
 1 

Single Nucleus Multiomic Profiling Reveals Age-Dynamic Regulation 1 
of Host Genes Associated with SARS-CoV-2 Infection 2 

 3 
 4 

Allen Wang1#*, Joshua Chiou2#, Olivier B Poirion1#, Justin Buchanan1#, Michael J 5 
Valdez2#, Jamie M Verheyden3, Xiaomeng Hou1, Minzhe Guo4,5, Jacklyn M Newsome3, 6 

Parul Kudtarkar3, Dina A Faddah6, Kai Zhang7, Randee E Young3,8, Justinn Barr3, 7 
Ravi Misra9, Heidie Huyck9, Lisa Rogers9, Cory Poole9,  8 

Jeffery A. Whitsett4, Gloria Pryhuber9, Yan Xu4,5, 9 
Kyle J Gaulton3*, Sebastian Preissl1*, Xin Sun3,10* and NHLBI LungMap Consortium 10 

 11 
 12 
1Center for Epigenomics & Department of Cellular & Molecular Medicine, University of 13 
California, San Diego, La Jolla, CA 92093 14 
 15 
2Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, 16 
CA, 92093 17 
 18 
3Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093 19 
 20 
4Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's 21 
Hospital Medical Center, Cincinnati, OH 45267 22 
 23 
5Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 24 
45267 25 
 26 
6Vertex Pharmaceuticals, 3215 Merryfield Rd., San Diego CA, 92121 27 
 28 
7Ludwig Institute for Cancer Research, La Jolla, CA 92093 29 
 30 
8Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-31 
Madison, Madison, WI 53706. 32 
 33 
9Department of Pediatrics and Clinical & Translational Science Institute, University of 34 
Rochester Medical Center 35 
 36 
10Department of Biological Sciences, University of California-San Diego, La Jolla, CA 37 
92093. 38 
 39 
 40 
 41 
 42 
#Authors contributed equally to this work.   43 
 44 
 45 
 46 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.04.12.037580doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.12.037580
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Corresponding Authors*:  Xin Sun (Lead contact) 47 
    xinsun@ucsd.edu 48 
 49 

Sebastian Preissl 50 
spreissl@health.ucsd.edu 51 

 52 
Kyle J Gaulton 53 
kgaulton@health.ucsd.edu 54 
 55 
Allen Wang 56 
a5wang@health.ucsd.edu  57 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.04.12.037580doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.12.037580
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

SUMMARY 58 

Respiratory failure is the leading cause of COVID-19 death and disproportionately 59 

impacts adults more than children. Here, we present a large-scale snATAC-seq dataset 60 

(90,980 nuclei) of the human lung, generated in parallel with snRNA-seq (46,500 nuclei), 61 

from healthy donors of ~30 weeks, ~3 years and ~30 years of age. Focusing on genes 62 

implicated in SARS-CoV-2 cell entry, we observed an increase in the proportion of 63 

alveolar epithelial cells expressing ACE2 and TMPRSS2 in adult compared to young 64 

lungs. Consistent with expression dynamics, 10 chromatin peaks linked to TMPRSS2 65 

exhibited significantly increased activity with age and harbored IRF and STAT binding 66 

sites. Furthermore, we identified 14 common sequence variants in age-increasing peaks 67 

with predicted regulatory function, including several associated with respiratory traits and 68 

TMPRSS2 expression. Our findings reveal a plausible contributor to why children are 69 

more resistant to COVID-19 and provide an epigenomic basis for transferring this 70 

resistance to older populations.  71 

 72 

 73 

 74 
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INTRODUCTION 78 

Aside from fulfilling gas-exchange functions that are vital for survival beginning with 79 

the first breath, the lung functions as a critical barrier to protect against inhaled pathogens 80 

such as viruses. As the COVID-19 pandemic swept across the world, the lung came into 81 

focus because acute respiratory distress (ARDS) is the primary cause of mortality. Thus, 82 

understanding how SARS-CoV-2 infects and impacts the lung has become an urgent call-83 

to-action.  84 

The lung is composed of an elaborate airway tree that conducts air to and from the 85 

distal gas-exchange units called the alveoli. In an average human adult lung, an estimated 86 

480 million alveoli give rise to approximately 1,000 ft2 of gas-exchange surface area 87 

(Ochs et al., 2004). Airway and alveolar epithelium constitute the respiratory barrier that 88 

is exposed to inhaled pathogens. Respiratory epithelial cells are thereby at the frontline 89 

of infection, although pathogens that have bypassed the barrier can infect other cell types. 90 

