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ABSTRACT 

Objective: A major bottleneck hindering utilization of electronic health record (EHR) data for 

translational research is the lack of precise phenotype labels. Chart review as well as rule-based and 

supervised phenotyping approaches require laborious expert input, hampering applicability to studies that 

require many phenotypes to be defined and labeled de novo. Though ICD codes are often used as 

surrogates for true labels in this setting, these sometimes suffer from poor specificity. We propose a fully 

automated topic modeling algorithm to simultaneously annotate multiple phenotypes. 

Methods: sureLDA is a label-free multidimensional phenotyping method. It first uses the PheNorm 

algorithm to initialize probabilities based on two surrogate features for each target phenotype, and then 

leverages these probabilities to constrain the Latent Dirichlet Allocation (LDA) topic model to generate 

phenotype-specific topics. Finally, it combines phenotype-feature counts with surrogates via clustering 

ensemble to yield final phenotype probabilities. 

Results: sureLDA achieves reliably high accuracy and precision across a range of simulated and 

real-world phenotypes. Its performance is robust to phenotype prevalence and relative informativeness of 

surogate versus non-surrogate features. It also exhibits powerful feature selection properties. 

Discussion: sureLDA combines attractive properties of PheNorm and LDA to achieve high accuracy and 

precision robust to diverse phenotype characteristics. It offers particular improvement for phenotypes 

insufficiently captured by a few surrogate features. Moreover, sureLDA’s feature selection ability enables 

it to handle high feature dimensions and produce interpretable computational phenotypes. 

Conclusion: sureLDA is well suited toward large-scale EHR phenotyping for highly multi-phenotype 

applications such as PheWAS. 
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INTRODUCTION 

 Electronic health records (EHR), often linked with biorepositories, have become an increasingly 

important data source for translational research. [1, 2] Such rich, multidimensional data promise myriad 

opportunities for translational applications ranging from personalizing care decisions to predicting disease 

prognosis. [3] However, the scarcity of precise phenotype labels has hampered efforts to harness this 

dataset for many of these objectives. Studies focusing on one or a few phenotypes typically circumvent 

this problem by predicting labels from diverse EHR features using 1) rule-based algorithms or 2) 

supervised learning methods trained on a subset of manually anontated gold-standard labels (GLabels). [4, 

5, 6, 7, 8, 9, 10, 11] Of note, the Phenotype Knowledgebase (PheKB) platform built for the Electronic 

Medical Records and Genomics (eMERGE) Network has been shown to effectively integrate expertise 

across sites to yield accurate, transportable phenotyping algorithms. [11] However, applying these 

approaches to new phenotypes requires substantial expert input: manually annotating GLabels to train 

supervised methods necessitates laborious chart review, and formulating rule-based algorithms involves 

iteratively devising and validating rules. Thus these approaches, while effective, are infeasible for highly 

multi-phenotype applications such as Phenome-Wide Association Studies (PheWAS) requiring de novo 

labeling of hundreds to thousands of phenotypes. This signifies an ongoing need for phenotyping methods 

that can simultaneously annotate many diverse phenotypes. 

Currently, studies requiring many EHR phenotypes often utilize billing codes such as 

International Classification of Diseases (ICD) codes as surrogates for true phenotype labels. For instance, 

the original PheWAS [12, 13, 14] grouped ICD codes into ~1800 phenotype codes (phecodes) that were 

subsequently thresholded and screened for associations with various genetic markers. While a trivial 

function of ICD codes can be reliably used in lieu of true labels for many diseases, others such as 

rheumatoid arthritis [15] tend to have inprecise codes that can diminish the power of the association study. 

[16] Thresholding ICD codes at higher counts boosts label PPV and specificity but may significantly 

diminish sensitivity, especially for episodic conditions such as pseudogout. 
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To produce more accurate phenotype labels without extensive expert intervention, researchers 

have recently advocated for label-free (i.e. not requring GLabels) computational phenotyping methods. 

