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Abstract

Understanding the decision process underlying gaze control is an important question in
cognitive neuroscience with applications in diverse fields ranging from psychology to
computer vision. The decision for choosing an upcoming saccade target can be framed
as a dilemma: Should the observer further exploit the information near the current gaze
position or continue with exploration of other patches within the given scene? While
several models attempt to describe the dynamics of saccade target selection, none of
them explicitly addresses the underlying Exploration–Exploitation dilemma. Here we
propose and investigate a mathematical model motivated by the
Exploration–Exploitation dilemma in scene viewing. The model is derived from a
minimal set of assumptions that generates realistic eye movement behavior. We
implemented a Bayesian approach for model parameter inference based on the model’s
likelihood function. In order to simplify the inference, we applied data augmentation
methods that allowed the use of conjugate priors and the construction of an efficient
Gibbs sampler. This approach turned out to be numerically efficient and permitted
fitting interindividual differences in saccade statistics. Thus, the main contribution of
our modeling approach is two–fold; first, we propose a new model for saccade generation
in scene viewing. Second, we demonstrate the use of novel methods from Bayesian
inference in the field of scan path modeling.

Author summary

The Exploration–Exploitation dilemma is general concept that has been investigated in
human information processing. We investigate whether the Exploration–Exploitation
trade–off is a viable approach to model sequences of fixations generated by a human
observer in a free viewing task with natural scenes. Variants of the basic model are used
to predict to the experimental data based on Bayesian inference. Results indicate a high
predictive power for both aggregated data and individual differences across observers.
The combination of a novel model with state-of-the-art Bayesian methods lends support
to the Exploration–Exploitation framework in the field of eye-movement research.

Introduction 1

The human visual system acquires high-acuity information from a rather small region 2

(the fovea) surrounding the center of gaze [1]. The foveal organization of the visual 3
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system has two immediate consequences. First, visual perception of natural scenes 4

depends critically on the control of precise and fast eye movements (saccades) that move 5

regions of interest into the fovea for high-acuity processing. During a typical visual task 6

(e.g., scene viewing or reading), saccades occur at a rate of 3 to 4 per second [2]. Second, 7

the decision process for an upcoming saccade target poses a dilemma: should the 8

observer further exploit the information near the fovea or continue with exploration of 9

other patches within the given scene? The latter problem is critical for scene 10

viewing [3, 4] and relevant to the broader field of cognitive processes in knowledge 11

acquisition [5]. 12

Observers select saccade targets from a priority map [6] that represents objects and 13

regions within a given scene according to their attentional weight. Over the last decades, 14

computational modeling of visual attention for natural scenes [7] resulted in a broad 15

range of successful models [8] of priority maps. These models use feature maps to 16

combine low-level saliency and top-down control. Recently, deep neural network (DNN) 17

models achieved state–of–the–art performances in predicting saliency maps from 18

images [9, 10]. From these advances, the problem of modeling priority maps seems 19

basically solved [11]: for an arbitrary natural image, computational models can generate 20

a prediction of fixation density in experiments with human observers. 21

The next step in modeling human visual behavior is fundamentally related to the 22

fact that eye movements introduce sequential steps in information processing. Since 23

access to visual information is effectively limited to the fovea, the full sequence of 24

saccadic gaze shifts (scan path) needs to be modeled in order to understand the 25

underlying principles. Understanding how human observers shift their attention while 26

looking at an image requires quantifying the scan paths (Figure1). 27

Fig 1. Experimental scanpath and fixations density. Left. An image and a
scan path. Each dot is a fixation and the dashed line illustrates the saccade. Right. The
empirical fixation density map as generated by aggregating the fixations from all
subjects for a given image.

So far, few models for scan path generation and prediction have been proposed. 28

These models can be generally classified into two groups, where one group of models is 29

hypothesis–based and the other is hypothesis–free. The second group includes models 30

which use state of the art deep learning techniques [12], [13]. While these models 31

capture structure present in the data, they provide only very limited insights into the 32

underlying principles of scan path generation. Another critical point for experimental 33

research is that deep learning models require a lot of training data, which are typically 34

unavailable for single observers. Thus, current deep learning approaches do not capture 35

interindividual differences in statistical properties of scan paths. 36

Hypothesis–based models rely on cognitive and neural assumptions of human 37
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perception and oculomotor control that were derived from known biological mechanism 38

and well-established experimental effects [14–17]. Thus, the key goals of parametric 39

models are (i) to implement these assumptions in a fully quantitative way and build a 40

generative model, (ii) to fit the model to experimental data for hypothesis testing 41

