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Abstract

Whole genome and exome sequencing studies are used to test the association of rare genetic
variants with health traits. Many existing WGS efforts now aggregate data from heterogeneous
groups, e.g. combining sets of individuals of European and African ancestries. We here
investigate the statistical implications on rare variant association testing with a binary trait
when combining together heterogeneous studies, defined as studies with potentially different
disease proportion and different frequency of variant carriers. We study and compare in
simulations the type 1 error control and power of the naive Score test, the saddlepoint
approximation to the score test (SPA test), and the BinomiRare test in a range of settings,
focusing on low numbers of variant carriers. Taking into account test performance as well as
computation considerations, we develop recommendations for association analysis of rare
genetic variants. We show that the Score test is preferred when the case proportion in the
sample is 50%. Otherwise, for very low number of carriers, BinomiRare is preferred due to

computational efficiency and type 1 error control. When there are at least 90 carriers in the
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combined sample, the SPA test generally controls the type 1 error and is preferred over
BinomiRare due to higher power and wider implementation in software packages. Finally, we
recommend to not sample controls in order to generate more balanced case-control ratio,

rather, to use appropriate analytic methods. Sampling of controls reduces power.

Introduction

Genetic association studies test the association of genetic variants with a trait. Genome-wide
association studies (GWAS) typically test the association of each of single, common, genetic
variants across the genome. This is often also done in Whole Genome Sequencing (WGS)
studies, that also test rarer genetic variants. In a few examples from the WGS analysis in the
Trans-Omics of Precision Medicine (TOPMed) program, investigators used a minor allele
frequency threshold (MAF) of 0.001 and allowed for a minimum of 20 minor allele counts for
consideration of a variant in association analyses with glycated hemoglobin [1]; a MAF
threshold of 0.001 corresponding to at least 32 counts of the rare variant allele was applied in a
study of lipids [2]; and variants with 10 counts of the rare allele in the sample were considered
in an analysis of brain imaging measures [3]. In other examples, investigators test rare variants

associations when studying a specific gene region of interest [e.g. 4, 5].

It is known that tests of the association of a genetic variant with a binary outcome do not
control the type 1 error in some settings, and the problem is exacerbated when the genetic
variant is rare [6]. Specifically, when the proportion of cases in the study is low, p-values of

likelihood-based tests are not well calibrated. A few tests were developed for the association of
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single genetic variants, that can also adjust for covariates. The Firth test [7], highlighted by Ma
et al. [6], uses a higher order approximation to the likelihood to compute standard errors, and
is more well calibrated compared to standard tests. Dey et al. [8] developed the saddlepoint
approximation (SPA) to the p-value computation of the Score test based on a cumulant
generating function rather than the standard normal distribution approximation, which is
better calibrated and has improved control of type 1 error compared to the traditional Score
test p-value, and is faster than the Firth test. Lee et al. [8] developed a resampling method for
calibrating single-variant tests (as well as variant-set tests), which can also account for
covriates. Sofer [9], [10] introduced the BinomiRare test, which is robust to low case
proportion and controls the type 1 error for any number of rare allele carriers. In an extensive
simulation studies, Ma et al. demonstrated that the count of the rare allele determines the type
1 error and the power of statistical tests. Ma, Blackwell [6] and Sofer [9] considered settings
with one or multiple samples with different case proportions, however, they did not consider
the scenario in which multiple samples with different frequencies of the genetic variant allele
are pooled. This scenario is important, because modern large sequencing studies such as the
NHLBI’s Trans-Omics in Precision Medicine (TOPMed) and the NHGRI’s CCDG aggregate
individual level data from WGS studies conducted in diverse populations, where allele

frequencies often differ between populations.

We set out to study rare variant association testing when pooling individual level data from
various studies with potentially different population characteristics: allele frequency and case

proportion. To limit the high number of possible combinations of studies’ characteristics, we
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focus on two studies of the same sample size and vary the disease prevalence in each of the
studies as well as the count of the rare variant allele. We focus on tests that can account for

covariates, and that do not use resampling, to limit computation time.

Methods

Logistic association model for two studies
Suppose that individual level data from two studies with n; and n, individuals respectively are
combined. For study j € {1,2} Let the binary outcome D;; € {0,1},i; = 1,...,n; follow a
logistic model with
logit(p(Dji = 1)) = Bjo + ji; Bjg»

here assuming no confounders or covariates are adjusted for. When the data are pooled across
studies, the model can be written instead as

logit(p(Di=,)) = I(individual i in study 1)y, + I(individual i in study 2)Bo, + g By

=x;B,

where we now add study-specific intercepts in the joint model. Note that this formulation is
statistically equivalent to a formulation with the same intercept for all individuals, and a
covariate for one of the studies. To simplify exposition, let x; = (x;1, Xi2, 9:)7 , B =

(Bo1, Boz: By)"

