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ABSTRACT 

The recent severe acute respiratory syndrome, known as Corona Virus Disease 2019 (COVID-19) 

has spread so much rapidly and severely to induce World Health Organization (WHO) to declare 

state of emergency over the new coronavirus SARS-CoV-2 pandemic. While several countries have 

chosen the almost complete lock-down for slowing down SARS-CoV-2 spread, scientific community 

is called to respond to the devastating outbreak by identifying new tools for diagnosis and treatment 

of the dangerous COVID-19. With this aim we performed an in silico comparative modeling analysis, 

which allows to gain new insights about the main conformational changes occurring in the SARS-

CoV-2 spike protein, at the level of the receptor binding domain (RBD), along interactions with human 

cells angiotensin converting enzyme 2 (ACE2) receptor, that favour human cell invasion. 

Furthermore, our analysis provides i) an ideal pipeline to identify already characterized antibodies 

that might target SARS-CoV-2 spike RBD, for preventing interactions with the human ACE2, and ii) 

instructions for building new possible neutralizing antibodies, according to chemical/physical space 

restraints and complementary determining regions (CDR) mutagenesis of the identified existing 

antibodies. The proposed antibodies show in silico a high affinity for SARS-CoV-2 spike RBD and 

can be used as reference antibodies also for building new high affinity antibodies against present 

and future coronavirus able to invade human cells through interactions of their spike proteins with 

the human ACE2. More in general, our analysis provides indications for the set-up of the right 

biological molecular context for investigating spike RBD-ACE2 interactions for the development of 

new vaccines, diagnosis kits and other treatments based on the usage or the targeting of SARS-

CoV-2 spike protein. 

 

INTRODUCTION 

Scientific community is called to respond to a pandemic of respiratory disease that has spread with 

impressive rate among people of all the world. The new coronavirus has been called SARS-CoV-2 

and the related disease indicated as COVID-19. WHO reports that positive patients in the world are 

1353361 with 79235 (April 9th, 2020) ascertained died people due to COVID-19 complications. It also 

appears that these numbers might be a smaller number of real cases due to our inability in 

quantifying rescued or asymptomatic people.  

In order to limit death rate and SARS-CoV-2 spread, it needs to develop a vaccine and to identify 

new small molecules able to prevent or treat COVID-19 complications, as well as to prepare new 

quick diagnosis kits, able to quantify the real number of people exposed to SARS-CoV-2. Among the 

main actors of SARS-CoV-2 infection the SARS-CoV-2 spike proteins, RNA dependent RNA 

polymerases and proteases deserve to be mentioned. Indeed, RNA dependent RNA polymerase 

has become one of the main targets of a nucleoside analog antiviral drug, the remdesivir, already 

used for reducing complications due to Ebola, Dengue and MERS-CoV infections (1–6). At the same 

time viral protease inhibitors (7–10) are under investigation for their ability in preventing virus protein 
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(with specific reference to spike proteins) cleavage (11) leading to the fusion of virus proteins with 

host cell membranes. Also anti-inflammatory antibodies/drugs in combination with anticoagulant 

molecules are under investigation for limiting coagulopathies (12–15) and cytokine signaling 

impressively triggered by SARS-CoV-2 infection (16–20). Finally, the same SARS-CoV-2 spike 

protein has become the most investigated target due to its ability in forming interactions with the 

human ACE2 receptor, causing fusion events that make possible for the virus to penetrate host 

human cells (21–23).  

The crucial role played by the spike protein is also due to the possibility to use the recombinant 

SARS-CoV-2 spike protein for triggering immune response, working as a vaccine, that may help in 

preventing and treating COVID-19, similarly to what proposed recently (24–26). 

For clarifying SARS-CoV-2 infection mechanisms, several research groups have recently solved the 

crystallized structure of the entire SARS-CoV-2 spike protein (6vsb.pdb (21); 6vxx.pdb and 6vyb.pdb 

(22)), in pre-fusion conformation, and/or SARS-CoV-2 spike RBD domain in complex with the human 

ACE2 (6vw1.pdb; 6lzg.pdb).  

In light of the available cited crystallized/cryo-em solved structures, here we propose a strategy for 

identifying/drawing new SARS-CoV-2 antibodies directed against the RBD of SARS-CoV-2 that 

could be used for contrasting SARS-CoV-2 infection, aiming to prevent pre-/post-fusion spike 

conformation interconversion, responsible for virus invasion, and to provide a molecular structural 

context for studying new diagnosis kits based on the interactions between our engineered antibodies 

and the human SARS-CoV-2 spike RBD. 

 

MATERIALS AND METHODS 

 

2.1. Crystal Structure Sampling Via Folding Recognition and multiple sequence alignments 

(MSA) 

CoV-Spike and ACE2 homologus protein-crystallized structures were searched by using the folding 

recognition methods implemented in pGenThreader and i-Tasser according to our validated 

protocols (27–30).  

The sequences of the retrieved 48 crystallized structures (with reference to those crystallized 

structures indicated with “Certain” or “High” confidence level in pGenThreader output) were aligned 

by using ClustalW (31) implemented in the Jalview package (32). The 3D coordinates from the 48 

crystallized structures were superimposed for comparative purposes by using PyMOL (33) according 

to our validated protocols (29, 34). 

Protein-protein and protein-ligand binding regions were highlighted by selecting residues within 4 Å 

at the protein-protein interface or from the investigated ligands, in the superimposed structures.  

All the generated 3D all atom models were energetically minimized by using the Yasara Minimization 

server (35). 
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2.2. 3D atomic models preparation of SARS-CoV-2 Spike protein in post-fusion conformation 

and SARS-CoV-2 Spike-ACE2 interactions in pre-fusion conformations. 

The 3D comparative model of SARS-CoV-2 spike trimer in post-fusion conformation was built by 

multi-template modeling by using Modeller (36). More in detail, the human SARS-CoV-2 spike 

protein sequence was aligned to the sequences of the available entire post fusion conformation of 

the murine coronavirus spike protein (6b3o, (37)) and the remaining available crystallized 

subdomains of other coronavirus spike proteins in post fusion conformations (5yl9.pdb (38); 

1wyy.pdb (39) and 1wdf (40)). Sequences of the cited crystallized structure fragments were used as 

query sequences for sampling the corresponding entire spike monomer sequences, by reciprocal-

blastp, to be aligned with sequences of the investigated structures for comparative purposes. The 

obtained MSA was used for driving the multi-template modeling. 

