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Abstract	

Whole	genome	and	exome	sequencing	studies	are	used	to	test	the	association	of	rare	genetic	

variants	with	health	traits.	Many	existing	WGS	efforts	now	aggregate	data	from	heterogeneous	

groups,	e.g.	combining	sets	of	individuals	of		European	and	African	ancestries.	We	here	

investigate	the	statistical	implications	on	rare	variant	association	testing	with	a	binary	trait	

when	combining	together	heterogeneous	studies,	defined	as	studies	with	potentially	different	

disease	proportion	and	different	frequency	of	variant	carriers.	We	study	and	compare	in	

simulations	the	type	1	error	control	and	power	of	the	naïve	Score	test,	the	saddlepoint	

approximation	to	the	score	test	(SPA	test),	and	the	BinomiRare	test	in	a	range	of	settings,	

focusing	on	low	numbers	of	variant	carriers.	Taking	into	account	test	performance	as	well	as	

computation	considerations,	we	develop	recommendations	for	association	analysis	of	rare	

genetic	variants.	We	show	that	the	Score	test	is	preferred	when	the	case	proportion	in	the	

sample	is	50%.	Otherwise,	for	very	low	number	of	carriers,	BinomiRare	is	preferred	due	to	

computational	efficiency	and	type	1	error	control.	When	there	are	at	least	90	carriers	in	the	
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combined	sample,	the	SPA	test	generally	controls	the	type	1	error	and	is	preferred	over	

BinomiRare	due	to	higher	power	and	wider	implementation	in	software	packages.	Finally,	we	

recommend	to	not	sample	controls	in	order	to	generate	more	balanced	case-control	ratio,	

rather,	to	use	appropriate	analytic	methods.	Sampling	of	controls	reduces	power.		

	

Introduction	

Genetic	association	studies	test	the	association	of	genetic	variants	with	a	trait.	Genome-wide	

association	studies	(GWAS)	typically	test	the	association	of	each	of	single,	common,	genetic	

variants	across	the	genome.	This	is	often	also	done	in	Whole	Genome	Sequencing	(WGS)	

studies,	that	also	test	rarer	genetic	variants.	In	a	few	examples	from	the	WGS	analysis	in	the	

Trans-Omics	of	Precision	Medicine	(TOPMed)	program,	investigators	used	a	minor	allele	

frequency	threshold	(MAF)	of	0.001	and	allowed	for	a	minimum	of	20	minor	allele	counts	for	

consideration	of	a	variant	in	association	analyses	with	glycated	hemoglobin	[1];	a	MAF	

threshold	of	0.001	corresponding	to	at	least	32	counts	of	the	rare	variant	allele	was	applied	in	a	

study	of	lipids	[2];	and	variants	with	10	counts	of	the	rare	allele	in	the	sample	were	considered	

in	an	analysis	of	brain	imaging	measures	[3].	In	other	examples,	investigators	test	rare	variants	

associations	when	studying	a	specific	gene	region	of	interest	[e.g.	4,	5].		

	

It	is	known	that	tests	of	the	association	of	a	genetic	variant	with	a	binary	outcome	do	not	

control	the	type	1	error	in	some	settings,	and	the	problem	is	exacerbated	when	the	genetic	

variant	is	rare	[6].	Specifically,	when	the	proportion	of	cases	in	the	study	is	low,	p-values	of	

likelihood-based	tests	are	not	well	calibrated.	A	few	tests	were	developed	for	the	association	of	

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.17.047530doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047530
http://creativecommons.org/licenses/by-nc/4.0/


single	genetic	variants,	that	can	also	adjust	for	covariates.	The	Firth	test	[7],	highlighted	by	Ma	

et	al.	[6],	uses	a	higher	order	approximation	to	the	likelihood	to	compute	standard	errors,	and	

is	more	well	calibrated	compared	to	standard	tests.	Dey	et	al.	[8]	developed	the	saddlepoint	

approximation	(SPA)	to	the	p-value	computation	of	the	Score	test	based	on	a	cumulant	

generating	function	rather	than	the	standard	normal	distribution	approximation,	which	is	

better	calibrated	and	has	improved	control	of	type	1	error	compared	to	the	traditional	Score	

test	p-value,	and	is	faster	than	the	Firth	test.	Lee	et	al.	[8]	developed	a	resampling	method	for	

calibrating	single-variant	tests	(as	well	as	variant-set	tests),	which	can	also	account	for	

covriates.		Sofer	[9],	[10]	introduced	the	BinomiRare	test,	which	is	robust	to	low	case	

proportion	and	controls	the	type	1	error	for	any	number	of	rare	allele	carriers.	In	an	extensive	

simulation	studies,	Ma	et	al.	demonstrated	that	the	count	of	the	rare	allele	determines	the	type	

1	error	and	the	power	of	statistical	tests.	Ma,	Blackwell	[6]	and	Sofer	[9]	considered	settings	

with	one	or	multiple	samples	with	different	case	proportions,	however,	they	did	not	consider	

the	scenario	in	which	multiple	samples	with	different	frequencies	of	the	genetic	variant	allele	

are	pooled.	This	scenario	is	important,	because	modern	large	sequencing	studies	such	as	the	

NHLBI’s	Trans-Omics	in	Precision	Medicine	(TOPMed)	and	the	NHGRI’s	CCDG	aggregate	

individual	level	data	from	WGS	studies	conducted	in	diverse	populations,	where	allele	

frequencies	often	differ	between	populations.		

	

We	set	out	to	study	rare	variant	association	testing	when	pooling	individual	level	data	from	

various	studies	with	potentially	different	population	characteristics:	allele	frequency	and	case	

proportion.	To	limit	the	high	number	of	possible	combinations	of	studies’	characteristics,	we	
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focus	on	two	studies	of	the	same	sample	size	and	vary	the	disease	prevalence	in	each	of	the	

studies	as	well	as	the	count	of	the	rare	variant	allele.	We	focus	on	tests	that	can	account	for	

covariates,	and	that	do	not	use	resampling,	to	limit	computation	time.		

