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ABSTRACT 
 
Natural killer (NK) cells are the predominant antiviral cells of the innate immune system, and 
may play an important role in acquisition and disease progression of HIV. While untreated HIV 
infection is associated with distinct alterations in the peripheral blood NK cell repertoire, less is 
known about how NK phenotype is altered in the setting of long-term viral suppression with 
antiretroviral therapy (ART), as well as how NK memory can impact functional responses. As 
such, we sought to identify changes in NK cell phenotype and function using high-dimensional 
mass cytometry to simultaneously analyze both surface and functional marker expression of 
peripheral blood NK cells in a cohort of ART-suppressed, HIV+ patients and HIV- healthy 
controls. We found that the NK cell repertoire following IL-2 treatment was altered in 
individuals with treated HIV infection compared to healthy controls, with increased expression 
of markers including NKG2C and CD2, and decreased expression of CD244 and NKp30. Using 
co-culture assays with autologous, in vitro HIV-infected CD4 T cells, we identified a subset of 
NK cells with enhanced responsiveness to HIV-1-infected cells, but no differences in the 
magnitude of anti-HIV NK cell responses between the HIV+ and HIV- groups. In addition, by 
profiling of NK cell receptors on responding cells, we found similar phenotypes of HIV-
responsive NK cell subsets in both groups. Lastly, we identified clusters of NK cells that are 
altered in individuals with treated HIV infection compared to healthy controls, but found that 
these clusters are distinct from those that respond to HIV in vitro. As such, we conclude that 
while chronic, treated HIV infection induces a reshaping of the IL-2-stimulated peripheral blood 
NK cell repertoire, it does so in a way that does not make the repertoire more HIV-specific. 
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INTRODUCTION 
 
Natural killer (NK) cells are critical effector cells of the innate immune system that can rapidly 
recognize and kill virally infected and tumour cells. NK cells express an array of activating and 
inhibitory receptors; the integration of signalling between these receptors determines NK cell 
activation and functional activity. This includes the release of cytolytic granules to induce target 
cell apoptosis, as well as the secretion of cytokines and chemokines including IFN-ɣ, MIP-1β 
(CCL4), and TNF-ɑ.  
 
Epidemiological and experimental evidence have highlighted the role of NK cells in the 
acquisition and disease progression of HIV-1. Increased constitutive NK cell activity is 
associated with protection from HIV acquisition in highly exposed seronegative individuals 
(Scott-Algara et al., 2003; Ravet et al., 2007). Similarly, the expression of the NK cell receptor 
KIR3DL1 and its cognate ligand HLA-Bw4-80I is associated with slower disease progression 
and improved suppression of autologous HIV-infected CD4 T cells (Martin et al., 2002; Alter et 
al., 2007; Song et al., 2014). Specific NK cell receptors have also been implicated in HIV 
recognition and targeting. NKG2A-expressing NK cells have improved activity against HIV 
(Lisovsky et al., 2015; Davis et al., 2016; Ramsuran et al., 2018), and NKG2D ligands are 
upregulated on HIV-infected cells (Richard et al., 2010). As such, changes in expression of NK 
cell receptors can impact their ability to target HIV. 
 
Chronic, untreated HIV infection is associated with significant changes in the NK cell repertoire, 
the most well-defined of which is the loss of CD56+ NK cells, and the concomitant expansion of 
a CD56neg NK cell subset (Alter et al., 2005). CD56neg NK cells are functionally impaired and 
thought to be exhausted, demonstrating reduced cytotoxicity and IFN-ɣ production (Hu et al., 
1995; Mavilio et al., 2005; Milush et al., 2013). In addition, the expression of the inhibitory 
receptor Siglec-7 (Brunetta et al., 2009), as well as the expression of the activating receptors 
NKp30, NKp44 and NKp46 (Mavilio et al., 2003), are decreased in chronic, viraemic HIV 
infection, whereas the expression of the inhibitory receptor TIGIT is increased (Yin et al., 2018; 
Vendrame et al., 2020). After treatment with antiretroviral therapy (ART), the patterns of CD56+ 
and CD56neg NK cell subsets are restored to levels similar to seronegative, healthy individuals 
(Mavilio et al., 2005). However, less is known regarding how other NK cell subsets, as well as 
how the NK cell repertoire as a whole, may be altered in the setting of virological control by 
ART. In addition, the functional outcomes of these alterations, in particular with regards to how 
they may impact HIV-specific responses, are not well understood.  
 
