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Abstract 

White matter hyperintensities (WMH) are linked to cognitive control; however, the structural 

and functional mechanisms are largely unknown. We investigated the relationship between 

WMH-associated disruptions of structural connectivity, resting state functional connectivity 

(RSFC), and cognitive control in older adults. Fifty-eight cognitively-healthy older adults 

completed cognitive control tasks, structural MRI, and resting state fMRI scans. We estimated 

inferred, WMH-related disruptions in structural connectivity between pairs of subcortical and 

cortical regions by overlaying each participant’s WMH mask on a normative tractogram dataset. 

For region-pairs in which structural disconnection was associated with cognitive control, we 

calculated RSFC between nodes in those same regions. WMH-related structural disconnection 

and RSFC in the cognitive control network and default mode network were both associated with 

poorer cognitive inhibition. These regionally-specific, WMH-related structural and functional 

changes were more strongly associated with cognitive inhibition compared to standard rating of 

WMH burden. Our findings highlight the role of circuit-level disruptions to the cognitive control 

network and default mode network that are related to WMH and impact cognitive control in 

aging.   
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1. Introduction 

Cerebrovascular disease is common in older adults, associated with poor health outcomes 

(Debette and Markus, 2010), and characterized by neurobiological abnormalities such as white 

matter hyperintensities (WMH) (Moroni et al., 2018). WMH are associated with cognitive 

decline in older adults; a potential mechanism is the WMH lesions’ impact on structural 

connectivity (Langen et al., 2018). WMH affect the strength and efficiency of white matter 

connections, i.e. the structural connectome, which in turn are associated with slower processing 

speed (Tuladhar et al., 2016) and declines in reasoning, working memory, episodic memory, and 

cognitive flexibility (Gunning-Dixon and Raz, 2003; Wiseman et al., 2018). 

 

Cognitive control—the ability to maintain task-relevant information in mind, flexibly shift set, 

and inhibit irrelevant information—is especially susceptible to cerebrovascular disease and 

WMH and their impact on structural connectivity. In older adults, cognitive control functions are 

linked to structural disconnection in frontal-subcortical circuits (Klostermann et al., 2012) arising 

from cerebrovascular disease (Pantsiou et al., 2018). These processes and resulting age-related 

changes in cognitive control have important ramifications for older adults because better 

cognitive control is tied to greater independence in everyday activities of daily living (Cahn-

Weiner et al., 2002; Vaughan and Giovanello, 2010). 

 

Decreased efficiency of cognitive control functions in the setting of cerebrovascular disease may 

also depend on functional connectivity. Both structural and functional connectivity contribute 

independently to healthy cognitive aging (Liem et al., 2017). In older adults with small vessel 

ischemic disease, worse cognitive control is associated with diminished resting state functional 

connectivity (RSFC) in the frontoparietal network, default mode network (DMN), and in 

subcortical structures (Schaefer et al., 2014; Sun et al., 2011; Yi et al., 2015). Despite advances 

in neuroimaging techniques, the interrelationships among neuroimaging markers of 

cerebrovascular disease (WMH), structural connectivity, and RSFC, and how these interactions 

may contribute to age-related changes in cognitive control, is largely unknown. The relationship 

between these processes are important in understanding the mechanisms that underly age-related 

cognitive decline. 
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The primary objective of the present study was to investigate how WMH-associated disruptions 

to structural connectivity and RSFC are related to cognitive control functions in healthy older 

adults. We used a novel technique via the Network Modification Tool (Kuceyeski et al., 2013) to 

estimate inferred WMH-associated structural connectivity disruption and its impact on cognitive 

control. The Network Modification Tool expands on prior studies that have restricted analyses to 

specific networks (Reijmer et al., 2015; Sun et al., 2011) and that have used coarser methods to 

quantify WMH burden. We hypothesized that WMH would be associated with structural 

disconnection within nodes of the cognitive control network and between the cognitive control 

network and the DMN (Leech and Sharp, 2014; Vatansever et al., 2017). We further 

hypothesized that greater structural connectivity disruption would be associated with low RSFC, 

but that structural and functional connectivity measures would each account for unique variance 

in explaining cognitive control performance. Finally, we explored whether a model that 

accounted for structural and functional disconnection would more strongly predict cognitive 

control than a model that used traditional clinical ratings of WMH burden.  