(statistical inference), and, finally, (iii) to provide explanations for interindividual 42

differences in experimental data sets [18]. 43

In the current study, we introduce a new model which belongs to the class of 44

parametric models. Our central hypothesis is that the generation of scan paths can be 45

phrased in the context of the Exploration–Exploitation trade-off. In this view, the 46

generation of each saccade is a decision process, where the observer has to choose 47

between a short saccade for staying in the immediate surrounding of the current fixation 48

(exploitation) and a long saccade to explore a new region of the visual environment 49

(exploration). We assume that the decision is based on the information currently 50

available to the observer. Specifically, this assumption translates into a higher 51

probability of an exploitation saccade if the ratio of priority values of the current fixated 52

location and the previously fixated location is high. This hypothesis follows an 53

assumption that the area next to a location with high priority also has high priority. 54

This assumption is valid for natural images used in this work. 55

The idea of exploration and exploitation intentions in visual behavior was studied 56

previously by Gameiro et al. [3]. Their work demonstrated experimentally that the 57

tendency for exploration or exploitation, measured by saccade amplitude and fixation 58

duration, depends on size and spatial properties of the stimulus. The characterization of 59

the exploratory or exploitative tendencies was done using the statistics of the entire 60

scan paths. 61

Different from the approach taken by Gameiro et al. [3], we use the 62

Exploration–Exploitation terminology to analyze individual saccades rather than entire 63

scan paths. Our generative model tags each saccade as either an exploration or an 64

exploitation step. We aim at a minimal model to keep computations efficient and to 65

facilitate interpretations of the model behavior. A critical component of our approach is 66

the application of Bayesian statistics to fit the model to experimental scan path data. 67

We use the fitted model to quantify how well the model describes the experimental data. 68

Further we test different variations of the model, which correspond to different 69

hypotheses, to determine which hypothesis corresponds best to the experimental data. 70

In the next section we describe the details of our basic model and explain the 71

computation of the likelihood function as a fundamental tool for statistical inference. 72

We construct the model in a modular way and relate each part to one of the 73

assumptions we would like to investigate. Next, we describe the process of fitting the 74

model parameters to experimental data. In the Results, we compare several statistics of 75

simulated data to the statistics of the experimental data. We also analyze different 76

variants of the basic model and quantify how well each one of them describes the data 77

using the model’s likelihood function. We close with the Discussion of our results in the 78

context of current problems in understanding scan path generation during scene viewing. 79

Materials and methods 80

The Exploration–Exploitation Model for scan path generation 81

Our theoretical investigation of exploration and exploitation in saccadic behavior is 82

based on the implementation of a probabilistic generative model. The static viewer 83

independent priority map for saccadic selection [6] is thought to be the combined result 84

of early visual processing or saliency [7] and top-down cognitive control. While various 85

models for the computation of static priority maps exist, we extend the modeling 86
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approach to the generation of scan paths for a given static saliency map. For simplicity, 87

we use the time-averaged fixation density [16] as an approximation of the saliency of a 88

given image. 89

The static saliency map is a function s(z) : R2 7→ R+ with z = (x, y) being a 90

location in an image and s(z) being the probability of an average viewer to fixate this 91

location (its saliency). As mentioned above, we approximate the saliency map by the 92

experimentally-observed fixation density and we use s(z) or sz to refer to the saliency 93

map or the fixation density of the image at location z. 94

Generally, scan paths are sequences of fixation locations and fixations duration. In 95

this work we model only the spatial properties of gaze control. We account only for the 96

temporal ordering of the fixations and do not model the fixation duration. In these 97

settings, a scan path is written down as Z = {z1, z2, ..., zt, ..., zT } with T being the 98

number of fixations in the scan path and zt being the location of the tth fixation. 99

We begin constructing our model by assuming that the saccade generation process is
a second order Markov process, which means that the probability p(z = zt) of fixating
on a specific location zt at time step t depends only on the location of the fixation at
time t− 1 and the fixation at time t− 2. The probability of a full scan path is written as

p(Z) = p (z1) p (z2)
t=T∏
t=3

p (zt|zt−1, zt−2) . (1)

The choice of the second order Markov process reflects our hypothesis regarding the 100

scan path generation and will become clear in the upcoming paragraphs. In principle, it 101

is possible to construct a simpler model which corresponds to first order Markov process. 102

This would correspond to slightly different assumptions regarding the scan path 103

generation and we refer to such a model in the section discussing simplified models. 104