Contrary to their classic designation as an innate immune cell type, recent work has 
demonstrated the ability of human NK cells to form memory against viruses including 
cytomegalovirus, Epstein-Barr virus and varicella-zoster virus (Gumá et al., 2004, 2006; Lopez-
Verges et al., 2011; Foley et al., 2012; Paust et al., 2017; Hammer et al., 2018; Nikzad et al., 
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2019). In non-human primates, infection with simian immunodeficiency virus (SIV) or SHIV 
generates antigen-specific NK cells that react with presented Gag and Env. In addition, 
vaccination with Ad26 vectors containing Gag and Env antigens from HIV and SIV generates 
long-lived, antigen-specific NK cells, even in the absence of continuous antigen stimulation 
(Reeves et al., 2015), raising the possibility that human NK cells in infected individuals could be 
similarly capable of generating and retaining memory responses against HIV antigens even 
without ongoing viral exposure. As such, we sought to understand whether previous HIV 
infection altered the functional capacity of peripheral blood NK cells to respond against a 
second, in vitro stimulation with autologous HIV-infected cells. Here, we use mass cytometry to 
profile NK cell receptor expression on a cohort of ART-suppressed, HIV+ donors and healthy 
controls, to determine how changes in the NK cell repertoire that occur with HIV infection 
influence HIV-specific NK cell responses. 
 
MATERIALS AND METHODS 
 
Study subjects and sample processing 
 
Cryopreserved peripheral blood mononuclear cells (PBMCs) from HIV-infected patients treated 
with antiretroviral therapy (ART) were obtained from the Stanford HIV Aging Cohort. This 
study was approved by the Institutional Review Board of Stanford University. For anonymous 
healthy HIV uninfected donors, leukoreduction system chambers were obtained from the 
Stanford Blood Bank. PBMCs were isolated by density gradient centrifugation using Ficoll-
Paque PLUS (GE Healthcare), and cryopreserved in 10% DMSO (Sigma Aldrich) and 90% fetal 
bovine serum (FBS, Thermo Fisher). 
 
CD4 and NK cell sorting and cell culture 
 
PBMCs were thawed, and stained with a panel consisting of 7-AAD viability staining solution 
(eBioscience), CD14-BV421 (clone M5E2), CD19-BV421 (clone HIB19), CD16-FITC (clone 
3G8), CD3-PE (clone SK7), CD4-BV711 (clone OKT4), and CD56-PE Cy7 (clone HCD56, all 
antibodies from Biolegend), and sorted for CD4 T cells (CD14- CD19- CD3+ CD4+) and NK 
cells (CD14- CD19- CD3- CD56/CD16+) using a Sony SH800 sorter. Post-sorting, all cells were 
cultured in RPMI (Gibco), with 10% FBS (Thermo Fisher), 1% L-glutamine (Hyclone) and 1% 
penicillin/streptomycin/amphotericin (Thermo Fisher) (RP10). CD4 T cells were plated in RP10 
with plate-bound anti-CD3 (clone OKT3, eBioscience), anti-CD28/CD49d (BD Biosciences) and 
PHA-L (eBioscience) for 48h. NK cells were separately plated in RP10 with 300IU/ml 
recombinant human IL-2 (R&D) for 72h.  
 
In vitro HIV infection and NK co-culture assays 
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For all in vitro HIV infections, Q23-FL, a clone from early, subtype A infection (Poss and 
Overbaugh, 1999), was used. The Q23-FL virus was produced by transfecting a plasmid 
encoding a full-length, replication competent clone into 293T cells, harvesting supernatant after 
48h and concentrating by ultracentrifugation. Viral stocks were titrated on TZM-bl cells as 
previously described (Strauss-Albee et al., 2015). Activated CD4 T cells were infected with Q23-
FL at an MOI of 25 (based on titrations in TZM-bl cells), using Viromag magnetofection (OZ 
Biosciences). HIV-infected cells were used for co-cultures 24h post infection. NK cells and CD4 
T cells were co-cultured at a 1:4 effector:target (E:T) ratio, for 4h, in the presence of brefeldin A 
(eBioscience), monensin (eBioscience), and anti-CD107a-APC (Biolegend).  
 
Mass cytometry 
 
All antibodies were conjugated using MaxPar® X8 labeling kits (Fluidigm), except for those 
purchased directly from Fluidigm; details of all antibodies is given in Table S1. To maintain 
antibody stability and consistency in staining, all antibody panels were pre-mixed into separate 
surface and ICS cocktails (as indicated in Table S1), aliquoted and frozen at -80°C until use. 
Palladium (Pd102, Pd104, Pd106, Pd108) conjugated CD45 antibodies for barcoding were made 
as previously described (Mei et al., 2015).  
 