 

2. Materials and Methods 

2.1. Participants. Participants were 58 cognitively-healthy, independent, and community-

dwelling older adults aged 60-84 (M=72.9 years, SD=6.02) who were enrolled in a larger trial 

investigating cognitive control and emotion regulation in late-life depression. All participants 

were English-speaking, non-depressed, and cognitively unimpaired (Mini Mental Status 

Examination ≥ 26/30) (Folstein et al., 1983). Participants had no current or past history of major 

psychiatric illness or neurologic disorder. All subjects were recruited through flyers and 

advertisements. All provided written informed consent, and the study was approved by the 

Institutional Review Boards of Weill Cornell Medicine and the Nathan Kline Institute. The 

participants constituted the control group for an analysis on structural connectivity and 

performance on the Trail Making Test in late-life depression that has been previously published 

by our group (Respino et al., 2019). We extend our previous work by performing analyses of 

RSFC and relating region-pair based structural connectome disruption to cognitive control 

measures. 
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2.2. Neuropsychological Assessment. Research assistants trained and certified by the Weill 

Cornell Institute of Geriatric Psychiatry administered the neuropsychological measures. To 

assess auditory attention and working memory, we administered the Digit Span subtest of the 

Wechsler Adult Intelligence Scale-Fourth edition (Wechsler, 2008). The total score across the 

forwards, backwards, and sequencing conditions was used in the analysis. Higher scores indicate 

greater attention/working memory capacity. The Stroop Color Word Test was used to assess 

cognitive inhibition and susceptibility to interference from conflicting information (Golden and 

Freshwater, 2002). The interference index was calculated based on the established formula, 

ColorWord – [(Word x Color) / (Word + Color)]. Lower scores indicate greater difficulty with 

cognitive inhibition. To assess attentional set-shifting we used the Trail Making Test (TMT) 

(Reitan, 1958) and calculated a ratio that isolates the shifting component while accounting for 

psychomotor processing speed, by dividing the time to completion on TMT-B by the time to 

completion on TMT-A (Salthouse, 2011). Higher scores represent poorer attentional set-shifting. 

We administered the Hopkins Verbal Learning Test-Revised (Brandt and Benedict, 2001) and 

used the number of words recalled on the delayed recall trial as a control condition to evaluate 

the specificity of our findings to cognitive control relative to long-term memory retrieval.  

 

2.3. Neuroimaging. Structural and functional MRI scans were acquired on a 3T Siemens TiM 

Trio (Erlangen, Germany) scanner that was equipped with a 32-channel head coil at the Center 

for Biomedical Imaging and Neuromodulation of the Nathan Kline Institute for Psychiatric 

Research. Structural imaging included high-resolution whole brain images acquired using a 3D 

T1-weighted MPRAGE and T2-weighted FLAIR images. The acquisition parameters for 

MPRAGE were: TR = 2500ms, TE = 3.5ms, slice thickness = 1mm, TI = 1200ms, 192 axial 

slices, matrix = 256 x 256 (voxel size = 1mm isotropic), FOV = 256mm, IPAT = 2, flip angle = 8 

degrees. The acquisition parameters for the FLAIR sequence were TR = 9000ms, TE = 111ms, 

TI = 2500ms, FOV = 192 x 256 mm, matrix 192 x 256, slice thickness = 2.5 mm, number of 

slices = 64, IPAT = 2, flip angle = 120 degrees. The final FLAIR resolution (rectangular 

FOV/matrix) was 1x1 in plane. Functional neuroimaging was a turbo dual echoplanar image 

(EPI) sequence performed while participants were at rest. Acquisition parameters were repetition 

time = 2500ms, echo time = 30ms, flip angle = 80 degrees, slice thickness = 3mm, 38 axial 

slices, matrix = 72 x 72, 3-mm isotropic, field of view = 216mm, integrated parallel acquisition 
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techniques factor = 2. Resting-state image acquisition was conducted in a single run that was 6 

minutes and 15 seconds in duration, TR = 2000ms.  Participants were instructed to stay awake 

with eyes closed. Wakefulness was verified at the end of the scanning sequence by the 

technician.  

 

[Insert Figure 1 about here] 

 

Procedures to segment and estimate WMH burden and to estimate the impact of WMH on 

structural connectivity disruption have been previously described in detail (Respino et al., 2019). 

