depends	only	on	whether	opposing	dipoles	are	
simultaneously	activated.	Since	there	are	more	likely	to	be	opposing	dipoles	in	areas	of	
cortex	with	high	curvature,	there	is	a	relationship	between	the	cortical	curvature,	neural	
synchrony,	and	the	spatial	pattern	in	the	sensor	responses.	
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The	prior	studies	focused	on	evoked	potentials	(Ales,	Yates,	et	al.,	2010;	Ales	et	al.,	
2013;	Kelly,	Schroeder,	et	al.,	2013;	Kelly,	Vanegas,	et	al.,	2013)	and	evoked	fields	(Ahlfors	
et	al.,	2010),	defined	by	trial-averaging	the	data	time-locked	to	stimulus	onset,	or	
simulating	simultaneous	sources.	A	novel	finding	in	this	study	is	that	the	broadband	signal	
does	not	show	cancellation	and	is	thus	much	less	affected	by	the	details	of	the	cortical	
geometry.	This	is	evident	in	both	data	and	simulations.	We	conclude	from	this	that	the	
broadband	signal	is	asynchronous	not	only	with	respect	to	the	stimulus,	which	is	true	by	
definition	of	this	data	component,	but	also	across	space.	

Our	modeling	was	motivated	by	the	observation	that	the	spatial	topography	differed	
between	the	stimulus-locked	and	broadband	responses.	The	particular	feature	that	stood	
out	was	the	bimodal	spatial	pattern	in	the	stimulus-locked	response.	This	pattern	appears	
in	a	number	of	other	studies	employing	visual	steady	paradigms	(Moratti,	Keil,	&	Miller,	
2006;	Kamphuisen,	Bauer,	&	van	Ee,	2008;	Giani	et	al.,	2012;	Pisarchik,	Chholak,	&	Hramov,	
2019)	or	in	the	evoked	response	to	presentation	of	static	images	(Mecklinger	et	al.,	1998;	
Schoenfeld,	Heinze,	&	Woldorff,	2002;	Golubic	et	al.,	2011).	Not	every	study	observes	this	
bimodal	pattern	(e.g.	see	figure	2C	in	(Zhigalov,	Herring,	Herpers,	Bergmann,	&	Jensen,	
2019),	which	does	not	show	this	pattern).	Our	proposal	that	the	bimodal	pattern	in	our	
study	reflects	signal	cancellation	may	also	explain	the	pattern	in	some	of	these	other	
studies.	However,	the	predicted	spatial	pattern	in	the	sensors	is	highly	dependent	on	
features	of	the	individual	subject’s	cortical	and	head	geometry,	as	well	as	on	which	sources	
are	most	active.	For	example,	we	see	that	simulations	that	omit	V1	sources	still	predict	
bimodal	distributions,	whereas	simulations	that	omit	V2/V3	do	not	(Supplementary 
Figure S5).	Hence,	for	any	particular	study,	whether	or	not	the	sensor	pattern	looks	
bimodal	will	likely	depend	on	spatiotemporal	properties	of	the	cortical	response,	which	are	
stimulus	dependent,	the	type	of	sensors,	and	the	geometry	of	the	individual’s	head	and	
brain.	

3.2 Asynchrony between cortical sources reduces the amplitude of sensor responses 

As	discussed	in	the	previous	section,	synchronous	cortical	activity	results	in	cancellation	
due	to	the	cortical	geometry.	This	influences	the	sensor	spatial	topography.	Asynchronous	
cortical	activity	also	results	in	cancellation,	but	for	a	different	reason	and	at	a	different	
spatial	scale.	The	asynchrony	in	the	neural	responses	means	that	their	time	series	may	be	
rising	in	one	cortical	location	while	falling	in	a	neighboring	location.	This	asynchrony	may	
play	out	at	a	very	fine	scale,	e.g.	<	1	mm,	perhaps	within	single	cortical	columns.	This	kind	
of	local	cancellation	does	not	depend	on	the	cortical	folding	pattern,	which	varies	slowly	at	
the	sub-mm	scale.	Hence,	asynchrony	between	sources	has	a	general	effect	of	reducing	the	
amplitude	across	the	sensor	array.	At	the	extreme,	the	summed	response	of	n	cortical	
sources	with	random	phases	will	grow	with	the	square	root	of	n,	and	with	synchronous	
sources	with	n.	As	a	result,	we	expect	synchronous	source	activity	to	translate	to	large	
sensor	responses.	This	is	confirmed	in	our	simulations	in	which	equal	amplitude	neural	
responses	result	in	large	or	small	sensor	responses.	This	logic	has	been	used	to	explain	why	
both	evoked	and	oscillatory	ECoG	responses	are	large	compared	to	broadband	responses	
(Winawer	et	al.,	2013;	Hermes	et	al.,	2015;	Hermes	et	al.,	2017).	The	same	principle	can	
also	explain	why	scalp	EEG	responses	at	lower	temporal	frequencies	are	large:	lower	
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temporal	frequencies	are	more	synchronous	across	space	than	higher	frequencies	
(Pfurtscheller	&	Cooper,	1975).	

In	sum,	our	model	captures	two	types	of	cancellation.	One	type	is	the	cancellation	
from	synchronous	activity	across	large-scale	variation	in	cortical	geometry	(such	as	the	
folding	of	the	large	sulci	in	visual	cortex),	which	translates	to	a	spatial	effect	at	the	sensor	
level.	The	second	type	of	cancellation	arises	from	asynchronous	activity	in	local	responses	
and	causes	an	overall	amplitude	reduction	across	the	sensor	array.	

This	second	type	of	cancellation	has	an	important	implication	for	the	interpretation	
of	neuroscience	data:	the	largest	signal	measured	by	the	instrument	cannot	be	assumed	to	
reflect	the	largest	amount	of	underlying	neural	activity	(see	similar	reasoning	in	(Musall	et	
al.,	2014;	Butler,	Bernier,	Lefebvre,	Gilbert,	&	Whittingstall,	2017;	Hermes	et	al.,	2017).	For	
the	same	reason,	evoked	potentials,	although	they	can	be	quite	large,	are	often	a	poor	
predictor	of	the	fMRI	BOLD	signal,	which	is	relatively	insensitive	to	neural	synchrony	at	the	
millisecond	scale	(Foucher,	Otzenberger,	&	Gounot,	2003;	Winawer	et	al.,	2013).	

3.3 Phase-locking across cortex vs time-locking to the stimulus 

One	of	the	interesting	observations	from	our	simulations	is	the	qualitative	match	between	
the	synchronous	simulation	and	stimulus-locked	data	on	the	one	hand,	and	the	
asynchronous	simulation	and	broadband	data	on	the	other	hand.	Our	results	here	suggest	
that	the	time-locked	response	to	our	contrast-reversing	stimuli	is	in	large	part	also	
synchronous	across	space,	whereas	the	broadband	response	is	not	synchronous	across	
space.	This	pattern	may	be	a	general	feature	of	visual	encoding	in	early	visual	areas.	A	rapid	
set	of	coherent	signals	arrive	in	visual	cortex,	giving	rise	to	the	time-locked	signal.	These	
responses	then	set	off	a	cascade	of	local	intracortical	process,	which	are	not	synchronized	
across	space	or	to	the	stimulus.	We	described	these	as	two	visual	circuits	in	prior	work	
(Winawer	et	al.,	2013).	

One	might	be	tempted	to	reason	that	our	results	are	circular.	If	the	signals	are	time-
locked	to	the	stimulus,	are	they	not	necessarily	synchronized?	And	if	they	are	
asynchronous	with	one	another,	is	it	not	the	case	that	they	will	necessarily	be	
asynchronous	with	respect	to	the	stimulus?	In	fact,	this	is	not	correct.	The	agreement	
between	data	and	simulations	are	not	a	consequence	of	definitions,	but	rather	they	are	an	
empirical	result.	For	example,	it	is	possible	for	cortical	responses	to	be	synchronized	across	
space	but	not	time-locked	to	a	stimulus	onset.	This	occurs,	for	example,	with	certain	
pharmacological	manipulations	that	increase	long-range	synchrony	even	without	a	
stimulus	(Musall	et	al.,	2014).	Increased	synchrony	across	space	that	is	not	time-locked	to	
stimulus	onset	also	occurs	with	gamma-band	oscillations	in	response	to	certain	types	of	
stimuli.	These	spatially	synchronous	but	non-time	locked	responses	are	sometimes	called	
‘induced’	rather	than	‘evoked’	oscillations	(Tallon-Baudry	&	Bertrand,	1999).	Oscillations	
that	are	thought	to	be	synchronous	across	space	but	not	time	locked	to	a	stimulus	also	
occur	in	other	frequency	bands,	such	as	alpha	and	beta	bands	(Berger,	1929;	Adrian	&	
Matthews,	1934).	