Tests for association of a variant with the outcome
Both the Score and the BinomiRare tests (and the SPA, which is a score test with better

calibrated p-value) use estimates of within-sample disease probabilities under the null
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hypothesis of no association between the outcome and the genetic variant, i.e. under Hy: B, =
0. Clearly, under the null, By, = loglt(Zl -1 Di1 /nq) = logit(my), and Boz =

logit(Z?j=1 D5 /n,) = logit(m,), where expit(x) = exp(x)/[1 + exp(x)]is the inverse
function of the logit function. The derivative of the expit(-) function is aa—xexpit(x) =

exp(x)/[1 + exp(x)]*. For n = ny + n,, the score for B, is derived as:

0
s(B) = BZOQL(/”D) = aﬁzlog [expit(x"; B)Pt (1 — expit(x";B)'Pi] =
5 n
= ﬁz D;loglexpit(x"; B)] + (1 — Dy)log[1 — expit(x";B)] =
i=1
—\n T D; _(1—Di)exp(xTiB) _ _ exp(xT;B) n o _
- Z i{1+exp(xTiﬁ) 1+exp(xT;B) } = Li=1 X i{ L 1+exp(xT; ﬁ)} L l{D
expit(x";B)},

where in the score test for B, Bo1and B, are estimated under the null, and in this setting, the

score for S, simplifies to:

U(ﬁg) = Z gitD; - expit[(xib xiz)T(Bop 301)]}

Z 91i(Dy; —mq) + Z 92i(Dz; — 13)

i1=1
If a genetic variant is rare, then most carriers of the variant are heterozygotes, i.e. most people
have g; = 0, a few people have g; = 1, and almost no one has g; = 2, meaning that we can
assume a dominant mode of variant association. We then further simplify this expression by

introducing additional notation. For study j, let C]_o and cjlbe the number of carriers of a rare
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variant allele among people with the outcome D;; = 0 and among those with the outcome
Dj; = 1, respectively. Then the score is now:
U(:Bg) =c'(1-m) —c,°m + ;' (A —my) — ¢,°m, =
ct(1—my) = (¢ — ey + c;(1 — 1) — (¢ — )M, =
(ci —cmy) + (c; — €m3)
The score for ﬁg is the sum of scores in each of the two studies, and in each study, the score is a
difference between the observed and the expected number of diseased carriers, under the

observed disease proportion in the study.

In the standard Score test, the variance of the score for 8, is estimated by deriving the
information matrix, and then extracting the appropriate entry from its inverse. For logistic

regression, the information matrix is given by:

d d

I(B) = = 37535 09L(BI D) = — gz Bisy x{D; — expit(x" i)} =
3 . exp(xi"B)
37 =1 XiexPit (X" iB) = Ty Xy oo e X

This can be written in a matrix form. Define the following matrices:

1 0 g4 S11

—_
o

Q

= .o
S

iy

Sln1

Xnx3 = Wosn =

0 1 anz San
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where X is the design matrix of the regression of the disease on the variant, accounting for two
studies using study-specific intercepts, and W is the diagonal matrix with diagonals, for person

exp(x;TB)

Trexpop en

jifromstudyj,j € {1,2},i = 1,...,n; having s;; =

() = XTwX.

Noting that for the Score test, the information matrix will be evaluated under the null;
therefore, the only covariates are the study-specific intercepts, we have that for all individuals

exp(Bo1)

exp(Boz) .
[1 +exp(Bo1)]?’ Then:

in Study one sy; =851 = [1 +exp(ﬁoz)]2

and in study two s,; = 5, =

n,S; 0 €151
I(ﬁ) = XTWX = 0 Tl252 Czsz
151 Cr Sy C151 + (SP1Y)

Using formula for matrix inverse, one can compute the entry of I()~! corresponding to By, as

nin,

[1(B) ™ 135 =

n15,6,(Ny — €3) + nycys.(ny — C1).

Its inverse is the variance of the score:

—~ _ 1 526y — ) | sie (g —¢q)
e (U(ﬁg)) IO n " ny

which is the sum of the scores for B, in each of the two studies. The estimator of the variance
of the score depends, through s, s,, on the observed outcome proportion in the sample, on
the observed variant allele count in the sample, and on the sample size. When the observed
variant count is very low compared to the number of individuals in the study, e.g. when ¢; is
fixed and n — oo, we have that ¢;(n; — ¢;)/n; = ¢; for j € {1,2}, so that both the score and its

variance do not depend on the sample size, but rather only on the variant count and the
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disease proportion in the study. Note that this asymptotic setting is standard for genome

sequencing data because as the sample size grows more low-count variants are observed.

The SPA test [11] instead of using the above score variance estimates, computes a p-value
based on a obtaining a better approximate distribution of the test statistic using a cumulant
generating function, and uses the saddlepoint approximation to solve the resulting optimization

problem.