	

Methods	

Logistic	association	model	for	two	studies	

Suppose	that	individual	level	data	from	two	studies	with	!"	and	!$	individuals	respectively	are	

combined.	For	study	% ∈ {1,2}	Let	the	binary	outcome	,-.	 ∈ {0,1}, 0- = 1, . . . , !-		follow	a	

logistic	model	with		

34506(8(,-. = 1)) 	= :-;	 + 	5-.=	:->	,		

here	assuming	no	confounders	or	covariates	are	adjusted	for.		When	the	data	are	pooled	across	

studies,	the	model	can	be	written	instead	as	

34506 8 ,.?" = @ 0!A0B0ACD3	0	0!	E6CAF	1 :;" + @ 0!A0B0ACD3	0	0!	E6CAF	2 :;$ 	+	5.	:>		

= G.HI,		

where	we	now	add	study-specific	intercepts	in	the	joint	model.	Note	that	this	formulation	is	

statistically	equivalent	to	a	formulation	with	the	same	intercept	for	all	individuals,	and	a	

covariate	for	one	of	the	studies.	To	simplify	exposition,	let	G. = (J.", J.$, 5.)H	, I =

(:;", :;$, :>)H.	

	

Tests	for	association	of	a	variant	with	the	outcome	

Both	the	Score	and	the	BinomiRare	tests	(and	the	SPA,	which	is	a	score	test	with	better	

calibrated	p-value)	use	estimates	of	within-sample	disease	probabilities	under	the	null	
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hypothesis	of	no	association	between	the	outcome	and	the	genetic	variant,	i.e.	under	K;: :>	 =

0.	Clearly,	under	the	null,	:;" = 34506( ,."	
MN
.N?" /!") ≡ 34506(Q"),	and	:;$ =

34506( ,.$	
MR
.R?" /!$) ≡ 34506(Q$),	where	SJ806(J) = 	SJ8(J)/[1	 + 	SJ8(J)]	is	the	inverse	

function	of	the	logit	function.	The	derivative	of	the	SJ806(⋅)	function	is	 W
WX
SJ806(J) 	=

	SJ8(J)/[1 + SJ8(J)]$.	For	! = !" + !$,	the	score	for	:>	is	derived	as:	

E(I) 	=
Y
YI

345Z(I|	,) 	= 	
Y
YI

345[SJ806(GH.	I)\]	(1 − SJ806(GH.I)"_`a	]
M

.?"

	=	

=
Y
YI

,.345[SJ806(GH.	I)] + (1 − ,.)345[1 − SJ806(GH.I)]
M

.?"

	=		

= GH.{
`a

"	b	cXd(Gea	I)
− ("_`a)cXd(GeaI)

"bcXd(GeaI)
}M

.?" = GH.{,.	 −
cXd(GeaI)

"bcXd(GeaI)
} = G.{,.	 −M

.?"
M
.?"

SJ806(GH.I)},	

where	in	the	score	test	for	:>, :;"and	:;$	are	estimated	under	the	null,	and	in	this	setting,	the	

score	for	:>	simplifies	to:	

f :> = 5.{,.	– SJ806 J.", J.$)H :;", :;"

M

.?"

	

= 5".(,".	 − Q")
MN

.N?"

+	 5$.(,$.	 − Q$)
MR

.R?"

		

If	a	genetic	variant	is	rare,	then	most	carriers	of	the	variant	are	heterozygotes,	i.e.	most	people	

have	5. = 0,	a	few	people	have	5. = 1,	and	almost	no	one	has	5. = 2,	meaning	that	we	can	

assume	a	dominant	mode	of	variant	association.	We	then	further	simplify	this	expression	by	

introducing	additional	notation.	For	study	%,	let	h-;	and			h-"be	the	number	of	carriers	of	a	rare	
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variant	allele	among	people	with	the	outcome	,-. = 0	and	among	those	with	the	outcome	

,-. = 1,	respectively.	Then	the	score	is	now:	

f :> = h"" 1 − Q" − h";Q" 	+	h$" 1 − Q$ −	h$;Q$	 =	

h"" 1 − Q" − h" − h"" Q" + h$" 1 − Q$ − h$ − h$" Q$ =	

(h"" − h"Q") + (h$" − h$Q$)	.	

The	score	for	:>	is	the	sum	of	scores	in	each	of	the	two	studies,	and	in	each	study,	the	score	is	a	

difference	between	the	observed	and	the	expected	number	of	diseased	carriers,	under	the	

observed	disease	proportion	in	the	study.		

		

	In	the	standard	Score	test,	the	variance	of	the	score	for	:>	is	estimated	by	deriving	the	

information	matrix,	and	then	extracting	the	appropriate	entry	from	its	inverse.	For	logistic	

regression,	the	information	matrix	is	given	by:	

@(I) 	= −	 W
WeIWI

345Z(I|	,) 	= − W
WeI

G.{,.	 − SJ806(GH.I)}M
.?" =

W
WeI

G.SJ806(GH.I)M
.?" = G.

cXd(GaeI)
["	bcXd(GaeI)]R

G.HM
.?" .			

This	can	be	written	in	a	matrix	form.	Define	the	following	matrices:	

ij×l = 	

1 0 5""
⋮ ⋮ ⋮
1 0 51!1
0 1 521
⋮ ⋮ ⋮
0 1 52!2

,nM×M =

E""
⋱

E1!1
E21

⋱
E2!2
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where	i	is	the	design	matrix	of	the	regression	of	the	disease	on	the	variant,	accounting	for	two	

studies	using	study-specific	intercepts,	and	n	is	the	diagonal	matrix	with	diagonals,	for	person	

%0	from	study	%, % ∈ {1,2}, 0 = 1,… , !-		having		E-. = 	
cXd(GaeI)

["	bcXd(GaeI)]R
.	Then		

@ I = 	iqni.	

	

Noting	that	for	the	Score	test,	the	information	matrix	will	be	evaluated	under	the	null;	

therefore,	the	only	covariates	are	the	study-specific	intercepts,	we	have	that	for	all	individuals	

in	study	one	E". = E" =
cXd(rsN)

["	bcXd(rsN)]R
,	and	in	study	two	E$. = E$ =

cXd(rsR)
["	bcXd(rsR)]R

	Then:		

@ I = 	iqni =	
!"E" 0 h"E"
0 !$E$ h$E$
h"E" h$E$ h"E" + h$E$

.	

Using	formula	for	matrix	inverse,	one	can	compute	the	entry	of	@ I _"	corresponding	to	:>,	as	

@ I _"	
t,t = 	

!"!$
!"E$h$ !$ − h$ + !$h"E"(!" − h")

.	