The	converse	is	also	true:	neural	responses	can	be	stimulus-locked	but	not	
synchronous	across	space.	For	example,	recordings	across	cortical	depth	show	that	there	
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are	stimulus-locked	(‘evoked’)	responses	whose	phase	varies	across	depth,	sometimes	
resulting	in	a	phase	reversal	between	supragranular	and	infragranular	layers	(Haegens	et	
al.,	2015).	Even	though	these	responses	are	out	of	phase	with	each	other,	they	will	each	
show	their	own	time-locked	response	to	stimulus	onset.	Similarly,	responses	in	different	
cortical	regions	(say	V1	and	parietal	cortex)	may	each	be	time-locked	to	the	stimulus	but	
vary	in	onset	(hence	asynchronous	across	space)	(Chen	et	al.,	2007;	Cottereau	et	al.,	2011).	
Hence	whether	a	response	is	time-locked	to	a	stimulus	or	not	is	independent	from	whether	
it	is	highly	synchronous	across	space.	

3.4 Where does the broadband response come from? 

In	our	forward	model,	we	used	a	traditional	approach	of	minimizing	differences	between	
conditions:	The	synchronous	and	asynchronous	simulations	were	identical	in	all	ways	
except	one	(the	degree	of	phase-locking	between	cortical	locations).	An	alternative	
approach	would	be	to	use	a	more	biophysical	simulation,	including	model	neurons	that	
generate	both	evoked	and	asynchronous	responses.	To	do	so	requires	a	biophysical	model	
that	generates	high	frequency	broadband	responses.	There	are	several	models	of	how	this	
might	arise,	including	the	temporal	integration	of	Poisson	spike	arrivals	in	synapses	and	
dendrites	(Miller	et	al.,	2009),	and	the	tendency	for	neurons	to	exhibit	up-down	phase	
changes	(Milstein	et	al.,	2009).	Another	possibility	is	that	responses	at	non-stimulus	
frequencies	arise	from	non-linear	interactions	between	neural	responses	at	the	driven	
frequency	and	the	background	neural	activity.	Such	nonlinearities	have	been	postulated	to	
explain	variability	in	the	EEG	responses	at	the	stimulus	frequency,	and	could	also	
contribute	to	responses	outside	the	driven	frequency	(Mast	&	Victor,	1991;	Victor	&	Mast,	
1991).	Following	our	prior	work	(Winawer	et	al.,	2013),	we	implemented	model	neurons	
adapted	from	the	Miller	model,	and	combined	their	outputs	with	the	MEG	head	model	(gain	
matrix)	to	predict	time	series	in	the	MEG	sensors.	This	more	biophysically	realistic	
simulation	produces	the	same	pattern	of	effects	as	the	simpler	simulation:	a	unimodal	
spatial	distribution	of	sensor	responses	for	the	broadband	signal,	and	a	more	bimodal	
distribution	for	the	stimulus-locked	(Supplementary	Figure	S6).		

Alternatively,	in	principle,	it	is	possible	that	broadband	responses	measured	
extracranially	(EEG	or	MEG)	could	arise	from	non-neural	sources,	such	as	artifacts	from	eye	
movements	(Yuval-Greenberg,	Tomer,	Keren,	Nelken,	&	Deouell,	2008),	head	muscle	
contractions	(Muthukumaraswamy,	2013),	or	environmental	electromagnetic	noise.	We	
don’t	believe	these	artifacts	explain	the	broadband	responses	we	observed.	First,	as	we	
demonstrated	in	our	previous	paper	measuring	broadband	responses	(Kupers	et	al.,	2018),	
neither	the	rate	nor	the	direction	of	microsaccades	varies	systematically	with	the	observed	
broadband	responses	in	individual	subjects:	Subject	data	containing	the	highest	
microsaccade	rate	do	not	show	the	largest	broadband	response	and	vice	versa,	and	the	
direction	of	microsaccades	does	not	systematically	bias	to	left	or	right	visual	field.	
Moreover,	when	removing	epochs	with	microsaccades	from	the	analysis,	the	broadband	
response	remained	evident	in	each	individual	subject.	

Second,	the	characteristics	of	these	noise	artifacts	do	not	overlap	with	our	measured	
broadband	responses	(see	also	the	Discussion	section	“Challenges	in	measuring	
extracranial	broadband	responses”	in	(Kupers	et	al.,	2018)).	For	instance,	the	MEG	spike	
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field	artifact,	which	can	be	confused	with	broadband	neural	activity	(Yuval-Greenberg	&	
Deouell,	2009),	has	a	spatial	topography	affecting	mostly	temporal	and	frontal	MEG	sensors	
(Carl,	Acik,	Konig,	Engel,	&	Hipp,	2012).	Our	broadband	responses	are	confined	to	middle	
posterior	sensors	and	therefore	are	unlikely	to	be	contaminated	by	spike	field	artifacts.	
Saccadic	spike	potentials,	caused	by	the	retina-to-cornea	dipole,	introduce	artifacts	
between	4-20	Hz	(Keren,	Yuval-Greenberg,	&	Deouell,	2010).	These	frequencies	are	lower	
than	the	range	we	use	to	define	our	measure	of	broadband	responses	(60-150	Hz),	hence	
unlikely	to	affect	our	measurements.	Although,	head	muscle	contraction	and	environmental	
noise	contributions	have	been	reported	to	cause	spectrally	broad	artifacts	
(Muthukumaraswamy,	2013),	it	is	unlikely	that	these	noise	sources	only	affect	central	
occipital	sensors	but	not	lateral	occipital	MEG	sensors.	

3.5 Relationship to previous work on modeling MEG/EEG signals 

MEG/EEG	data	have	been	subject	to	a	variety	of	computational	models,	which	can	broadly	
be	divided	in	three	groups.	The	approaches	with	the	longest	history	and	most	used	are	
forward	models	(predicting	sensor	responses	from	cortical	data)	and	inverse	modeling	
(predicting	cortical	responses	from	sensor	data).	In	addition,	decoding	models	have	started	
to	become	more	widely	used.	The	models	infer	the	stimulus	(or	stimulus	features)	from	the	
sensor	data.	From	the	three	groups,	our	visual	encoding	model	overlaps	mostly	with	the	
forward	modeling	approach,	but	differs	in	that	it	predicts	the	sensor	responses	from	
stimulus	features.	

3.5.1 Inverse and constrained inverse models 

Inverse	models	are	used	to	infer	the	cortical	source	activity	from	the	MEG/EEG	sensor	
responses.	They	neither	predict	brain	activity	nor	sensor	responses	from	the	input	(e.g.,	a	
visual	stimulus),	differing	from	our	approach	here.	A	benefit	of	these	models	is	that	no	a	
priori	knowledge	of	neural	sources	is	needed.	However,	inverse	models	are	ill-posed,	since	
there	are	many	more	cortical	sources	than	there	are	MEG	or	EEG	measurement	channels	
(Hämäläinen	et	al.,	1993).	To	the	degree	that	source	activity	differs	from	model	
assumptions,	it	will	be	inaccurate.	Consider	our	two	simulations	(synchronous	and	
asynchronous);	they	had	activity	in	the	identical	set	of	sources,	yet	resulted	in	different	
spatial	topographies.	The	correct	source	localization	would	return	the	identical	sources.	
But	because	the	inverse	problem	is	ill-posed,	this	solution	is	not	likely	to	be	found.	Instead,	
inverse	solutions	to	the	simulated	sensor	responses	would	incorrectly	return	different	
source	locations.	

Several	studies	have	used	inverse	models	to	reconstruct	sources	of	retinotopic	
responses	(Moradi	et	al.,	2003;	Poghosyan	&	Ioannides,	2007;	Sharon,	Hamalainen,	Tootell,	
Halgren,	&	Belliveau,	2007;	Brookes	et	al.,	2010;	Cicmil,	Bridge,	Parker,	Woolrich,	&	Krug,	
2014;	Nasiotis,	Clavagnier,	Baillet,	&	Pack,	2017).	These	reconstructions	were	able	to	
capture	retinotopic	maps	in	early	visual	at	a	coarse	scale	(order	of	centimeters),	but	
contained	large	errors	(e.g.,	failure	to	localize	sources	from	the	upper	visual	field	due	to	
penalizing	the	reconstruction	of	two	active	sources	canceling	out	at	the	sensor	level).	