The BinomiRare test [9] only relies on the observed outcome frequency (more generally, the
outcome probabilities) in the carriers. It takes the vector of estimated outcome probabilities for
the carriers of the rare variants, and uses the Poisson-Binomial distribution [12] to compute a p-
value for testing the null hypothesis of no association between the variant and the outcome.
Therefore, in our simplified settings that do not use covariates, the BinomiRare tests depends
on the numbers of carriers ¢4, ¢,, diseased carriers c11, 021, and the proportions of diseased
individuals in the studies. Because the BinomiRare test does not use a normal approximation to
the Poisson-Binomial distribution, it has a discrete probability mass function. Two types of p-
values can be computed: the standard p-value, and the mid-p-value. Let W ~ Poisson —
Binomial(p), with P being the vector of estimated disease probabilities for the c; + ¢, carriers

of the rare-variant of interest in the two studies. The p-value and mid-p-value are defined as:
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p-value = Pr(W = ¢! +c})

C1+C2 (1)
+ Pr(W = k)x1[Pr(W = k) < Pr(W = c} + c})]
k=1

Pr(W =ci +¢})
2
ne (2)

+ > Pr(W = k)X1[Pr(W = k) < Pr(W = c} + ¢2)]
k=1

mid-p-value =

Clearly, the mid-p-value (2) is less conservative, and therefore will always be smaller than the p-
value (1). However, when the number of carriers is small, it may be too liberal.

Simulation studies

In our simulation studies described henceforth, we generated datasets in the simple settings

described above, and used the computationally efficient implementation of the Score test
U(ﬁg) and var (U(,Bg)). For the SPA test, we used the naive Score test p-value. When it was

smaller than 0.05, we re-computed a p-value using the SPAtest R package [13].

Simulation studies: type 1 error control when combining two studies

We considered four settings of rare variant distributions across studies: (¢;,c;) =

{(10,10), (100,100), (10,100), (100,10)}. We varied the disease proportions in each of the
two studies, so that the disease proportion in study 1 was expit(f;,) € {0.01,0.05,0.2,0.5},
and the disease proportion in study 2 was taking the same values across the simulation studies,
so that it was always lower or equal to the proportion in study 1. In each of the settings defined

by number of carriers and disease proportions we performed 108 simulations withn; = n, =
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10,000, and evaluated type 1 error when using the Score, SPA, and BinomiRare tests with a p-
value threshold of 107%. For the BinomiRare test, we used both the p-value (equation (1); pval)
and the mid-p-value (equation (2), midp). For comparison, we also studied the following
settings:
1. Asimulation study with n; = n, = 5,000, holding all other parameters the same.
2. Asimulation study in which we plugged-in the true, known, per-study disease
prevalence expit(B;,), expit(B,o) rather than estimated them when computing the
Score statistics, with provided disease probabilities for computing BinomiRare mid-p-
values.
3. Simulation studies in which we generated datasets by sampling controls from each

study, with a ratio of up to 3 controls per case and with 1 control per case.

Simulation studies: identifying minimum number of carriers for SPA test

We performed a simulation study with the goal of formulating a recommendation for the
minimum number of carriers required for appropriate type 1 error control by the SPA test when
combining individual level data from heterogeneous studies. To limit the potential number of
simulations, we focused on three possible settings of disease proportion in the two studies:
lexpit(Byo), expit(B1)] € {(0.01,0.01), (0.01,0.5), (0.5,0.5)}, and the number of carriers in
the two studies was varied so that all possible combinations of ¢, ¢, € {10, 15, 20, 25, 30}
were evaluated. We also studied the same settings with the BinomiRare test, with both the pval
and midp options. For the SPA test only, we considered additional settings in which¢; = ¢, €

(35,40, 45,50, 55}.
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Simulation studies: power comparisons

To compare power between tests, we used similar settings to those used for type 1 error
assessment, with the same follow-up comparisons. To generate datasets for these simulations,
we allowed for different probability of disease among carriers of the rare variant, so that
logit(p(D;; = 1)) = Bjo + 9ji; Bjg with, for simplicity, the same effect size 14, = B4 = B4 in
the two studies combined together. Effect sizes varied 8, € {log(2),log(3),log(4),log (5)}.

We used the same p-value threshold of 10™* as before.

Computing approximate power for BinomiRare test

On the dedicated GitHub repository https://github.com/tamartsi/Binary _combine we provide a

function to compute approximate power for the BinomiRare test. The function takes a vector of
estimated outcome probabilities in the sample under the null hypothesis of no association
between genotype and outcome, an odds ratio parameter, p-value threshold for declaring
significance, number of carriers ‘n_carrier’, and number of simulation iterations. Then, in each
simulation iteration it uniformly samples n_carrier outcome probabilities (without
replacement). For each sampled carrier, given its outcome probability under the null p,, the
function computes the outcome probability under the alternative hypothesis p, =
expit[logit(p,) + log(OR)], and uses the binomial distribution to simulate outcome status
using p,4. Then, it uses the BinomiRare test to compute a p-value for the null hypothesis of

Ho: Pear = Do,car » Where pq, is the true vector of outcome probabilities among the carriers,

and Py cqr , is the vector of estimated outcome probabilities under the null. Finally, the power is
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the proportion of p-values computed in the simulations which were lower than the p-value

threshold.