	Its	inverse	is	the	variance	of	the	score:	

BDu f :> = 	
1

@ I _"	
t,t	

= 	
E$h$(!$ − h$)

!$
+	
E"h"(!" − h")

!"
	

which	is	the	sum	of	the	scores	for	:>	in	each	of	the	two	studies.	The	estimator	of	the	variance	

of	the	score	depends,	through	E", E$,	on	the	observed	outcome	proportion	in	the	sample,	on	

the	observed	variant	allele	count	in	the	sample,	and	on	the	sample	size.	When	the	observed	

variant	count	is	very	low	compared	to	the	number	of	individuals	in	the	study,	e.g.	when	h"	is	

fixed	and	! → ∞,	we	have	that	h-(!- − h-)/!- ≈ h- 	for	% ∈ {1,2},	so	that	both	the	score	and	its	

variance	do	not	depend	on	the	sample	size,	but	rather	only	on	the	variant	count	and	the	
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disease	proportion	in	the	study.	Note	that	this	asymptotic	setting	is	standard	for	genome	

sequencing	data	because	as	the	sample	size	grows	more	low-count	variants	are	observed.	

	

The	SPA	test	[11]	instead	of	using	the	above	score	variance	estimates,	computes	a	p-value	

based	on	a	obtaining	a	better	approximate	distribution	of	the	test	statistic	using	a	cumulant	

generating	function,	and	uses	the	saddlepoint	approximation	to	solve	the	resulting	optimization	

problem.		

	

The	BinomiRare	test	[9]	only	relies	on	the	observed	outcome	frequency	(more	generally,	the	

outcome	probabilities)	in	the	carriers.	It	takes	the	vector	of	estimated	outcome	probabilities	for	

the	carriers	of	the	rare	variants,	and	uses	the	Poisson-Binomial	distribution	[12]	to	compute	a	p-

value	for	testing	the	null	hypothesis	of	no	association	between	the	variant	and	the	outcome.	

Therefore,	in	our	simplified	settings	that	do	not	use	covariates,	the	BinomiRare	tests	depends	

on	the	numbers	of	carriers	h", h$,	diseased	carriers	h"", h$",	and	the	proportions	of	diseased	

individuals	in	the	studies.	Because	the	BinomiRare	test	does	not	use	a	normal	approximation	to	

the	Poisson-Binomial	distribution,	it	has	a	discrete	probability	mass	function.	Two	types	of	p-

values	can	be	computed:	the	standard	p-value,	and	the	mid-p-value.	Let	y ∼ {40EE4! −

|0!4}0D3(~),	with	~	being	the	vector	of	estimated	disease	probabilities	for	the	h" + h$	carriers	

of	the	rare-variant	of	interest	in	the	two	studies.	The	p-value	and	mid-p-value	are	defined	as:	
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8-value = Pr y = h"" + h$"

+	 Pr y = á ×1[Pr y = á < Pr(y = h"" + h$")]
âNbâR

ä?"

 
(1) 

mid-8-value =
Pr y = h"" + h$"

2

+	 Pr y = á ×1[Pr y = á < Pr(y = h"" + h$")]
Mé

ä?"

 

(2) 

Clearly,	the	mid-p-value	(2)	is	less	conservative,	and	therefore	will	always	be	smaller	than	the	p-

value	(1).	However,	when	the	number	of	carriers	is	small,	it	may	be	too	liberal.		

Simulation	studies	

In	our	simulation	studies	described	henceforth,	we	generated	datasets	in	the	simple	settings	

described	above,	and	used	the	computationally	efficient	implementation	of	the	Score	test	

f :> 	and	BDu f :> .	For	the	SPA	test,	we	used	the	naïve	Score	test	p-value.	When	it	was	

smaller	than	0.05,	we	re-computed	a	p-value	using	the	SPAtest	R	package	[13].		

	

Simulation	studies:	type	1	error	control	when	combining	two	studies	

We	considered	four	settings	of	rare	variant	distributions	across	studies:	 h", h$ =

{ 10,10 , 100,100 , 10,100 , 100,10 }.	 We	varied	the	disease	proportions	in	each	of	the	

two	studies,	so	that	the	disease	proportion	in	study	1	was	SJ806 :"; ∈ {0.01, 0.05, 0.2, 0.5},	

and	the	disease	proportion	in	study	2	was	taking	the	same	values	across	the	simulation	studies,	

so	that	it	was	always	lower	or	equal	to	the	proportion	in	study	1.	In	each	of	the	settings	defined	

by	number	of	carriers	and	disease	proportions	we	performed	10ê	simulations	with	!" = !$ =
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10,000,	and	evaluated	type	1	error	when	using	the	Score,	SPA,	and	BinomiRare	tests	with	a	p-

value	threshold	of	10_ë.	For	the	BinomiRare	test,	we	used	both	the	p-value	(equation	(1);	pval)	

and	the	mid-p-value	(equation	(2),	midp).	For	comparison,	we	also	studied	the	following	

settings:		

1. A	simulation	study	with	!" = !$ = 5,000,	holding	all	other	parameters	the	same.		

2. A	simulation	study	in	which	we	plugged-in	the	true,	known,	per-study	disease	

prevalence	SJ806 :"; , SJ806 :$; 	rather	than	estimated	them	when	computing	the	

Score	statistics,	with	provided	disease	probabilities	for	computing	BinomiRare	mid-p-

values.		

3. Simulation	studies	in	which	we	generated	datasets	by	sampling	controls	from	each	

study,	with	a	ratio	of	up	to	3	controls	per	case	and	with	1	control	per	case.	

	

Simulation	studies:	identifying	minimum	number	of	carriers	for	SPA	test	

We	performed	a	simulation	study	with	the	goal	of	formulating	a	recommendation	for	the	

minimum	number	of	carriers	required	for	appropriate	type	1	error	control	by	the	SPA	test	when	

combining	individual	level	data	from	heterogeneous	studies.	To	limit	the	potential	number	of	

simulations,	we	focused	on	three	possible	settings	of	disease	proportion	in	the	two	studies:	

SJ806 :"; , SJ806 :$; ∈ { 0.01, 0.01 , (0.01, 0.5), (0.5, 0.5)},	and	the	number	of	carriers	in	

the	two	studies	was	varied	so	that	all	possible	combinations	of	h", h$ ∈ {10, 15, 20, 25, 30}	

were	evaluated.	We	also	studied	the	same	settings	with	the	BinomiRare	test,	with	both	the	pval	

and	midp	options.	For	the	SPA	test	only,	we	considered	additional	settings	in	which	h" = h$ ∈

{35, 40, 45, 50, 55}.		
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Simulation	studies:	power	comparisons	

To	compare	power	between	tests,	we	used	similar	settings	to	those	used	for	type	1	error	

assessment,	with	the	same	follow-up	comparisons.	To	generate	datasets	for	these	simulations,	

we	allowed	for	different	probability	of	disease	among	carriers	of	the	rare	variant,	so	that	

34506(8(,-. = 1)) 	= :-;	 + 	5-.=	:->	with,	for	simplicity,	the	same	effect	size	:"> = :$> = :>	in	

the	two	studies	combined	together.	Effect	sizes	varied	:> ∈ {log 2 , log 3 , log 4 , log	(5)}.	