One	approach	to	improve	localization	error	is	Retinotopy	Constrained	Source	
Estimation.	This	method	uses	visual	field	maps	to	guide	constraints	on	the	number	of	
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solutions	when	inverse	modeling	the	sources.	For	example,	one	can	create	a	correlation	
matrix	that	only	includes	visual	field	areas	to	constrain	the	possible	solutions	(Hagler	et	al.,	
2009;	Hagler	&	Dale,	2013;	Hagler,	2014;	Cottereau,	Ales,	&	Norcia,	2015)	or	apply	an	
exhaustive	search	to	define	neighboring	sources	for	every	stimulus	location	(Ales,	Carney,	
&	Klein,	2010;	Inverso,	Goh,	Henriksson,	Vanni,	&	James,	2016).	This	approach	has	been	
shown	to	increase	source	localization	accuracy,	e.g.,	decrease	cross-talk	for	sources	in	
visual	areas	with	close	proximity	like	V1	and	V2.	This	kind	of	approach	is	complementary	
to	ours.	It	is	useful	to	infer	neural	responses	in	paradigms	where	an	encoding	model	is	not	
feasible.	

3.5.2 Decoding models 

MEG-based	decoding	models	have	been	used	to	predict	stimulus	features	from	sensor	data,	
similar	to	the	fMRI	decoding	literature	(Haxby	et	al.,	2001).	There	are	many	purposes	for	
decoding	models.	One	is	to	facilitate	comparison	with	other	data	types	when	a	linking	
model	is	lacking,	for	example	comparing	MEG	to	fMRI	(Cichy,	Pantazis,	&	Oliva,	2016)	or	to	
a	neural	network	(Cichy,	Khosla,	Pantazis,	Torralba,	&	Oliva,	2016).	A	second	purpose	is	to	
ask	how	stimulus	representations	unfold	over	time	(King	&	Dehaene,	2014),	or	how	they	
are	localized	in	temporal	frequency	bands	(Pantazis	et	al.,	2018).	Generally,	decoding	
models	can	reveal	the	presence	of	information	about	a	stimulus	or	stimulus	feature.	In	
contrast,	encoding	models	explicitly	postulate	computations	or	representations	of	the	
system,	and	thus	offer	more	general	system	descriptions	(Naselaris,	Kay,	Nishimoto,	&	
Gallant,	2011).	
3.5.3 Forward models 

Forward	models	compute	the	propagation	of	source	activity	to	sensors.	The	source	activity	
can	either	be	simulated	or	defined	by	a	separately	acquired	fMRI	session	(e.g.,	a	retinotopy	
experiment),	before	projected	from	cortex	to	sensors.	This	type	of	computational	model	is	
closest	to	our	approach,	but	again,	differs	from	our	encoding	model	in	that	these	forward	
models	do	not	take	visual	stimuli	as	an	input.		

Previous	forward	models	have	been	used	to	create	simulated	sensor	responses	as	a	
benchmark	to	test	specific	analyses	methods,	e.g.	brain	connectivity	analyses	in	EEG	(Haufe	
&	Ewald,	2019),	accuracy	of	volume	conduction	head	models	(Henson,	Mattout,	Phillips,	&	
Friston,	2009;	Stenroos,	Hunold,	&	Haueisen,	2014;	Stenroos	&	Nummenmaa,	2016),	guide	
subdural	electrode	placement	for	epilepsy	monitoring	(Lopes	et	al.,	2020),	or	provide	
‘ground	truth’	sources	when	combined	with	inverse	modeling	in	both	healthy	(Sharon	et	
al.,	2007;	Akalin	Acar	&	Makeig,	2013;	Nasiotis	et	al.,	2017)	and	patient	populations	(Acar	
et	al.,	2008).	Some	recent	publications	of	open-source	EEG/MEG	toolboxes	have	now	
advanced	to	simulating	electromagnetic	fields	with	biologically	plausible	noise	
(Barzegaran,	Bosse,	&	Norcia,	2019)	or	cellular-level	circuits	(Neymotin	et	al.,	2020).		

In	contrast	to	work	in	single-unit	electrophysiology	(Simoncelli	&	Heeger,	1998;	
Rust,	Schwartz,	Movshon,	&	Simoncelli,	2005;	Mante,	Bonin,	&	Carandini,	2008),	functional	
MRI	(Dumoulin	&	Wandell,	2008;	Kay,	Naselaris,	Prenger,	&	Gallant,	2008;	Kay,	Winawer,	
Rokem,	Mezer,	&	Wandell,	2013)	and	ECoG	(Hermes,	Petridou,	Kay,	&	Winawer,	2019),	
visual	encoding	models	that	take	stimuli	as	input	and	predict	the	measured	response	as	
output	are	not	commonly	used	in	EEG	and	MEG.	This	modeling	approach	has	been	highly	
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successful	in	elucidating	fundamental	properties	of	sensory	encoding,	such	as	linear	
filtering	(Enroth-Cugell	&	Robson,	1966;	Movshon,	Thompson,	&	Tolhurst,	1978),	spatial	
pooling	(Kay,	Winawer,	Mezer,	&	Wandell,	2013),	and	normalization	(Heeger,	1992).	Our	
work	is	one	of	the	first	to	extend	this	approach	to	MEG	and	was	useful	in	characterizing	
two	types	of	visual	responses,	one	highly	synchronous	across	space,	one	largely	
asynchronous.		

3.6 Assumptions of the model 

Our	visual	encoding	model	contained	two	parts:	an	encoding	model	from	stimulus	to	cortex	
based	on	retinotopic	atlases	(Benson	et	al.,	2014)	and	a	physics-based	model	of	the	
propagation	of	cortical	currents	to	magnetic	flux	at	the	sensors,	based	on	overlapping	
spheres	(Huang,	Mosher,	&	Leahy,	1999;	Tadel,	Baillet,	Mosher,	Pantazis,	&	Leahy,	2011).	
Both	of	these	model	components	include	a	number	of	simplifying	assumptions.	

Advantages	of	the	simplifications	are	that	the	model	is	easy	to	use,	and	when	the	
model	makes	interesting	predictions,	they	are	interpretable.	For	instance,	there	were	two	
interesting	predictions	made	from	our	simulations.	First,	the	synchronous	and	
asynchronous	simulations	led	to	different	spatial	topographies	(more	bimodal	for	the	
synchronous	simulation,	and	unimodal	for	the	asynchronous	simulation).	This	
phenomenon	was	explained	by	cancellation	due	to	the	cortical	folding	pattern	in	the	
synchronous	simulations.	Second,	the	amplitude	was	generally	lower	for	the	asynchronous	
than	the	synchronous	simulation.	This	was	explained	by	partial	cancellation	between	
nearby	sources	in	the	asynchronous	simulations.	These	two	features	of	the	simulations	
were	also	found	in	the	data.	Therefore,	the	benefit	of	model	interpretability	transfers	to	the	
data,	providing	plausible	explanations	for	the	phenomena	observed	in	the	experiments.	
Nonetheless,	it	is	important	to	consider	how	robust	the	patterns	found	in	the	simulations	
are:	specifically,	are	the	patterns	highly	dependent	on	the	simplifying	assumptions	of	the	
model?	

3.6.1 Encoding model assumptions 

The	encoding	model	from	stimulus	to	cortex	has	three	simplifying	assumptions.	First,	
cortical	activity	was	confined	to	only	three	visual	areas,	V1,	V2,	and	V3.	Second,	within	
these	visual	areas,	responses	were	simulated	as	having	the	same	amplitude	or	zero.	Third,	
the	phases	of	the	cortical	responses	were	either	all	identical	(synchronous	simulation)	or	
completely	random	(asynchronous	simulation).	None	of	these	assumptions	holds	exactly	in	
the	brain.	For	example,	there	are	differences	in	EEG	sensor	response	timing	and	amplitudes	
for	checkerboard	stimuli	that	vary	in	eccentricity	(Jeffreys,	1971;	Ales	et	al.,	2013;	Inverso	
et	al.,	2016),	and	higher	level	visual	areas	beyond	V1-V3	can	also	show	steady	state	
responses	to	contrast-reversing	stimuli	(Ales,	Farzin,	Rossion,	&	Norcia,	2012).	The	steady	
state	response	to	contrast-reversing	patterns	may	also	differ	in	amplitude	between	visual	
areas,	as	suggested	by	fMRI-constrained	source	localization	of	EEG	signals	(Di	Russo	et	al.,	
2005;	Di	Russo	et	al.,	2007).	