Then a complex 3D model representing the pre-fusion spike trimer interacting with three ACE2 

functional receptor units was built by superimposing the recently solved cryo-EM prefusion structure 

of SARS-CoV-2 spike trimer complex (6vsb.pdb, (21); 6vyb.pdb and 6vxx.pdb (22)), the SARS-CoV-

2 spike RBD crystallized in complex with the human ACE2 (6vw1.pdb; 6lzg.pdb) the SARS-CoV-1 

spike trimer interacting with one ACE2 functional receptor (conformations 1-3, 6acg.pdb, 6acj.pdb, 

6ack.pdb, (41) and 6cs2.pdb, (42)), the SARS-CoV-1 spike-RBD crystallized in complex with the 

human ACE2 (2ajf.pdb, (43)).  

For investigating pre-/post-fusion conformation interconversion we superimposed the pre-fusion 

available crystallized structures of SARS-CoV2 spike proteins and the generated 3D models about 

pre-fusion conformation of the spike trimer in complex with three ACE2 units, to the obtained 3D 

model of the post fusion conformation. All the generated 3D all atom models were energetically 

minimized by using the Yasara Minimization server (35) 

 

2.3 Antibody 3D modeling and mutagenesis 

Starting from the 3D atomic coordinates of the crystallized neutralizing antibodies m396 

(2dd8.pdb(44)) and S230 (6nb7.pdb, (45)) directed against the SARS-CoV-1 spike RBD domain, we 

modelled the interactions of m396 and S230 (6nb7.pdb, (45)) with SARS-CoV-2 spike RBD domain, 

by superimposing the fragment antigen based (FAB) portions of m396 (2dd8.pdb (44)) and S230 

(6nb7.pdb, (45) (both complexed with SARS-CoV-1 RBD) with the SARS-CoV-2 spike RBD domain, 

complexed with ACE2 (6vw1.pdb), by using PyMOL.  

For creating a more specific antibody directed against SARS-CoV-2 spike RBD, we replaced 

residues of the CDR regions of the m396 crystallized FAB portion with residues that may 

complement and fulfill better the SARS-CoV-2 RBD surface. Mutagenesis analyses and modeling of 

the incomplete residues within the crystallized structures were performed by using SPDBV (46) 

and/or PyMOL (47). 
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The proposed complete IgG chimeric antibodies were obtained by superimposing the above cited 

m396 and the resulting engineered FAB portions, in complex with SARS-CoV-1/2 RBD, to the 3D 

atomic model of a crystallized IgG, available on the PDB (1igt.pdb, (48)) by using SPDBV and 

PyMOL, according to our validated protocols (29, 30, 49), that allow to model missing residues, 

solving clashes and breaks in the backbone. 

Each glycosylation ladder coming from the crystal structures here investigated (1igt.pdb; 2dd8.pdb; 

6nb7.pdb) was alternatively retained within the generated structural models.  

After superimposition operations, allowing backbone connections, we renumbered all the atoms and 

the residues present in the resulting final pdb file, by using an in-house developed Perl script. The 

obtained final models were examined in VMD, PyMOL, and SPDBV according to our protocols (30, 

49). All the generated 3D all atom models were energetically minimized by using the Yasara 

Minimization server (35). 

 

2.4. Energy calculations 

The FoldX AnalyseComplex assay, was performed to determine the interaction energy between the 

four generated antibodies and the RBD domains of SARS-CoV-1/2 spike proteins, but also for 

determining the interaction energy between ACE2 and the interacting spike RBDs for comparative 

purposes.  

The way the FoldX AnalyseComplex operates is by unfolding the selected targets and determining 

the stability of the remaining molecules and then subtracting the sum of the individual energies from 

the global energy. More negative energies indicate a better binding. Positive energies indicate no 

binding (50, 51). The energy calculated for the crystallized m396-SARS-CoV-1 RBD protein complex 

was used as a reference value. 

 

RESULTS 

 

3.1. Modelling of the SARS-CoV-2 spike protein in post-fusion conformation. 

 

The main event that allows virus envelop fusion with the host human cell plasma membrane 

concerns a conformational change occurring at the SARS-CoV-2 spike protein that converts from 

pre-fusion conformation to post-fusion conformation after interactions with ACE2 and spike protein 

cleavage. While SARS-CoV-2 spike protein trimer has been resolved by cryo-em (6vsb.pdb (21); 

6vxx.pdb and 6vyb.pdb (22)), the post-fusion conformation is not available, yet. According to (11) 

Coutard et al., protein cleavage at site S1/S2 and S2’ produces the division of the spike protein in 

two subdomains, i.e. the N-ter S-I ectodomain (containing the RBD interacting with ACE2) and the 

C-ter S-II membrane anchored subdomain, forming the SARS-CoV-2 spike protein in post fusion 
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conformation, able to trigger the fusion of the viral envelope with host cell plasma membrane 

determining host cell invasion.  

For modelling 3D post-fusion conformation of SARS-CoV-2 spike protein we searched for SARS-

CoV-2 spike protein homologous structures and found 48 crystallized structures that included poses 

of the whole SARS-CoV-2 spike proteins or about protein domains of SARS-CoV-2 spike proteins in 

complex with protein interactors (i.e. ACE2), several pre-fusion conformations of other coronavirus 

spike proteins, one coronavirus spike protein in post-fusion conformation and three further protein 

subdomains about spike proteins in post fusion conformation (Supp. Tab. 1).  

Thus, we built a MSA by aligning the sequence of the human SARS-CoV-2 spike protein, the 

sequence of the available whole post fusion conformation of the murine coronavirus spike protein 

(6b3o, (37)), sequences of the remaining crystallized subdomains of other coronavirus spike proteins 

in post fusion conformations (5yl9.pdb (38); 1wyy.pdb (39) and 1wdf (40)), together with their 

complete counterpart sequences sampled by reciprocal-blastp (Fig. 1).  
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Fig.  1 Extract of the MSA of SARS-CoV-2 spike protein monomer with the sequences of crystallized structures of the spike 
whole protein or protein fragments observed in the post-fusion conformation from other coronavirus, resulting from 
sequence cleavage. Panel a. Black boxes indicate the position of cleavage sites. In panel “a” it is reported the 6b3o.pdb 
based sequence-structure alignment used for modeling the first portion of SARS-CoV-2 spike protein in post fusion 
conformation (amino acids S704-771A, YP_009724390.1 residues numbering). In panel “b” it is reported the 6b3o.pdb 
based sequence-structure alignment used for modeling the second portion of SARS-CoV-2 spike protein in post fusion 
conformation (amino acids 922-1147, YP_009724390.1 residues numbering). 