Results

Type 1 error when combining two studies

Figure 1 provides type 1 error comparisons when combining two studies with eachn; = n, =
10,000, with varying disease proportions in the two studies, and four scenarios of number of
carriers across the studies. We compare the naive Score test, the SPA, and the BinomiRare test
with the pval (usual p-value, equation (1)) and midp (mid-p-value, equation (2)) options. The
figure provides the observed test size divided by the desired type 1 error. Ideally, this number
should be 1. Higher numbers indicated inflation (larger number of false detection than

expected), and lower numbers indicate deflation, or conservativeness.

Score test: As is already known, we see that the naive Score test becomes more inflated as the
disease prevalence in the total sample becomes low. Overall the Score performance become
better with increased number of carriers in the combined sample. However, for a fixed number
of carriers, there is a difference in performance depending on which of the two studies have
more carriers: when considering the two non-symmetric scenarios, i.e. the scenarios in which
¢; = 10; ¢, = 100, and the other way around, we see that the Score test performance depend
on the number of carriers in each study. Specifically, in comparison with the settings of ¢; =

¢, = 10, if an analyst required at least 100 carriers in the study with higher disease prevalence

but allowed the number of carriers in the other study to stay 10, the inflation was reduced
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compared to the settings in which 100 carriers were required in the study with lower case
proportion. If the analyst further required both studies to have at least 100 carriers, the
inflation did not improve much. This suggest that when combining multiple studies, it may be
useful to require a minimum number of carriers in the study with the higher disease proportion
in order to stabilize the Score test results.

SPA test: Type 1 error control was mostly appropriate when the total number of carriers in the
combined two-study sample was 110 or 200, with a few settings with low degree of inflation
(see Figure 1). When there were 20 carriers in the combined sample, type 1 error was usually
not controlled, other than in the settings in which the disease proportion was equal in the study
1 and study 2. In this case, SPA was often conservative.

BinomiRare: Type 1 error was always controlled when the usual p-value (pval) was used, and
usually controlled with the midp option. In a few settings, the BinomiRare with the midp option
had low degree of inflation. Due to the discreteness of the Poisson-Binomial distribution (which
is not approximated to a normal distribution by this test), the size of the test when using the

pval option is often conservative.

Other settings: Comparisons of some of the above simulations to settings where n; = n, =
5,000 show that the results are mostly the same, confirming that the properties of the tests
mostly depend on the number of carriers (Figure 1 in the Supplementary Information). To
address the question of whether and how the results are strongly affected by estimation of
disease probabilities, which do depend on sample size, we also compared type 1 error between

the main simulation study and a simulation study in which disease probabilities are taken as
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known for both the Score and the BinomiRare test (Figure 1 in the Supplementary Information).
Type 1 error control often improved for the Score test, but in some cases became worse for the
BinomiRare, when using the midp option. To note, BinomiRare was always more conservative
than the Score test in this simulation. When sampling controls to reduce case-control ratios,
Figure 2 demonstrates that the type 1 error is always controlled by the Score test if the case-
control ratio is 1:1 (as expected), but not when the case-control ratio is 1:3. Supplementary
Figures 2 and 3 provides all settings under sampling of controls with ratio 1:3 and 1:1,
respectively. All tests become very conservative when the total number of carriers in each of
the studies is 10 prior to sampling controls because often no carriers are left in the analytic
sample after sampling of controls. Further, when sampling controls the SPA test often becomes
inflated at times, especially in the 1:1 sampling scenario, likely because the number of carriers

remaining in the data after sampling of controls is very low.

Simulations to study the minimum number of carriers for SPA

In the simulations designed to study the minimum number of carriers for SPA, which had up to
60 carriers in the combined sample, type 1 error was not perfectly controlled even when there
were 60 carriers and the case proportion was 50% in both studies (Supplementary Figure 4).
Because we did not see any pattern related to type 1 error control with respect to the
distribution of variant carriers across studies, we also considered scenarios with an equal
number of carriers in each study, with up to 55 carriers. Figure 3 provides the type 1 error for
the SPA test when the number of carriers was equal in the two combined studies, and ranged

from 10 to 55, by increments of 5. When the number of carriers was 45 in each study or 90 in
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the combined sample, the type 1 error is controlled. Then, in the setting with 55 carriers in and
case prevalence of 0.01 in each study, the type 1 error was 1.14x10~*%, which is larger than
expected in the 95% confidence intervals accounting for p-value threshold of 1x10~* and

1x108 simulations.