Figure 1 illustrates the flow of neuroimaging analysis and statistical procedures. In brief, two 

raters performed a visual rating using operational criteria of the Age-Related White Matter 

Change scale (ARWMC) (Wahlund et al., 2001; Xiong et al., 2011). Inter-rater reliability was 

strong (Intraclass Correlation Coefficient = .95). FSL (Jenkinson et al., 2012) and the BIANCA 

program (Griffanti et al., 2016) were subsequently used to segment WMH lesions and create 

WMH masks. WMH lesions smaller than 3 voxels were removed. A visual check was performed 

on each individual WMH mask and minimal manual adjustments were made. Each final WMH 

mask was nonlinearly registered to MNI space and binarized.  

 

WMH-associated, inferred structural dysconnectivity was then estimated using the Network 

Modification Tool, which has previously been used in aging populations (Kuceyeski et al., 2015, 

2013, 2012). Each WMH mask was entered into the program in Matlab R2017b (MathWorks, 

Natick, MA) and overlaid on a normative sample of 73 healthy subjects’ tractograms. The 

program estimates dysconnectivity by removing those streamlines passing through a subject’s 

WMH mask and recalculating the strength of connections between pairs of regions (“modified 

connectome”). This procedure is conducted using an 86-region Freesurfer parcellation that 

includes 68 cortical regions, 16 subcortical regions, and two cerebellar regions. For our analysis, 

we were interested in the proportional loss in connectivity between pairs of regions. The 

“dysconnectivity score” was calculated for each region pair by dividing the number of 

streamlines in that subject’s modified connectome by the mean number of streamlines in that 

region pair from the 73 healthy control tractogram set and subtracting one. Values range from 0 

to -1, with more negative values indicating greater disconnection. Because many region pairs 
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have minimal streamlines so that “loss” of just one or two streamlines could result in a 

dysconnectivity score of 50-100%, we retained only those region pairs that had at minimum 10 

streamlines passing between them, a threshold that has been used in tractography/diffusion 

tensor imaging in cerebrovascular disease (Xu et al., 2019).  This resulted in approximately 20% 

of the region pairs being retained. To further reduce the dimensionality of the correlation matrix 

and to reduce noise from regions with minimal dysconnectivity while focusing on those region 

pairs which the greatest disconnection, we entered into subsequent analyses region pairs that had 

a dysconnectivity score of at least -.10 (i.e., minimum 10% loss of connectivity). This resulted in 

170 region pairs that were retained for our analyses. Note that the use of the terms 

“dysconnectivity score” and “structural dysconnectivity” in the Results and Discussion refer to 

inferred dysconnectivity using the above procedure. 

 

To extract corresponding RSFC values for the 170 region pairs with a dysconnectivity score less 

than or equal to -0.10, each subject’s EPI images were motion corrected using FSL’s MCFLIRT, 

linearly registered to the anatomical T1 scan, and normalized to the MNI 152 template. 

Additional preprocessing including slice-timing correction and spatial smoothing (6mm FWHM) 

was performed in AFNI (Cox, 1996). Further removal of motion artifacts was performed using 

ICA-AROMA (Pruim et al., 2015). Motion was regressed out (demeaned and first derivative), 

artifacts were further removed using AFNI’s anaticor, and the time-series was bandpass filtered. 

Time-series data were extracted using a previously published parcellation of 277 functional 

nodes (Drysdale et al., 2017) that includes the 264 nodes from the Power atlas (Power et al., 

2011) combined with 13 additional nodes in the caudate, amygdala, hippocampus, nucleus 

accumbens, subgenual anterior cingulate, locus coeruleus, ventral tegmental area, and the raphe 

nucleus. Each subject’s 277x277 matrix was Fisher r-to-Z transformed. Note that we elected not 

to use the same 86-region FreeSurfer parcellation for RSFC because current recommendations 

suggest using functionally-based parcellations with much more fine-grained nodes for fMRI data 

(Arslan et al., 2018; Hallquist and Hillary, 2018).  