In	additional	simulations,	we	tested	whether	deviations	from	these	assumptions	had	
a	great	impact	on	the	main	findings	and	found	that	they	did	not.	Most	importantly,	we	
found	that	the	difference	in	spatial	topography	—more	bimodal	for	synchronous	
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simulations	and	unimodal	for	asynchronous	simulations—	was	found	across	a	variety	of	
simulation	conditions.	First,	we	simulated	responses	in	9	visual	areas	beyond	V1-V3,	as	
described	in	Benson	and	Winawer	(2018).	These	simulations	showed	broadly	similar	
patterns	to	those	from	only	V1-V3	(Supplementary	Figure	S7).	Second,	we	simulated	
responses	limited	to	different	eccentricity	bands.	Except	when	responses	were	confined	
only	to	the	fovea,	simulations	showed	the	same	general	patterns	as	those	including	cortical	
activity	for	the	entire	stimulus	aperture	(Supplementary	Figure	S8).	Third,	we	simulated	
intermediate	levels	of	synchrony	between	0%	and	100%	(Supplementary	Figure	S9).	
These	simulations	show	that	fully	asynchronous	(0%)	and	fully	synchronous	(100%)	levels	
are	not	special	cases:	rather,	the	two	types	of	spatial	patterns	we	found	using	those	
extreme	levels	were	each	found	over	a	range	of	synchrony	values.	Together,	these	
additional	tests	show	that	the	pattern	of	results	is	not	highly	dependent	on	any	one	of	the	
simplifying	assumptions	of	the	encoding	model.	

3.6.2 Physics-based forward model assumptions 

We	used	the	overlapping	spheres	(OS)	volume	conductor	head	model	to	compute	the	gain	
matrix	for	each	individual	subject	(Huang	et	al.,	1999).	Some	investigators	have	argued	that	
a	model	derived	from	a	three-shells	boundary	element	model	(BEM)	(Kybic	et	al.,	2005;	
Gramfort,	Papadopoulo,	Olivi,	&	Clerc,	2010),	while	more	computationally	intensive	to	
compute,	is	more	accurate	(Henson	et	al.,	2009;	Stenroos	et	al.,	2014).	To	test	whether	our	
conclusions	depended	on	using	a	particular	forward	model,	we	implemented	the	BEM	
model	in	each	of	our	participants	and	found	that	the	predictions	did	not	differ	substantially	
in	spatial	topography	from	the	OS	model	for	either	synchronous	or	asynchronous	sources	
(Supplementary	Figure	S7,	panel	A	and	B).	This	provides	some	assurance	that	the	pattern	
of	results	obtained	from	the	simulations	are	not	an	artifact	of	idiosyncratic	assumptions	
made	in	the	OS	model.	For	both	the	overlapping	spheres	and	the	boundary	element	model,	
we	assumed	that	the	neural	generators	are	dipoles	oriented	normally	to	the	cortical	
surface.	Some	researchers	have	suggested	that,	at	least	in	the	case	of	EEG	signals,	monopole	
neural	generators	play	a	larger	role	than	is	traditionally	thought	(Riera	et	al.,	2012),	and	
that	therefore	signal	cancellation	from	opposite-facing	dipoles	might	have	only	a	small	
influence	on	EEG	sensor	measures	(Butler	et	al.,	2019).	If	correct,	this	might	explain	some	
of	the	differences	found	between	EEG	and	MEG	measures	of	visually	driven	signals,	but	
would	not	explain	MEG	results	(Riera	et	al.,	2012).		

3.7 Fitting Model Parameters 

We	compared	patterns	found	in	our	simulations	to	patterns	observed	in	the	MEG	data,	but	
we	did	not	attempt	to	fit	parameters	of	the	model.	For	example,	we	simulated	0%	and	
100%	neural	synchrony,	but	did	not	fit	a	free	parameter	with	intermediate	values	to	best	
explain	the	data.	Nor	did	we	try	to	estimate	the	degree	to	which	cortical	response	
amplitude	varies	with	retinotopic	location	or	visual	field	map.	To	do	so	would	require	not	
just	comparing	simulations	to	the	data,	but	instead	specifying	and	fitting	free	parameters	in	
a	model	from	stimulus	to	cortex	to	sensors.	

If	the	model	has	too	many	parameters	(for	example,	a	unique	amplitude	for	every	
surface	vertex),	then	the	model	will	be	ill-posed,	similar	to	the	problem	of	source	
localization	(Hämäläinen	et	al.,	1993;	Helmholtz,	1853).	Clearly,	if	each	of	the	several	
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hundred	vertices	in	the	V1-V3	maps	are	independently	fit	with	one	or	more	parameters	
(such	as	a	gain	factor,	receptive	field	location,	receptive	field	size,	etc.),	the	problem	will	be	
ill-posed.	It	might	be	possible,	however,	to	find	a	low-dimensional	parameterization	of	the	
multi-variate	response,	making	the	problem	well-posed.	To	our	knowledge,	a	low	
parameter	encoding	model	of	signals	across	entire	visual	field	maps	does	not	yet	exist,	but	
there	are	promising	developments.	For	example,	Benson	and	colleagues	(Benson,	
Broderick,	Müller,	&	Winawer,	2017)	reparametrized	spatial	encoding	models	for	fMRI	
developed	by	Kay	et	al.	(Kay	et	al.,	2008;	Kay,	Winawer,	Rokem,	et	al.,	2013)	with	just	a	
handful	of	global	parameters.	

While	we	reported	qualitative	similarities	between	simulations	and	data,	we	also	
observed	quantitative	differences.	For	example,	the	synchronous	simulation	predicts	two	
lateralized	responses	which	are	more	laterally	spaced	than	the	stimulus-locked	responses.	
Such	quantitative	differences	are	not	surprising	because	we	did	not	fit	model	parameters	to	
the	data,	as	discussed	above.	It	is	likely	that	visual	field	maps	beyond	V1-V3	contribute	to	
the	measured	responses,	but	also	that	neural	responses	are	not	uniform	in	amplitude	
across	eccentricity	(Ales	et	al.,	2013)	or	polar	angle	(Liu,	Heeger,	&	Carrasco,	2006).	
Accounting	for	these	possibilities	would	likely	lead	to	closer	matches	between	data	and	
model.	Similarly,	allowing	the	degree	of	synchrony	to	vary	between	0	and	100%	might	lead	
to	greater	overlap	in	the	predicted	and	observed	spatial	topography	across	MEG	sensors.	
Other	factors	which	limit	model	accuracy	of	the	current	simulations	include	errors	in	MEG-
MRI	alignment	and	simplifications	assumed	in	the	head	models.	An	important	goal	in	future	
work	will	be	to	express	simulation	frameworks	like	our	encoding	model	presented	here	
with	low-dimensional	parameterizations	that	can	be	fit	to	data,	and	to	optimize	each	stage	
of	the	computations	to	maximize	model	accuracy.	

3.8 Conclusion 

The	ability	to	measure	human	brain	activity	at	high	temporal	resolution	has	value	to	
scientists	and	clinicians	in	many	fields.	EEG	and	MEG	are	important	instruments	for	this	
reason.	Typically,	temporal	properties	of	the	EEG	or	MEG	sensor	responses	are	used	to	
make	inferences	about	the	temporal	dynamics	of	the	underlying	neural	responses,	and	
spatial	properties	of	the	sensor	responses	are	used	to	infer	spatial	properties	of	the	cortical	
responses.	Our	study	showed	that	the	spatial	pattern	of	sensor	responses	can	be	used	to	
make	inferences	about	the	temporal	pattern	of	neural	responses.	We	were	able	to	make	
this	observation	through	simulations	with	a	visual	encoding	model,	which	showed	that	the	
degree	of	large-scale	neural	synchrony	across	cortex	can	have	a	large	impact	on	the	spatial	
topography	of	MEG	sensor	responses.	This	modeling	result,	combined	with	experimental	
data,	allowed	us	to	make	inferences	about	the	degree	of	large-scale	synchrony	underlying	
two	types	of	visually	driven	MEG	measures,	stimulus-locked	and	broadband	responses.	We	
infer	that	the	former	is	highly	synchronized	across	cortex,	whereas	the	latter	is	largely	
asynchronous.	

The	modeling	approach	we	developed	can	be	extended	and	applied	to	a	wide	range	
of	paradigms	to	test	specific	and	constrained	hypothesis	about	the	spatiotemporal	pattern	
of	neural	responses	measured	non-invasively	in	the	living	human	brain.	 	
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4. Methods 
We	re-analyzed	and	extended	a	published	data	set	(Kupers	et	al.,	2018).	The	extensions	
include	adding	anatomical	MRI	data	for	subjects	who	only	had	MEG	data	in	the	prior	paper,	
and	adding	new	subjects	with	both	MRI	and	MEG	data.	The	collection	of	new	data	adhered	
as	closely	as	possible	to	the	previously	published	methods.	Several	of	the	sections	below	-	
Stimuli,	Experimental	design,	MEG	Data	acquisition,	and	MEG	preprocessing	–	are	highly	
similar	to	text	in	the	previous	paper	since	they	describe	the	same	experiment.	