 

In the provided MSA (Fig. 1) it is possible to observe the conserved S1/S2 and S2’ cleavage sites, 

according to (11) and the sequence of the C-terminal domain resulting from the cleavage.  

Starting from the cited multi-template sequence alignment and according to our validated protocols 

about multi-template 3D modeling (30, 36), we built the 3D model of a monomer of SARS-CoV-2 

spike protein in post fusion conformation (Fig. 2). The modelled SARS-CoV-2 spike post-fusion 

conformation consists of residues 704-771 and 922-1147, YP_009724390.1 residues numbering, 

resulting from protein cleavage (11) and also the only protein fragments with a solved structure in 
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6b3o.pdb aligned (aminoacids 741-807 and 972-1248, NP_045300.1/6b3o.pdb residues numbering) 

counterpart (37).  

The trimer of the SARS-CoV-2 spike protein in post fusion conformation was obtained by duplicating 

two times the obtained monomer and superimposing the three SARS-CoV-2 spike protein monomers 

on the three SARS-CoV-1 spike protein monomers reported in 6b3o.pdb (Fig. 2). The 3D 

comparative model of SARS-CoV-2 spike protein trimer built by multi-template comparative 

modeling showed an RMSD lower than 0.5 Å with the murine coronavirus spike protein in post-fusion 

conformation (6b3o.pdb). The resulting model (Fig. 2) appeared elongated and narrow, according to 

what observed in fragments of the spike proteins crystallized in post-fusion conformations, whose 

sequences are reported in Fig. 1 and whose PDB_ID are listed in Supp. Tab. 1. 

 

 

Fig.  2. SARS-CoV-2 spike protein (S-II domain) 3D model in post fusion conformation. Lateral view (panel a), top view 
(panel b) e bottom view (panel c) of the SARS-CoV-2 spike protein trimer 3D comparative model, reported in cartoon 
colored representation.  

 

3.2. Modelling of the interactions between the SARS-CoV-2 spike protein and the human 

ACE2 along pre-/post-fusion conformation interconversion. 

Among the sampled crystallized structures, it was possible to observe three PDB_ID about the entire 

SARS-CoV-2 spike proteins and two about SARS-CoV-2 spike RBD protein interacting with the 

human ACE2 (Supp. Tab. 1). Furthermore, it was possible to highlight several crystallized structures 

about SARS-CoV-1 and MERS-CoV spike proteins as single proteins or in complex with their 

receptors or dedicated antibodies (Supp. Tab. 1). Notably, among the sampled structures, also the 

four entries used for building the 3D comparative model of the post-fusion conformation, were 

sampled (Supp. Tab. 1).  
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For modeling main interactions occurring between SARS-CoV-2 spike proteins and ACE2, thanks to 

the high percentage of identical residues shared by spike RBD from several CoV strains (Fig. 3), it 

was possible to structurally align three objects consisting of the human ACE2-SARS-CoV-1 spike-

RBD protein complex (2ajf.pdb) to the human ACE2-SARS-CoV-2 spike-RBD protein complex 

(6vw1.pdb, 6lzg.pdb) and the SARS-CoV-2 spike protein trimer (6vsb.pdb; 6vxx.pdb; 6vyb.pdb). 

More in detail, the superimposition performed by using PyMol was leaded by the structural alignment 

of the RBD of ACE2-SARS-CoV1 (2ajf.pdb) and ACE-2-SARS-CoV-2 (6vw1.pdb, 6lzg.pdb) spike 

proteins (Fig. 4), followed by the structure alignment with SARS-CoV-2 spike protein trimer 

(6vsb.pdb; 6vxx.pdb; 6vyb.pdb). Notably, we obtained an efficient superimposition of the two RBD 

domains (RMSD lower than 0.5 Å) of the human SARS-CoV-1 and SARS-CoV-2 spike proteins also 

due to their high percentage of identical residues (> 75%).  

It was possible to superimpose the crystallized SARS-CoV-2 spike protein in pre-fusion conformation 

and the modelled SARS-CoV-2 spike protein trimers in post-fusion conformation for showing the 

deep conformational changes occurring along conformation interconversion (Fig. 4). Apparently, the 

post-fusion conformation appears to be elongated and narrower than the pre-fusion conformation. 

The top portion of the post-fusion conformation locates beyond ACE2 receptors (Fig. 4), known for 

being anchored to plasma membrane and involved in internalization events (7, 41, 44, 45, 52). 

 

 

Fig.  3 Multiple sequence alignment of RBDs from 11 SARS-CoV and 3 MERS-CoV strains. The reported residues 

numbering refers to the indicated sequences sampled by blastp or to the indicated crystallized structure sequences. 
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Fig.  4 Side view (panels a-f) and top view (panes g-l) of H. sapiens SARS-CoV-2 spike protein interacting with 3 units of 
the human ACE2 N-terminal domain (panels a-e; g-k). SARS-CoV-2 spike protein trimer (6vsb.pdb) is reported in white 
cartoon representation with the 3 spike receptor binding domains reported in red (in the closed pre-fusion state) or green 
(in the open pre-fusion state) cartoon. The open pre-fusion state allows establishing pre-invasion interactions with ACE2 
N-terminal domain. SARS-CoV-2 spike protein trimer C-terminal domain, resulting from protein cleavage that triggers the 
post-fusion conformation, is reported in black cartoon representation in panel f (lateral view) and l (top view). 
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3.3. SARS-CoV-1 and SARS-CoV-2 RBD residues involved in direct interactions with ACE2 

From the available crystallized structures and from the obtained 3D structure models it was possible 

to highlight SARS-CoV-1 spike RBD (2ajf.pdb) and SARS-CoV-2 spike RBD residues (6) involved 

in the binding of the human ACE2 (Fig. 5 and Supp. Tab. 1). Notably, ion pair interactions observed 

between SARS-CoV-1 spike RBD and the human ACE2 are also observed between SARS-CoV-2 

spike RBD and the human ACE2. The reported data represents an updated/integrated analysis of a 

similar ones reported in (53), in light of the recently deposited SARS-CoV-2 spike RBD in complex 

with the human ACE2 (6vw1.pdb). 