We	used	the	same	p-value	threshold	of	10_ë	as	before.		

	

Computing	approximate	power	for	BinomiRare	test	

On	the	dedicated	GitHub	repository	https://github.com/tamartsi/Binary_combine	we	provide	a	

function	to	compute	approximate	power	for	the	BinomiRare	test.	The	function	takes	a	vector	of	

estimated	outcome	probabilities	in	the	sample	under	the	null	hypothesis	of	no	association	

between	genotype	and	outcome,	an	odds	ratio	parameter,	p-value	threshold	for	declaring	

significance,	number	of	carriers	‘n_carrier’,	and	number	of	simulation	iterations.	Then,	in	each	

simulation	iteration	it	uniformly	samples	n_carrier	outcome	probabilities	(without	

replacement).	For	each	sampled	carrier,	given	its	outcome	probability	under	the	null	8;,	the	

function	computes	the	outcome	probability	under	the	alternative	hypothesis	8ñ =

SJ806 34506 8; + log óò ,	and	uses	the	binomial	distribution	to	simulate	outcome	status	

using	8ñ.	Then,	it	uses	the	BinomiRare	test	to	compute	a	p-value	for	the	null	hypothesis	of	

K;:	~ôöõ = ~;,âúù	,	where	~ôöõ	is	the	true	vector	of	outcome	probabilities	among	the	carriers,	

and	~;,âúù	,	is	the	vector	of	estimated	outcome	probabilities	under	the	null.	Finally,	the	power	is	
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the	proportion	of	p-values	computed	in	the	simulations	which	were	lower	than	the	p-value	

threshold.		

	

Results	

Type	1	error	when	combining	two	studies	

Figure	1	provides	type	1	error	comparisons	when	combining	two	studies	with	each	!" = !$ =

10,000,	with	varying	disease	proportions	in	the	two	studies,	and	four	scenarios	of	number	of	

carriers	across	the	studies.	We	compare	the	naïve	Score	test,	the	SPA,	and	the	BinomiRare	test	

with	the	pval	(usual	p-value,	equation	(1))	and	midp	(mid-p-value,	equation	(2))	options.	The	

figure	provides	the	observed	test	size	divided	by	the	desired	type	1	error.	Ideally,	this	number	

should	be	1.	Higher	numbers	indicated	inflation	(larger	number	of	false	detection	than	

expected),	and	lower	numbers	indicate	deflation,	or	conservativeness.		

	

Score	test:	As	is	already	known,	we	see	that	the	naïve	Score	test	becomes	more	inflated	as	the	

disease	prevalence	in	the	total	sample	becomes	low.	Overall	the	Score	performance	become	

better	with	increased	number	of	carriers	in	the	combined	sample.	However,	for	a	fixed	number	

of	carriers,	there	is	a	difference	in	performance	depending	on	which	of	the	two	studies	have	

more	carriers:	when	considering	the	two	non-symmetric	scenarios,	i.e.	the	scenarios	in	which	

h" = 10; h$ = 100,	and	the	other	way	around,	we	see	that	the	Score	test	performance	depend	

on	the	number	of	carriers	in	each	study.	Specifically,	in	comparison	with	the	settings	of	h" =

h$ = 10,	if	an	analyst	required	at	least	100	carriers	in	the	study	with	higher	disease	prevalence	

but	allowed	the	number	of	carriers	in	the	other	study	to	stay	10,	the	inflation	was	reduced	
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compared	to	the	settings	in	which	100	carriers	were	required	in	the	study	with	lower	case	

proportion.	If	the	analyst	further	required	both	studies	to	have	at	least	100	carriers,	the	

inflation	did	not	improve	much.	This	suggest	that	when	combining	multiple	studies,	it	may	be	

useful	to	require	a	minimum	number	of	carriers	in	the	study	with	the	higher	disease	proportion	

in	order	to	stabilize	the	Score	test	results.		

SPA	test:	Type	1	error	control	was	mostly	appropriate	when	the	total	number	of	carriers	in	the	

combined	two-study	sample	was	110	or	200,	with	a	few	settings	with	low	degree	of	inflation	

(see	Figure	1).	When	there	were	20	carriers	in	the	combined	sample,	type	1	error	was	usually	

not	controlled,	other	than	in	the	settings	in	which	the	disease	proportion	was	equal	in	the	study	

1	and	study	2.	In	this	case,	SPA	was	often	conservative.		

BinomiRare:	Type	1	error	was	always	controlled	when	the	usual	p-value	(pval)	was	used,	and	

usually	controlled	with	the	midp	option.	In	a	few	settings,	the	BinomiRare	with	the	midp	option	

had	low	degree	of	inflation.	Due	to	the	discreteness	of	the	Poisson-Binomial	distribution	(which	

is	not	approximated	to	a	normal	distribution	by	this	test),	the	size	of	the	test	when	using	the	

pval	option	is	often	conservative.		

	

Other	settings:	Comparisons	of	some	of	the	above	simulations	to	settings	where	!" = !$ =

5,000	show	that	the	results	are	mostly	the	same,	confirming	that	the	properties	of	the	tests	

mostly	depend	on	the	number	of	carriers	(Figure	1	in	the	Supplementary	Information).	To	

address	the	question	of	whether	and	how	the	results	are	strongly	affected	by	estimation	of	

disease	probabilities,	which	do	depend	on	sample	size,	we	also	compared	type	1	error	between	

the	main	simulation	study	and	a	simulation	study	in	which	disease	probabilities	are	taken	as	
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known	for	both	the	Score	and	the	BinomiRare	test	(Figure	1	in	the	Supplementary	Information).	

Type	1	error	control	often	improved	for	the	Score	test,	but	in	some	cases	became	worse	for	the	

BinomiRare,	when	using	the	midp	option.	To	note,	BinomiRare	was	always	more	conservative	

than	the	Score	test	in	this	simulation.	When	sampling	controls	to	reduce	case-control	ratios,	

Figure	2	demonstrates	that	the	type	1	error	is	always	controlled	by	the	Score	test	if	the	case-

control	ratio	is	1:1	(as	expected),	but	not	when	the	case-control	ratio	is	1:3.	Supplementary	

Figures	2	and	3	provides	all	settings	under	sampling	of	controls	with	ratio	1:3	and	1:1,	

respectively.	All	tests	become	very	conservative	when	the	total	number	of	carriers	in	each	of	

the	studies	is	10	prior	to	sampling	controls	because	often	no	carriers	are	left	in	the	analytic	

sample	after	sampling	of	controls.	Further,	when	sampling	controls	the	SPA	test	often	becomes	

inflated	at	times,	especially	in	the	1:1	sampling	scenario,	likely	because	the	number	of	carriers	

remaining	in	the	data	after	sampling	of	controls	is	very	low.		