[17, 18, 19, 20, 21, 22, 23, 24] The class of “weakly supervised” methods, which train supervised 

classifiers using noisy labels generated from key surrogate features in the data rather than expensive 

GLabels, has proven particularly powerful to this end. For instance, the “anchor and learn” approach 

trains a regularized logistic regression model on imperfect labels derived from ‘anchor’ features with high 

PPVs. [17, 18] While this approach avoids GLabels, it requires expert input to identify appropriate 

anchors. Several other efforts have fully automated the pipeline by using knowledge-base derived labels 

or standardized “silver standard” surrogates, such as the ICD code or NLP mention for the target 

phenotype, to train classifiers. For instance, Levine et al. demonstrate high concordance between lagged 

linear regression models trained using a knowledge-base derived standard versus an expert clinician 

derived one. [24] Similarly, the XPress method predicts a phenotype by fitting a regularized logistic 

regression on a noisy label defined as the presence of at least one key ICD code. [19] The PheNorm 

method uses multiple surrogates derived from the main ICD and NLP by 1) fitting log-normal mixtures 

adjusting for healthcare utilization, and 2) performing additional denoising with other features via dropout 

training. [20] Likewise, the MAP algorithm fits a multimodal clustering ensemble to the ICD and NLP 

surrogates adjusting for healthcare utilization. [21] 

These automated methods often achieve impressive accuracy and can be practically scaled to a 

large number of phenotypes. However, we hypothesize two means of improvement: 1) better 

incorporating information from non-surrogate features, and 2) jointly predicting phenotypes in order to 

impose an Occam’s Razor [25] assumption that fewer concurrent diseases is more likely than more. To 

achieve these goals we draw inspiration from the UPhenome algorithm - a modification of the 

widely-used Latent Dirichlet Allocation (LDA) topic model [26] that combines diverse features to infer 

patients’ joint distributions over unbiased phenotype ‘topics’ [27] Though UPhenome was developed for 

phenotype discovery rather than annotation of known phenotypes, the “grounded phenome” (GPhenome) 

algorithm derived therefrom better reflects known phenotypes by setting topic priors to the pseudocount 
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of clinical terms associated with each phenotype, thus portending potential application to an annotation 

task. [28] 

In this paper we propose surrogate-guided ensemble LDA (sureLDA), an automated 

multi-phenotype annotation method that employs probabilistic pseudolabels produced by PheNorm to 

guide topic inception in LDA in a “weakly supervised” manner. As with GPhenome this guiding of LDA 

is inspired by two well-trodden LDA derivatives, labeled LDA and semi-supervised LDA, [29, 30] 

though using only surrogates rather than GLabels to constrain topics. Unlike GPhenome, sureLDA 1) 

utilizes phenotype probabilities from PheNorm rather than clinical concept counts as “noisy” labels to 

guide topic formation in LDA, 2) weights features using regression coefficients from the dropout training 

step of PheNorm, and 3) employs a cluster ensemble approach to combine guided LDA scores with 

surrogates to yield posterior phenotype probabilities. sureLDA combines desirable properties of PheNorm 

and LDA, effectively leveraging the typically informative surrogate features using PheNorm while 

exploiting LDA’s prowess at extracting information from high-dimensional feature spaces to jointly 

annotate multiple phenotypes. Consequently, we submit that sureLDA is uniquely well-suited to 

high-throughput phenotyping of the EHR for a highly multi-phenotype application akin to PheWAS. 

 

 

METHODS 

The sureLDA algorithm broadly consists of four key steps: (i) assemble informative features, 

including the main ICD and NLP features as silver-standard surrogates for each target phenotype, as well 

as a healthcare utilization feature (�); (ii) use PheNorm to obtain initial probabilities for each target 

phenotype based on these surrogates together with �; (iii) fit guided LDA to all features simultaneously 

using the initial probabilities as Dirichlet hyperparameters for the patient-phenotype distributions, 

yielding patient-level phenotype “scores”; and (iv) perform ensemble clustering of the surrogates and the 

LDA phenotype scores (again adjusting for �) to predict final probabilities for each target phenotype. A 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.04.13.038968doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.13.038968
http://creativecommons.org/licenses/by-nc-nd/4.0/


schematic illustrating this procedure is displayed in Figure 1. Throughout, we assume that there are a total 

of � target phenotypes with true binary status denoted by � � ���, . . . , ��	
, which again is not used to 

train sureLDA. Let � denote the entire feature vector of dimension � and ���� � log�� � 1	. We 

assume there are a total of � patients in the EHR study and use subscript � to index the patients. 