 

2.4. Statistical Analysis. Statistical analyses were conducted using IBM SPSS Statistics version 

25 (IBM, Armonk, NY) and Matlab. Analyses focused on the 170 region pairs calculated as 

described above. Dysconnectivity scores were normalized to Z-scores for each region pair. These 
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scores were separately correlated with performance on the neuropsychological measures of 

cognitive control (Digit Span, Stroop Interference, TMT B/A Ratio) and of memory (HVLT-R 

Delayed Recall) using Spearman rank-order correlations. Each correlation analysis was FDR-

corrected using the Benjamini-Hochberg method with q <0.05; corrected p-values are reported 

for those correlations that survived significance. For those 170 region pairs that were 

significantly associated with cognitive measures, we extracted overlapping functional nodes 

from the modified Power parcellation by calculating the Dice similarity coefficient between 

functional nodes (Power parcellation 10mm diameter spheres) and structural region pairs 

(Freesurfer 86-region parcellation). Functional nodes that had a Dice coefficient > 0 (i.e. had > 1 

voxel overlapping the structural ROI) were retained.  The correlation between their functional 

connectivity and cognitive measures were calculated. Given that RSFC-cognition correlations 

were already constrained by selecting only those few nodes that overlapped with the significant 

structural dysconnectivity scores, we elected not to FDR-correct RSFC-cognition correlations.  

 

To explore the combined effect of structural dysconnectivity and RSFC on cognitive control, 

relative to a clinical rating of WMH, we computed two partial least square regression (PLSR) 

models. In the first model, we entered the region pairs in which structural dysconnectivity scores 

survived FDR correction and were associated with cognitive measures, as well as the 

overlapping RSFC nodes in those same region pairs that were also significantly associated with 

cognitive measures. We computed a second PLSR model in which pairwise structural 

dysconnectivity and RSFC were replaced with the visual rating of WMH burden (ARWMC 

score). Age and gender were covariates in both models. To minimize model over-fitting, we 

chose the factor solution that minimized the mean square error using leave-one-out cross-

validation. Predictor variables that loaded onto the components of interest were determined by 

inspecting the variable importance in the projection. Regions of interest that had variable 

importance values close to or exceeding “1” were considered to contribute to a given component 

(Mehmood et al., 2012).  

 

[Insert Table 1 and 2 about here] 
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3. Results 

3.1. Demographic and clinical variables. Table 1 displays the mean, SD, and ranges for age, 

education, and performance on the neuropsychological measures for our sample. The ratio of 

male:female participants is also provided.  

 

3.2. Correlations between WMH-linked dysconnectivity score and behavior. Figure 2 

demonstrates the relationship between all 170 region pairs and Stroop Interference, while Table 2 

and Figures 3 and 4 illustrate how the dysconnectivity score in sixteen region pairs demonstrated 

significant correlations with Stroop Interference. These region pairs primarily encompassed 

subcortical (caudate, thalamus, pallidum)-cortical disconnections, which were associated with 

poorer cognitive inhibition on the Stroop task. Regions included connections between subcortical 

nodes and regions of the cognitive control network, DMN, and sensorimotor network. No 

correlations survived FDR-correction for Digit Span, TMT B/A Ratio, or HVLT-R Delayed 

Recall.  

 

[Insert Figure 2, 3, and 4 about here] 

 

3.3. Correlations between RSFC and cognitive performance. As shown in Table 2 and Figure 5, 

RSFC in functional nodes within these sixteen region pairs demonstrated significant correlations 

with Stroop Interference. Specifically, cognitive inhibition was positively correlated with RSFC 

between the right caudate and nodes in the right superior parietal, right inferior parietal, right 

caudal middle frontal, and right precentral regions. Cognitive inhibition was negatively 

correlated with RSFC between the left inferior frontal gyrus/pars triangularis and left medial 

orbitofrontal cortex, between the right caudate and a node overlapping the right posterior 

cingulate/supramarginal/postcentral region, and between the right pallidum and right superior 

frontal region.  

 

3.4. Correlations between Structural Dysconnectivity Score and RSFC. Table 2 also shows the 

correlations between structural dysconnectivity and RSFC for the sixteen region pairs in which 

dysconnectivity score was associated with Stroop Interference. Greater structural dysconnectivity 

was associated with lower RSFC between the right caudate and right precentral gyrus. The 
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remaining correlations between structural dysconnectivity score and RSFC in the 16 region pairs 

were not significant.   