 

Fig.  5. SARS-CoV-1 and SARS-CoV-2 RBD residues involved in direct interactions with ACE2. H. sapiens ACE2 is 
reported in white cartoon representation. SARS-CoV-1 RBD is reported in magenta cartoon representation, whereas 
SARS-CoV-2 RBD is reported in yellow cartoon representation. Panel a, c. Residues involved in polar interactions between 
SARS-CoV-1 RBD (magenta sticks) and ACE2 (white sticks). Panels b, d. Residues involved in polar interactions between 
SARS-CoV-2 RBD (yellow sticks) and ACE2 (black sticks). Polars interactions are represented by black dashed lines in 
the exploded views reported in panels c and d. 
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ACE2.interacting.residues.with 
SARS.CoV.1.RBD (2ajf.pd)b 

ACE2.interacting.residues.with 
SARS.CoV.2.RBD (6vw1.pdb) 

ACE2 
(chain A) 

SARS.CoV.1.RBD 
(chain E)  

ACE2 
(Chain B) 

SARS.CoV.2.RBD 
(Chain F) 

    S19 A475 

Q24 N473 Q24 N487 

Y83 Y475 Y83 Y489 

    E37 Y505 

D38 Y436 D38 Y449 

Q42       

Y41 T486 Y41 T500 

N330     N501 

K353 T487 K353 G496 

    G354 G502 

E329 R426     
    

T27 L45 T27 K403 

F28 Y83 F28 R439 

K31 Y440 K31 L455 

H34 Y442 H34 F456 

E37 L443 E35 F486 

L45 L472 Q42 S494 

L79 N479 L45 Y495 

M82 G482 N330 Q498 

Q325 Y484 D355 G504 

N330 G488 R357 Q506 

G354 I489    

D355 Y491    

R357       
Tab. 1 List of SARS.CoV.1 and SARS.CoV2 RBD residues and of ACE2. Bold black residues delimited by borders indicate 
a pair or a cluster of residues involved in polar inter-protein interactions. Normal black residues indicate residues at the 
Spike-RBD.vs.ACE2 protein interface distant less than 4 Å. The longest chains were chosen within those crystallized 

structures with multiple chains, for highlighting the listed interacting residues. 
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3.4. Comparative analysis of existing SARS.CoV.1. Spike RBD directed neutralizing 

antibodies and interaction predictions with SARS.CoV.2 Spike RBD. 

RBD from SARS-CoV-1 was crystallized in complex with the FAB domain of two different antibodies, 

namely m396 (2dd8.pdb, (44)) and S230 (6nb7.pdb, (45)). Both of them show high affinity for SARS-

CoV-1 spike RBD, being able to block attachment to ACE2 (44, 45). Nevertheless, they show 

different peculiarities in their mechanism of action. 

Indeed, S230 after binding RBD, similarly to ACE2, is able to trigger the SARS-CoV spike transition 

to the post-fusion conformation and it is not clarified yet, if virus-cell fusion may be triggered by S230 

also when S230-RBD interactions occurs close to the surface of the cells target of the SARS-CoV-1 

(45). At variance with S230, m396 antibody appears to be able to prevent SARS-CoV-1 spike-ACE2 

interactions and SARS-CoV-1 spike pre-/post-fusion conformation transition, neutralizing virus 

attack (44).  

Thanks to the high percentage of identical residues (> 75 %) between SARS-CoV-1 and SARS-CoV-

2 spike RBD domains and to their highly similar tertiary structure, as observed from the RMSD of 

0.5 Å between the coordinates of RBDs from SARS-CoV-1 (6nb7.pdb, (45) and 2dd8.pdb, (44)) and 

SARS-CoV-2 (6vw1.pdb (54) and 6vsb.pdb, (21)) spike proteins, it was possible to evaluate 

interactions between m396 and SARS-CoV-2 spike RBD and to propose a sequence/structure of an 

ideal FAB m396-based chimeric antibody for targeting SARS-CoV-2 spike RBD domain, preventing 

fusion events with ACE2 and thus the following infection.  

With this aim, we firstly highlighted the different RBD portions bound to the known antibodies. Then, 

we superimposed SARS-CoV-1 RBD to SARS-CoV-2 RBD for highlighting differences in residues 

involved in direct interactions with m396 CDR regions and with S230 CDR regions (Fig. 6 and Tab. 

1).  
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SARS.CoV.1.RBD 
(6nb7.pdb) 
crystallized 
residues within 4 Å 
from S230 (6nb7a) 

S230ab 
(6nb7a) 
residues
within 4 
Å from 
SARS.Co
V.1.RBD 
(6nb7.pd
b) 

SARS.CoV.2.RBD 
(6vw1.pdb) 
predicted 
residues within 4Å 
from S230 (6nb7a) 

S230ab 
(6nb7a) 
predicte
d 
residues 
within 
4Å from 
SARS.Co
V.2.RBD 
(6vw1.pd
b) 

SARS.CoV.1.RB
D (2d88.pdb) 
crystallized 
residues within 
4 Å from md396 

m396.ab 
(2d88) 
residues 
within 4 
Å 
SARS.Co
V.1.RBD 
(6nb7.pd
b) 

SARS.CoV.2.RBD 
(6vw1.pdb) 
predicted residues 
within 4 Å from 
m396 (2d88) 

m396.ab 
(2d88) 
residues 
within 4 
Å 
SARS.Co
V.2.RBD 
(6vw1.pd
b) 