 

Assembling Informative Features 

The main ICD and NLP surrogates are counts of the corresponding ICD code(s) and NLP-curated 

mentions of the phenotype in a patient’s chart. For the �th phenotype, we denote these surrogates as 

 ��� �  and  ��� �  respectively. Let  ��� �
���

� log� ��� � � 1	 ,  ��� �
���

� log� ��� � � 1	 , and 

 ������ �
���

� log� ��� � �  ��� � � 1	. These two key features can be mapped automatically as in 

Liao et al. [21] using existing knowledge sources including the PheWAS catalogue [12] and the Unified 

Medical Language System (UMLS). Additional candidate features – including counts of other ICD codes, 

NLP features, drug prescriptions, lab tests, and procedure codes – can be identified automatically without 

GLabels via existing methods such as the SAFE method. [23] Since sureLDA has the capacity to select 

useful features for each phenotype, it is preferable to be inclusive rather than aiming for specificity when 

assembling these additional features.  

 

Initializing Prior Probabilities Using PheNorm 

We obtain prior probabilities for each of the � target phenotypes, denoted by � � ���, . . . , ��	
, 

using a slightly modified PheNorm algorithm. In brief, standard PheNorm estimates ��  by (i) 

normalizing  ��� �
��� ,  ��� �

���  and  ������ �
���  against ���� � log��	  via gaussian mixture 

regression; and (ii) further de-noising these normalized surrogate features using ����  via dropout 

regression. [20] We use ensemble clustering to estimate ��  by fitting two-class Gaussian mixture 

models to each of the normalized surrogate features and taking the mean of the predicted probabilities 

from the three models. For most diseases, patients with  ��� � � 0 - here described as filter negative - 
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very rarely have the disease, so we set �� � 0 for these patients. The one exception in our study is 

obesity, which has an unusually insensitive ICD code and for which we define filter negative as 

��� � � ��� � � 0. 

 

Fitting Guided LDA 

Model Overview 

Latent Dirichlet Allocation (LDA) is a fully specified topic model that models � documents 

(here patients) as mixtures of �� topics (here phenotypes) where each topic is defined as a distribution 

over a vocabulary of � words (here EHR features); for simplicity, we will henceforth discuss the model 

in terms of patients, phenotypes, and features. To model � target phenotypes, we set �� � � � �� 

topics where the first � topics are assigned sequentially to target phenotypes 1, . . . , � and the remaining 

�� are ‘agnostic’ to model additional structure (i.e non-target phenotypes) in the data. The generative 

model of standard LDA iterates over three key steps: (i) draw a phenotype mixture 

�	 � ���,	 , . . . , ���,		
 for patient � from a Dirichlet distribution with ��-dimensional hyperparameter 

 � �!�, . . . , !��	
, (ii) draw a feature mixture "� � �#�,� , . . . , #�,�	
 for phenotype topic � from a 

second Dirichlet with �-dimensional hyperparameter $, and (iii) for the %th feature, iteratively sample 

feature-to-phenotype assignment counts &	� � �'	�,� , . . . , '	�,��	
  from Multinomial �(	� , )	�	 

distributions with probability vector )	� � ��	�,�, . . . , �	�,��	
 calculated based on the current parameter 

values, where (	� � ∑  ��

�� '	�,�  [26] Our guided LDA algorithm resembles the labeled LDA algorithm 

[29] except whereas labeled LDA requires GLabels to guide topic formation, here we guide topics by 

setting the Dirichlet hyperparameter for the first � phenotype topic distributions to the initial PheNorm 

probabilities �. 