[Insert Figure 5 about here] 

 

3.5. Exploratory PLSR models. For the first model that incorporated the structural and functional 

region-pairs that were associated with Stroop Interference above, results indicated a one-factor 

solution that accounted for 14% of the variance in Stroop Interference performance. The factor 

was comprised primarily of WMH-related dysconnectivity in subcortical-cortical and cortical-

cortical region pairs of the cognitive control network, DMN, and sensorimotor network. The 

factor also comprised RSFC between the right caudate and a functional node spanning the right 

supramarginal/posterior cingulate/postcentral region, and between the right caudate and right 

inferior parietal region. An analogous PLSR model that replaced pairwise structural and 

functional connectivity with the ARWMC score (visual rating of WMH), accounted for only 5% 

of variance in Stroop Interference performance. 

 

 

4. Discussion 

The principal finding of this study is that WMH-related inferred structural dysconnectivity and 

resting state functional connectivity are associated with cognitive inhibition and the ability to 

resolve interference from competing information in older adults. The strength of both structural 

and functional connections that link subcortical regions to nodes of the cognitive control network 

and default mode network are associated with cognitive inhibition. Our findings indicate that 

aging-related alterations in structural and functional circuitry are both associated with declines in 

select aspects of cognitive functioning. 

 

Our examination of WMH-related structural dysconnectivity replicates prior studies 

demonstrating a relationship between disruptions in white matter pathways and age-related 

cognitive decline (Tuladhar et al., 2016; Wiseman et al., 2018), and extends them to identify 

specific regions in the cognitive control network. The implicated regions are those important to 

attentional control (superior and inferior parietal cortex), and conflict monitoring and error 

detection (anterior cingulate cortex) (Braver et al., 2001; Gasquoine, 2013), processes that are 
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assessed by the Stroop task. Dysconnectivity between these cognitive control regions and regions 

of the caudate and thalamus are consistent with the premise that frontal-striatal-thalamocortical 

connections are necessary to support efficient cognitive control (de la Fuente-Fernández, 2012).  

 

WMH-associated structural disconnection in nodes of the DMN (posterior cingulate, left medial 

frontal cortex) and poorer cognitive inhibition were also observed in our analyses. This finding is 

consistent with the known role of the DMN in cognitive control processes, supported by dense 

connections of DMN structures with nodes of the cognitive control network, including the 

dorsolateral prefrontal cortex (Leech and Sharp, 2014). The DMN may support cognitive control 

performance via goal formation and task preparation in anticipation of engaging in cognitively 

demanding tasks (Koshino et al., 2014). 

 

We also examined resting state functional connectivity between the regions with disruptions in 

structural connectivity in the cognitive control network and DMN. Although we did not observe 

significant correlations between structural dysconnectivity and RSFC in these region-pairs, we 

did find a link between RSFC and cognitive performance. Higher RSFC within several nodes of 

the cognitive control network was associated with greater cognitive inhibition. Specifically, we 

observed positive correlations between Stroop task performance and RSFC between the caudate 

and nodes in the superior parietal, inferior parietal, and caudal middle frontal regions. These 

regions are encompassed within the frontoparietal task control network as originally delineated 

by Power et al. (2011). Thus, our findings suggest that WMH-related structural dysconnectivity 

and lower RSFC between the caudate and nodes of the frontoparietal network are both associated 

with poorer cognitive inhibition and contribute to a diminished ability to ignore distracting 

information and attend to task-relevant information in healthy older adults.  

 

In contrast to the positive correlations between resting state functional connectivity of 

frontoparietal region-pairs in the cognitive control network and cognitive inhibition, we observed 

negative correlations between cognitive inhibition and RSFC in nodes of the DMN. That is, 

better cognitive inhibition was associated with lower functional connectivity between (1) the 

caudate and posterior cingulate/supramarginal/postcentral region (sensorimotor/DMN), (2) the 

pallidum and a node in the superior frontal region within the DMN (Power et al., 2011), and (3) 
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the inferior frontal gyrus pars triangularis (frontoparietal node) and medial orbitofrontal cortex 

(DMN). This finding is consistent with the function of the DMN as a “task negative” network 

and that greater anti-correlation between the cognitive control network (which subsumes the 

frontoparietal task control network) and DMN is beneficial for cognitive performance (Chen et 

al., 2013) and healthy cognitive aging (Esposito et al., 2018).  