	

Simulations	to	study	the	minimum	number	of	carriers	for	SPA	

In	the	simulations	designed	to	study	the	minimum	number	of	carriers	for	SPA,	which	had	up	to	

60	carriers	in	the	combined	sample,	type	1	error	was	not	perfectly	controlled	even	when	there	

were	60	carriers	and	the	case	proportion	was	50%	in	both	studies	(Supplementary	Figure	4).	

Because	we	did	not	see	any	pattern	related	to	type	1	error	control	with	respect	to	the	

distribution	of	variant	carriers	across	studies,	we	also	considered	scenarios	with	an	equal	

number	of	carriers	in	each	study,	with	up	to	55	carriers.	Figure	3	provides	the	type	1	error	for	

the	SPA	test	when	the	number	of	carriers	was	equal	in	the	two	combined	studies,	and	ranged	

from	10	to	55,	by	increments	of	5.	When	the	number	of	carriers	was	45	in	each	study	or	90	in	
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the	combined	sample,	the	type	1	error	is	controlled.	Then,	in	the	setting	with	55	carriers	in	and	

case	prevalence	of	0.01	in	each	study,	the	type	1	error	was	1.14J10_ë,	which	is	larger	than	

expected	in	the	95%	confidence	intervals	accounting	for	p-value	threshold	of	1J10_ë	and	

1J10ê	simulations.		

	

Power	when	combining	two	studies	

Figure	4	compares	power	between	the	various	tests	when	the	case	prevalence	was	20%	in	

study	1,	5%	in	study	2,	for	a	few	carriers	setting,	and	comparing	the	baseline	simulations	(no	

sampling	of	controls),	and	sampling	of	controls	with	case-control	ratio	of	1:3	and	1:1.	The	figure	

provides	the	estimated	power	even	when	tests	did	not	control	the	type	1	error	in	the	

corresponding	simulation	studies	(while	highlighting	this	non-control).	For	110	carriers	in	the	

combined	sample	of	20,000	people,	the	power	is	higher	when	there	are	100	carriers	in	the	

study	with	20%	cases,	compared	with	100	carriers	in	the	study	with	5%	carriers.	This	is	true	in	

other	simulations	as	well:	for	a	fixed	number	of	carriers	in	the	total	sample,	power	is	higher	

when	more	carriers	are	in	the	study	with	higher	case	proportion.	Power	is	reduced	when	

controls	are	sampled,	especially	when	the	effect	size	is	small.	Among	the	two	settings	of	110	

carriers	in	the	combined	sample,	sampling	of	controls	leads	to	more	substantial	reduction	of	

power	when	the	number	of	carriers	is	100	in	the	study	with	lower	case	prevalence.	This	is	likely	

because	the	sampling	is	more	aggressive	(lower	total	sample	size),	resulting	in	a	substantially	

reduced	number	of	carriers	after	sampling.		
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We	also	compared	power	in	the	main	simulations	to	the	settings	when	there	were	only	5,000	

individuals	in	each	study	(but	the	same	number	of	carriers),	and	when	the	case	prevalence	was	

known,	providing	true	outcome	probabilities	as	plug-ins	for	BinomiRare	and	Score	tests	

(Supplementary	Figure	5).	When	n=5,000	in	each	study,	the	power	was	about	90-100%	of	the	

power	in	the	corresponding	setting	when	there	were	n=10,000	individuals	in	each	study,	

suggesting	that	more	precisely	estimated	outcome	probabilities	could	increase	power.	

However,	using	the	two	outcome	probabilities	did	not	generally	increase	the	power	of	

BinomiRare,	perhaps	because	in	the	simple	investigated	settings	the	parameter	estimates	are	

already	quite	precise.		

Finally,	we	note	that	the	BinomiRare	with	the	mid-p-value	is	more	powerful	than	the	

BinomiRare	test	with	the	usual	p-value,	as	is	known	by	definition,	with	BinomiRare-midp	having	

up	to	111%	the	power	of	the	BinomiRare-pval	option.	The	SPA	test	was	up	to	116%	more	

powerful	than	the	BinomiRare-midp	test	(focusing	these	comparisons	on	settings	where	both	

tests	controlled	the	type	1	error).		

	

Recommendations	

We	here	address	questions	that	investigators	studying	rare	variants	by	pooling	heterogeneous	

studies	such	as	TOPMed	may	have	when	formulating	an	analysis	plan.		

1. If	the	case	proportion	is	0.5,	use	the	Score	test.		

2. When	the	case	proportion	is	low	for	testing	rare	variant	associations,	it	is	more	powerful	

to	use	an	appropriate	analysis	method	such	as	BinomiRare	(for	very	low	carrier	count)	

and	SPA	(for	larger	carrier	counts)	than	to	sample	controls	if	the	case	proportion	is	low.		
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3. To	control	type	1	error	when	combining	multiple	diverse	studies	together,	should	a	MAC	

or	a	number	of	carriers	threshold	be	applied	on	each	of	the	contributing	studies?	When	

using	the	BinomiRare	test,	it	is	unnecessary,	it	always	controls	the	type	1	error	when	

using	the	pval	option.	When	using	the	SPA	test,	we	saw	that	type	1	error	control	is	

generally	good	when	there	are	90	carriers	in	the	combined	sample,	and	there	were	no	

patterns	suggesting	that	we	need	to	require	a	minimum	number	of	carriers	in	each	one	

of	the	studies	separately.		

4. For	a	fixed	number	of	carriers,	power	is	highly	affected	by	the	proportion	of	cases.	

Consider	restricting	the	analysis	to	variants	with	high	number	of	carriers	in	the	study	

with	higher	disease	proportion.	This	will	focus	the	analysis	on	variants	with	relatively	

higher	power,	while	reducing	the	multiple	testing	burden.	