At the end of co-culture, cells were stained for viability using 25 µM Cisplatin (Enzo) for 1min 
and quenched with FBS, and samples were barcoded using palladium-based CD45 barcodes as 
previously described (Mei et al., 2015). After barcoding, cells were washed thrice, and all 
samples from a set of barcodes were combined. Samples were stained with the surface antibody 
panel for 30min at 4°C, fixed with 2% paraformaldehyde (PFA, Electron Microscopy Sciences), 
permeabilized with Permeabilization Buffer (eBioscience), and stained with the intracellular 
staining (ICS) panel (made in Permeabilization Buffer) for 45min at 4°C. Cells were suspended 
overnight in iridium interchelator (DVS Sciences) in 2% PFA, and resuspended in 1x EQ Beads 
(Fluidigm) before acquisition on a Helios mass cytometer (Fluidigm).  
 
Data analysis 
 
Bead normalization (https://github.com/nolanlab/bead-normalization) and debarcoding (using the 
R package Premessa) were performed on all files post-acquisition. All CyTOF data was 
visualized and gated using FlowJo v10.1 (Tree Star); gated NK cells (CD3- CD56/CD16+), or 
functional+/functional- cells were exported as fcs files from FlowJo and used in downstream 
analyses. CD11a was excluded from all downstream analyses due to poor staining. The data 
supporting this publication is available at ImmPort (https://www.immport.org) under study 
accession SDY1620. 
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The open source statistical software R (Team and Others, 2013) was used for analyses. For 
analyses using the generalized linear models as well as the clustering and the Uniform Manifold 
Approximation and Projection (UMAP) (McInnes et al., 2018), raw channel values were 
transformed using the inverse hyperbolic sine (asinh) function with a cofactor equal to 5 to 
account for heteroskedasticity. This transformation was not applied for calculating mean signal 
intensity values. To compare frequencies of functionally responding cells, as well as frequency 
of the gated population between HIV+ and HIV- groups, t-tests were used. To compare 
frequencies of responding cells between the gated population and bulk NK cells in each donor, 
paired t-tests were used. To identify markers that are predictors of the HIV+ or HIV- conditions, 
we used the R package CytoGLMM (Seiler et al., 2019) which uses a generalized linear model 
with bootstrap resampling. This model takes into account the distribution of each marker, and 
has a donor-specific variable to control for inter-individual variability.  For the clustering 
analyses, the R package CATALYST was used (Nowicka et al., 2017; Weber et al., 2019). This 
package provides a clustering method which combines the FlowSOM algorithm (Van Gassen et 
al., 2015) which generates 100 high-resolution clusters, followed by the ConsensusClusterPlus 
metaclustering algorithm (Wilkerson and Hayes, 2010) which regroups these high-resolution 
clusters into metaclusters. Default parameters were used for clustering, and the number of 
metaclusters (10) was selected based on the delta area plot provided. To test for differential 
abundance of clusters between groups, the diffcyt-DA-GLMM method from the diffcyt package 
(Nowicka et al., 2017; Weber et al., 2019) was used; the donor IDs were specified as a random 
effect. The UMAP was run using the scater package (McCarthy et al., 2017), with default 
settings. 
 
RESULTS 
 
HIV+ donors have an altered NK cell repertoire even in the setting of ART suppression 
 
To investigate the effect of HIV-1 infection on NK cell responses, we used CyTOF to profile NK 
cell receptor expression and functional activity in a cohort of 10 ART-suppressed, HIV+ donors 
(referred to as HIV+), and 10 healthy controls (referred to as HIV-). Patient demographics are 
given in Table 1. We first compared the expression of 28 NK cell receptors between the HIV+ 
and HIV- donors, in sorted, IL-2 activated NK cells. To look at overall NK receptor expression 
patterns between the two groups, we used a multidimensional scaling (MDS) plot to visualize all 
the NK cell samples (Fig 1A). NK cells from HIV- and HIV+ donors separated primarily on a 
diagonal axis; this separation was driven by multiple markers including CD2, NKp30 and 
NKp46 (as shown in the correlation circle). To further define the NK cell receptors whose 
expression is altered in HIV+ compared to HIV- individuals, we used a generalized linear model 
with bootstrap resampling to identify markers predictive of either the HIV+ or HIV- groups. 
Based on marker distribution, the model generates the log-odds that the expression of a given 
marker is predictive of either the HIV+ or HIV- group, together with the 95% confidence 
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interval. In purified, IL-2 activated NK cells, the markers NKG2C, CD2, NKp46 and PD-1 were 
predictive of HIV+ (95% confidence interval does not contain the zero value) while CD244, 
NKp30, DNAM-1 and NKG2A were predictive of HIV- individuals (Fig 1B).  To confirm these 
results, we also compared mean signal intensity (MSI) for the top 4 NK cell markers predictive 
of either the HIV- or HIV+ groups, and observed an increased trend of MSI for NKG2C, CD2, 
NKp46 and PD-1 in the HIV+ group, and a decreased trend in CD244, NKp30, DNAM-1 and 
NKG2A (Fig 1C).  
 