We describe the probability of the next fixation being zt given that the previous two 105

fixation location were zt−1 and zt−2 in terms of competing exploitation and exploration 106

policies: 107

Exploitation The next fixation location is chosen close to the current fixation
location following a Gaussian distribution around the current fixation location with
covariance ε, normalized over the entire image. This can be written as

pexploit (zt|zt−1) =
n (zt; zt−1, ε)∑
z′ n (z′; zt−1, ε)

(2)

where n (zt; zt−1, ε) is a Gaussian density with mean zt−1 and covariance ε =
( εx 0

0 εy

)
. 108

Exploration A potential exploration policy is that the next fixation location is 109

chosen randomly from the static saliency map of the image. This policy leads to very 110

large saccade amplitudes which are known to be less probable [19]. To integrate this 111

prior regarding the saccade amplitudes knowledge into the model – instead of choosing 112

the next fixation location from the the saliency map, we modulate the saliency map by 113

a Gaussian distribution, which gives a higher weight to areas of high saliency which are 114

closer to the current location. 115

This approach results in the following expression for the exploration policy

p (zt|zt−1) =
s (zt)n (zt; zt−1, ξ)∑
z′ s (z′)n (z′; zt−1, ξ)

(3)

with ξ a diagonal covariance matrix similarly to ε, ξx > εx and ξy > εy. 116

Having Equation (3) as an exploration policy may result in short saccades similar to
the ones generated by the exploitation policy when the current fixation is in a high
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Exploitation

Exploration

Fig 2. Exploration and exploitation policies. On the left is an example of an
empirical saliency map, the dot indicates a fixation location. On the right are the
probability maps generated by either the exploitation policy (upper panel) or the
exploration policy (lower panel). The arrow indicates a saccade.

priority area. A solution is to create a repulsion mechanism that forces the saccades
generating by the exploration policy to be of at least a certain length. This is achieved
by the following expression

pexplore (zt|zt−1) =
max (s (zt)n (zt; zt−1, ξ)− n (zt; zt−1, ε) , 0)∑
z′ max (s (z′)n (z′; zt−1, ξ)− n (z′; zt−1, ε) , 0)

. (4)

To avoid negative values for the likelihood we take the maximum between the 117

subtraction and 0. Figure2 visualizes the two distributions formulated in Equations (2) 118

and (3). 119

Our assumption is that each fixation comes either from the exploration policy
described in Equation (4) or the exploitation policy described in Equation (2). This can
be represented as a mixture model

p (zt|zt−1, ρ) = ρ pexploit (zt|zt−1) + (1− ρ) pexplore (zt|zt−1) (5)

The model parameter ρ describes the tendency to perform either an exploration or 120

exploitation step. It can be fixed based on prior knowledge or inferred from the 121

experimental data. The condition ρ > 0.5 implies that the probability for an 122

exploitation step is larger than for an exploration step for every saccade. 123

Next we include in our model the assumption that ρ changes depending on the 124

fixation location. We use the notation ρt to indicate that the fixation zt was generated 125

based on ρt. Importantly, this notation does not imply that ρt is necessarily a function 126

of zt. 127

We assume that the decision whether to make an exploration or an exploitation step
depends on the ratio between the priority values of the current and previous fixated
locations. The result is that the viewer is more likely to make an exploitation step if the
saliency value of the current fixated location is higher than the saliency value of the
previous fixated location. We include this in the model with the following expression for
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ρt

ρt = σ (f (s)) =
1

1 + exp (−f (s))
(6)

with

f (s) = b

(
st−1
st−2

− so
)

(7)

with st−1 = s (zt−1) and b and so being scalar variables. 128

Combining Equation (1) and Equation (5), the model likelihood is written as

p (Z|Θ) = p (z1) p (z2)
t=T∏
t=3

(ρt pexploit (zt|zt−1) + (1− ρt) pexplore (zt|zt−1)) (8)

with model variables Θ = {ε, ξ, b, so}. Here, we chose to sample the first and second 129

fixation from the empirical static saliency map such that p (z) = s (z). 130

Figure3 presents a scan path generated by our model given a particular saliency 131

map, along side a scan path recorded experimentally from a viewer viewing the image 132

corresponding to the saliency map. 133

Fig 3. Experimental and simulated scan paths. Left. An image and a scan path
recorded from a human observer. Right. The experimental static saliency map and a
scan path generated by the Exploration–Exploitation Model. The green arrow pointing
right represents the first randomly selected fixation location. The green arrow pointing
left represents the last fixation in the scan path. The blue dots are fixations that were
generated from an exploration step and the pink dots are fixations that were generated
from an exploitation step.