 

Feature Weighting 

 A major shortcoming of classical LDA is that it weights all terms equally and thus loses precision 
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in the presence of frequent yet uninformative terms called ‘stop words’. [26] To discount these 

uninformative features, researchers have experimented with term weights including term frequency (TF), 

inverse document frequency (IDF), the product TF+IDF, and pointwise mutual information. [31] 

However, these weighting schemes are (1) not reflective of the actual informativeness of a term for a 

topic, and (2) invariable for a term across topics. In our real EHR data applications, we weight features by 

the coefficients from the dropout regression step of  ������ �
���  against ����  in PheNorm. [20] 

Features with a negative dropout regression coefficient for a phenotype are assigned a weight of 0 for the 

corresponding topic. We henceforth denote the weight of feature % for topic � as ,�,� 

  

Implementation and Inference 

We implemented and trained guided LDA using collapsed Gibbs sampling. [32] Collapsed Gibbs 

sampling is well-suited to sureLDA as we initialize feature-phenotype assignments at their expectations 

under the PheNorm prior, thus nudging the Gibbs sampler toward a (likely local) optimum within the 

“vicinity” of the PheNorm solution. Moreover, initialized in this way the Gibbs sampler need only be run 

once, whereas Variational Bayes would necessitate multiple runs to guarantee finding a reasonably good 

solution. Our modification of LDA does not substantively affect its Gibbs conditionals, allowing for 

efficient implementation of this well-trodden procedure. In collapsed Gibbs sampling - � ���, . . . , ��	 

and . � �"�, . . . , "��	 are marginalized out, so we directly sample the posterior feature-to-disease 

assignment counts &	� without first sampling - and .. The algorithm iteratively updates the weighted 

count of total features assigned to disease topic �  for patient � , �	� � ∑  
�
�� ,�,�'	�,� , and the 

weighted count of feature %  assigned to disease topic � , /�,� � ,�,� ∑  �
	� '	�,� , by generating 

&	� 0  /1234567482 �(	� , )	�	 where  

 �	�,� �
������,����,�����

∑  �
��� �������,����,������

+
������,����,���

∑  	
���

�������,����,����
 

See Algorithm 1 in the Supplementary Materials for details of the algorithm. For the choice of ��, we 
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found that including additional ‘agnostic’ topics with uninformative Dirichlet priors (9	� � 1) improved 

performance up to �� � 15 additional topics, beyond which performance remained stable up to 100 

additional topics. We thus set �� to � � 20. 

   

Obtaining Final Probabilities Using Ensemble Clustering 

When guided LDA converges, we obtain the mean weighted count of total features assigned to 

topic � for subject �, �	�, as the sureLDA score. While <� � ��	,� , . . . , ��,�	
 is predictive of ��, it 

is subject to noise from healthcare utilization �. We therefore obtain our final sureLDA phenotype 

probability predictions via clustering ensemble normalized by �. Specifically, for each � we perform a 

clustering of <�
���

� log�<� � 1	 by fitting a gaussian mixture regression model adjusting for ����, 

and then average this clustering probability with the three PheNorm clustering probabilities based on 

����-normalized  ��� �
���,  ��� �

���, and  ������ �
���. 

 

Data and Metrics for Evaluation 

We evaluated the performance of sureLDA using both simulated datasets and real-world EHR 

data from the Partners HealthCare Biobank. [33] 

 

Simulation Study 

In the simulation study, we considered a 5400-dimensional feature space over � � 27 disease 

phenotypes (200 features per disease including 2 surrogate features each) in addition to � for � �

100,000  patients. To test the robustness of our method’s performance to different phenotype 

characteristics, we simulated 27 phenotypes enumerating combinations of low, medium and high levels in 

1) prevalence, 2) surrogate feature informativeness, and 3) non-surrogate feature informativeness. 

Mixture models were used to generate �, � and �. Details of the simulation generative models are 

given in the Supplementary Materials. The feature weights ,�,�  were uniformly set to 1 in the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.04.13.038968doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.13.038968
http://creativecommons.org/licenses/by-nc-nd/4.0/


simulations since no prior knowledge was used in data generation. Results are summarized based on 100 

independent and identically distributed simulated datasets. 