Power when combining two studies

Figure 4 compares power between the various tests when the case prevalence was 20% in
study 1, 5% in study 2, for a few carriers setting, and comparing the baseline simulations (no
sampling of controls), and sampling of controls with case-control ratio of 1:3 and 1:1. The figure
provides the estimated power even when tests did not control the type 1 error in the
corresponding simulation studies (while highlighting this non-control). For 110 carriers in the
combined sample of 20,000 people, the power is higher when there are 100 carriers in the
study with 20% cases, compared with 100 carriers in the study with 5% carriers. This is true in
other simulations as well: for a fixed number of carriers in the total sample, power is higher
when more carriers are in the study with higher case proportion. Power is reduced when
controls are sampled, especially when the effect size is small. Among the two settings of 110
carriers in the combined sample, sampling of controls leads to more substantial reduction of
power when the number of carriers is 100 in the study with lower case prevalence. This is likely
because the sampling is more aggressive (lower total sample size), resulting in a substantially

reduced number of carriers after sampling.
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We also compared power in the main simulations to the settings when there were only 5,000
individuals in each study (but the same number of carriers), and when the case prevalence was
known, providing true outcome probabilities as plug-ins for BinomiRare and Score tests
(Supplementary Figure 5). When n=5,000 in each study, the power was about 90-100% of the
power in the corresponding setting when there were n=10,000 individuals in each study,
suggesting that more precisely estimated outcome probabilities could increase power.
However, using the two outcome probabilities did not generally increase the power of
BinomiRare, perhaps because in the simple investigated settings the parameter estimates are
already quite precise.

Finally, we note that the BinomiRare with the mid-p-value is more powerful than the
BinomiRare test with the usual p-value, as is known by definition, with BinomiRare-midp having
up to 111% the power of the BinomiRare-pval option. The SPA test was up to 116% more
powerful than the BinomiRare-midp test (focusing these comparisons on settings where both

tests controlled the type 1 error).

Recommendations
We here address questions that investigators studying rare variants by pooling heterogeneous
studies such as TOPMed may have when formulating an analysis plan.
1. If the case proportion is 0.5, use the Score test.
2. When the case proportion is low for testing rare variant associations, it is more powerful
to use an appropriate analysis method such as BinomiRare (for very low carrier count)

and SPA (for larger carrier counts) than to sample controls if the case proportion is low.
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3. To control type 1 error when combining multiple diverse studies together, should a MAC
or a number of carriers threshold be applied on each of the contributing studies? When
using the BinomiRare test, it is unnecessary, it always controls the type 1 error when
using the pval option. When using the SPA test, we saw that type 1 error control is
generally good when there are 90 carriers in the combined sample, and there were no
patterns suggesting that we need to require a minimum number of carriers in each one
of the studies separately.

4. For a fixed number of carriers, power is highly affected by the proportion of cases.
Consider restricting the analysis to variants with high number of carriers in the study
with higher disease proportion. This will focus the analysis on variants with relatively

higher power, while reducing the multiple testing burden.

Discussion

We performed a simulation study to (primarily) assess the type 1 error control of single-variant
association tests for a binary outcome when pooling individual level data from heterogeneous
studies. The asymptotic framework of our simulations is such that the number of carriers of a
variant and the sample sizes were fixed. Variability came from the number of diseased
individuals, aka, cases in the sample in general and in the carriers specifically. Despite the fact
that testing of rare variant associations suffers from low power, it is still routinely performed as
part of genome-wide association studies applied on sequencing or imputed genotype data, or
when fine-mapping genomic regions, and investigators need to know when such tests are

statistically valid. Our simulations were performed in simplified settings combining two studies,
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in the absence of covariates, other than study-specific intercept. This allowed for computational
efficiency when running a very large number of simulations, and for reducing the potential
number of scenarios to investigate. We found that performance of the Score test largely
depends on the number of carriers of the rare variant, number of diseased carriers, and the
proportion of diseased individuals in the sample. This is, by design, true for the BinomiRare test
as well. Notably, the performance of the tests also depends on the properties of the two
combined studies: when the combined sample has a fixed number of carriers, test performance
differs according to the number of carriers in each of the combined studies, and the outcome

prevalence in each.

As was shown in the past, the Score test controls the type 1 error when the case-control
proportion is 1. Like other tests, it is conservative when the number of carriers is very low. In
simulations combining two studies of equal sizes, with a total number of 110 carriers, even
when there were 50% cases in one of the studies and 100 carriers in that study, type 1 error
was controlled regardless of the disease prevalence in the study with 10 carriers (Figure 1, row
“Score Test”, third column from the left). In these simulations, it seemed like using SPA to re-
compute p-values produced better calibration (Figure 1 row “SPA Test”, third column from the
left). However, in the simulations with very low number of carriers (10 to 30 in each of the
studies), when the two studies had 50% cases, the SPA test often did not control the type 1
error, while the usual Score test did (Supplementary Figure 4). When the case proportion is

lower, it is clear that as the number of carriers grows the Score test’s control of type 1 error
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improves. However, we could not point to a single and simple rule, for when it is appropriate to

use the Score test.