Simplified models 134

To test the different assumptions behind our full model described above, we construct 135

three simpler models and compare their performances to the performance of the full 136

model in the Results. To construct the models we remove one by one the assumptions 137

on which the model is based. This results in the following competing models: 138
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Local Choice Model: Equation (6) describes the assumption that the decision
between an exploration and an exploitation step depends on the ratio between the
priority value of the current fixation location and the priority value of the previous
fixation location. A competing assumption would be that the decision depends only on
the priority value of the current fixation location. In this case we keep the model the
same and only change f (s)

f (s) = b (st−1 − so) . (9)

Fixed Choice Model: We test the assumption that the decision between the policies 139

does not depend on the saliency value of previous fixation. In this simplification of the 140

model, rather than having ρt = f (zt−1, zt−2) we have a fixed probability to chose each 141

policy with ρt = ρ. 142

Local Saliency Model: Last, we challenge the approach of two competing policies.
In this variation of the model, each fixation is generated from a modulation of the
empirical saliency map with a Gaussian around the current fixation location. This
corresponds to the following fixation location likelihood

p (zt|zt−1) =
s (zt)n (zt|zt−1, ξ)∑
s (z′)n (z′|zt−1, ξ)

(10)

In the next section we describe the inference process of the full Exploration– 143

Exploitation Model. As the three models described above are simplified versions of the 144

full model we do not describe their corresponding inference processes as they can be 145

easily derived from the inference of the full model. 146

The inference process 147

Our approach is based on experimental results and we derive the model parameters 148

from observed data in a Bayesian framework. This approach allows us to include prior 149

knowledge regarding the different model parameters based on known spatial features of 150

scan paths. It also allows us to obtain distributions over the model parameters, rather 151

than point estimates, and to compare different variations of the model via the respective 152

test–data likelihoods. 153

In the previous section we defined the likelihood of the data. Next, we describe the 154

data augmentation methods which allow us to identify conjugate priors and construct 155

an efficient Gibbs sampler [20] using the full conditional distributions over the model 156

parameters. 157

The idea behind data augmentation [21] is adding latent variables to the model,
which can be considered as unobserved data, in a way that simplifies the inference of
the parameters of interest. We use the standard approach and augment the
Exploration–Exploitation likelihood by

p(Z,Γ|Θ) = p(z1)p(z2)

T∏
t=3

pexploit (zt|zt−1)
γt pexplore (zt|zt−1)

1−γt (11)

with

γt ∼ Bern (ρt) = Bern (σ (f (s))) (12)

and marginalizing over Γ results in Equation (8). 158

The augmentation defines a modified generative process for the model. At each time 159

step a variable γt is drawn from a Bernoulli distribution with bias ρt. If the result is 1 160
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then the next saccade is generated following the Exploitation policy. If the result is 0, 161

the saccade is generated from the exploration policy. This construction reflects our 162

assumption regarding the cognitive process underlying scan path generation, where each 163

saccade follows either the exploration or the exploitation policy. 164

For a simple two–component mixture model with normal distribution, the 165

augmentation described above would have been sufficient for the derivation of a Gibbs 166

sampler [22]. As the model we constructed is more complex, we need to handle the 167

sigmoid link–function in Equation (6) and the non-trivial form of the Exploration 168

distribution in Equation (3). 169

With the Sigmoid function in Equation (6) there is no straightforward way to define
conjugate priors for the parameters b and so which are needed for a Gibbs sampler. To
achieve conditional probabilities which are easy to sample from, we augment the model
with another set of latent variables wt, which follow a Pólya-Gamma distribution

wt ∼ PG (1,−f (s)) . (13)

As described in [23] for the case of logistic regression, the usage of this augmentation 170

scheme results in conditional distributions for b and so which are Gaussian and can be 171

sampled from easily. The full derivation of the discussed conditional distributions can 172

be found in the supplementary material. 173

After adding the two sets of latent variable we can define conjugate priors for the
parameters:

εx/y ∼ IG
(
εx/y;αεx/y

, βεx/y

)
(14)

ξx/y ∼ IG
(
ξx/y;αξx/y

, βξx/y

)
(15)

b ∼ N (b;µb, σb) (16)

so ∼ N (so;µso , σso) . (17)

The prior distributions described above include hyperparameters. These parameters 174

were chosen and not inferred from the data. The hyperparameters related to the prior 175

distributions over εx/y and ξx/y were chosen based on known characteristics of human 176

saccades. The hyperparameters related to b and so were chosen to be on the same scale 177

of the average st−1

st−2
from the data. Further, all of the hyperparameters were chosen to 178

induce wide prior distributions. 179

Combining the likelihood in Equation (8) with the priors defined above, the
posterior distribution over the model parameters and the latent parameters is given by

p (Θ,Γ,W |Z) ∝ p (Z|Θ,Γ,W ) p (Γ|Θ) p (W |Θ) p (Θ) (18)

with

p (Θ) = p (ε) p (ξ) p (b) p (so)