T402   T415   T359  N27.L T372 G29.L 

G403 Y31.L V417 Y31.L  I28.L F374 S30.L 

D407 S32.L D420 S32.L S362 K31.L S375   

Y408   Y421   T363 S32.L T376 W91.L 

   zz    K365 H34.L   S93.L 

R441      K390   K403 D95A.L 

Y442   L455   G391 N66.L G404 Y96.L 

L443   F456   D392 G68.L D405   

R444   R457   R395 Q89.L R408 S31.H 

H445 W99.L K458 W99.L R426 V90.L R439 Y32.H 

G446 P100.L S459 P100.L Y436 D92.L   T33.H 

K447   N460   G482 S95.L G496   

       Y484 Y96.L Q498 T52.H 

F460 R56.H Y473   T485 V97.L P499 I53.H 

S461 N57.H Q474 N57.H T486   T500 L54.H 

P462 K58.H A475 K58.H T487 S30.H N501 I56.H 

D463 F59.H G476 F59.H G488 I34.H G502 A57.H 

G464 Y60.H S477 Y60.H I489 S35.H V503 N58.H 

K465    K65.H G490 W47.H G504 V97.H 

L472 R104.H F486 G66.H Y491 G49.H Y505 G99.H 

N473 Y106.H N487   Q492 P52A.H Q506   

Y475 F107.H Y489 R104.H Y494 G55.H Y508   

  P108.H   Y106.H   Y59.H     

  H109.H   F107.H   I69.H     

  F111.H       T70.H     

      H109.H   T71.H     

          A93.H     

          R94.H     

          T96.H     

          M98.H     

         G100.H    

         

M100A.
H    

Tab.  2 List of SARS-CoV-1/2 RBD residues within 4 Å from S230/m396 antibody residues. Bold residues indicate 
SARS.CoV.1 residues interacting alternatively with both ACE2 and/or m396/S230 in the crystallized available structures. 
Distance range below 4 Å. Bold underlined residues indicate SARS.CoV.2 residues interacting with ACE2 and predicted 
to interact with m396 in a distance range below 4 Å  
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Fig.  6 SARS.CoV.1 Spike and SARS.CoV.2 Spike monomers in pre-fusion conformation interacting with SARS.CoV.1 
Spike RBD selective antibodies S230 (6nb7.pdb) and m396 (2dd8.pdb). Panel a. Superimposition of the tertiary structure 
of SARS.CoV.1 (6nb7.pdb) and SARS.CoV.2 (6vsb.pdb) spike protein monomers reported in pink cartoon representation. 
SARS.CoV.1 and SARS.CoV.2 RBDs are reported in grey cartoon representation. S230 FAB ab portion (6nb7.pdb) is 
reported in yellow (light chain) and pink (heavy chain) cartoon representation. m396 FAB ab portion (2dd8.pdb) is reported 
in orange (light chain) and blue (heavy chain) cartoon representation. Panel b. zoomed view of the superimposition of 
SARS.CoV.1 Spike and SARS.CoV.2 Spike RBD domains interacting with S230 and m396 FAB antibodies (see Panel a. 
for colors). Panel c-d. Super zoomed and rotated views of the crystallized SARS.CoV.1 Spike RBD residues interacting 
with S230 ab. Panel e-f. Super zoomed and rotated views of SARS.CoV.2 Spike RBD predicted residues interacting with 
S230 ab. Panel g-h. Super zoomed and rotated views of the crystallized SARS.CoV.1 Spike RBD residues interacting with 
m396 ab. Panel i-j. Super zoomed and rotated views of SARS.CoV.2 Spike RBD predicted residues interacting with m396 
ab. Panels c-j Residues at the RBD – ab interface in the 3.5- 4 Å distance range are reported in sticks representation. 
White sticks indicate RBD residues; orange and blue sticks indicate m396 ab residues, yellow and pink sticks indicate 
S230 ab residues. 
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3.5 SARS.CoV.2 Spike RBD directed neutralizing antibody engineering 

Due to the uncertain data concerning fusion events and mechanism of action of S230 antibody, we  

built a new SARS-CoV-1/2 RBD directed antibody starting from the analysis of monomer-monomer 

interface interactions observed between the m396 antibody crystallized in complex with SARS-CoV-

1 RBD (44), superimposed to SARS-CoV-1 spike RBD / ACE2 complex (2ajf.pdb), and by comparing 

them with monomer-monomer interface interactions observed between the modelled m396 antibody 

in complex with SARS-CoV-2 RBD, superimposed to SARS-CoV-2 RBD/ACE2 (6vw1.pdb; 6lzg.pdb) 

protein complex (Fig. 7).  

 

 

Fig.  7. Molecular framework of the investigated proteins hosting SARS-CoV-spike RBDs, light and heavy chain of the 
m396 antibody and the human ACE2, simultaneously. The shown spike RBD, ACE2 and m396 protein portions are those 
in a reciprocal distance range of 4 Å. Upper panel: Superimposition of the crystallized SARS-CoV-1 spike RBD (white 
cartoon representation) in complex with m396 antibody (2d88.pdb, orange and blue cartoon) and ACE2 (2ajf.pdb, cyan 
cartoon). Bottom panel: superimposition of SARS-CoV-2 spike RBDs (from 6vw1.pdb, white cartoon representation), ACE2 
from 6vw1.pdb (cyan cartoon) and m396 from 2d88.pdb (orange and blue cartoon).  

 

Then, we highlighted m396 CDR residues (Tab. 2) for replacing them aiming to increase m392 

affinity versus SARS-CoV-1/2 spike RBDs. Residues to be mutated/replaced were chosen according 
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to space-restraints and chemical needs for better complementing SARS-CoV-1/2 spike RBD 

surface, based on the available SARS-CoV-1/2 RBD structures in complex with ACE2, aiming to 

produce something that resembled ACE2 surface (Tab. 1-2). Some of the proposed mutated 

residues (Tab. 3) are surely allowed because already observed at the corresponding sites of other 

known antibodies, according to Chotia/Kabat rules (http://www.bioinf.org.uk/abs/chothia.html; (55)).  

Residues replacement was directly performed in the newly generated 3D model hosting the 

interacting m396-SARS-CoV-2 spike RBD. Similarly, a complex of the modified m396 antibody 

interacting with SARS-CoV-1 RBD was also created. All m396 CDR mutated residues are reported 

in Tab. 3. Furthermore, mutated residues within m396 CDR interacting with SARS-CoV-2 spike RBD 

residues can be observed in Fig. 8.  