 

The relationship between WMH, structural connectivity, and resting state functional connectivity 

and their mechanistic contribution to age-related cognitive decline is largely unknown. Here, we 

demonstrate that inferred structural dysconnectivity and alterations in resting state functional 

connectivity in the cognitive control network and DMN are both associated with poorer 

cognitive inhibition in healthy aging. These findings highlight the role of disruptions in circuit-

level connections that are driven by WMH in cognitive aging. That structural dysconnectivity 

and functional connectivity were both related to cognitive inhibition, and largely did not 

correlate with one another, is consistent with the known decrease in structure-function coupling 

in older adults (Zimmermann et al., 2016), in psychiatric disease (Skudlarski et al., 2010), and in 

the presence of WMH burden (Reijmer et al., 2015). Our results also align with prior work 

demonstrating the independent involvement of task-evoked functional activity and white matter 

integrity in normal appearing white matter in age-related memory and executive function decline 

(de Chastelaine et al., 2011). Our findings suggest that in regions with inferred structural 

disconnection due to WMH, functional connections between those regions remain relevant to 

cognitive inhibition.  

 

WMH-related structural and functional connectivity also accounted for greater variance in 

cognitive inhibition performance than did a traditional clinical measure (visual rating) of WMH 

burden. By estimating regionally-specific network changes associated with WMH, the Network 

Modification Tool may detect subtle variations in cognitive performance not captured by 

conventional global indicators of WMH burden. Moreover, by leveraging a normative 

tractogram reference dataset, the Network Modification Tool does not require diffusion weighted 

imaging, and may be a more scalable and cost effective approach to estimating the network 

impact of WMH. 
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Although WMH-related structural dysconnectivity and resting state functional connectivity 

predicted cognitive inhibition on the Stroop task, we did not find significant associations with 

other aspects of cognitive control such as set-shifting (TMT B/A) and auditory attention and 

working memory (Digit Span), nor on a measure of verbal memory recall (Hopkins Verbal 

Learning Test). Cognitive control is not a unitary construct and is comprised of specific 

processes including updating, inhibition, and set-shifting (Friedman and Miyake, 2017), 

suggesting that our findings apply more to the conflict monitoring and inhibition aspect of 

cognitive control than to shifting or updating/working memory. The lack of association with 

working memory may be related to the assessment itself, as the Digit Span may not be as 

sensitive to working memory as tasks that place greater demands on rapid updating and 

manipulation of information under time constraints (Tombaugh, 2006).  

 

The limitations of the present study include the length of the resting state scan (6 minutes and 15 

seconds), which was of short duration compared to current standards. Given that reliability tends 

to increase with longer durations (Zuo and Xing, 2014) replication of our RSFC findings with 

longer scan times is warranted.  Further, our age range was relatively restricted and future studies 

would benefit from including a broader range of ages and comparing our findings to middle-aged 

and old-old adults.  

 

4.1. Conclusion 

We demonstrate that in cognitively healthy older adults, cerebrovascular disease (WMH)-related 

inferred structural dysconnectivity and resting state functional connectivity in cortical and 

subcortical regions of the cognitive control and default mode networks are both associated with 

cognitive inhibition and conflict monitoring. Our findings highlight the role that alterations in the 

structural and functional connectome both play in cognitive aging in the setting of 

cerebrovascular disease.  
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Table 1. Demographic and clinical characteristics of the study sample. 

 Mean SD Minimum Maximum 

Age 72.9 6.02 60 84 

Education 16.9 2.23 12 20 

Gender (M/F) 33/25 -- -- -- 

Stroop 
Interference -3.80 7.73 -27.6 12.9 

TMT B/A Ratio 2.42 0.93 0.40 5.41 

Digit Span Total 15.3 3.55 9 25 

HVLT-R 
Delayed Recall 8.84 2.17 0 12 
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Table 2. Region pairs in which WMH-associated dysconnectivity score (0 to -1, more negative = greater inferred loss of connectivity) was 
significantly correlated with performance on the Stroop task after FDR-correction (q < .05). Positive correlations indicate that less 
dysconnectivity is associated with better performance. Also shown are functional nodes from the modified Power parcellation that 
overlapped with these region pairs and significantly correlated with Stroop performance. Note that some Power nodes are represented in 
multiple region pairs because they overlap with the boundaries from the atlas used to calculate dysconnectivity scores. 
 