To further visualize the changes in subsets of NK cells between HIV+ and HIV- groups, we used 
the Uniform Manifold Approximation and Projection (UMAP) to visualize purified NK cells 
from both groups (Fig 1D). To identify classic NK cell subsets, the expression of the markers 
CD56 and CD16 are shown, revealing the expected pattern in that the cells with highest 
expression of CD56 have low expression of CD16, identifying the canonical CD56brightCD16- 
and CD56dimCD16+ NK cell subsets. In addition, the expression of the top predictors for each of 
the HIV- (CD244 and NKp30) and HIV+ groups (NKG2C and CD2) are shown. These plots 
reveal that greatest differences in both cellular distribution and NK marker expression between 
HIV- and HIV+ donors occurred on the right part of the UMAP plots. Thus, these data 
demonstrate that even in the setting of long-term virological suppression with ART, the NK cell 
repertoire following IL-2 treatment remains altered. 
 
NK cells from HIV+ individuals do not have an increased response upon in vitro 
restimulation with autologous HIV-infected cells 
 
Contrary to their classic designation as innate immune cells, NK cells have more recently been 
shown to demonstrate antigen-specific memory to viral antigens. As such, we were interested in 
determining whether prior HIV-1 exposure (in the HIV+ individuals) would alter the magnitude 
of the NK cell response or the phenotypes of responding cells, when restimulated with 
autologous HIV-infected cells in vitro. We co-cultured NK cells from HIV- and HIV+ donors 
with autologous CD4 T cells infected in vitro with the HIV strain Q23-FL (Fig 2A); infection 
levels in CD4 T cells after co-culture were similar between HIV+ and HIV- donors (Figure S1). 
To identify NK cell responses, we looked at expression of functional markers on these cells by 
CyTOF. For each sample, we separately gated on NK cells that were positive for the expression 
of cytokines IFN-ɣ, MIP-1β (CCL4), TNF-ɑ or the degranulation marker CD107a (Fig 2B), after 
4 hours of co-culture. All gating was performed based on samples of NK cells in the absence of 
target cells; these samples had generally low levels of expression of all functional markers. We 
found that the majority of responding cells were polyfunctional: for example, using the 
generalized linear model, the top predictors of CD107a+ cells included MIP-1β, TNF-ɑ and IFN-
ɣ (Figure S2). As such, we used Boolean gating to identify functionally responding cells 
(positive for any of the functional markers above, hereafter named as functional+), or non-
functionally responding cells (negative for all of the markers above, named as functional-).  
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To identify differences in the magnitude of NK cell responses to HIV-infected cells between 
HIV- and HIV+ donors, we gated on cells that were positive for functional markers, and sought 
to identify differences in frequency of these cells between the two groups. We applied 
background subtraction (by subtracting the frequency of NK cells expressing each functional 
marker in the NK alone condition) to account for variations in baseline NK activity. In response 
to autologous HIV-infected cells in vitro, the frequency of NK cells expressing any of the 
functional markers (IFN-ɣ, MIP-1β, TNF-ɑ, CD107a) individually, or combined (functional+), 
was not significantly different between the HIV- and HIV+ groups (Fig 2C).  
 
To further understand whether the NK cells that were generating a functional response were 
phenotypically similar between the HIV+ and HIV- groups, we used the generalized linear model 
to identify predictors of responding (functional+) and non-responding cells (functional-). Multiple 
NK cell receptors were strong predictors of functional+ or functional- cells, indicating a clearly 
distinct phenotype of cells that respond to HIV in vitro; these cells express higher levels of 
CD96, NKp30, TIGIT, and Siglec-7, and lower levels of CD62L, CD16, and NKp46 (Fig 3A). 
Notably, the top predictors of responding cells were very similar between the HIV- and the HIV+ 
group, including CD96, NKp30 and TIGIT. To identify a subset of responding cells, we included 
cells with high expression of positive predictors (predictors of functional+), and with negative 
expression of negative predictors (predictors of functional-), that had a log odds greater than 0.2 
in both groups; the resultant phenotype was CD96hi NKp30hi TIGIThi CD16- CD62L- NKp46-. 
CD38, while being a strong predictor of functional+ cells in the HIV+ group, was excluded; it 
was not a predictor of responding cells in the HIV- group, and CD38 expression is increased in 
the context of HIV infection and remains high even after ART treatment (Kuri-Cervantes et al., 
2014). We gated on each marker individually (Fig 3B), and then used Boolean gating to generate 
a gated population that included all the features of the phenotype. Gating on this subset 
significantly enriched for functional+ cells to a similar extent in both the HIV+ and HIV- groups 
(Fig 3C), suggesting that, despite the alterations in NK cell repertoire, the NK cell subsets 
responding to HIV in vitro were not altered in HIV+ individuals. We also compared the 
frequency of this subset among total NK cells, in both HIV+ and HIV- groups (Fig 3D), and 
noted that, while the frequency was low (between 0.1% and 3%), there was no significant 
difference between the two groups, indicating that HIV infection does not alter the frequency of 
this subset. 
 