 

Real EHR Data Analysis 

The Partners Healthcare Biobank consists of both codified data (i.e. ICD codes) and free text 

from clinical notes. We considered 10 target phenotypes - asthma, breast cancer (BrCa), chronic 

obstructive pulmonary disease (COPD), depression, epilepsy, hypertension (HTN), schizophrenia (SCZ), 

ischemic stroke (Stroke), type I diabetes mellitus (T1DM), and obesity - to validate our algorithm’s 

predictive accuracy. These target diseases cover a broad range of acuity, prevalence, and diagnostic 

ambiguity to test our method’s versatility. We included data from � � 38,023 patients observed mostly 

between 1990 and 2015, when the labels were curated. Moreover, we obtained a total of � � 2125 

features consisting of age, body mass index (BMI), 110 ICD codes, 225 NLP features counting relevant 

concepts in clinical notes, all CPT codes grouped into 264 categories according to the Clinical 

Classifications Software, [34] and 1534 RxNorm drug codes available in the data. NLP features were 

selected by the SAFE method, while no selection was performed for CPT groups and drug codes. ICD 

codes were assembled by domain experts in prior studies. Continuous variables such as BMI were 

rounded to the nearest integer and treated as ordinal in the LDA step. Gold standard labels were manually 

curated via chart review for 585 patients. 

 

Benchmark Methods for Comparison 

For each dataset, in addition to fitting sureLDA we considered multiple benchmark approaches: (i) 

classical LDA automatically assigning latent topics to phenotypes using Spearman’s rank correlation 

(SRC) with the ICD surrogates, (ii) UPhenome again using SRC with the ICD surrogates to assign topics 

to phenotypes (only with the Biobank data – we could not apply UPhenome in our simulations as 

generated features were not assumed to have different datatypes), (iii) GPhenome using ��� � � ��� � 

as the Dirichlet prior for phenotype topic k, (iv) the XPress algorithm using �� ��� � @ 1	 as the proxy 
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label for ��, (v) PheNorm, and (vi) MAP. We also tested two supervised models: (i) LASSO-penalized 

logistic regression and (ii) random forest, each with 5� training labels where we let 5� vary from 

100-300 to assess how sureLDA compares to supervised phenotyping methods. In light of Rajkomar et 

al.’s recent result that LASSO logistic regression rivals deep learning methods on a set of 

high-dimensional EHR-based prediction tasks, and given the limited number of GLabels, we did not 

include more complex supervised methods. [35] Hyperparameters for LASSO and random forest were 

optimized using 10-fold cross-validation. 2- and 5-fold cross-validation as well as random subsampling 

cross-validation yielded statistically equivalent optimized hyperparameters and predictive accuracy for all 

phenotypes in the Partners EHR dataset (data not shown). 

 

Evaluation Metrics 

We used three evaluation metrics to quantify the predictive performance of sureLDA and its 

comparators: (i) area under the receiver operator curve (AUC), (ii) A score, and (iii) label rank loss. [36] 

For A score, we chose the cutoff value to achieve a specificity of 95% among filter-positive samples. 

AUC and A score reflect the sensitivity/specificity and precision/recall of predictions respectively. On 

the other hand, label rank loss computes the average number of probabilistic label pairs for a patient that 

are incorrectly ordered weighted by the inverse of the number of ordered pairs of false and true labels, 

reflecting the degree to which the relative disease probabilities for a given patient align with that patient’s 

true overall phenotype. Thus, whereas the first two evaluation metrics measure the quality of predictions 

for a phenotype, the third measures accuracy on the patient level and thereby reflects a model’s capacity 

to jointly predict multiple phenotypes. Standard errors for all measurements were obtained by 

bootstrapping with 100 bootstrap samples. To evaluate methods’ robustness to diverse phenotypes, we 

considered the standard deviation of Δ � CD���� E CD���� �	  across Partners Biobank phenotypes, 

where for each phenotype CD����  denotes the maximum AUC achieved across label-free phenotyping 

methods, and CD���� �	  denotes the AUC of the specific method. Finally, for the Partners EHR data, 
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we qualitatively assessed whether the phenotype topics inferred in the guided LDA step make clinical 

sense by generating feature clouds using the weighted counts of features assigned to each phenotype topic, 

F/�,�G. 