	

Discussion	

We	performed	a	simulation	study	to	(primarily)	assess	the	type	1	error	control	of	single-variant	

association	tests	for	a	binary	outcome	when	pooling	individual	level	data	from	heterogeneous	

studies.	The	asymptotic	framework	of	our	simulations	is	such	that	the	number	of	carriers	of	a	

variant	and	the	sample	sizes	were	fixed.	Variability	came	from	the	number	of	diseased	

individuals,	aka,	cases	in	the	sample	in	general	and	in	the	carriers	specifically.	Despite	the	fact	

that	testing	of	rare	variant	associations	suffers	from	low	power,	it	is	still	routinely	performed	as	

part	of	genome-wide	association	studies	applied	on	sequencing	or	imputed	genotype	data,	or	

when	fine-mapping	genomic	regions,	and	investigators	need	to	know	when	such	tests	are	

statistically	valid.	Our	simulations	were	performed	in	simplified	settings	combining	two	studies,	
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in	the	absence	of	covariates,	other	than	study-specific	intercept.	This	allowed	for	computational	

efficiency	when	running	a	very	large	number	of	simulations,	and	for	reducing	the	potential	

number	of	scenarios	to	investigate.	We	found	that	performance	of	the	Score	test	largely	

depends	on	the	number	of	carriers	of	the	rare	variant,	number	of	diseased	carriers,	and	the	

proportion	of	diseased	individuals	in	the	sample.	This	is,	by	design,	true	for	the	BinomiRare	test	

as	well.	Notably,	the	performance	of	the	tests	also	depends	on	the	properties	of	the	two	

combined	studies:	when	the	combined	sample	has	a	fixed	number	of	carriers,	test	performance	

differs	according	to	the	number	of	carriers	in	each	of	the	combined	studies,	and	the	outcome	

prevalence	in	each.		

	

As	was	shown	in	the	past,	the	Score	test	controls	the	type	1	error	when	the	case-control	

proportion	is	1.	Like	other	tests,	it	is	conservative	when	the	number	of	carriers	is	very	low.	In	

simulations	combining	two	studies	of	equal	sizes,	with	a	total	number	of	110	carriers,	even	

when	there	were	50%	cases	in	one	of	the	studies	and	100	carriers	in	that	study,	type	1	error	

was	controlled	regardless	of	the	disease	prevalence	in	the	study	with	10	carriers	(Figure	1,	row	

“Score	Test”,	third	column	from	the	left).	In	these	simulations,	it	seemed	like	using	SPA	to	re-

compute	p-values	produced	better	calibration	(Figure	1	row	“SPA	Test”,	third	column	from	the	

left).	However,	in	the	simulations	with	very	low	number	of	carriers	(10	to	30	in	each	of	the	

studies),	when	the	two	studies	had	50%	cases,	the	SPA	test	often	did	not	control	the	type	1	

error,	while	the	usual	Score	test	did	(Supplementary	Figure	4).	When	the	case	proportion	is	

lower,	it	is	clear	that	as	the	number	of	carriers	grows	the	Score	test’s	control	of	type	1	error	
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improves.	However,	we	could	not	point	to	a	single	and	simple	rule,	for	when	it	is	appropriate	to	

use	the	Score	test.		

	

Given	that	the	Score	test	controls	the	type	1	error	when	there	are	50%	cases	in	each	of	the	

studies,	a	natural	question	is	whether	it	is	useful	to	sample	controls	to	generate	a	dataset	with	

50%	cases.	As	we	saw	in	simulations,	this	indeed	led	to	control	of	type	1	error,	however	also	to	

a	loss	of	power.	The	idea	behind	sampling	of	controls	is	that	most	of	the	information	is	in	the	

cases,	and	therefore,	the	loss	of	information	is	low.	However,	as	our	simulations	show,	this	is	

not	correct.	Sampling	of	controls	leads	to	substantial	reduction	in	the	sample	size,	and	

therefore	to	both	reduction	in	the	quality	of	estimation	of	disease	probability	model,	and	to	

reduction	in	the	number	of	variant	carriers	used.	The	properties	of	the	tests	depend	on	the	

number	of	carriers.		

	

BinomiRare	could	be	applied	with	either	the	usual	p-value,	or	the	mid-p-value.	While	in	our	

primary	simulations	where	the	mid-p-value	mostly	controlled	the	type	1	error,	and	almost	

always	improved	upon	the	SPA	when	it	was	inflated,	we	found	that	the	mid-p-value	did	not	

control	the	type	1	error	in	some	settings,	especially	when	the	cases	were	50%	of	the	sample	in	

both	studies,	similarly	to	the	SPA.	The	usual	p-value	always	controlled	the	type	1	error.	Mid-p-

values	are	preferred	(when	controlling	the	type	1	error)	because	they	are	less	conservative.	In	

all,	we	recommend	using	the	mid-p-values	when	the	case	proportion	is	lower	than	50%,	and	to	

compute	and	report	both	types	of	p-values.			
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We	formulated	a	set	of	recommendations	for	investigators	in	studies	such	as	TOPMed,	

combining	together	individual-level	data	from	multiple	heterogeneous	studies.	The	

recommendations	take	into	account	the	availability	of	tests	across	software	packages,	type	1	

error	control	across	extreme	settings	combining	two	heterogeneous	studies,	and	power	based	

on	modelling	assumption	and	a	small	number	of	simulations	in	the	rare	variants	settings.		We	

did	not	assess	(a)	all	possible	combinations	of	two	studies	in	terms	of	their	disease	proportion	

and	carrier	counts,	(b)	more	than	two	studies,	(c)	additive	mode	of	inheritance	for	slightly	

higher	count	variants,	(d)	power	simulation	settings	with	different	effect	sizes	across	the	

combined	studies,	(e)	p-value	thresholds	lower	than	1×10_ë,	(f)	estimation	of	power	while	

accounting	for	type	1	error	of	each	test	(e.g.	by	identifying	and	using	the	specific	p-value	

threshold	yielding	the	desired	type	1	error	rate	in	the	power	simulations).	While	doing	all	these	

would	have	been	helpful,	this	is	not	feasible.	Both	the	number	of	simulations	and	the	disc	

memory	required	for	saving	a	lot	of	data	in	order	to	perform	additional	computations,	would	be	

prohibitive.	Therefore,	we	base	our	recommendations	on	simplified	and	extreme	settings	of	

type	1	error	control.	For	power,	we	primarily	show	that	for	rare	variants,	where	dominant	

mode	of	inheritance	is	appropriate	as	the	vast	majority	of	individuals	are	heterozygotes,	the	