Given that the Score test controls the type 1 error when there are 50% cases in each of the
studies, a natural question is whether it is useful to sample controls to generate a dataset with
50% cases. As we saw in simulations, this indeed led to control of type 1 error, however also to
a loss of power. The idea behind sampling of controls is that most of the information is in the
cases, and therefore, the loss of information is low. However, as our simulations show, this is
not correct. Sampling of controls leads to substantial reduction in the sample size, and
therefore to both reduction in the quality of estimation of disease probability model, and to
reduction in the number of variant carriers used. The properties of the tests depend on the

number of carriers.

BinomiRare could be applied with either the usual p-value, or the mid-p-value. While in our
primary simulations where the mid-p-value mostly controlled the type 1 error, and almost
always improved upon the SPA when it was inflated, we found that the mid-p-value did not
control the type 1 error in some settings, especially when the cases were 50% of the sample in
both studies, similarly to the SPA. The usual p-value always controlled the type 1 error. Mid-p-
values are preferred (when controlling the type 1 error) because they are less conservative. In
all, we recommend using the mid-p-values when the case proportion is lower than 50%, and to

compute and report both types of p-values.
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We formulated a set of recommendations for investigators in studies such as TOPMed,
combining together individual-level data from multiple heterogeneous studies. The
recommendations take into account the availability of tests across software packages, type 1
error control across extreme settings combining two heterogeneous studies, and power based
on modelling assumption and a small number of simulations in the rare variants settings. We
did not assess (a) all possible combinations of two studies in terms of their disease proportion
and carrier counts, (b) more than two studies, (c) additive mode of inheritance for slightly
higher count variants, (d) power simulation settings with different effect sizes across the
combined studies, (e) p-value thresholds lower than 1x107%, (f) estimation of power while
accounting for type 1 error of each test (e.g. by identifying and using the specific p-value
threshold yielding the desired type 1 error rate in the power simulations). While doing all these
would have been helpful, this is not feasible. Both the number of simulations and the disc
memory required for saving a lot of data in order to perform additional computations, would be
prohibitive. Therefore, we base our recommendations on simplified and extreme settings of
type 1 error control. For power, we primarily show that for rare variants, where dominant
mode of inheritance is appropriate as the vast majority of individuals are heterozygotes, the
BinomiRare test, which is valid, has often similar performance to the SPA test when it is valid as
well, or that SPA test has slightly higher power. For higher frequency variants having
homozygotes as well, standard statistical thinking posits that the Score and SPA test will be
even more powerful (when valid) because they use additional information, and this is seen to
some extent in our simulations as well. Further, while theoretically the BinomiRare test is

computationally efficient (in terms of both computer time and memory), current
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implementations of the Score test use various approaches to speed up matrix computations,
making it very efficient in practice, so that BinomiRare is slower. Therefore, when it is valid, the
score test is most desirable. The SPA test is less efficient, and its p-value computation is
implemented by software packages as re-computation of the naive Score p-value when it is
<0.05. Similar approach could be taken if using BinomiRare test. Still, SPA test is preferred over
BinomiRare when it controls type 1 error, due to better power. An important conclusion is that
when using the SPA test, our simulations suggest that we can control the total number of
carriers rather than the respective number of carriers in each study, i.e. by requiring at least 90-
110 carriers in the combined sample. It is not clear what the appropriate minimum number of
carriers is (see Figure 3), and it changes by study characteristics. Therefore, it is critically
important to perform replication or other follow-up analysis, as is common in genetic
association studies. Our simulations are limited by the use of p-value threshold of 10, and
there could be some differences when using a lower threshold. Because single variant tests are
recommended to use at a gene region level, rather than genome-wide, due to the multiple
testing burden, we think that p-value threshold of 10 suffices, while acknowledging that

sometimes rare variant associations are tested in a genome-wide manner.

While this work is focused on performance of statistical tests when pooling together data from
heterogeneous studies, it highlights issues that are worth addressing in future work. The level
of inflation/deflation of the tests when applied on variants with very low number of carriers,
varies in different settings (see for example Supplementary Figure 4). Therefore, to assess

overall patterns of inflation/deflation due to population stratification, one may need to rely on
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results from testing common variants, in which tests follow their asymptotic properties. To
generate QQ-plots comparing the observed versus the expected distributions of test results
when testing rare variants, Lee et al. [10], developed a resampling based procedure. It would be

useful to extend their approach to other tests.
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Figure 1: Ratios between observed and expected type 1 error rate in simulation studies when testing a binary outcome for association with a rare genetic
variant. We compared the naive score (Score) test, the SPA test, and BinomiRare with the usual p-values (pval) and the mid-p-value (midp), for settings defined
by the number of carriers and outcome prevalence in each study. Both studies had n=10,000 individuals. For each setting we performed 10° simulations, and
the p-value threshold used for determining significance was 10, Values of 1 correspond to perfect calibration, and values larger (smaller) than 1 correspond to
inflation (deflation), or higher (lower) number of detected false associations.