4.1 Subjects 

The	previous	study	included	8	subjects	from	New	York	University	measured	with	MEG.	We	
were	able	to	recruit	6	of	these	subjects	to	participate	in	anatomical	MRI	measurements.	We	
also	recruited	6	new	subjects	for	both	MEG	and	MRI.	The	combined	set	of	12	subjects	
includes	8	females,	ages	20-42	years	(M	=	28.3	/	SD	=	6.4	years)	with	normal	or	corrected-
to-normal	vision.	All	subjects	provided	written	informed	consent.	The	experimental	
protocol	was	in	compliance	with	the	safety	guidelines	for	MRI	and	MEG	research	and	was	
approved	by	the	University	Committee	on	Activities	involving	Human	Subjects	at	New	York	
University.	

4.2 Stimuli 

Stimuli	were	contrast-reversing	dartboard	patterns	(12	square	wave	contrast-reversals	per	
second),	windowed	within	a	circular	aperture	with	a	diameter	of	22	degrees.	(The	previous	
study	also	included	blocks	with	half-circle	apertures,	but	these	were	not	used	for	the	new	
subjects	and	thus	are	not	analyzed	in	this	paper.)	A	uniform	gray	equal	to	the	mean	
luminance	of	the	black	and	white	checks	(206	cd/m²)	was	the	background	for	the	
dartboards	and	was	shown	in	the	full	screen	during	blank	blocks.	For	more	details,	see	
methods	and	figure	1	of	(Kupers	et	al.,	2018).	

4.3 Experimental design 

Experiments	consisted	of	multiple	runs,	72	seconds	each,	containing	alternating	blocks	of	
stimulation	(contrast-reversing	dartboards)	and	blanks	(uniform	gray	field),	6	seconds	
each.	There	was	a	fixation	dot	in	the	middle	of	the	screen	throughout	the	run,	switching	
between	red	and	green	at	random	intervals	(averaging	3	seconds).	The	subjects	were	
instructed	to	maintain	fixation	throughout	the	run	and	press	a	button	every	time	the	
fixation	dot	changed	color.	The	subjects	were	asked	to	minimize	their	blinking	and	head	
movements	during	the	72-s	runs.	After	each	run,	there	was	a	short	break	to	blink	and	relax	
(typically	30-s	to	1	minute).	

In	the	previous	study	(Kupers	et	al.,	2018),	we	obtained	fifteen	runs	per	subject.	
Within	each	run,	the	six	stimulus	blocks	included	two	with	full-circle	apertures,	two	with	
left	semicircular	apertures,	and	two	with	right	semicircular	apertures.	For	the	current	
study,	only	the	full-circle	apertures	were	analyzed.	For	the	six	new	datasets,	we	obtained	
fewer	runs	(10	per	subject	rather	than	15),	but	the	left	and	right	semicircular	apertures	
were	replaced	with	the	full-circle	apertures.	In	total,	there	were	30	full-circle	stimulus	
blocks	per	subject	for	the	prior	datasets	(15	runs	x	2	stimulus	blocks,	counting	only	the	
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stimulus	blocks	with	full-circle	apertures)	and	60	for	the	new	datasets	(10	runs	x	6	
stimulus	blocks).	

4.4 Data acquisition 

4.4.1 MEG 

The	MEG	data	were	acquired	with	a	whole	head	Yokogawa	MEG	system	(Kanazawa	
Institute	of	Technology,	Japan)	containing	157	axial	gradiometers.	The	measurements	were	
recorded	at	1000	Hz	with	online	high-pass	and	low-pass	filters.	The	high-pass	cutoff	was	1	
Hz,	and	the	low-pass	cutoff	was	either	200	Hz	(prior	study)	or	500	Hz	(new	datasets).	For	
registration	of	the	head,	we	measured	each	subject’s	head	shape	prior	to	the	MEG	scan	
using	a	handheld	FastSCAN	laser	scanner	(Polhemus,	VT,	USA).	We	used	the	laser	scanner	
to	digitize	8	locations:	3	on	the	forehead,	the	nasion,	the	left	and	right	tragus,	and	the	left	
and	right	peri-auricular	points,	and	marked	these	locations	with	a	non-permanent	pen.	We	
then	placed	5	electrodes	on	the	same	locations	on	the	forehead	and	peri-auricular	points.	
Before	and	after	the	main	MEG	experiment,	recordings	were	made	of	the	marker	locations	
(electrodes)	within	the	MEG	dewar.	
4.4.2 MRI 

Structural	MRI	scanning	was	conducted	at	the	New	York	University	Center	for	Brain	
Imaging	using	either	a	3T	Siemens	Allegra	(subjects	S1,	S3-S6),	or	a	3T	Siemens	Prisma	
(subjects	S2,	S7-S12).	High	resolution	T1-weighted	(T1w)	whole	brain	anatomical	images	
(1	mm3	isotropic	voxels)	were	collected	for	each	subject	with	a	3D	rapid	gradient	echo	(or	
‘MPRAGE’)	sequence.	

4.5 Data analysis 

4.5.1 Reproducible computation and code sharing 

All	analyses	were	conducted	in	MATLAB	(MathWorks,	MA,	USA).	The	analysis	code	and	
data	are	made	publicly	available	via	the	Open	Science	Framework	at	the	URL	
(https://osf.io/52mqt/).	The	code	on	this	site	includes	scripts	to	reproduce	all	figures	from	
the	minimally	pre-processed	data.	Each	data	figure	has	a	single	script	named	makeFigureX	
(where	‘X’	is	the	figure	number).	

4.5.2 MEG preprocessing 

Raw	MEG	files	were	read	into	MATLAB	by	the	FieldTrip	Toolbox	(Oostenveld,	Fries,	Maris,	
&	Schoffelen,	2011	&	Schoffelen,	2011).	MEG	data	contained	6-s	stimulus	and	6-s	blank	
blocks,	which	were	sub-divided	into	1-s	non-overlapping	epochs.	The	first	1-s	epoch	in	
each	block	was	excluded	from	analysis	to	avoid	the	transient	response	caused	by	a	change	
of	the	stimulus.	

We	then	detected	and	removed	outlier	sensors	and	epochs	by	an	automated	routine	
This	routine	was	also	used	in	our	previous	study	(Kupers	et	al.,	2018)	and	is	publicly	
available	in	the	code	repository	linked	on	the	OSF	website	(https://osf.io/52mqt/,	function	
nppPreprocessData.m).	This	routine	computes	the	variance	of	the	time	series	within	each	1-
s	epoch	and	labels	as	‘bad’	those	epochs	having	a	variance	that	was	either	20	times	smaller	
or	20	times	larger	than	the	median	variance	across	all	epochs.	If	more	than	20%	of	the	
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epochs	were	‘bad’	across	individual	sensors,	the	entire	epoch	was	removed	from	the	
analysis.	Similarly,	if	more	than	20%	of	the	epochs	were	labeled	‘bad’	within	individual	
sensors,	the	entire	sensor	was	removed.	For	those	‘bad’	epochs	that	were	not	removed	by	
previous	thresholds,	the	1-s	time	series	replaced	by	the	spatially	weighted	interpolation	of	
time	series	from	nearby	sensors	(i.e.,	weighting	sensors	inversely	with	the	distance).	On	
average,	this	automated	procedure	removed	4.9	sensors	and	2.3%	of	the	1-s	epochs	per	
subject	session	due	to	noise	or	defect	sensors.	This	preprocessing	step	is	similar	to	other	
preprocessing	algorithms	(e.g.	‘Autoreject’	by	(Jas	et	al.,	2018))	and	we	believe	that	any	
such	algorithm	could	substitute	our	preprocessing	routine.	

MEG	data	were	separated	into	two	data	components:	a	stimulus-locked	and	
broadband	value.	For	comparison	of	the	two	signal	types,	we	choose	to	analyze	both	types	
in	units	of	amplitude.	Although	we	defined	the	broadband	response	in	terms	of	the	power	
spectrum	in	prior	work	(Winawer	et	al.,	2013;	Kupers	et	al.,	2018)	(the	square	of	the	
amplitude	spectrum),	we	choose	units	of	amplitude	for	both	components	in	this	paper.	The	
amplitude	domain	is	justified	because	both	the	stimulus-locked	and	broadband	responses	
were	normally	distributed	in	amplitude,	whereas	only	broadband	(not	stimulus-locked)	
distributions	were	normally	distributed	in	power.	Normally	distributed	variables	are	
better	suited	for	statistical	summaries	than	skewed	distributions.	Nonetheless,	the	pattern	
of	results	does	not	change	if	we	compute	both	data	components	as	power,	or	stimulus-
locked	responses	in	amplitude	and	broadband	responses	in	power.		