. 180

We can sample easily from the conditional distributions of b and so. This is not the 181

case for ε and ξ because of the form of pexplore. 182

Due to the complex form of the exploration expression in Equation (4), which 183

includes both ξ and ε, there is no closed form for the conditional distribution of these 184

parameters. Thus, we resort to a technique known as MCMC within Gibbs [24, 25] and 185

in each iteration of the Gibbs sampler we evaluate the conditional distributions of ξ and 186

ε using an Hybrid Monte Carlo step [26], also known as Hamiltonian Monte Carlo. 187

For further technical details regarding the augmentation and the HMC sampler 188

please see the supplementary material. 189
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Results 190

In this work we propose an Exploration-Exploitation Model for scan path generation. In 191

the previous section we derived the model equations from the basic 192

Exploration–Exploitation approach. We described the inference process of our model 193

when applied to experimental data. In this Section, we present the results of the 194

inference process. First, we analyzed the reliability of our procedures by fitting the 195

model to artificial data generated from the model with known parameter values. Next, 196

we fit the model to the experimental data and test the statistics of the data generated 197

from the model against the experimental data. Finally, we compare different versions of 198

the model. 199

Model parameters estimation 200

As presented in the Methods Section, the inference process includes using an MCMC 201

approach to evaluate the posterior function over the model parameters. This approach 202

is exact in the limit of an infinite number of samples but as we can only use a finite 203

number of samples our the result is an approximation of the actual posterior. The 204

distribution of the inferred parameters should concentrate around their real values. 205

When fitting the model to experimental data it is impossible to know the real values 206

of the model parameters as they do not relate directly to any measurable features of the 207

data. Thus, in order to assess the performance of the inference we use data simulated by 208

the model, in which case we know the exact values used to generate the data. If the 209

inference process is correct we expect the resulting posterior distribution to be 210

concentrated around the ground truth values. 211

We generated data from our model with the parameter values that were inferred 212

from the experimental data. In order to see whether the inference process will have 213

reasonable results when fitting the experimental data, the size of the generated data set 214

is comparable to the size of the experimental data for one subject. 215

Figure4 presents the distribution over model parameters as results from the inference 216

process with data generated by the model. Each of the ten colored curves represents a 217

different inference process started at a different point. As expected all the curves from 218

different runs are similar in shape. The black dashed curves present the prior 219

distribution over the parameters. To test the model we chose the prior distribution so 220

their modes do not overlap with the values used in the data generation. As expected the 221

mode of the inferred parameter distribution is close to the real values used in the data 222

generation which are noted by the vertical solid line. 223

We tested the model on generated data that have similar properties to the 224

experimental data. Generated scan paths had lengths similar to the lengths of scan 225

paths recorded experimentally. This could have the result that the generated data does 226

not have sufficient information regarding the underlying model parameters and it 227

explains the deviation of the distribution mode from the true parameter values. 228

Model performance on experimental data 229

Our model was derived from a set of hypotheses regarding the cognitive process of 230

saccade generation. In order to test the validity of the model, and of the corresponding 231

hypotheses, we fit the model to the data, simulate new data using the model and check 232

whether the features of the simulated data correspond to the features of the 233

experimental data. 234

The data set used here includes the scan paths of thirty five human observers 235

performing a memorization task over thirty natural images. The same data set was used 236

before to evaluate other scan path models [16], [18]. The acquisition of the data was 237
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Fig 4. Inference results on simulated data. Model parameter recovery. To test
the inference algorithm we fit the model to simulated data with known parameters
values. Each panel includes the inferred posterior distribution of each parameter after
the inference process. The ten curves present 10 different inference processes starting
from different values. The vertical lines are the values with which the data was
generated. The black dashed curve is the prior distribution. The plotted densities are
not normalized.