https://doi.org/10.1101/2020.04.17.047530
http://creativecommons.org/licenses/by-nc/4.0/

Carrierssiqy 1N=10, Carriersgqy 2N=100

Baseline Sample ratio =3 Sample ratio = 1
Study 1 Prevalence Study 1 Prevalence Study 1 Prevalence
P=1 [ P=5 [ P=20% 1 P=50% ] _ P=d [ P=% [ P=20% 1 P=50% ] P=T [ P=% [ P=20 [ P=50% ]
K = S
- 0.734 |3 0746 |3 0.746 [
E = o8 =i
g S s 2| & = 5
= 0650 0.740 (8| 0.729 0715 S| © 0.641 0705 (8]
o ’ ) 4| 3 ’ ) d| 3 ) ) d| 3
o
&g M M M
o B o o
€ 0514 0529 0585 3 S 0464 0503 0620 [A 0099 0256 0476 |3 S
o [s¥ 'g [N 'g (¥ 'g
e L2 2 2
1= | @ o| P o| @
Bl 0310 0371 0506 0471 i - 0113 0231 0428 |5 --- 0082 |5
Study 1 Prevalence Study 1 Prevalence Study 1 Prevalence
P=1% T P=5% [ P=20% | P=50% [P=1%_ T P=5% | P=20% [ =50% [P=1%_ T P=5% 1 P=20% 1 =50%
1.036 |3 1.082 (B 1.082 (B
° % - ~ Ratio of Observed to Expected
] : g : g : § Type 1 Error Rate
g 0955 0938 [§ g 0.866  0.900 [§| g 0880 0892 [§ g 50.00
[} o| 2 o| 2 o| 2
—_ o o [
[ Mo mi Mo
o | o N N
g 0832 0822 0814 (§ g 0749 0859 0847 (B ? 0.281 0.571 0828 (B ? 25.00
= L & & &
m o 2 o 10.00
0742 0.809 0.639 0.782 [l 0074 0204 0745 0540 [} 0.354 % 5.00
0} 0| 0| 1.00
L - — 0.20
0.10
Study 1 Prevalence Study 1 Prevalence Study 1 Prevalence
P=1% T P=5% [ P=20% | P=50% [P=1%_ T P=5% | P=20% | P=50% [CP=1%_ T P=5% | P=20% | P=50% 0.04
2 N 2 :
0975 |3 1.013 |3 1.013 |3
o o d
— — o — o
o 2 o 2 o 2 0.02
D 0990  1.000 (& 1111 0993 (8 g 1.058  1.001 (8§ §
Q > > >
= o @ o o ©
< o 1 o 1o
o 5 2| o 2|
77} 0.999 0998  0.969 [&| > 1.096 0899 0956 [%| > 0.431 0.851 1.028 |3 >
o S o S o S
& H & H &
1.017 1051 0801 0895 [ 0351 0559 0762 0814 |5 - - - 0600 |3
0} 0| 0|
Study 1 Prevalence Study 1 Prevalence Study 1 Prevalence
P=1% T P=5% [ P=20% | P=50% [P=1%_ T P=5% | P=20% [ =50% [P=1%_ T P=5% 1 P=20% 1 =50%
0.834 (3 0.869 |3 0.869 |3
o o d
8 o 8 o 8
= N 2| © 2| €
3 1409 1270 |8 2 1.133 1143 |8 2 0685 0693 (S| 3
= dl 3 d| 3 d| 3
= ris nl: H &
o] o 2| o 2l o
o 4506 3585 2170 |7 > 1826 1683 0914 [7| = 0200 [7 =
(%2} 4| S d| 5 i)
H & H & )
17.192| 12.083 4.405  1.077 [ 1.581 1.349 2411 0282 |3
0} 0|