For	all	but	one	subject	(S10),	the	stimulus-locked	component	was	computed	as	in	
the	previous	study.	In	short,	we	computed	the	Fast	Fourier	Transform	of	the	time	series	
within	each	1-s	epoch,	extracted	12	Hz	amplitudes	for	every	epoch,	and	averaged	this	value	
across	epochs	separately	for	stimulus	and	blank.	Data	were	then	summarized	into	one	
value	per	sensor	as	the	difference	in	amplitude	between	averaged	stimulus	and	blank	
epochs.	

For	subject	S10,	we	computed	the	stimulus-locked	amplitudes	after	averaging	the	
time	series	across	epochs	(sometimes	called	the	coherent	spectrum).	This	was	because	the	
MEG	data	for	this	subject	contained	a	large	alpha	response	close	to	the	stimulus	frequency,	
thereby	masking	the	stimulus-locked	response.	Because	the	stimulus	locked	response	has	
about	the	same	phase	in	each	epoch,	but	the	alpha	rhythm	does	not,	averaging	in	time	
reduces	the	alpha	rhythm	much	more	than	the	12-Hz	stimulus	locked	response.	After	
averaging	in	time	and	the	computing	the	12	Hz	amplitude	from	the	Fourier	transformed	
time	series,	the	stimulus-locked	component	was	summarized	as	for	the	other	subjects	
described	above.	If	instead	we	remove	S10	entirely	from	the	analysis,	or	if	we	compute	the	
coherent	signal	for	all	subjects,	the	spatial	topography	of	the	group	average	stimulus-
locked	signal	is	largely	unchanged.	

The	computation	for	the	broadband	component	was	identical	for	all	subjects	and	
both	studies:	we	took	the	geometric	mean	of	the	log	amplitude	within	60-150	Hz,	excluding	
frequencies	that	could	potentially	include	stimulus-locked	harmonics	(multiples	of	12).	As	
with	the	stimulus	locked	response,	this	resulted	in	one	value	per	epoch	per	sensor,	which	
were	averaged	separately	for	stimulus	and	blank	periods	and	summarized	as	the	difference	
between	the	stimulus	and	blank	amplitudes.	
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To	increase	the	signal-to-noise	ratio	of	the	broadband	response,	we	applied	a	
denoising	algorithm	on	individual	1-s	epochs	developed	in	our	lab	previously	(Kupers	et	al.,	
2018).	This	denoising	algorithm,	called	NoisePool-PCA,	identifies	sensors	that	show	small	
or	no	response	to	the	stimulus	as	the	‘noise	pool’.	Data	from	the	noise	pool	are	used	to	
compute	noise	components	for	each	1-s	epoch	using	principal	components	analysis.	These	
noise	components	are	then	projected	out	from	all	sensor	time	series	for	each	1-s	epoch.	For	
every	subject,	we	projected	out	the	number	of	PCs	that	gave	the	highest	coefficient	of	
determination,	or	the	first	10	PCs	if	no	maximum	was	reached	within	the	first	10	PCs.	The	
denoising	algorithm	increases	the	SNR	in	the	broadband	response,	but	does	not	cause	a	
systematic	change	in	the	spatial	pattern	of	the	sensor	responses.	This	is	evident	from	
figures	9	and	10	in	Kupers	et	al.	(2018),	top	row.	

4.5.3 MRI preprocessing 

T1-weighted	anatomy	scans	were	co-registered	and	segmented	into	gray	and	white	matter	
voxels	using	FreeSurfer’s	recon-all	auto-segmentation	algorithm	(Dale,	Fischl,	&	Sereno,	
1999;	Fischl,	Sereno,	&	Dale,	1999).	For	each	individual	subject’s	cortical	surface,	we	
applied	anatomical	templates	of	retinotopy	using	the	publicly	available	algorithm	
published	by	Benson	et	al.	(2014).	This	algorithm	uses	an	algebraic	model	of	retinotopy	on	
the	flattened	cortical	surface	anatomy,	resulting	in	a	template	for	occipital	areas	V1,	V2,	
and	V3,	with	their	corresponding	eccentricity	and	polar	angle	representation.	The	
eccentricity	template	ranges	from	0.1	to	80	degrees	in	visual	angle	and	the	polar	angle	
template	from	0	to	360	degrees.	The	Benson	et	al.	algorithm	is	implemented	in	a	Docker	
(https://hub.docker.com/r/nben/occipital_atlas)	and	does	not	need	any	manual	
intervention.	The	V1-V3	templates	are	reported	to	be	at	least	as	accurate	as	visual	maps	
based	off	6.4	minutes	of	retinotopy	scans	(Benson	&	Winawer,	2018).	

To	check	the	contribution	of	higher	visual	areas	to	the	spatial	topography	of	
predicted	responses	in	MEG	sensors,	we	ran	our	model	simulations	with	two	more	atlases	
(Supplementary	Figure	S7).	The	first	additional	atlas	was	the	extended	version	of	the	
Benson	et	al.	templates	(Benson	&	Winawer,	2018)	providing	polar	angle	and	eccentricity	
maps	for	V1,	V2,	V3,	hV4,	VO1/2,	LO1/2,	TO1/2,	V3A/B.	This	allowed	us	to	limit	the	cortical	
sources	to	the	stimulus	aperture	in	every	visual	area	(0.18-11	degrees).	The	second	atlas	
was	a	probabilistic	atlas	of	visual	areas	provided	by	Wang	and	colleagues	(Wang,	Mruczek,	
Arcaro,	&	Kastner,	2015).	This	atlas	provides	the	borders	of	25	visual	areas:	V1v/d,	V2v/d,	
V3v/d,	hV4,	VO1/2,	PHC1/2,	TO1/2,	LO1/2,	V3A/B,	IPS0-5,	SPL1,	and	FEF.	These	areas	
were	defined	by	an	experiment	with	a	stimulus	extent	of	~15	degrees	eccentricity.	
4.5.4 MRI-MEG alignment 

We	used	the	Brainstorm	toolbox	(Tadel	et	al.,	2011)	to	align	the	T1-weighted	anatomy	to	
the	MEG	helmet	and	the	head	using	6	fiducials	points:	the	nasion,	left/right	peri-auricular,	
interhemispheric,	anterior	and	posterior	commissure.	This	procedure	resulted	in	a	single	
coordinate	space	for	all	three	measurements.		

When	importing	subject’s	FreeSurfer	folder	into	the	Brainstorm	toolbox,	the	T1w	
anatomy	and	cortical	surfaces	are	by	default	downsampled	to	7,501	vertices	per	
hemisphere.	We	likewise	downsampled	the	retinotopic	atlases	to	the	same	resolution	using	
nearest-neighbor	interpolation.		
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4.5.5 V1-V3 source time series simulation using noiseless sine waves 

For	simulations	in	Figure	5	and	8,	the	cortical	time	series	for	responsive	voxels	(i.e.,	in	the	
V1-V3	maps	and	with	population	receptive	field	(pRF)	centers	within	the	stimulus	
aperture)	were	sine	waves	of	unit	amplitude	and	frequency	of	one	cycle	per	epoch.	The	
time	series	for	all	other	vertices	was	fixed	at	0.	We	generated	1,000	epochs	for	a	simulation,	
each	consisting	of	10	time	points.	

For	the	synchronous	simulations,	the	phase	of	each	sine	wave	was	identical.	For	
asynchronous	simulations,	the	phase	was	randomized	across	epochs.	For	Supplementary	
Figure	S9,	we	simulated	time	series	with	intermediate	levels	of	synchrony.	Here,	the	phases	
were	sampled	from	Von	Mises	distributions	varying	in	width	(kappa	parameter)	between	
all	asynchronous	(kappa=0)	and	all	synchronous	(kappa=100*pi).	
4.5.6 V1-V3 source time series simulation using a more complete, biologically plausible 
generation of cortical responses 

In	addition	to	simulating	cortical	time	series	using	noiseless	sine	waves,	we	also	
implemented	a	more	detailed	simulation	of	synchronous	and	asynchronous	V1-V3	
responses	based	on	neural	biophysics	(Supplementary	Figure	S6).	This	simulation	
generates	ECoG	responses	in	visual	cortex	to	full-field	contrast-reversing	dartboard	
patterns	and	is	adapted	from	the	simulation	previously	published	by	Winawer	et	al.	(2013).	
In	brief,	we	first	simulate	incoming	spikes	generated	by	a	Poisson	process.	Each	spike	
elicits	a	synaptic	current	assuming	a	time-invariant	linear	system,	characterized	by	a	
gamma	impulse	response	function	(exponent	2,	time	constant	0.0023	s).	These	currents	are	
then	summed	by	the	dendrite	as	a	leaky	integrator	(time	constant	alpha	=	0.1	s).	The	time	
constants	are	identical	to	those	by	Winawer	et	al.	(2013)	and	based	on	a	specific	version	of	
the	ECoG	simulation	published	by	Miller	et	al.	(Miller	et	al.,	2009).	