 

  

Mutations 

based on 

space 

restraints 

needs* 

Allowed 

variants#  

  

Mutations 

based on 

space 

restraints 

needs* 

Allowed variants#  

CDR-L1     CDR-H1     

24-
GGNNIGSKSVH-
34 

S30R; 

K31R 

G25A; 

N26S; 

I28N/S/D/E; 

G29I/V; 

S32Y 

26-GGTFSSYTIS-35 
S31K; 

T33E 
  

CDR-L2     CDR-H2     

50-DDSDRPS-56   D51A/T/G/V 
50-

GITPILGIANYAQKFQG-

66 

L55D; 

I57Y;  

T52D/L/N/S/Y; 

I54A/G/Y/S/K/T/N; 

L55N/S/T/K/D/G; 

I57Y/R/E/D/G/V/S/A 

CDR-L3     CDR-H3 

89-

QVWDSSSDYV-

98 

S94E; 

S95R 

V90Q; 

D92S; Y97I; 

V98T 
99-DTVMGGMDV-17 

V101K; 

G103L 
  

Tab.  3. List of CDR L/H residues detectable in m396 antibody according to Chotia/Kabat classification. The investigated 
(*) built variants (column “Mutations based on space restraints needs”) and (#) known mutations (column “Allowed 
variants”) according to Chotia/Kabat rules are also reported for comparative purposes. 
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Fig.  8. m396 neutralizing antibody, native and engineered,  in complex with SARS-CoV-2 spike RBD. Panels a-b: exploded 
view and perspective view of native m396 neutralizing antibody ( in orange blue cartoon) in complex with SARS-CoV-2 
spike RBD (in white cartoon representation). Residues at the m396/RBD interface in a distance range withni 4  are indicated 
by white sticks (RBD), orange sticks (m396 CDR-H residues) and blue sticks (m396 CDR-L residues). Panels c-d: exploded 
view and perspective view of the engineered m396 predicted neutralizing antibody (in orange blue cartoon) in complex 
with SARS-CoV-2 spike RBD (in white cartoon representation). Residues at the engineered m396/RBD interface in a 

distance range within 4 Å are indicated by white sticks (RBD), orange sticks (engineered m396 CDR-H residues) and blue 

sticks (engieered m396 CDR-L residues).  

 

The engineered FAB portions were thus aligned and superimposed on the FAB portion of a 

crystallized IgG (1igt.pdb, (48)). The sequence of the chimeric antibodies can be observed in Supp. 

Fig. 1, whereas their complete structure can be observed in Supp. Fig. 2.  

 

3.6 Free energy calculation 

The interaction energies calculated between the SARS-CoV-2 spike RBD domain and m396 native 

antibody FAB portion gives a negative value (Tab. 4), confirming that there might be a binding 

interaction between m396 native antibody FAB portion and SARS-CoV-2 spike RBD. This result is 

encouraging, also due to the indirect validation obtained by getting similar interaction energies for 

the crystallized SARS-CoV-1 RBD in complex with m396 (2d88.pdb) and for SARS-CoV-1 and 

SARS-CoV-2 spike RBD domains crystallized in complex with ACE2 (2ajf.pdb and 6vw1.pdb, 

respectively) (Tab. 4). Furthermore, a strong interaction (in terms of interaction energies calculated 

by FoldX Analyse complex assay) is also predicted between SARS-CoV-2 spike RBD (but also 
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SARS-CoV-1 spike RBD) and the modified m396 antibody (see Tab. 4), suggesting that the 

engineered m396 might be more efficient than the native m396 in binding the SARS-CoV-2 (more 

than SARS-CoV-1) spike RBD.  

 

Interacti
on 
energies 
(FoldX 
Analyse
Complex
) 

Crystalli
zed 
Structur
es 

Crystalli
zed 
Structur
es 

Crystalli
zed 
Structur
es 

PreMin 
3D 
model 

PostMin 
3D 
model 

PreMin 
3D 
model 

PostMin 
3D 
model 

PreMin 
3D 
model 

PostMin 
3D 
model 

Evaluate
d 
paramet
ers 

ACE2.R
BD1 
(2ajf) 

ACE2.R
BD2 
(6vw1) 

m396.or
ig.RBD1 
(2dd8) 

m396.or
ig.RBD2 

m396.or
ig.RBD2 

m396.m
od.RBD
1 

m396.m
od.RBD
1 

m396.m
od.RBD
2 

m396.m
od.RBD
2 

Group1 
(RBD.PD
B.Chain) 

E F S F F S S F F 

Group2 
(PDB.Ch
ain) 

A B HL HL HL HL HL HL HL 

Intraclas
hesGrou
p1 

152,996 34,6023 60,6311 34,7844 10,4901 60,5936 12,6289 34,7081 5,43578 

Intraclas
hesGrou
p2 

42,6681 76,8707 115,607 115,618 26,1664 121,985 26,2721 121,981 22,2216 

Interacti
onEnerg
y(Kcal/m
ol) 