Figure 2: Ratios between observed and expected type 1 error rate in simulation studies when testing a binary outcome for association with a rare genetic
variant. We compared the naive score (Score) test, the SPA test, and BinomiRare with the usual p-values (pval) and the mid-p-value (midp). In all settings data
from two studies were pooled together, with 10 carriers of the rare variant in study 1, and 100 carriers of the rare variant in study 2. Both studies had n=10,000
individuals. The settings investigated here are defined by the outcome prevalence in each study. The left column (“Baseline”) correspond to analysis of the
complete data. The middle (“Sample ratio = 3”) and right (“Sample ratio = 1”) columns provide results for analyses that studies sample sizes by sampling
controls to generate samples with the specified control:case ratio. For each setting we performed 10° simulations, and the p-value threshold used for
determining significance was 10, Values of 1 correspond to perfect calibration, and values larger (smaller) than 1 correspond to inflation (deflation), or higher
(lower) number of detected false associations.
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Figure 4: Power estimated in simulation studies when testing a binary outcome for association with a rare genetic variant. We compared the naive score
(Score) test, the SPA test, and BinomiRare with the usual p-values (pval) and the mid-p-value (midp). The simulation settings are defined by the number of
carriers in each of the studies, and the variant effect size 5. The outcome prevalence was fixed at 0.2 in study 1 and 0.05 in study 2. The left column
(“Baseline”) correspond to analysis of the complete data. The middle (“Sample ratio = 3”) and right (“Sample ratio = 1”) columns provide results for analyses
that studies sample sizes by sampling controls to generate samples with the specified control:case ratio. For each setting we performed 10* simulations, and
the p-value threshold used for determining significance was 10™. We color coded the settings according to type 1 error control in the simulations
corresponding to the same prevalence, carrier, and sampling settings, but with no variant association.
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Supplementary Figure 1: Ratios between observed and expected type 1 error rate in simulation studies when testing a binary outcome for association with a
rare genetic variant. We compared the naive score (Score) test, the SPA test, and BinomiRare with the usual p-values (pval) and the mid-p-value (midp). In all
settings data from two studies were pooled together, with 10 carriers of the rare variant in study 1, and 100 carriers of the rare variant in study 2. The left
column (“N=5000") corresponds to settings with 5,000 individuals in each of the studies. The middle column (“Baseline”) corresponds to settings with 10,000
individuals in each of the studies, and the right column (“True disease proportion”) provides results for analyses that plugged-in the true outcome prevalence
in each of the studies in the Score statistic (for the Score test) and provided them the BinomiRare test. For each setting we performed 1085imulations, and the
p-value threshold used for determining significance was 10, Values of 1 correspond to perfect calibration, and values larger (smaller) than 1 correspond to
inflation (deflation), or higher (lower) number of detected false associations.
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Supplementary Figure 2: Ratios between observed and expected type 1 error rate in simulation studies when testing a binary outcome for association with a
rare genetic variant, and when reducing the sample size by sampling controls to generate samples with up to three controls per case. We compared the naive
score (Score) test, the SPA test, and BinomiRare with the usual p-values (pval) and the mid-p-value (midp), for settings defined by the number of carriers and
outcome prevalence in each study. Both studies had n=10,000 individuals before sampling of controls. Controls were sampled in each study separately. For
each setting we performed 1085imulations, and the p-value threshold used for determining significance was 10, Values of 1 correspond to perfect calibration,
and values larger (smaller) than 1 correspond to inflation (deflation), or higher (lower) number of detected false associations.
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Supplementary Figure 3: Ratios between observed and expected type 1 error rate in simulation studies when testing a binary outcome for association with a
rare genetic variant, and when reducing the sample size by sampling controls to generate samples with one control per case. We compared the naive score
(Score) test, the SPA test, and BinomiRare with the usual p-values (pval) and the mid-p-value (midp), for settings defined by the number of carriers and
outcome prevalence in each study. Both studies had n=10,000 individuals before sampling of controls. Controls were sampled in each study separately. For
each setting we performed 10° simulations, and the p-value threshold used for determining significance was 10™. Values of 1 correspond to perfect calibration,
and values larger (smaller) than 1 correspond to inflation (deflation), or higher (lower) number of detected false associations.
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Supplementary Figure 4: Ratios between observed and expected type 1 error rate in simulation studies when testing a binary outcome for association with a
rare genetic variant. We compared the naive score (Score) test, the SPA test, and BinomiRare with the usual p-values (pval) and the mid-p-value (midp), for
settings defined by the number of carriers and outcome prevalence in each study. Both studies had n=10,000 individuals. For each setting we performed 10°
simulations, and the p-value threshold used for determining significance was 10™. Values of 1 correspond to perfect calibration, and values larger (smaller)
than 1 correspond to inflation (deflation), or higher (lower) number of detected false associations.
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Supplementary Flgure 5: Power estimated in simulation studles when testing a binary outcome for association with a rare genetic variant. We compared the
naive score (Score) test, the SPA test, and BinomiRare with the usual p-values (pval) and the mid-p-value (midp). The simulation settings are defined by the
number of carriers in each of the studies, and the variant effect size 5. The outcome prevalence was fixed at 0.05 in study 1 and 0.01 in study 2. The left
column (“N=5000") corresponds to simulations with 5,000 observations in each study. The middle (“Baseline”) corresponds to simulations with 10,000
observations in each study. The right column (“True disease proportion”) provides results for analyses that plugged-in the true outcome prevalence in each of
the studies in the Score statistic (for the Score test) and provided them the BinomiRare test. For each setting we performed 10* simulations, and the p-value
threshold used for determining significance was 10™. We color coded the settings according to type 1 error control in the simulations corresponding to the

same prevalence, carrier, and sampling settings, but with no variant association.
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