The human airway epithelium is composed of luminal cells and basal cells. Luminal cells 91 

include club cells and goblet cells that moisturize the air and trap pathogens, as well as 92 

ciliated cells that sweep out inhaled particles. These luminal cells are underlined by basal 93 

cells, which serve as progenitors when luminal cells are lost after infection. The alveolar 94 

epithelium is composed of alveolar type 1 cells (AT1s) which line the gas-blood interface 95 

and alveolar type 2 cells (AT2s) which produce surfactant to reduce surface tension and 96 

protect against pathogens. While SARS-CoV-2 likely infects both the airway and alveolar 97 

regions of the lung, it is the damage to the alveolar region that underlines acute respiratory 98 

distress syndrome (Du et al., 2020).  99 

Several large scale studies including efforts from LungMap and the Human Cell Atlas 100 

aim to generate a map of cell types in the human lung with single cell transcriptomics as 101 

the central modality (Reyfman et al., 2019; Schiller et al., 2019; Travaglini et al., 2020; Xu 102 

et al., 2016). Regions of the human genome, such as promoters or distal enhancers, can 103 

regulate cell-type specific gene expression in cis (Consortium, 2012; Roadmap 104 

Epigenomics et al., 2015; Thurman et al., 2012).  Accessible or ‘open’ chromatin is a 105 

hallmark of cis-regulatory elements, and can be assayed using techniques such as 106 

DNase-seq and ATAC-seq (Buenrostro et al., 2013; Thurman et al., 2012). To overcome 107 

tissue heterogeneity single cell technologies like single cell ATAC-seq have been 108 
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developed to map the epigenome and gene regulatory programs in component cell types 109 

within heterogeneous tissues (Buenrostro et al., 2015; Chen et al., 2018; Cusanovich et 110 

al., 2015; Cusanovich et al., 2018; Lareau et al., 2019; Satpathy et al., 2019). Profiles 111 

derived from single cells can elucidate cell type-specific cis-regulatory elements, 112 

transcriptional regulators driving element activity, and predicted target genes of distal 113 

elements using single cell co-accessibility (Cusanovich et al., 2018; Lareau et al., 2019; 114 

Pliner et al., 2018; Preissl et al., 2018; Satpathy et al., 2019). Human sequence variants 115 

affecting susceptibility to complex physiological and disease traits are enriched in non-116 

coding sequence (Maurano et al., 2015; Pickrell, 2014), and cell type-specific profiles 117 

derived from single cell epigenomic data can help prioritize cell types of action for these 118 

variants (Chiou et al., 2019; Corces et al., 2020).   119 

Both in silico structural modeling as well as biochemical assays have implicated 120 

several key host proteins at the top of the hierarchy for SARS-CoV-2 infection. ACE2 has 121 

been demonstrated as the receptor for not only the original SARS-CoV, but also SARS-122 

CoV-2 (Lan et al., 2020; Yan et al., 2020). Based mainly on literature from the original 123 

SARS-CoV as well as emerging data from SARS-CoV-2 (Huang et al., 2006; Matsuyama 124 

et al., 2020; Reinke et al., 2017; Walls et al., 2020; Zhou et al., 2016), TMPRSS2 and 125 

CTSL are responsible for fusion of the virus with host cell by cleaving the viral Spike 126 

protein. BSG is a receptor that can bind to the SARS-CoV spike protein (Chen et al., 127 

2005) and SARS-CoV-2 contains a novel cleavage site for the protease Furin, adding 128 

both genes to the list of host machinery highjacked by the virus (Coutard et al., 2020; 129 

Walls et al., 2020). In this study, we will focus on the genes encoding these 5 proteins, 130 

ACE2, TMPRSS2, CTSL, BSG, and FURIN, and determine their expression and 131 

associated epigenomic landscape at single cell resolution in the non-diseased human 132 

lung.  133 

In the race to control the COVID-19 pandemic, there has been a tremendous collective 134 

effort from the research community to elucidate the mechanism underlying SARS-CoV-2 135 

infection. Our study contributes to this effort through a unique dataset profiling the human 136 

lung. First, we generated single cell data across neonatal, pediatric, and adult lungs from 137 

three donors in each group.  These data allowed us to assess age-associated changes 138 

with minimal technical variation. Second, from each lung sample, we generated parallel 139 
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snRNA-seq and snATAC-seq data. This combination allowed us to associate cell type-140 

specific accessible chromatin profiles that may act as cis-regulatory regions that control 141 

cell-type specific gene expression. Using these data, we first addressed cell-type 142 

specificity and temporal dynamics of ACE2, TMPRSS2, CTSL, BSG, and FURIN 143 

expression. We next identified candidate cis-regulatory elements co-accessible with the 144 

promoters of these genes and characterized their cell-type specificity and temporal 145 

dynamics.  Finally, we profiled sequence variation that may impact cis-regulatory element 146 

activity and contribute to differential susceptibility to SARS-CoV-2 infection.  147 