-8,27337 -4,99501 -6,38302 29,781 -5,94391 83,0763 -5,79798 97,994 -6,11027 

Backbon
eHbond 

-1,64493 -2,58671 -2,02004 -1,47563 -3,14458 -1,55689 -2,61412 -1,35295 -6,45205 

Sidechai
nHbond 

-3,65689 -7,82596 -6,8445 -2,22654 -5,14948 -6,16783 -7,27162 -1,85715 -9,05615 

Vander
Waals 

-12,8528 -14,6465 -14,78 -13,706 -14,2857 -19,8527 -18,3596 -18,7798 -16,7473 

Electrost
atics 

-2,00537 -1,93968 -1,6167 0,20407 -1,08109 -0,52361 -2,43496 2,03709 -1,31515 

Solvatio
nPolar 

17,7702 21,7478 21,1444 21,1689 22,456 36,6253 30,306 36,1728 27,9908 

Solvatio
nHydrop
hobic 

-15,8938 -17,5192 -17,9431 -16,3451 -16,1214 -21,4908 -20,5409 -20,0436 -18,7147 

Vander
Waalscla
shes 

0,69758 3,79372 1,7873 30,14 0,31265 77,1691 2,78909 84,7845 1,41123 

entropys
idechain 

6,82574 10,471 7,77305 5,79006 6,60429 10,7898 8,94401 9,47957 10,5625 

entropy
maincha
in 

2,41072 3,66437 5,4694 5,11092 4,52485 7,82553 3,29406 7,0708 6,50957 

torsional
clash 

0,28695 0,06411 0,94515 1,03191 0,23954 0,41360 0,39516 0,20175 0,06424 

backbon
eclash 

3,76599 2,06447 3,27454 4,84797 3,33646 4,73668 3,86164 
6,32E+0
0 

3,70501 

helixdip
ole 

-0,0515 -0,00195 0 0,0584 -0,01726 0 -0,01829 
1,40E-
01 

-0,29465 
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electrost
atickon 

-0,19844 -0,27087 -0,29802 0,03001 -0,28173 -0,15522 -0,28670 0,14051 -0,06865 

energyIo
nisation 

0,03919 0,05490 0 0 0 0 0 0 0 

Entropy
Complex 

2,384 2,384 2,384 2,384 2,384 2,384 2,384 2,384 2,384 

Number
ofResidu
es 

778 794 625 630 630 625 625 630 630 

Interface
Residue
s 

42 44 41 41 44 49 49 49 49 

Interface
Residue
sClashin
g 

0 0 0 7 0 11 0 16 0 

Interface
Residue
sVdWCl
ashing 

0 0 0 7 0 11 0 16 0 

Interface
Residue
sBBClas
hing 

0 0 0 1 0 0 0 1 0 

Tab.  4 Energy calculations on crystallized structures or 3D comparative models of the investigated protein complex. The 
PDB.Chain indicates the chain of the PDB used within the indicated analyses on the cited crystallized structures or models 
obtained by superimposition with the indicated chains. The longest chains were chosen for the “interaction energy” 
analyses for those crystallized structures with multiple chains. Chain E, F, and S indicate the RBD chain within the 
investigated PDB_IDs. Chain A and B indicate the ACE2 chain within the investigated PDB_IDs. Chain H, L indicate the 
heavy and light chain of the investigated antibody (wild type and engineered variants), according to the indicated PDB_ID. 
PreMin and PostMin refer to models prior and after energy minimization performed on the Yasara minimization server. 
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DISCUSSION 

The indicated pipeline has allowed to set-up a molecular framework hosting SARS-CoV-2 spike 

protein, ACE2 receptor and different antibodies in the same pdb session that could be handled with 

different molecular visualizers. In this molecular framework it is possible to study and predict, at 

molecular level, interactions between the different “pieces” of the framework that my help in 

understanding virus invasion mechanisms, developing new vaccines or antibodies, identifying small 

molecules with high affinity for viral proteins and establishing quick/safe diagnosis selective/specific 

kits. Indeed, the scientific community is now focused in the development of new weapons for 

containing SARS-CoV-2 spread and COVID-19 complications as it could be observed in the 

enormous effort in developing new vaccines based on a virus protein/nucleic acid portion able to 

induce an efficient and specific immunogenic response(56–60), or in developing a neutralizing 

antibody highly specific for SARS-CoV-2 spike RBD (25, 26, 61–64), or in identifying chemicals with 

high affinity for SARS-CoV-2 crucial proteins (1–3, 65–67).  

Within the presented molecular framework, we have highlighted a set of possible efficient 

interactions between the crystallized m396 antibody and SARS-CoV-2 spike RBD, raising the 

question about the possibility to test directly m396 on cultured cells exposed to the virus and then, 

hopefully, on patients.  

Starting from that observation we have also proposed a set of modifications of m396 CDR residues 

resulting in a higher specific antibody, to be expressed and tested on cultured cells. Along the 

development of our antibody engineering modeling session an important paper was published and 

another is under revision in support of the hypothesis that m396 may be able to bind SARS-CoV-2 

spike protein (61, 62).  

It was also possible to pose in the proposed molecular framework the recent proposed SARS-CoV-

2 spike RBD directed CR3022 FAB antibody (6yla.pdb; 6w41.pdb, (62)), showing that it binds a 

different site of RBD that protrudes towards the central cavity of the spike protein trimer (data not 

shown). It appears that the RBD-antibody interaction is possible only if at least two RBDs on the 

trimeric spike protein are in the "open" state of the prefusion conformation and slightly rotated, in a 

site distant from ACE2 receptor binding region, according to what proposed by the authors (62). 

Dedicated studies are necessary for understanding if steric hindering problems might rise by using 

the whole antibody, and deepening the comprehension of the not competitive mechanism that would 

be observed between CR3022 and RBD in presence of ACE2 receptor. 

Studying all the cited interactions in the same pdb-molecular session has allowed to highlight maybe 

the most crucial ACE2 portions involved in direct interactions with SARS-CoV-2 RBD, suggesting 

that the administration of the recombinant RBD, a spike monomer or the entire spike trimer, if 

correctly folded, might result in the efficient triggering of antibody production from our plasma b-cells, 

reducing COVID-19 complications (supporting what has been recently proposed (56–60)).  
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At the same time, the ACE2-RBD interactions estimated in our molecular framework has 

strengthened the hypothesis to use the recombinant ACE2 for limiting COVID-19 infection 

complications (according to what recently proposed (68, 69)).  

A molecular framework like the ones here proposed will also help in studying the putative role of 

ACE inhibitors in perturbing ACE2-RBD interactions. Indeed, it was recently proposed that patients 

treated with ACE inhibitors might be more exposed to SARS-CoV-2 infection (70). Although ACE1 

(refseq accession number: NP_068576.1, representing the main target of ACE inhibitors) and ACE2 

(NP_690043.1, testis isoform or NP_000780, somatic isoform, among the most studied isoforms) 

share the 40 % of identical residues, few uncertain data about ACE inhibitors and a possible greater 

selectivity for ACE1 versus ACE2, or on their effect on ACE1/2 expression regulation are available 

in literature (70, 71). From a structural comparison it is observed that the RMSD of the crystallized 

native ACE2 coordinates (1r42.pdb, (72)) and ACE1 coordinates (1o8a.pdb, (73)) is lower than 2.5 

Å.  

Notably, the presence of ACE inhibitors captopril and enalaprilat (1uze.pdb,(74); 4c2p.pdb, (75)) and 

lisinopril (1o86.pdb, (73)) produces an RMSD lower than 0.3 Å in the atomic coordinates of the cited 

crystallized structures with reference to the native ACE1 (1r42.pdb, (72)).  

Conversely, we cannot establish if the slightly higher RMSD observed between the native ACE2 

(1r42.pdb) and ACE2 complexed with SARS-CoV-1 spike RBD (0. 41 Å, 2ajf.pdb) and SARS-CoV-

2 spike RBD (1.2 Å, 6vw1.pdb) can be attributed exclusively to interactions with SARS-CoV-RBD, 

because the observed RMSDs are of the same order of magnitude of the experimental resolution of 

the investigated crystallized structures. 