NK cells clusters that are altered in HIV+ individuals are distinct from those that are 
functionally responsive to HIV in vitro. 
 
As the expression of many of the markers on responding cells were markers we found to be 
altered in the HIV+ group compared to HIV- (Fig 1), it was surprising that these changes did not 
seem to have an effect on the magnitude or quality of the NK cell response to HIV in vitro. To 
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better understand the populations of cells that are altered in HIV+ individuals, compared to those 
that are involved in the functional response, we used UMAP to visualize all NK cells from co-
cultures with HIV-infected cells in vitro, in both groups. We also performed unsupervised 
clustering and metaclustering, using the FlowSOM and ConsensusClusterPlus algorithms, to 
identify 10 metaclusters of NK cells (Fig 4A); this included clusters that were shared between 
HIV+ and HIV- groups, such as cluster 1, but also clusters that were distinct to NK cells from 
HIV+ individuals (cluster 3), or HIV- individuals (cluster 5). To identify responding NK cells, 
we overlaid marker expression of functional markers onto the UMAP visualization (Fig 4B). All 
responding NK cells (positive for functional markers) clustered in a similar area on the left part 
of the plots that was shared between HIV+ and HIV- donors; many of these cells are positive for 
multiple functional markers, confirming that most responding cells were polyfunctional (Figure 
S1). To identify which cluster these functionally responding cells belonged to, we looked at a 
heatmap of mean marker expression of all NK cell markers across all clusters (Fig 4C); this 
identified clusters 9 and 10 as the predominant clusters expressing functional markers, with cells 
in cluster 9 expressing high levels of CD107a, TNF-α and MIP-1β, and cells in cluster 10 also 
expressing high levels of IFN-ɣ. In line with our previous analysis of the phenotypes of 
functionally responding cells, cluster 9 expresses high levels of NKp30, while cluster 10 has 
relatively high levels of TIGIT expression and low levels of NKp46 expression; both clusters 
have low CD16 and CD62L expression. 
 
To identify if these clusters were differentially abundant between the HIV+ and HIV- groups, we 
performed differential abundance tests using the diffcyt package, which identified 3 clusters with 
significantly different abundance between the HIV+ and HIV- groups - clusters 3, 5, and 7 (Fig 
4D). Notably, neither cluster 9 or 10 were differentially abundant between the HIV+ and HIV- 
groups, indicating that the functionally responding subsets remain unaltered in abundance or 
phenotype (Fig 3) in the setting of ART-treated HIV infection. Hence, although HIV infection 
induces a reshaping of the NK cell repertoire in vivo, it does so in a way that does not alter HIV-
specific responses, as the predominant changes occur in NK cell compartments that do not 
respond to HIV in in vitro restimulation. 
 
 
DISCUSSION 
 
Chronic HIV-1 infection is known to alter NK cell phenotype and function. To better understand 
how these changes occur in the setting of virological control with ART, as well as how HIV-
specific function is impacted in this setting, we used mass cytometry to profile differences in NK 
cell receptor expression repertoire in peripheral blood NK cells between ART-treated, HIV+ 
individuals and healthy HIV- controls. We observed differences in the IL-2 stimulated NK cell 
repertoire between HIV+ and HIV- individuals, although these differences did not impact the 
HIV-specific response to an in vitro restimulation with HIV-infected CD4 T cells. In addition, 
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we identified a unique phenotype of cells that is functionally responsive against HIV; this NK 
cell subset is shared between both HIV+ and HIV- donors and is similarly responsive in both.  
 