Emerging epidemiology data, including on US cases reported by the CDC, 148 

demonstrate that many fewer children tested positive for SARS-CoV-2 infection, and 149 

those who tested positive generally show less severe symptoms than adults or elderly 150 

individuals (Bi et al., 2020; CDC, 2020). This age divide coincides with the finding that 151 

normal lung development in humans continues until the early 20s (Narayanan et al., 152 

2012). Therefore COVID-19 preferentially impacts fully mature lungs relative to 153 

developing lungs. Widespread speculation has attempted to explain these age-154 

associated differences, including immune senescence in the aging population. Defining 155 

the mechanism underlying the apparent resistance of children to COVID-19 will inform 156 

how we can transfer this resistance to adult and elderly populations.  157 

 158 

 159 

RESULTS 160 

 161 

Single nucleus RNA-seq and ATAC-seq data generation 162 

To profile cell type specific gene expression and accessible chromatin dynamics in 163 

the human lung, we performed single nucleus RNA-seq (snRNA-seq) and single nucleus 164 

ATAC-seq (snATAC-seq) of non-diseased human lung tissue from donors of three age 165 

groups: ~30 week old gestational age (GA, prematurely born, 30wkGA), ~3 year old (3yo), 166 

and ~30 year old (30yo) (Supplementary Table 1). Three lungs were sampled for each 167 

age group, with both males and females represented (Supplementary Table 1). Of the 9 168 

donors, 5 were Caucasian, 1 was African American and 3 were of unknown ancestry. For 169 

all samples, flash frozen biopsies from equivalent small airway regions of the lung were 170 
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used. Nuclei were isolated from individual biopsies and split into two pools, one for 171 

snRNA-seq and one for snATAC-seq. For snATAC-seq, we generated technical 172 

replicates for one of the 3yo donors (D032) and an additional dataset for a lung sample 173 

from a 4-month-old donor (Supplementary Table 1).  174 

To generate snRNA-seq libraries, we used the droplet-based Chromium Single Cell 175 

3’ solution (10x Genomics) (Zheng et al., 2017). The datasets showed a clear separation 176 

of nuclei from background in the knee plot (Figure S1A). The average number of nuclei 177 

that passed initial quality control filtering per sample was 6,676 for 30wkGA, 7,379 for 3yo, 178 

and 4,217 for 30yo (Figure S1B). Since we profiled nuclei with a high fraction of nascent, 179 

unspliced RNA molecules, sequencing reads were mapped to an exon+intron reference. 180 

We detected on average 1,662 gene/nuclei for 30wkGA, 1,394 for 3yo and 1,260 for 30yo 181 

(Figure S1C). Libraries were sequenced to comparable saturation (58.4 % for 30wkGA, 182 

51.6 % for 3yo and 55.0 % for 30yo; Fig. S1D). 183 

For snATAC-seq library generation we used a semi-automated combinatorial 184 

barcoding platform (Cusanovich et al., 2015; Fang et al., 2019; Preissl et al., 2018) . For 185 

each dataset, nuclei with >1,000 uniquely mapped sequencing reads were included in the 186 

analysis (Fig. S1E). The average number of nuclei that passed this threshold per age 187 

group was 8,691 for 30wkGA, 7,877 for 3yo and 8,034 for 30yo (Fig. S1F). The average 188 

number of reads per nucleus was 6,399 for 30wkGA, 7,199 for 3yo and 8,362 for 30yo 189 

(Fig. S1G). The fraction of reads in peaks (FRiP) on average per data set was 52.8 % for 190 

30wkGA, 54.4 % for 3yo and 45.6 % for 30yo (Fig. S1H). These values indicate 191 

consistently high signal to noise ratios for all libraries. 192 

 193 

Age-linked increase in host genes for SARS-CoV-2 entry 194 

In total, 46,500 single nucleus transcriptomes were included in the analysis after 195 

filtering out low quality nuclei and potential barcode collisions (Figure S1, Supplementary 196 