The	time-varying	rate	of	the	spike	arrivals	is	modeled	as	the	sum	of	three	process:	
an	evoked	response,	an	induced	response,	and	spontaneous	activity.	The	evoked	response	
rate	is	an	impulse	response	function	convolved	with	the	stimulus	reversal	events.	The	
induced	response	is	an	elevated	rate	whenever	the	stimulus	is	present.	The	induced	
activity	is	constant	across	time.	The	rates	are	15	spikes/second/synapse	for	the	evoked	
and	induced	response,	and	10	spikes/second/synapse	for	the	spontaneous	activity.	(For	
the	evoked	response,	the	rate	is	the	mean	across	time).	We	simulated	100	1-s	epochs	with	
1-ms	time	bins.	Just	as	in	our	simple	simulation,	we	simulate	these	ECoG	responses	for	each	
vertex	within	V1-V3	and	multiply	the	responses	with	individual	subject’s	gain	matrix	to	get	
predicted	MEG	sensor	responses	(see	next	section	4.5.7).	The	exact	details	of	all	steps	in	
simulation	are	in	the	MATLAB	script,	makeSupplementaryFigure6.m.		

	 To	analyze	the	simulated	data,	we	extract	the	stimulus-locked	and	broadband	
amplitudes	from	stimulus	and	blank	periods	in	MEG	sensors,	using	the	same	procedure	as	
for	the	analysis	of	actual	MEG	data	with	one	modification.		For	the	stimulus-locked	
response,	we	subtracted	the	estimated	broadband	component.	This	is	because	the	
simulated	broadband	response,	unlike	the	observed	MEG	broadband	response,	included	
temporal	frequencies	that	overlapped	the	stimulus	frequency.	
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4.5.7 Forward model (sources to sensors) 

After	the	alignment	of	the	T1w	anatomy	and	MEG	sensor	space,	we	computed	the	gain	
matrix	(also	known	as	‘head	model’	or	‘lead	field	matrix’)	with	Brainstorm’s	MEG	
Overlapping	Spheres	method	(Huang	et	al.,	1999).	This	algorithm	fits	one	local	sphere	
under	each	MEG	sensor,	resulting	in	a	weighted	sum	of	cortical	locations	in	FreeSurfer’s	
downsampled	pial	surface	contributing	to	that	MEG	sensor.	For	panel	A	and	B	in	
Supplementary	Figure	S7,	we	use	the	three-shells	Boundary	Element	Model	(BEM)	
instead	(Kybic	et	al.,	2005;	Gramfort	et	al.,	2010).	The	constrained	gain	matrix	derived	from	
BEM	contained	the	same	number	of	vertices	as	the	Overlapping	Spheres	head	model.	

For	both	head	models,	the	gain	matrices	were	limited	to	one	orientation	per	vertex	
perpendicular	to	the	cortical	surface.		

To	predict	the	responses	of	the	MEG	sensors,	we	use	the	following	equation:	

𝑅	# = 𝐺	 ∙ 	𝑆		 	 	 (	Eq	1	) 

where	𝑅( 	is	the	predicted	sensor	responses	(k	time	points	x	m	sensors),	in	this	case	10,000	
time	points	(1,000	epochs	of	10	time	points)	by	157	sensors.	G	is	the	constrained	gain	
matrix	computed	by	Brainstorm	(n	sources	x	m	sensors),	in	this	case	15,002	sources	by	157	
sensors.	S	is	the	source	activity	(k	time	points	by	n	sources),	in	this	case	10,000	time	points	
(1,000	epochs	of	10	time	points	each)	by	15,002	sources.	
4.5.8 Summary metrics and visualization 

To	summarize	the	simulated	neural	responses	predicted	by	the	forward,	we	computed	the	
amplitude	at	the	input	frequency	of	the	sine	wave	(1	cycle	per	epoch)	using	the	Fourier	
transform	of	the	predicted	responses	𝑅( 	for	the	V1-V3	time	series.	This	was	done	separately	
for	synchronous	or	asynchronous	simulated	time	series.	We	averaged	the	amplitudes	
across	epochs	for	each	sensor	as	for	MEG	data.	MEG	data	were	summarized	in	individual	
subjects	into	stimulus-locked	and	broadband	amplitudes.	For	every	subject,	we	subtract	
the	mean	signal	across	blank	epochs	from	the	mean	signal	across	stimulus	epochs.		

Because	the	stimulus-locked	frequency	(12	Hz)	is	within	the	typical	alpha	range,	one	
might	be	concerned	that	our	contrast	summary	measure	reflects	the	endogenous	alpha	
rhythm	and	not	the	stimulus-driven	response.	To	check	for	this,	we	compared	the	
responses	at	the	stimulus	frequency	and	a	nearby	frequency	(12	Hz	and	11	Hz),	both	when	
the	stimulus	is	present	and	when	it	is	absent	(blanks).	We	find	that	when	the	stimulus	is	
present,	the	amplitude	at	the	stimulus	frequency	is	about	20	times	larger	than	the	
amplitude	at	adjacent	frequencies.	During	the	blank,	this	is	not	the	case	-	the	amplitude	is	
about	the	same	across	nearby	frequencies	in	the	alpha	band.	This	is	consistent	with	the	12	
Hz	amplitude	during	visual	stimulation	being	largely	driven	by	the	stimulus.	See	
s_reviewFigures.m	for	details.		

The	stimulus-locked	and	broadband	amplitudes	were	thresholded	by	a	signal-to-
noise	ratio	(SNR)	of	1.	The	SNR	was	calculated	as	the	ratio	of	the	mean	to	the	standard	
deviation	of	the	stimulus-locked	or	broadband	summary	measure	across	1000	bootstraps.	
Group	averages	were	calculated	as	the	mean	SNR	across	subjects.	
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We	visualized	the	predictions	or	observed	data	for	each	sensor	on	a	topographic	
sensor	map	using	the	FieldTrip	toolbox	(Oostenveld	et	al.,	2011).	Observed	data	have	a	
color	map	restricted	to	the	97.5th	percentile	of	the	plotted	response,	predicted	responses	
are	normalized	by	the	maximum	of	the	synchronous	sensor-wise	average	across	subjects.	
We	further	plotted	isocontour	lines	around	the	10	sensors	with	the	largest	response	(93.6th	
percentile	of	the	data	or	model	predictions.	

Topographic	sensor	maps	were	summarized	as	1-dimensional	line	plots.	A	narrow,	
vertical	Gaussian	pooling	window	was	used	to	compute	a	weighted	average	across	all	
sensors	for	each	horizontal	bin.	This	pooling	window	averaged	amplitudes	for	each	sensor	
falling	within	the	bin,	using	100	equally	sized	bins	from	the	most	left	to	most	right	located	
MEG	sensor.	For	individual	observers,	the	average	sensor	amplitudes	were	computed	from	
the	contrast	map	(difference	between	average	stimulus	and	average	blank	epochs	for	
either	stimulus-locked	or	broadband	responses).	Error	bars	were	computed	by	
bootstrapping	the	weighted	average	and	taking	the	standard	deviation	across	1000	
bootstraps	for	each	bin.	For	the	group	average,	we	used	the	arithmetic	mean	across	
observers	for	stimulus-locked	or	broadband	responses	to	compute	the	weighted	group	
average	and	error	bars	representing	the	standard	error	across	observers	for	each	bin.	
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6. Supplementary Material 
	