During HIV-1 infection, the NK cell repertoire undergoes significant changes, but even in the 
setting of virological suppression with ART, the NK repertoire remains altered compared to 
healthy controls in IL-2 activated NK cells. We found increased expression of NKG2C, CD2, 
NKp46 and PD-1, and decreased expression of CD244, NKp30, DNAM-1 and NKG2A; many of 
these markers have been previously described to be altered in HIV infection. The decreased 
expression of NKp30 and DNAM-1 has been reported for ART-treated HIV-infected patients 
compared to healthy donors (Bisio et al., 2013; Zhou et al., 2015); however, these studies also 
observed lower expression of NKp46 in HIV+ individuals, whereas we saw increased NKp46 
expression in the HIV+ group. This discrepancy may be due to the IL-2 activation of NK cells in 
our study, which is known to increase NKp46 expression (Campos et al., 2015), and may do so 
to different extents in the HIV- and HIV+ groups. CD244 expression on NK cells is also known 
to decrease in HIV infection, although does recover over time after the initiation of ART 
(Ostrowski et al., 2005). PD-1 expression is also increased in HIV infection even with ART 
treatment, and these cells have limited proliferative capacity and may contribute to NK cell 
dysfunction (Norris et al., 2012). The increased expression of NKG2C and CD2 may reflect an 
increase in a subset of NK cells with a more mature, adaptive phenotype that is known to expand 
during HIV infection, and that persists even during ART treatment (Peppa et al., 2018). Indeed, 
we observed differential abundance of cluster 3 (Fig 4) between the HIV+ and HIV- groups; this 
cluster, which had greater abundance in donors of the HIV+ group, expressed high levels of CD2 
and low levels of Siglec-7, and expressed both NKG2C and CD57, all known features of this 
subset. 
 
We also identified other clusters of NK cells that are differentially expressed between HIV+ and 
HIV- groups (Fig 4). Clusters 5 and 7 have greater abundance in donors of the HIV- group; cells 
of these clusters have higher expression of CD244 and NKp30 in cluster 7, which we also 
identified in our GLM analyses (Fig 1B). These differentially abundant clusters may represent 
the loss of subsets of NK cells that occur after chronic HIV infection or ART treatment. The 
identification of these phenotypic features of NK cells can provide insight on how chronic, 
treated HIV infection shapes the activated NK cell repertoire, while the mechanisms and 
functional consequences of these alterations warrant further investigation. 
 
We identified a unique NK cell subset that has higher functional activity in response to HIV-1-
infected cells (Fig 3); this subset has the phenotype CD96hi NKp30hi TIGIThi CD16- CD62L- 
NKp46-, and its increased functional activity is present in both the HIV+ and HIV- groups. 
Individually, many of the markers represented in this subset have been previously implicated in 
immune-mediated control of HIV. For instance, in CD8 T cells, CD96 expression is positively 
associated with higher CD4 T cell counts in HIV-infected individuals, although CD96+ cells 
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produce less perforin upon stimulation with phorbol myristate acetate/ionomycin (PMA/I),  
compared to CD96- (Eriksson et al., 2012). In NK cells, CD96+ NK cells from peripheral blood 
have reduced TNF-α and IFN-ɣ production following PMA/I stimulation (Sun et al., 2019). 
These prior data make it difficult to ascertain whether CD96 contributes to HIV control, but our 
observation that CD96hi cells have improved functional activity against HIV may reflect 
different mechanisms of activation between HIV infection and stimulation by PMA/I. In 
addition, NKp30 expression is induced upon IL-2 stimulation, and is correlated with IFN-ɣ 
production and inversely associated with the HIV reservoir, suggesting that cells that upregulate 
NKp30 upon IL-2 stimulation may have improved activity against HIV (Marras et al., 2017). 
This is particularly relevant as our study used IL-2 activated NK cells. TIGIT+ NK cells have 
also been previously implicated in HIV control - TIGIT expansion is markedly enhanced on NK 
cells in untreated HIV infection (Yin et al., 2018; Vendrame et al., 2020). We also recently 
demonstrated that TIGIT expression marks a population of NK cells with an adaptive phenotype 
with greater functional activity against HIV-infected cells as well as other stimuli (Vendrame et 
al., 2020).  
 
In contrast, the lack of expression of CD16 and NKp46 on these functionally responding cells 
may reflect downregulation of these receptors after NK cell activation by HIV-infected cells. 
After stimulation, downregulation of both CD16 and NKp46 have been reported to occur 
predominantly in activated NK cells that produce IFN-ɣ and CD107a; this downregulation can 
occur even in the absence of specific signalling through CD16 or NKp46 (Grzywacz et al., 2007; 
Parsons et al., 2014). As such, these features of this subset may not necessarily reflect their 
involvement in the HIV-specific response, but instead mark activated NK cells. By using the 
combinatorial expression of all the markers we have identified, we were able to vastly enrich for 
cells that were responding against HIV - up to 90% of cells of this phenotype were functionally 
responding (Fig 3C). Although the frequency of this subset is low (0.1-3% of total NK cells, Fig 
3D), and does not account for all responding cells, the high level of functional activity of these 
cells suggests that they are important in HIV-targeting activity. 
 