carried out in accordance with the Declaration of Helsinki, and informed consent was 238

obtained for experimentation by all participants. Data from three subjects were 239

excluded as the inference process did not converge. 240

We fit a separate model for each subject, while using the same prior 241

hyperparameters for all fitted models. We want to test whether the model captures 242

subjects’ tendencies that generalize over images. Thus, we split the model and use 70% 243

of the trials as training data, with which the model parameters are fitted, and use the 244

remaining 30% of the data as the test set. All the reported results in this section are 245

obtained from the test data. 246

Saccade amplitude 247

The Exploration–Exploitation Model was designed to capture the different saccade 248

amplitudes generated by subjects while observing an image in a free viewing task. To 249

estimate the model’s performance we compare the amplitudes of the empirical saccades 250

with the amplitudes of the saccades generated by the model. The comparison is done 251

both at a population level and for each subject separately. 252

Figure5 compares the empirical saccade amplitude density with the saccade 253

amplitude density of the scan paths that were generated by the full 254

Exploration–Exploitation Model and the simplified versions presented previously. The 255

density presented is over the entire population of subject. The black curve presents the 256

empirical data. The orange curve corresponds to data generated by the full 257

April 3, 2020 10/17

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.16.044677doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.044677
http://creativecommons.org/licenses/by/4.0/


0.00

0.02

0.04

0.06

0.08

0.10

0.12

De
ns

ity

Experimental Data
Full Exploration-Exploitation 
 Model
Local Saliency Model
Local Choice Model
Fixed Choice Model

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Saccade length [deg]

0.00

0.02

0.04

0.06

0.08

0.10

0.12
De

ns
ity

Experimental Data
Full Exploration-Exploitation 
 Model
Local Saliency Model

Fig 5. Saccade amplitude density - experimental and simulated. Saccade
amplitude density, aggregated over the data from all participants, of the experimental
data and data generated by the full model and the simplified competitor models. Top.
Comparison of all models. Bottom. Comparison between the full
Exploration–Exploitation Model and the Local Saliency Model. The shading
corresponds to confidence bounds regarding the estimate of the model parameters. The
full Exploration–Exploitation Model manages to capture the different kinds of saccade
lengths, whereas the simpler models fail to do so.

Exploration–Exploitation Model, and the other curves correspond to the different 258

simplified models. 259

Figure5 shows that the full Exploration–Exploitation Model performs better than 260

the simplified models. The three simplified models tend to capture the mean saccade 261

amplitude rather than the full variety of saccade amplitudes displayed in scan paths. 262

This behavior is expected from the Local Saliency Model, which includes only one type 263

of characteristic saccade amplitude whereas the full Exploration–Exploitation Model has 264

two characteristic saccade amplitudes that correspond either to the exploration or 265

exploitation strategy. 266

Regarding the Local and Fixed Choice Models, they seem to converge to a behavior 267

where ρ is either very small or very big. An extreme value for ρ results in a scan path 268

with either exploitation (if ρ is close to one) or exploration steps (if ρt is close to 0), but 269

almost never both. Hence, these models display a similar behavior to the Local saliency 270

Model which has only one type of characteristic saccade amplitude. 271

The Bayesian inference process presented in Methods Section results in a 272

distribution over the possible values of the model parameters. This corresponds to 273
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uncertainty regarding the values of the model parameters. The shading around the 274

generated data curves in Figure5 corresponds to this uncertainty. We sampled 50 275

different values from the posterior distribution of each one of the model parameters and 276

used this configuration to generate one data set. The shading represents the 95% 277

intervals around the mean density over the different data sets. 278
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Fig 6. Comparison between
experimental and simulated subjects’
mean saccade amplitude. Subjects’
median saccade length compared with the
mean saccade length of data generated by
the Exploration–Exploitation Model
(circles) and by a Local Saliency Model
(stars). Overall the
Exploration–Exploitation Model captures
the median saccade length more accurately
than the Local Saliency Model.

The confidence bounds are rather 279

narrow and the density distributions of 280

the two model are highly separable. This 281

is a good indication that the Bayesian 282

parameter inference is reasonable 283

– the saccade amplitude density does not 284

change dramatically with the parameter 285

configurations sampled from the posterior 286

distributions. The confidence bounds 287

for the Local and Fixed Choice Models 288

behave in a similar way and are not 289

included in the figure for clarity purposes. 290

As described 291

above, we fit a model for each subject 292

individually. Thus, we can investigate 293

how well the Exploration–Exploitation 294

Model captures the difference 295

between the subjects. In Figure6 296

we compare the mean saccade length 297

of the empirical data and data generated 298

from the Exploration–Exploitation 299

Model for each subject. 300

Each data point is one subject and 301

the diagonal curve is the identity line. 302

Overall, the model 303

captures the different mean saccade 304

length of the different subjects. It seems 305

that the model has a slight tendency to 306

underestimate the mean saccade amplitude, which is also visible in Figure5. The error 307

bars in the figure correspond to the standard error over the different trials for each 308

subject. By comparing the standard error of the empirical saccade amplitudes and of 309

the standard error of the data generated from the Exploration–Exploitation Model, we 310

conclude that the model captures not only the mean saccade amplitude but also the 311

variability of the different saccade amplitudes of each subject. 312

Saccade direction 313

Generally, saccades can be seen as vectors characterized by amplitude and direction. 314