 

 

RESULTS 

Results on Simulated Datasets 

Figure 2 shows mean accuracies across 27 simulated phenotypes with variable generative 

parameters. Figure 3 shows AUCs and F scores as a function of (a) prevalence, (b) surrogate feature 

informativeness, and (c) non-surrogate feature informativeness. sureLDA, classical LDA, and 

GPhenome’s accuracy (per both AUC and F score) improved significantly with the informativeness of 

both surrogate and non-surrogate features. MAP improved only with surrogate informativeness as 

expected. PheNorm and Xpress improved markedly with surrogate informativeness and marginally with 

non-surrogate informativeness. Finally, increasing phenotype prevalence improved � scores but not 

AUCs (which as a metric is prevalence-agnostic) for all methods except XPress. 

 

Results on Partners EHR Data 

Figure 4 shows mean accuracies across 10 diverse diseases in real-world EHR data. sureLDA 

exhibited statistically significant improvements in mean AUC relative to other label-free alternatives. For 

example, compared to MAP, PheNorm, Xpress, and GPhenome, sureLDA improved mean AUCs by 

0.021 (95% CI: [0.004, 0.038]), 0.033 (95% CI: [0.008, 0.052]), 0.131 (95% CI: [0.100, 0.170]), and 

0.054 (95% CI: [0.028,0.084]) respectively. Compared to supervised algorithms, sureLDA achieved 

statistically significant improvements in mean AUC as well as improvements (though not significant) in 

mean F score relative to both LASSO and Random Forest with 300 GLabels. sureLDA also exhibited 

relatively low standard errors in all accuracy metrics. As shown in Figure S3, sureLDA’s deviation from 
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the highest AUC achieved per disease had the lowest standard deviation (0.029), with only PheNorm 

(0.044) and GPhenome (0.046) achieving comparable robustness by this metric. These results were 

generally consistent with our simulation study. 

Per the label rank loss metric, which reflects the accuracy of relative phenotype predictions on the 

patient level, sureLDA achieved statistically equal loss to MAP, PheNorm, ICD counts, and Random 

Forest with 300 labels. GPhenome, UPhenome, and classic LDA’s losses are confounded by the fact that 

they output topic-feature counts – which vary in scale between phenotypes – rather than probabilities. 

These results depart from our simulation, in which sureLDA achieved the lowest loss statistically 

equivalent only to PheNorm. This disparity may be attributable to the fact that our simulation has 27 

phenotypes whereas our real-world EHR example has only 10, which may not be sufficient to observe the 

benefit of jointly modeling phenotypes over predicting each marginally. Nevertheless, sureLDA’s low 

rank loss in our simulation study, combined with the qualitative observation that sureLDA consistently 

achieves higher mean AUCs and F scores the more phenotypes we include (data not shown), suggests that 

sureLDA benefits from jointly modeling phenotypes. 

sureLDA performed statististically equivalently to or better than MAP and PheNorm for all 

phenotypes, suggesting that its anchoring to the PheNorm prior ensures reliable baseline accuracy. 

Consistent with our simulation results, sureLDA generally performed best relative to alternative label-free 

methods for phenotypes with informative non-surrogate features and at least one noisy surrogate, such as 

COPD, epilepsy, and ischemic stroke (Figures S1-S2, Table S1). However, sureLDA along with MAP 

and PheNorm were significantly outperformed by GPhenome for obesity – which has unusually 

insensitive ICD and NLP surrogates. This suggests that sureLDA’s tethering to PheNorm may 

occasionally hinder it from fully exploiting information distributed across non-surrogate features. 

We present in Figures 5 and S5 feature clouds demonstrating the 20 features sureLDA associates 

most closely with each target phenotype “topic.” Almost all of these features have an intuitive association 

with their corresponding phenotype. For instance, highly-weighted features for the epilepsy topic include 

the ICD code for epilepsy, anticonvulsive drugs including phenytoin, lamotrigine, and carbamazepine, the 
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diagnostic test electroencephalogram (EEG), and various NLP terms including “seizures” and “aura” – a 

multitype set of features clearly reflecting a diagnosis of epilepsy (Figure 5a). These results underline 

sureLDA’s robust feature selection properties in the high-dimensional data setting, 