While we did not find evidence of improved memory responses of peripheral blood NK cells in 
HIV+ individuals upon an in vitro re-stimulation with HIV-infected cells, this does not preclude 
the existence of these memory NK cells in other tissue locations, or in low frequency in the 
blood. In murine, humanized mice, and non-human primate studies of memory NK cells, 
memory NK cells were predominantly tissue-resident, particularly in the liver (Paust et al., 2010; 
Reeves et al., 2015; Nikzad et al., 2019). A low frequency of these hepatic phenotype NK cells 
can be found in peripheral blood (Nikzad et al., 2019) and would have been included in our 
analyses, but may have been at too low a frequency to detect within the bulk of the response to 
HIV. Indeed, Reeves et al. have previously found that, in non-human primates, memory 
responses to Gag vaccination by peripheral blood NK cells were much lower in magnitude than 
splenic or hepatic NK cells, but were still observable (Reeves et al., 2015). Even so, our 
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observation that peripheral blood NK cells did not demonstrate HIV-specific memory responses 
may be due to the extremely low frequency of these cells, or differences between these memory 
NK cells in humans compared to mice or non-human primates or with different infections.  
 
There are several limitations to our study. Due to sample availability, we profiled only NK cells 
in peripheral blood; tissue-resident NK cells may exhibit differences in both phenotype and the 
ability to generate memory responses, as discussed above. In addition, NK cells were not re-
stimulated with the same HIV-1 strain as the primary in vivo infection, as we used a separate, in 
vitro infection with a different HIV strain. We used a subtype A strain for all in vitro HIV 
restimulations; however, as all our subjects were recruited in North America, where subtype B 
strains dominate (Bbosa et al., 2019), the mismatch in viral strain used for the secondary 
challenge may have contributed to the poor memory NK cell responses we observed. Even so, 
we have shown that infection with HIV-1 viruses across both subtype A and subtype B strains 
lead to similar patterns of alterations in expression of NK cell ligands on infected CD4 T cells 
(unpublished data), suggesting that strain-specific recognition is unlikely in NK cells, and the 
mismatch of strain subtype in primary infection and in vitro restimulation would not impair the 
detection of potential memory responses. Lastly, as our primary interest was in evaluating 
functional responses to HIV-infected cells, we profiled IL-2 activated NK cells, which may not 
entirely recapitulate NK cell phenotypes ex vivo. IL-2 induces changes in NK receptor 
expression, including upregulation of the natural cytotoxicity receptors (NCRs) NKp30 and 
NKp46; however, the expression of most other NK receptors remains unchanged (Vendrame et 
al., 2017). The differences in cytokine-induced upregulation of these NCRs between the HIV+ 
and HIV- groups can additionally be informative, as upregulation of NCRs have been implicated 
in control of HIV (Marras et al., 2017). 
 
In summary, our data demonstrate that phenotypic alterations in peripheral blood NK cells that 
occur in individuals with ART-treated HIV-1 infection do not result in improved NK-mediated 
targeting of HIV. These phenotypic changes instead occur in distinct cellular subsets that are not 
involved in the functional response to HIV. Further work is required to understand whether other 
tissue-resident NK cells may exhibit differences in phenotypic alterations and functional 
responses in the course of treated HIV infection.  
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FIGURE LEGENDS 
 
Figure 1: Profiling of NK cell repertoire using CyTOF in both healthy, HIV- and ART-
suppressed, HIV+ donors demonstrates alterations in NK cell surface receptor expression.  
(A) Multidimensional scaling (MDS) plot showing separation of NK cells from HIV+ (n=10) 
and HIV- donors (n=10). Only markers whose contributions are greater than 0.25 in both MDS1 
and MDS2 are displayed in the marker loadings. (B) A generalized linear model with bootstrap 
resampling was used to find receptors predictive of either HIV+ (right), or HIV- (left) donor NK 
cells. Log-odds are logarithm of ratios of the probability that a cell belongs to either group. For 
each marker, the 95% confidence interval is represented by the line surrounding the point 
estimate; a larger absolute log-odds value of the parameter indicates that the marker is a stronger 
predictor. (C) Mean signal intensity (MSI) of NKG2C, CD2, NKp46 and PD-1 (top 4 predictors 
of the HIV+ group; top), and CD244, NKp30, DNAM-1 and NKG2A (top 4 predictors of the 
HIV- group; bottom). (D) UMAP visualization of all NK cells from the HIV+ and HIV- groups, 
coloured by expression of CD56, CD16, NKG2C and CD2 (top 2 predictors of the HIV+ group), 
and CD244 and NKp30 (top 2 predictors of the HIV- group). Scales show asinh-transformed 
channel values.  
 