BinomiRare	test,	which	is	valid,	has	often	similar	performance	to	the	SPA	test	when	it	is	valid	as	

well,	or	that	SPA	test	has	slightly	higher	power.	For	higher	frequency	variants	having	

homozygotes	as	well,	standard	statistical	thinking	posits	that	the	Score	and	SPA	test	will	be	

even	more	powerful	(when	valid)	because	they	use	additional	information,	and	this	is	seen	to	

some	extent	in	our	simulations	as	well.	Further,	while	theoretically	the	BinomiRare	test	is	

computationally	efficient	(in	terms	of	both	computer	time	and	memory),	current	

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.17.047530doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047530
http://creativecommons.org/licenses/by-nc/4.0/


implementations	of	the	Score	test	use	various	approaches	to	speed	up	matrix	computations,	

making	it	very	efficient	in	practice,	so	that	BinomiRare	is	slower.	Therefore,	when	it	is	valid,	the	

score	test	is	most	desirable.	The	SPA	test	is	less	efficient,	and	its	p-value	computation	is	

implemented	by	software	packages	as	re-computation	of	the	naïve	Score	p-value	when	it	is	

<0.05.	Similar	approach	could	be	taken	if	using	BinomiRare	test.	Still,	SPA	test	is	preferred	over	

BinomiRare	when	it	controls	type	1	error,	due	to	better	power.	An	important	conclusion	is	that	

when	using	the	SPA	test,	our	simulations	suggest	that	we	can	control	the	total	number	of	

carriers	rather	than	the	respective	number	of	carriers	in	each	study,	i.e.	by	requiring	at	least	90-

110	carriers	in	the	combined	sample.	It	is	not	clear	what	the	appropriate	minimum	number	of	

carriers	is	(see	Figure	3),	and	it	changes	by	study	characteristics.	Therefore,	it	is	critically	

important	to	perform	replication	or	other	follow-up	analysis,	as	is	common	in	genetic	

association	studies.	Our	simulations	are	limited	by	the	use	of	p-value	threshold	of	10-4,	and	

there	could	be	some	differences	when	using	a	lower	threshold.	Because	single	variant	tests	are	

recommended	to	use	at	a	gene	region	level,	rather	than	genome-wide,	due	to	the	multiple	

testing	burden,	we	think	that	p-value	threshold	of	10-4	suffices,	while	acknowledging	that	

sometimes	rare	variant	associations	are	tested	in	a	genome-wide	manner.		

	

While	this	work	is	focused	on	performance	of	statistical	tests	when	pooling	together	data	from	

heterogeneous	studies,	it	highlights	issues	that	are	worth	addressing	in	future	work.	The	level	

of	inflation/deflation	of	the	tests	when	applied	on	variants	with	very	low	number	of	carriers,	

varies	in	different	settings	(see	for	example	Supplementary	Figure	4).	Therefore,	to	assess	

overall	patterns	of	inflation/deflation	due	to	population	stratification,	one	may	need	to	rely	on	
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results	from	testing	common	variants,	in	which	tests	follow	their	asymptotic	properties.	To	

generate	QQ-plots	comparing	the	observed	versus	the	expected	distributions	of	test	results	

when	testing	rare	variants,	Lee	et	al.	[10],	developed	a	resampling	based	procedure.	It	would	be	

useful	to	extend	their	approach	to	other	tests.				
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Figure	1:	Ratios	between	observed	and	expected	type	1	error	rate	in	simulation	studies	when	testing	a	binary	outcome	for	association	with	a	rare	genetic	
variant.	We	compared	the	naïve	score	(Score)	test,	the	SPA	test,	and	BinomiRare	with	the	usual	p-values	(pval)	and	the	mid-p-value	(midp),	for	settings	defined	
by	the	number	of	carriers	and	outcome	prevalence	in	each	study.	Both	studies	had	n=10,000	individuals.	For	each	setting	we	performed	108	simulations,	and	
the	p-value	threshold	used	for	determining	significance	was	10-4.	Values	of	1	correspond	to	perfect	calibration,	and	values	larger	(smaller)	than	1	correspond	to	
inflation	(deflation),	or	higher	(lower)	number	of	detected	false	associations.		
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Figure	2:	Ratios	between	observed	and	expected	type	1	error	rate	in	simulation	studies	when	testing	a	binary	outcome	for	association	with	a	rare	genetic	
variant.	We	compared	the	naïve	score	(Score)	test,	the	SPA	test,	and	BinomiRare	with	the	usual	p-values	(pval)	and	the	mid-p-value	(midp).	In	all	settings	data	
from	two	studies	were	pooled	together,	with	10	carriers	of	the	rare	variant	in	study	1,	and	100	carriers	of	the	rare	variant	in	study	2.	Both	studies	had	n=10,000	
individuals.	The	settings	investigated	here	are	defined	by	the	outcome	prevalence	in	each	study.	The	left	column	(“Baseline”)	correspond	to	analysis	of	the	
complete	data.	The	middle	(“Sample	ratio	=	3”)	and	right	(“Sample	ratio	=	1”)	columns	provide	results	for	analyses	that	studies	sample	sizes	by	sampling	
controls	to	generate	samples	with	the	specified	control:case	ratio.		For	each	setting	we	performed	108	simulations,	and	the	p-value	threshold	used	for	
determining	significance	was	10-4.	Values	of	1	correspond	to	perfect	calibration,	and	values	larger	(smaller)	than	1	correspond	to	inflation	(deflation),	or	higher	
(lower)	number	of	detected	false	associations.		
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Figure	3:		Type	1	error	of	the	SPA	test	in	simulations	combining	two	studies	with	n=10,000	and	equal	number	of	carriers	in	each	study.	Simulation	settings	are	
defined	by	the	prevalence	of	the	outcome	and	the	number	of	carriers	in	each	of	the	studies.	For	each	setting	we	performed	108	simulations,	and	the	p-value	
threshold	used	for	determining	significance	was	10-4.	Values	of	1	correspond	to	perfect	calibration,	and	values	larger	(smaller)	than	1	correspond	to	inflation	
(deflation),	or	higher	(lower)	number	of	detected	false	associations.	
	