Region Pair  

Correlation 
between 

dysconnectivity 
score and Stroop 

performance 
(Spearman rho) 

Significance 
(FDR-

corrected p) 

MNI coordinates [x, y, z] of functional 
nodes within the region pair that are 
significantly associated with Stroop 

performance (Spearman rho, uncorrected 
p) 

Correlation between 
dysconnectivity score and 

RSFC within the region pair 
(Spearman rho, uncorrected p) 

Right Caudate – Right 
Inferior Parietal  .38 .036 [11, 6, -6]–[44, -53, 47], rho= .27, p=.04 

[11, 6, -6]–[37, -65, 40], rho= .33, p=.01 
rho=.22, p=.10 
rho=.18, p=.17 

Right Caudate – Right 
Superior Parietal  .38 .036 [15, 5, 7]–[22, -42, 69], rho= .27, p=.04 rho=.16, p=.25 

Right Caudate – Right 
Supramarginal Gyrus  .42 .022 [11, 6, -6]–[47, -30, 49], rho= -.38, p=.003 rho= -.24, p=.07 

Right Caudate – Right 
Posterior Cingulate  .42 .022 [11, 6, -6]–[47, -30, 49], rho= -.38, p=.003 rho= -.14, p=.31 

Left Pars Triangularis – 
Left Medial Orbitofrontal  .38 .039  [-42, 45, -2]–[-3, 44, -9], rho= -.30, p=.02 rho=.07, p=.59 

Right Thalamus – Right 
Superior Frontal Gyrus  .43 .022 None -- 

Right Pallidum – Right 
Superior Frontal Gyrus  .41 .023 [15, 5, 7]–[6, 54, 16], rho= -.27, p=.04 rho= -.13, p=.35 
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Left Lateral Orbitofrontal 
– Left Anterior Cingulate 
Cortex 

.40 .026 None -- 

Right Caudate – Right 
Insula  .41 .023 None -- 

Right thalamus – Right 
caudal middle frontal  .43 .022 None -- 

Right Caudate – Right 
Caudal Middle Frontal  .42 .022 [15, 5, 7]–[47, 10, 33], rho= .29, p=.03 rho=.25, p=.06 

Right Caudate – Right 
Paracentral  .43 .022 None -- 

Right Caudate – Right 
Postcentral Gyrus  .43 .022 [11, 6, -6]–[47, -30, 49], rho= -.38, p=.003 rho= -.21, p=.11 

Right Thalamus – Right 
Precentral Gyrus  .37 .047 None -- 

Right Caudate – Right 
Precentral Gyrus  .48 .022 [15, 5, 7]–[47, 10, 33], rho= .29, p=.03 

[12, 18, -3]–[47, 10, 33], rho= .26, p=.04 
rho=.19, p=.15 
rho=.29, p=.03 

Right Caudate – Right 
Putamen  .41 .023 None -- 
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Figure 1.  
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Figure 2. 
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Figure 3  
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Figure 4 
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Figure 5 
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Figure Captions 
 
 
Figure 1. Flowchart of neuroimaging analysis procedures and statistical procedures for the primary analyses.  
 
 
Figure 2. Scatterplots (with best fit lines and standard errors) depicting the relationship between Stroop performance, inferred structural dysconnectivity, 
and resting state functional connectivity.  
 

Figure 3. Schematic representing the correlation between inferred structural dysconnectivity in all 170 region-pairs and performance on the Stroop task. 
ROIs are grouped by region and by hemisphere. Warm colors represent positive correlation coefficients that indicate a relationship in the expected 
direction, whereby lower dysconnectivity scores (i.e., more negative values and more inferred loss in connectivity) are associated with poorer Stroop 
performance and vice-versa.  
 
Figure 4. Glassbrains representing the correlation between Stroop performance and inferred structural dysconnectivity in those region-pairs that survived 
FDR-correction. Warm colors represent positive correlation coefficients that indicate a relationship in the expected direction, whereby lower 
dysconnectivity scores (i.e., more negative values and more inferred loss in connectivity) are associated with poorer Stroop performance and vice-versa.  
 
Figure 5. Glassbrains representing the correlation between Stroop performance and resting state functional connectivity (RSFC) in functional nodes that 
overlap with ROIs that emerged as significant in structural analyses. Warm colors represent positive correlation coefficients that indicate that greater RSFC 
is associated with better Stroop performance. Cool colors represent negative correlation coefficients.  
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