	
Supplementary	Figure	S1.	Observed	stimulus-locked	and	broadband	responses	for	all	individual	
subjects.	(A)	Topographic	MEG	sensor	maps	for	stimulus-locked	(row	1-2)	and	broadband	response	(row	3-
4).	Both	stimulus-locked	and	broadband	responses	are	in	femto	Tesla	amplitudes.	(B)	Weighted	average	of	
stimulus-locked	(row	1-2)	and	broadband	(row	3-4)	response	across	posterior	sensors.	Colored	line	shows	
sample	mean	of	moving	window	taking	the	Gaussian	weighted	average	across	posterior	MEG	sensors,	error	
bars	are	standard	deviation	across	bootstraps.	
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Supplementary	Figure	S2.	Group	average	broadband	responses	analyzed	in	separate,	narrow	
frequency	bands.	(A)	Topographic	MEG	sensor	maps	of	broadband	responses	limited	to	10-Hz	frequency	
bands	from	60-150	Hz,	excluding	stimulus	harmonics.	(B)	Weighted	average	of	broadband	responses	across	
sensors.	The	shaded	line	shows	the	sample	mean	and	standard	deviation	across	bootstraps.	The	black	boxes	
highlight	the	frequency	range	used	for	analysis	in	the	manuscript,	60-150	Hz.	The	spatial	pattern	in	most	of	
the	narrow	bins	resembles	the	pattern	in	the	wide	bin.		
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Supplementary	Figure	S3.	Group	average	stimulus-locked	response	for	12	Hz	only	versus	all	stimulus	
harmonics	up	to	144	Hz.	Left:	Identical	to	group	average	in	Figure	3.	Topographic	MEG	sensor	maps	for	
stimulus-locked	response	analyzed	as	the	difference	between	stimulus	and	blank	epochs	at	12	Hz,	with	a	1D	
summary	of	the	sensor	responses	shown	below.	Right:	Same	as	left	panel,	but	now	the	stimulus-locked	
response	is	computed	as	the	geometric	mean	across	all	12	Hz	harmonics	from	12	to	144	Hz	(excluding	60	and	
120	Hz	as	those	frequencies	are	contaminated	by	line	noise).	Both	the	left	and	right	panel	show	bimodal	
spatial	distributions.	
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Supplementary	Figure	S4.	Forward	model	predictions	of	signals	from	V1-V3	to	MEG	sensors	for	all	
individual	subjects.	(A)	Top	panel:	Model	predictions	using	synchronous	V1-V3	sources,	all	individual	
amplitudes	are	arbitrary	units	with	the	same	scale	factor	shown	in	the	upper	right.	Bottom	panel:	Same	as	top	
panel,	but	for	asynchronous	V1-V3	sources.	All	amplitudes	are	arbitrary	units.	Predicted	sensor	responses	for	
both	synchronous	and	asynchronous	simulations	are	normalized	to	the	largest	response	in	the	synchronous	
spatial	map	of	the	sensor-wise	group	average	(see	for	example	Figure	5A,	top	left	panel).	(B)	1D	summary	of	
the	sensor	responses	in	A.	
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Supplementary	Figure	S5.	Forward	model	predictions	of	signals	in	MEG	sensors	comparing	sources	
fromV1-V3,	V1	only,	and	V2	and	V3	without	V1.	Layout	as	in	Figure	5.	(A)	Model	predictions	for	average	
across	12	subjects	using	sensor-wise	averaging.	(B)	Model	predictions	for	a	single	subject	(S12).	All	
amplitudes	are	arbitrary	units.	Predicted	sensor	responses	for	both	synchronous	and	asynchronous	
simulations	are	normalized	to	the	largest	response	in	the	synchronous	spatial	map	of	the	sensor-wise	group	
average	(top	left	panel	in	A).	 	
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Supplementary	Figure	S6.	Forward	model	predictions	for	biologically	plausible	simulated	cortical	
signals.	We	implemented	a	more	detailed	simulation	of	cortical	timeseries	adapted	from	previously	
published	ECoG	simulations	by	Winawer	et	al.	(2013).	(A)	We	generate	cortical	time	series	to	12	Hz	contrast	
reversing	dartboard	patterns	or	no	stimuli	(blanks).	Left	panel	shows	the	average	time	course	of	a	single	V1	
vertex	across	100	simulated	stimulus	epochs	(black	line)	or	blank	epochs	(gray	line).	Middle	panel	shows	
Fourier	amplitudes	averaged	across	stimulus	or	blank	epochs	of	single	cortical	location.	Simulated	stimulus	
epochs	contain	clear	stimulus-locked	responses	at	12	Hz	and	harmonics	and	a	broadband	response	up	to	
lower	frequencies.	Both	stimulus-locked	and	broadband	response	fall	off	with	a	1/f	slope.	The	cortical	time	
series	are	multiplied	with	the	gain	matrix	from	the	Overlapping	Spheres	head	model	(Huang	et	al.,	1999),	
resulting	in	the	predicted	MEG	sensor	time	series.	Right	panel	shows	the	Fourier	amplitudes	of	a	single	MEG	
sensor.	(B)	Topographic	maps	showing	the	forward	model	predictions	for	the	stimulus-locked	component	
extracted	from	simulated	ECoG	signals	in	V1-V3	sources.	(C)	Same	as	panel	B,	but	for	the	broadband	
component	extracted	from	simulated	ECoG	signals	in	V1-V3	sources.	Both	panels	show	amplitudes	in	
arbitrary	units.	
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Supplementary	Figure	S7.	The	effect	of	volume	conduction	head	model	and	included	ROIs	on	forward	
model	predictions	of	signals	in	MEG	sensors.	(A)	Forward	model	predictions	for	the	average	across	12	
subjects	using	the	overlapping	spheres	head	model.	This	means	that	synchronous	and	asynchronous	source	
activity	were	simulated	and	projected	to	the	MEG	sensors	using	a	gain	matrix	computed	from	the	overlapping	
spheres	head	model	(Huang	et	al.,	1999).	Columns	compare	synchronous	and	asynchronous	sources	from	V1-
V3	(first	column)	or	all	12	ROIs	in	the	latest	version	of	the	Benson	atlas	(Benson	&	Winawer,	2018)	(second	
column)	or	25	ROIs	in	the	probabilistic	Wang	et	al.	(2015)	atlas	(third	column).	Since	the	Wang	et	al.	(2015)	
atlas	only	provides	the	outlines	of	visual	areas,	all	vertices	within	the	ROIs	were	used,	corresponding	to	
approximately	0	to	15	deg.	(B)	Same	as	in	(A)	but	for	single	subject	example.	Data	are	from	subject	S12.	All	
amplitudes	are	arbitrary	units.	(C	&	D)	Similar	to	panel	A	and	B,	but	using	forward	model	predictions	for	the	
average	across	12	subjects	using	the	3-layer	boundary	element	model	(Kybic	et	al.,	2005;	Gramfort	et	al.,	
2010).	Group	average	topographies	are	averaged	in	sensor-space.	Separate	for	each	type	of	head	model	and	
ROI	selection,	predicted	sensor	responses	for	both	synchronous	and	asynchronous	simulations	are	
normalized	to	the	largest	response	in	the	synchronous	spatial	map	of	the	sensor-wise	group	average	(top	
panels	in	A	and	C).		
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Supplementary	Figure	S8.	The	effect	of	eccentricity	on	forward	model	predictions	of	signals	in	MEG	
sensors.	(A)	Forward	model	predictions	for	synchronous	(top)	and	asynchronous	(bottom)	V1-V3	sources,	
averaged	across	12	subjects.	Columns	represent	predictions	for	different	eccentricity	bands	accumulating	in	
width	from	a	foveal	ring	(left)	to	the	entire	stimulus	aperture	(right).	Last	column	replots	the	contour	lines	
for	all	eccentricity	bands	in	a	single	mesh.	Data	are	averaged	in	sensor-space.	(B)	Same	as	in	(A)	but	for	a	
single	subject	example,	data	are	from	subject	S12.	All	amplitudes	are	arbitrary	units.	Predicted	sensor	
responses	for	both	synchronous	and	asynchronous	simulations	are	normalized	to	the	largest	response	in	the	
synchronous	spatial	map	of	the	sensor-wise	group	average	(“Full	aperture”,	top	right	panel	in	A).	
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Supplementary	Figure	S9.	The	effect	of	intermediate	source	synchrony	levels	on	forward	model	
predictions	of	signals	in	MEG	sensors.	(A)	Forward	model	predictions	for	the	average	across	12	subjects.	
From	left	to	right,	rows	show	model	predictions	for	source	activity	where	its	phase	was	sampled	from	a	Von	
Mises	distribution	that	decreases	in	width.	A	Von	Mises	distribution	with	a	kappa	of	0	gives	a	uniform	
distribution	between	–pi	and	pi,	resulting	in	asynchronous	source	activity	with	randomized	phases.	The	
narrowest	Von	Mises	distribution	(kappa	=	100*pi)	has	a	FWHM	of	0.13*pi	and	was	used	to	sample	phases	
for	synchronous	sources.	Data	are	averaged	in	sensor-space.	(B)	Same	as	(A)	but	for	a	single	subject.	Data	are	
from	subject	S12.	All	amplitudes	are	arbitrary	units	and	normalized	to	the	largest	sensor	response	in	the	fully	
(100*pi)	synchronous	sensor-wise	group	average	(“All	synchronous”,	lower	right	panel	in	A).	(C)	Replotted	
contour	lines	from	forward	model	predictions	using	V1-V3	sources,	averaged	across	12	subjects,	for	the	12	
Von	Mises	distributions.	Colors	represent	the	different	Von	Mises	distributions	used	in	forward	model	
predictions	as	shown	in	panel	D	below.	(D)	Von	Mises	distributions	to	sample	the	phases	of	asynchronous	
(kappa=0,	blue),	synchronous	(kappa=100*pi,	orange)	or	10	mixtures	between	the	two	extremes.	Kappa	
values	for	mixtures	were	log	spaced	between	0	and	100*pi.	
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