 

 

DISCUSSION 

Automated, label-free phenotyping methods enable EHR studies for which manually annotating 

phenotypes or designing new rule-based algorithms are impractical, such as a PheWAS requiring a large 

number of phenotypes to be defined and labeled de novo. To this end, sureLDA enables efficient 

annotation of accurate, interpretable computational phenotype labels that are robust to phenotype 

prevalence and feature set properties (Figures 3, S3). 

sureLDA combines attractive properties of classical LDA and PheNorm. By leveraging PheNorm 

to guide topic formation in LDA in a weakly supervised manner, sureLDA focuses LDA’s structure 

identification prowess towards identifying a well-defined set of phenotypes. It also leverages PheNorm’s 

dropout regression step to enable a data-driven phenotype-specific feature weighting mechanism that 

outperforms the literature-standard TF-IDF weighting scheme (Figure S4). 

Likewise, sureLDA augments PheNorm by using LDA to better extract information from 

non-surrogate features. LDA is adept at attributing marginally ambiguous features such as ‘cough’ or 

‘headache’ to the most patient-relevant phenotype topic. In this way, it implicitly imposes an Occam’s 

Razor assumption that favors fewer concurrent phenotypes over more, reflecting the negative association 

that arises between phenotypes conditional on ambiguous features. Future work is warranted to better 

assess the benefit of this property in the real-world EHR setting. 

LDA also gives sureLDA its aptitude for feature selection. As the word clouds in Figures 5 and 

S5 demonstrate, the sureLDA ‘scores’ produced by guided LDA reflect consistently meaningful features. 

Given the noisy and high-dimensional nature of EHR data, sureLDA’s feature selection ability primes it 
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for EHR modeling. Moreover, it enables fast production of interpretable computational phenotypes. 

This combination of desirable properties from PheNorm and LDA explains sureLDA’s robustness 

to a diversity of phenotypes (Figures 3, S3). For phenotypes with highly informative surrogates, the use of 

PheNorm ensures high baseline accuracy. For phenotypes with noisier surrogates and informative 

non-surrogate features, the LDA step allows for significant improvement over PheNorm. This robustness 

makes sureLDA well-suited to simultaneously annotating many diverse phenotypes. 

sureLDA could also be used to identify subphenotypes similarly to Li et al. [37] Once a 

phenotype (i.e. heart failure) cohort is identified (potentially via sureLDA), one could employ sureLDA 

on these patients to classify subphenotypes. However, since sureLDA uses PheNorm to guide topics, one 

would need to prespecify a few known subphenotypes (i.e. systolic heart failure with renal complications) 

and use their relevant ICD and NLP features to guide the subphenotype topics. Additionally, sureLDA’s 

‘agnostic’ topics could be used to discover unknown (sub)phenotypes, though its advantage over standard 

LDA for this task is unclear. Phenotype discovery is also limited by what information is documented in 

the EHR, which inherently reflects known phenotypes. While sureLDA eliminates reliance on expert 

review for annotation, it does require gold-standard labels for evaluation of its own performance. 

Continued work is warranted to estimate performance parameters such as AUC and F-score in an 

unsupervised fashion and thereby make both implementation and evaluation of weakly supervised 

phenotyping methods like sureLDA fully label-independent. 

 

 

CONCLUSION 

In this paper we introduce sureLDA, a high-throughput automated EHR phenotyping method that 

combines PheNorm with LDA to jointly annotate multiple phenotypes without using GLabels. Our 

method produces accurate, interpretable labels for a broad range of phenotypes. sureLDA exhibits 

particular improvement over existing label-free phenotyping methods for phenotypes without accurate 
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surrogate features. Given these qualities, sureLDA promises to enable more powerful use of EHR data for 

highly multi-phenotype applications such as PheWAS. 

 

Funding: This work was supported by the U.S. National Institutes of Health Grants T32-AR5588511, 

T32-GM7489714, and R21-CA242940. 

 

Competing Interests: None. 

 

Contributorship: All authors made substantial contributions to: conception and design; acquisition, 

analysis and interpretation of data; drafting the article or revising it critically for important intellectual 

content; and final approval of the version to be published. 