Study 1 Prevalence = 50%, Study 2 Prevalence = 50%

Study 1 Prevalence = 50%, Study 2 Prevalence = 1%

Study 1 Prevalence = 1%, Study 2 Prevalence = 1%

10 15 20 25 30 35 40 45 50 55

0.00000

0.00005

0.00010

0.00015

0.00000

0.00005

0.00010

0.00015

0.00000

0.00005

0.00010

0.00015

Number of carriers in each of the two studies

Ty
pe

 1
 e

rro
r: 

SP
A 

te
st

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.17.047530doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047530
http://creativecommons.org/licenses/by-nc/4.0/


	
Figure	4:	Power	estimated	in	simulation	studies	when	testing	a	binary	outcome	for	association	with	a	rare	genetic	variant.	We	compared	the	naïve	score	
(Score)	test,	the	SPA	test,	and	BinomiRare	with	the	usual	p-values	(pval)	and	the	mid-p-value	(midp).	The	simulation	settings	are	defined	by	the	number	of	
carriers	in	each	of	the	studies,	and	the	variant	effect	size	!.	The	outcome	prevalence	was	fixed	at	0.2	in	study	1	and	0.05	in	study	2.	The	left	column	
(“Baseline”)	correspond	to	analysis	of	the	complete	data.	The	middle	(“Sample	ratio	=	3”)	and	right	(“Sample	ratio	=	1”)	columns	provide	results	for	analyses	
that	studies	sample	sizes	by	sampling	controls	to	generate	samples	with	the	specified	control:case	ratio.		For	each	setting	we	performed	104	simulations,	and	
the	p-value	threshold	used	for	determining	significance	was	10-4.	We	color	coded	the	settings	according	to	type	1	error	control	in	the	simulations	
corresponding	to	the	same	prevalence,	carrier,	and	sampling	settings,	but	with	no	variant	association.		
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Supplementary	Figure	1:	Ratios	between	observed	and	expected	type	1	error	rate	in	simulation	studies	when	testing	a	binary	outcome	for	association	with	a	
rare	genetic	variant.	We	compared	the	naïve	score	(Score)	test,	the	SPA	test,	and	BinomiRare	with	the	usual	p-values	(pval)	and	the	mid-p-value	(midp).	In	all	
settings	data	from	two	studies	were	pooled	together,	with	10	carriers	of	the	rare	variant	in	study	1,	and	100	carriers	of	the	rare	variant	in	study	2.	The	left	
column	(“N=5000”)	corresponds	to	settings	with	5,000	individuals	in	each	of	the	studies.	The	middle	column	(“Baseline”)	corresponds	to	settings	with	10,000	
individuals	in	each	of	the	studies,	and	the	right	column	(“True	disease	proportion”)	provides	results	for	analyses	that	plugged-in	the	true	outcome	prevalence	
in	each	of	the	studies	in	the	Score	statistic	(for	the	Score	test)	and	provided	them	the	BinomiRare	test.		For	each	setting	we	performed	108	simulations,	and	the	
p-value	threshold	used	for	determining	significance	was	10-4.	Values	of	1	correspond	to	perfect	calibration,	and	values	larger	(smaller)	than	1	correspond	to	
inflation	(deflation),	or	higher	(lower)	number	of	detected	false	associations.		
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Supplementary	Figure	2:	Ratios	between	observed	and	expected	type	1	error	rate	in	simulation	studies	when	testing	a	binary	outcome	for	association	with	a	
rare	genetic	variant,	and	when	reducing	the	sample	size	by	sampling	controls	to	generate	samples	with	up	to	three	controls	per	case.	We	compared	the	naïve	
score	(Score)	test,	the	SPA	test,	and	BinomiRare	with	the	usual	p-values	(pval)	and	the	mid-p-value	(midp),	for	settings	defined	by	the	number	of	carriers	and	
outcome	prevalence	in	each	study.	Both	studies	had	n=10,000	individuals	before	sampling	of	controls.	Controls	were	sampled	in	each	study	separately.	For	
each	setting	we	performed	108	simulations,	and	the	p-value	threshold	used	for	determining	significance	was	10-4.	Values	of	1	correspond	to	perfect	calibration,	
and	values	larger	(smaller)	than	1	correspond	to	inflation	(deflation),	or	higher	(lower)	number	of	detected	false	associations.	
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Supplementary	Figure	3:	Ratios	between	observed	and	expected	type	1	error	rate	in	simulation	studies	when	testing	a	binary	outcome	for	association	with	a	
rare	genetic	variant,	and	when	reducing	the	sample	size	by	sampling	controls	to	generate	samples	with	one	control	per	case.	We	compared	the	naïve	score	
(Score)	test,	the	SPA	test,	and	BinomiRare	with	the	usual	p-values	(pval)	and	the	mid-p-value	(midp),	for	settings	defined	by	the	number	of	carriers	and	
outcome	prevalence	in	each	study.	Both	studies	had	n=10,000	individuals	before	sampling	of	controls.	Controls	were	sampled	in	each	study	separately.	For	
each	setting	we	performed	108	simulations,	and	the	p-value	threshold	used	for	determining	significance	was	10-4.	Values	of	1	correspond	to	perfect	calibration,	
and	values	larger	(smaller)	than	1	correspond	to	inflation	(deflation),	or	higher	(lower)	number	of	detected	false	associations.	
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Supplementary	Figure	4:	Ratios	between	observed	and	expected	type	1	error	rate	in	simulation	studies	when	testing	a	binary	outcome	for	association	with	a	
rare	genetic	variant.	We	compared	the	naïve	score	(Score)	test,	the	SPA	test,	and	BinomiRare	with	the	usual	p-values	(pval)	and	the	mid-p-value	(midp),	for	
settings	defined	by	the	number	of	carriers	and	outcome	prevalence	in	each	study.	Both	studies	had	n=10,000	individuals.	For	each	setting	we	performed	108	

simulations,	and	the	p-value	threshold	used	for	determining	significance	was	10-4.	Values	of	1	correspond	to	perfect	calibration,	and	values	larger	(smaller)	
than	1	correspond	to	inflation	(deflation),	or	higher	(lower)	number	of	detected	false	associations.	
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Supplementary	Figure	5:	Power	estimated	in	simulation	studies	when	testing	a	binary	outcome	for	association	with	a	rare	genetic	variant.	We	compared	the	
naïve	score	(Score)	test,	the	SPA	test,	and	BinomiRare	with	the	usual	p-values	(pval)	and	the	mid-p-value	(midp).	The	simulation	settings	are	defined	by	the	
number	of	carriers	in	each	of	the	studies,	and	the	variant	effect	size	!.	The	outcome	prevalence	was	fixed	at	0.05	in	study	1	and	0.01	in	study	2.	The	left	
column	(“N=5000”)	corresponds	to	simulations	with	5,000	observations	in	each	study.	The	middle	(“Baseline”)	corresponds	to	simulations	with	10,000	
observations	in	each	study.	The	right	column	(“True	disease	proportion”)	provides	results	for	analyses	that	plugged-in	the	true	outcome	prevalence	in	each	of	
the	studies	in	the	Score	statistic	(for	the	Score	test)	and	provided	them	the	BinomiRare	test.		For	each	setting	we	performed	104	simulations,	and	the	p-value	
threshold	used	for	determining	significance	was	10-4.	We	color	coded	the	settings	according	to	type	1	error	control	in	the	simulations	corresponding	to	the	
same	prevalence,	carrier,	and	sampling	settings,	but	with	no	variant	association.
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