Figure 2: The magnitude of the HIV-specific response does not differ between HIV- and HIV+ 
donors. 
(A) Schematic of experimental set-up for NK co-culture assays. (B) Representative flow 
cytometry plots of CD107a, IFN-γ, MIP-1β and TNF-ɑ production (by frequency of positive 
cells), after 4 hour co-culture without (top) or in the presence of HIV-infected autologous CD4+ 
T cells (bottom). (C) Summary data of CD107a, IFN-γ, MIP-1β and TNF-ɑ production (by 
frequency of positive cells), after 4 hour co-culture with HIV-infected autologous CD4+ T cells, 
in NK cells from HIV- (n=10) and HIV+ (n=10) donors. ns = not significant, by t-test. 
 
Figure 3: Phenotype of NK cells responding to HIV are similar between HIV- and HIV+ donors, 
and include many of the markers that are altered in ART-treated HIV infection. 
(A) A generalized linear model with bootstrap resampling was used to identify NK cell receptors 
predictive of either functionally responding (right), or non-responding (left) NK cells, in HIV- 
(n=10) and HIV+ (n=10) donors. Log-odds are logarithm of ratios of the probability that a cell 
belongs to either group. For each marker, the 95% confidence interval is represented by the line 
surrounding the point estimate; a larger absolute log-odds value of the parameter indicates that 
the marker is a stronger predictor. (B) Gating on markers that predict functionally responding 
cells (NKp30hi CD96hi TIGIThi CD62L- CD16- NKp46-), with a minimum log-odds threshold of 
0.2 in both groups. (C) Comparison of functional activity in the gated population, compared to 
bulk NK cells. Summary data of percentage positive functionally responding (positive for any of 
CD107a, IFN-γ, MIP-1β and TNF-ɑ) in HIV- (n=10) and HIV+ groups (n=10). **** = p < 
0.001, by paired t-test. (D) Comparison of the frequency of the gated population, as a percentage 
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of total NK cells, between the HIV- (n=10) and HIV+ (n=10) groups. ns = not significant, by t-
test.  
  
Figure 4: The predominant changes in the NK cell repertoire of HIV+ individuals occur in NK 
cell compartments that do not respond to HIV in in vitro restimulation. 
(A) UMAP visualization of all NK cells in co-culture with autologous HIV-infected cells in 
HIV- (n=10) and HIV+ (n=10) donors, coloured by metacluster identity generated by 
ConsensusClusterPlus metaclustering. (B) UMAP visualization of all NK cells from the HIV+ 
and HIV- groups, coloured by expression of functional markers CD107a, IFN-γ, MIP-1β and 
TNF-ɑ. Scales show asinh-transformed channel values. (C) Heatmap of scaled mean expression 
of all markers profiled, for each cluster 1 to 10. The abundance of each cluster (% of total cells) 
is given on the right of the heatmap. Functional markers (CD107a, IFN-γ, MIP-1β and TNF-ɑ) 
are on the left. (D) Heatmap of the relative abundance of each cluster between the HIV- (left) 
and HIV+ (right) groups. Each individual column represents a single donor. The heat represents 
the proportion of each metacluster in each donor, with yellow showing over-representation and 
blue showing under-representation. These proportions were first scaled with an arcsine-square-
root transformation and then z-score normalized in each cluster. Clusters with a statistically 
significant (p<0.05) difference in abundance between HIV- and HIV+ groups are highlighted in 
green; adjusted p-values (FDR) are shown beside it.  
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Table 1: Demographic information of HIV cohort 
 

  HIV+ (n=10) HIV- (n=10) 

Age in years | Mean (SD) 52.9 (9.7) 54.1 (17.5) 

Sex | proportion male 10/10 9/10 

Years since diagnosis | Mean (SD) 18.5 (8.6) N/A 

Years on ART | Mean (SD) 15.3 (8.1) N/A 

CD4 count in cells/mm3 | Mean (SD) 705 (335) * Not available 

Nadir CD4 count in cells/mm3 | Mean (SD) 249 (129) + N/A 

Type of ART (proportion) NNRTI (6/10), PI 
(3/10), Integrase 
inhibitor (3/10) ^ 

N/A 

 
* CD4 counts were only available for 7/10 HIV+ individuals. 
+ Nadir CD4 counts were only available for 6/10 HIV+ individuals. 
^ NNRTI = non-nucleoside reverse transcriptase inhibitor, PI = protease inhibitor.   
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FIGURES 
Figure 1 
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Figure 2 
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Figure 3 
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Figure 4
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