After analyzing the model performance with regard to the saccade amplitude, we turn 315

to analyze the model performance with respect to the saccade direction. 316

In Figure7 we compare the saccade direction density, over the entire population of 317

subjects, of the empirical data and of data generated by the fitted model. The empirical 318

data demonstrate clear preference for horizontal saccades and a weaker tendency 319

towards vertical saccades. The data generated by the model correspond to a tendency to 320

perform horizontal saccades, but this tendency is not as strong as in the empirical data. 321

The empirical tendency towards vertical saccades is not captured at all by the model. 322

The fact that the model captures only one preferred direction is not surprising. At 323

each step, the next fixation is chosen from a Gaussian distribution in case of an 324
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exploitation step, and from a donut–shaped distribution in case of an exploration step. 325

Both of these distributions have only one preferred direction, which results in the oval 326

shape of the saccade direction density. In the Discussion we suggest variations of the 327

model which could capture more than one preferred saccade direction. 328

Fig 7. Experimental and simulated saccade direction density. Saccade
direction frequency, aggregated over the data from all subjects. In blue is the empirical
data and in orange the data generated from the model. The empirical data demonstrate
a strong tendency to saccades which are in the left and right directions, and a tendency
to perform saccades directed upwards. The model captures the tendency to perform
horizontal saccades, but not vertical saccades.

Model comparison 329

Last, we would like to compare the performance of the full Exploration–Exploitation 330

Model to the simplified variants of the model presented in the Methods Section. As 331

suggested in the work of Kümmerer et al. in [27] we use the information gain to 332

compare the performances of the different models. They define information gain, as the 333

average difference of the log-likelihood between a model and some baseline model. As a 334

baseline we take a uniform distribution over the image, where the log-likelihood for each 335

fixation is constant and equal to log2 (number of pixels). 336

We estimate the likelihood of the different models over different realizations of the 337

model parameters sampled from the posterior. As the model parameters where fitted on 338

the training data, the resulting posterior distribution can be seen as a new prior 339

distribution over the parameters for the test data-set. Thus, the information gain, 340

averaged over different realizations of parameters, is the likelihood ratio test which is a 341

proper scoring rule [28,29]. 342

Table 1 presents of the result of the comparison of the information gain of the 343

different variations of the model with respect to the baseline model. The full 344

Exploration–Exploitation Model has the highest information gain which verifies the 345

assumptions underlying the model over the models without these assumptions. As in 346

Figure5 the uncertainty in the results is over different realizations of the model 347

parameters from the fitted posterior distributions. 348
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Exploration–
Exploitation

Local
Choice

Fixed
Choice

Local
Saliency

Information gain 2.0± 0.01 1.92± 0.02 1.97± 0.01 1.99± 0.004

Table 1. Comparison of the information gain, of the different models measured in
bit/fixation. The information gain for each model is computed against a model with a
uniform distribution over the image. The Full Exploration–Exploitation Model has the
highest information gain which implies it is the most probable model.

Discussion 349

The current study proposed and analyzed a mathematical model of fixation selection, 350

motivated by the Exploration–Exploitation paradigm [5]. We constructed a generative 351

scan path model based on a small set of assumption. Using Bayesian [30] inference we 352

fit the model to experimental data. By doing so, we continue the line of work of using 353

generative likelihood based models for scan path generation [18]. Importantly, we use 354

recent developments in Bayesian statistics to construct more efficient parameter 355

inference algorithms. 356

A different approach uses of deep neural networks for scan path modeling [12,13]. 357

One of the downsides of this approach is its reliance on large amounts of data, which 358

precludes the study of interindividual differences. Thus, by using a hypothesis–based 359

model, which requires only a relatively small number of parameters, we can fit 360

individual models for each experimental subject and capture inter–subject variability. 361

We demonstrate how our model captures the saccade amplitude both at the population 362

and the individual level. 363

Another benefit of the Bayesian approach is the ability to easily test different 364

hypotheses. We do so by constructing multiple models, of increasing complexity. Each 365

of the models is fit to the training data and we use a proper scoring rule, namely the 366

likelihood ratio, to compare the different models. This allows us to conclude that the set 367

of hypotheses used for full Exploration–Exploitation Model is more suitable for the 368

describing the experimental data than the reduced models. 369

As described above, the Exploration–Exploitation Model successfully captures the 370

experimental saccade amplitudes both at the population level and the subject level. 371