However, also admitting that ACE1 inhibitors at the employed dosage would target ACE2, with the 

same efficiency observed versus ACE1, the presence of those inhibitors in ACE2 binding cavity 

should not be able to induce an important conformational change in ACE2, which might favour a 

greater affinity of ACE2 versus SARS-CoV-2 spike RBD.  

Thus, the only mechanism for which, patients treated with ACE inhibitors would be more exposed to 

SARS-CoV-2, would rely in a positive feedback induced by ACE inhibitors in ACE2 expression. 

Nevertheless, evidences in support of this hypothesis need to be deepened (71, 76). 

In conclusion, the presented analysis highlights the importance to use fold recognition tools along 

the approach to a drug design problem according to a rational protocol (similar to what previously 

reported (29, 30, 49)), like the ones presented. Indeed, in this case, fold recognition tools have 

helped us in identifying crystallized structures of ACE2, SARS-CoV-spike proteins similar to those 

under investigation. Furthermore, performing structural comparative analysis has allowed to identify 

a possible good starting point, like the ones represented by m396, already crystallized in complex 

with SARS-CoV-1 spike RBD, for building the proposed antibodies. The same strategy might be 
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applied also for future infections by those researchers involved in drawing new antibodies and/or 

developing new vaccines, i.e. for dealing with future coronaviruses.  

To the best of our knowledge the reported SARS-CoV-2 spike protein trimer 3D model is the first 

model describing a possible conformational change leading to a reliable SARS-CoV-2 spike protein 

in post fusion conformation. The proposed model, based on the murine CoV spike protein (6b3o.pdb) 

crystallized in post fusion conformation, will help in understanding the mechanism allowing the virus 

envelop fusion with host cell plasma membranes, through and following interactions with ACE2.  

Furthermore, the provided 3D model in post-fusion conformation according to the crystallized 3D 

structure of SARS-CoV-2 spike protein in pre-fusion conformation confirms the presence and stability 

of a sort of channel at the interface of the three monomers that could represent a good target site of 

a virtual screening of a chemical/drug library aiming to identify a small molecule/peptide with high 

affinity for a monomer (similarly to what proposed for EK1 peptide (77)), for preventing trimer 

formation and stabilization, or a small molecule/peptide with high affinity for the trimer, aiming to 

prevent conformational changes leading to the fusion of the viral envelope with host cell plasma 

membranes. The screening of a drug library would help in identifying an already approved drug with 

high affinity for the spike channel, that might be immediately tested on the bed-side, in the context 

of the drug-repositioning approaches (78, 79). 

Notably, the provided molecular framework for investigating/drawing new antibodies based on 

space-restraints needs, would be used for the set-up of new antibodies based on the available 

tissue-specific immunoglobulin structures, as the proposed IgG2A (1igt.pdb, (48)) or other 

specialized antibodies, already optimized for targeting specific cells or receptors (i.e.1hzh.pdb, (80)), 

also among those that may successfully target the respiratory tract (1r70.pdb, (81) or 2qtj.pdb (82) 

or 6ue7.pdb (83)), that might be administered even by aerosol (84, 85).  

At the same time, already at the preclinical level, the administered vaccines based on the 

administration of the entire SARS-CoV-2 spike protein ((56–58) or on the administration of the single 

SARS-CoV-2 spike RBD, will induce the production of specific antibodies that might be sequenced 

and modelled in silico. On this concern, the provided molecular network will help in quantifying 

interactions between SARS-CoV-2 RBD (also in cases of different RBD variants (86)) and the newly 

investigated antibodies, i.e.lower the calculated binding energy in the modelled complex, higher the 

likelihood to have more success with the investigated vaccines/antibodies.   

The discovered antibodies with the highest affinity for RBD might also be implemented in a diagnosis 

kit aiming to the early identification of SARS-CoV-2 in sera, also in asymptomatic people.  

Conversely, a new diagnosis kit could also be based on the native RBD or a modified synthetic RBD, 

with greater affinity for the detected human antibodies directed against SARS-CoV-2 spike RBD 
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protein, for determining the real number of healthy people already exposed to the virus in the 

population.  

The lacking knowledge about the real number of people exposed to the virus (including 

asymptomatic people, people with mild symptoms and rescued people that never needed 

hospitalization or quarantine) is the only important data that we still miss. Without data about the real 

number of people, exposed to the virus, in the population, coming back to normal life will be 

extremely slower. 

 

About technical questions. Detailed instructions for the set-up of the shown molecular framework 

have been provided in the manuscript. Nevertheless, we can also provide free assistance for 

academic analyses, upon request. We can also provide dedicated technical support for analyses 

requested by private companies through our BROWSer s.r.l. spin-off (in this case, please, write to 

info@browser-bioinf.com and to CLP in Cc). 
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Supp. Tab.  1 List of the sampled homologous crystallized structures and specific structural features. The listed proteins 

were sampled by using the folding recognition tools available on pGenTHREADER (http://bioinf.cs.ucl.ac.uk/psipred/) and 
i-Tasser (https://zhanglab.ccmb.med.umich.edu/I-TASSER/) webservices. SARS-CoV-2 structure with the cited PDB_IDs 
are also available through the COVID-19/SARS-CoV-2/Resources available on the PDB at the link: 

https://www.rcsb.org/news?year=2020&article=5e74d55d2d410731e9944f52.  
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Supp. Fig.  1 MSA of antigen-binding fragment (Fab) of m396 ab (native and modified) with 1IGT.pdb sequece. (A) Pairwise 
alignment of the light chains from 1IGT (murine IgG) and m396 antibody (native and modified). (B) Pairwise alignment of 
the heavy chains of the Fab portions from 1IGT and m396 antibody (native and modified.  
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Supp. Fig.  2 The overall structure of 1IGT antibody used as a protein template for building our chimeric mAb models based 
on m396 ab. The heavy chains are reported in orange cartoons, and the light chains are reported in blue cartoons, for the 
native m396 (panel a) and for the modified m396 (panel b). SARS-CoV-2 spike proteins are reported in 
cyan/magenta/green cartoon representation with the exclusion of RBD reported in black cartoon representation. Breaks in 
the tertiary structures of the antibody backbones (portion in orange cartoon representation), at the interface of the FAB/Fc 
portion, indicate sites hosting residues that were ligated after superimposition of the different portions (1igt.pdb and 
native/mutated m396) for obtaining the final complete 3D model of the proposed antibodies. 
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