 

 

FIGURE CAPTIONS 

 

Figure 1: Schematic of the sureLDA algorithm. 

   

Figure 2: Mean (a) AUCs, (b) A scores, and (c) label rank losses of phenotype predictions on simulated 

datasets comparing raw ICD and NLP surrogates (red), fully unsupervised phenotyping methods (blue), 

alternative weakly supervised methods (green), sureLDA (purple), and supervised phenotyping using 

LASSO regularized logistic regression (LASSO, orange) and random forest (RandFor, yellow) with 

100-300 true labels. Error bars reflect empiric bootstrapped 95% confidence intervals. 

 

Figure 3: Mean AUCs (top panel) and A scores (bottom panel) of Xpress (red), classic LDA (blue), 

GPhenome (green), PheNorm (purple), MAP (orange), and sureLDA (yellow) on simulated datasets 

varying (a) phenotype prevalence, (b) surrogate feature informativeness, and (c) non-surrogate feature 

informativeness. For each plot, the two variables not being varied are held at their ‘Medium’ levels. 
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Figure 4: Mean (a) AUCs, (b) A scores, and (c) label rank losses of phenotype predictions on real 

diseases from the Partners EHR Biobank comparing raw ICD and NLP surrogates (red), fully 

unsupervised phenotyping methods (blue), alternative weakly supervised methods (green), sureLDA 

(purple), and supervised phenotyping using LASSO regularized logistic regression (LASSO, orange) and 

random forest (RandFor, yellow) with 100-300 true labels. Error bars reflect empiric bootstrapped 95% 

confidence intervals. 

  

Figure 5: Feature clouds derived from /�,� for four representative disease phenotypes: epilepsy, obesity, 

schizophrenia, and breast cancer. NLP terms have the prefix ‘NLP’ and codified data the prefix ‘ICD’. 
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Figure 1: Schematic of the sureLDA algorithm. 
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          (a) AUC               (b)  score           (c) Label Rank Loss 
 
Figure 2: Mean (a) AUCs, (b)  scores, and (c) label rank losses of phenotype predictions on simulated data
comparing raw ICD and NLP surrogates (red), fully unsupervised phenotyping methods (blue), alternative wea
supervised methods (green), sureLDA (purple), and supervised phenotyping using LASSO regularized log
regression (LASSO, orange) and random forest (RandFor, yellow) with 100-300 true labels. Error bars ref
empiric bootstrapped 95% confidence intervals. 
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  (a) Phenotype Prevalence              (b) Surrogate Informativeness      (c) Non-Surrogate Informativeness 
 
Figure 3: Mean AUCs (top panel) and  scores (bottom panel) of Xpress (red), classic LDA (blue), GPhenom
(green), PheNorm (purple), MAP (orange), and sureLDA (yellow) on simulated datasets varying (a) phenotype
prevalence, (b) surrogate feature informativeness, and (c) non-surrogate feature informativeness. For each plot
the two variables not being varied are held at their ‘Medium’ levels. 
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          (a) AUC               (b)  score           (c) Label Rank Loss 
 
Figure 4: Mean (a) AUCs, (b)  scores, and (c) label rank losses of phenotype predictions on real diseases fro
the Partners EHR Biobank comparing raw ICD and NLP surrogates (red), fully unsupervised phenotyping 
methods (blue), alternative weakly supervised methods (green), sureLDA (purple), and supervised phenotyping
using LASSO regularized logistic regression (LASSO, orange) and random forest (RandFor, yellow) with 100
300 true labels. Error bars reflect empiric bootstrapped 95% confidence intervals. 
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                                     (a) Epilepsy                                                                  (b) Obesity 

  

                               (c) Schizophrenia                                                       (d) Breast Cancer 

 
Figure 5: Feature clouds derived from  for four representative disease phenotypes: (a) epilepsy, (b) obesity
(c) schizophrenia, and (d) breast cancer. NLP terms have the prefix ‘NLP’ and codified data the prefix ‘ICD’. 

 

sity, 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.04.13.038968doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.13.038968
http://creativecommons.org/licenses/by-nc-nd/4.0/