Another spatial aspect of saccades is saccade direction. Our model captures only the 372

tendency to perform horizontal saccades, but not the tendency to perform vertical 373

saccades. This is expected from the construction of the model. 374

In its current form the Exploration–Exploitation Model does not capture the change 375

in saccade direction (i.e. the saccade direction relative to the previous saccade). The 376

relative saccade direction is important for modeling known phenomena such as visual 377

persistence [31,32]. As with the vertical preferred saccade direction, the model’s 378

inability to capture the relative saccade direction stems from the choice of Gaussian 379

functions in the exploration and exploitation policies. The model can be extend and 380

account for these tendencies by using a mixture model for generating the exploration 381

and exploitation steps. In this case, instead of sampling the next step from a Gaussian 382

distribution in the case of an exploitation step, or a subtraction of Gaussians in the case 383

of exploration step, a mixture of Gaussians could be introduced. Each Gaussian 384

component could be designed to capture different directional tendencies, rather than 385

capturing only one tendency as in the current version of the model. 386

Other limitations of the model stem from the choice of a second order Markov 387

process. Due to this choice the model is almost memory-less and cannot capture known 388

phenomena in scene viewing which span multiple saccades. One example of such a 389
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phenomenon is the well–known inhibition of return [33, 34]. Incorporating longer history 390

is not straightforward in our model. A heuristic approach could be including dynamics 391

in the saliency map. Currently we use a constant saliency map, but the model could be 392

adapted to use an evolving saliency map accounting for effects such as inhibition of 393

return. 394

Finally, our mathematical model does not account for fixation durations in scene 395

viewing, which play an important role in eye-movement control [17, 35–37]. So far most 396

of the modeling attempts of scene viewing addressed either the spatial or the temporal 397

aspects of scene viewing. Indeed, some models use temporal dynamics but they do not 398

attempt to learn these dynamics from the data and use a heuristic–based approach. 399

While fixation duration modeling is outside the scope of this work, we nonetheless 400

consider the integration of temporal and spatial aspects an exciting new research 401

direction. 402

Supporting information 403

S1 Appendix. Parameter inference. In this appendix you can find the technical 404

details of the Gibbs sampler described in the Methods section. It includes a derivation 405

of the full likelihood, details regarding the augmentation schemes and the derivation of 406

the conditional distributions. 407
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27. Kümmerer M, Wallis TS, Bethge M. Information-theoretic model comparison
unifies saliency metrics. Proceedings of the National Academy of Sciences.
2015;112(52):16054–16059.

28. Cox DR. Tests of separate families of hypotheses. Proceedings of the fourth
Berkeley symposium on mathematical statistics and probability. 1961;1:105–123.

29. Lewis F, Butler A, Gilbert L. A unified approach to model selection using the
likelihood ratio test. Methods in Ecology and Evolution. 2011;2(2):155–162.

30. MacKay DJ, Mac Kay DJ. Information theory, inference and learning algorithms.
Cambridge University Press; 2003.

31. Ritter M. Evidence for visual persistence during saccadic eye movements.
Psychological Research. 1976;39(1):67–85.

32. Breitmeyer BG, Kropfl W, Julesz B. The existence and role of retinotopic and
spatiotopic forms of visual persistence. Acta Psychologica. 1982;52(3):175–196.

33. Handy TC, Jha AP, Mangun GR. Promoting novelty in vision: Inhibition of
return modulates perceptual-level processing. Psychological Science.
1999;10(2):157–161.

34. Klein RM. Inhibition of return. Trends in Cognitive Sciences. 2000;4(4):138–147.

35. Henderson JM. Human gaze control during real-world scene perception. Trends
in Cognitive Sciences. 2003;7(11):498–504.

36. Nuthmann A, Smith TJ, Engbert R, Henderson JM. CRISP: a computational
model of fixation durations in scene viewing. Psychological Review.
2010;117(2):382–405.

37. Laubrock J, Cajar A, Engbert R. Control of fixation duration during scene
viewing by interaction of foveal and peripheral processing. Journal of Vision.
2013;13(12). doi:10.1167/13.12.11.

April 3, 2020 17/17

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.16.044677doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.044677
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.16.044677doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.044677
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.16.044677doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.044677
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.16.044677doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.044677
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.16.044677doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.044677
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.16.044677doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.044677
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.16.044677doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.044677
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.16.044677doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.044677
http://creativecommons.org/licenses/by/4.0/