Table 2, see Methods). Following batch correction all datasets were merged, and 31 197 

clusters were identified (Figure 1A). These clusters represented all major cell types in the 198 

small airway region of the lung, as well as rare cell types such as pulmonary 199 

neuroendocrine cells (Figure 1A, Figure S2A, Supplementary Table 2). We identified 200 

14,527 epithelial cells (31.2 % of all nuclei) in our snRNA-seq dataset. This optimal 201 
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representation and large number of cells allowed us power to profile gene expression 202 

patterns of viral entry genes in lung epithelial cells. For downstream analysis, we excluded 203 

an unclassified cluster, and enucleated erythrocytes because the latter were only 204 

detected in a single neonatal sample, consistent with immaturity (Figure 1A). 205 

Focusing on SARS-CoV-2 viral entry genes, we found that ACE2 transcript was 206 

detected in very few nuclei (total 80 nuclei) in the normal lung and these nuclei were 207 

enriched within the epithelial lineage (Figure 1B, Supplementary Table 2).  Alveolar type 208 

2 (AT2) cells had the highest number of ACE2+ nuclei, accounting for 48.8% of all ACE2-209 

expressing nuclei (39 out of total 80 ACE2+ nuclei). In comparison, TMPRSS2 transcript 210 

was detected more frequently (e.g. in 3,315/7,226 nuclei, or 45.8% of the AT2 cells, 211 

Figure 1C, Supplementary Table 2). Most TMPRSS2-expressing cells were epithelial 212 

cells including alveolar type 1 and 2 (AT1, AT2) cells and airway cells such as club, 213 

ciliated and goblet cells (Figure 1C, Supplementary Table 2). We also detected significant 214 

correlation between the fraction of ACE2+ and TMPRSS2+ AT2 nuclei (Figure S2E) and 215 

found 21 of the 39 ACE+ AT2 cells also expressed TMPRSS2 (Supplementary Table 2). 216 

The other three candidate genes of SARS-CoV-2 host cell entry CTSL, BSG and FURIN 217 

were expressed in a large number of AT1, AT2, matrix fibroblast, and M1 macrophage 218 

cells, as well as a small number of additional cell types (Figure S2B-D, Supplementary 219 

Table 2). These findings suggest that among cells that constitute the barrier exposed to 220 

inhaled pathogens, cell types in both the airway and alveolar epithelium express genes 221 

critical for SARS-CoV-2 entry.  222 

We next asked if there were genes enriched in ACE2+ AT2 cells as compared to ACE2- 223 

AT2 cells to identify potentially co-expressed genes. Among genes that showed a trend 224 

for higher expression in ACE2+ compared to ACE2- cells was IFNGR1 (log2 (fold change) 225 

= 0.4, -log10(p-value)=5.0;  FDR corrected p=0.257, Supplementary Table 3), raising the 226 

possibility that ACE2 may be co-regulated with interferon pathway genes, in line with 227 

conclusions of a recent study (Ziegler, 2020). In our data generated from normal lungs 228 

this correlation was modest, suggesting there is low baseline co-expression of ACE2 and 229 

IFNGR1. Among genes with increased expression in TMPRSS2+ versus TMPRSS2- AT2 230 

cells was ICAM1 (log2 (fold change)=0.27, -log10(FDR corrected p)=12.2, Supplementary 231 

Table 3), which encodes a receptor for Rhinovirus  (Zhou et al., 2017). The potential co-232 
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expression of TMPRSS2 and ICAM1 may contribute to the often-observed co-infection 233 

by more than one respiratory virus. Indeed, co-infection of SARS-CoV-2 and other viruses 234 

including Rhinovirus has been observed, promoting urgent calls to halt the clinical 235 

practice of using positive test for other respiratory viruses as an indicator for the absence 236 

of coronavirus infection (Wang et al., 2020; Wu et al., 2020). To gain additional insight 237 

into the potential mechanisms of co-infection, we interrogated the expression of a number 238 

of known factors, receptors and proteases that have been implicated in viral entry for 239 

several key respiratory viruses (Figure S3)(Battles and McLellan, 2019; Bochkov and 240 

Gern, 2016; Laporte and Naesens, 2017; Peck et al., 2015). For examples, consistent 241 

with prior findings, we found that CDHR3, a receptor for Rhinovirus C, was expressed 242 

most abundantly in ciliated cells (Battles and McLellan, 2019; Bochkov and Gern, 2016; 243 

Laporte and Naesens, 2017; Peck et al., 2015). ANPEP, the entry receptor for HCoV-244 

229E, was predominantly expressed in macrophages and to a lesser extent in club and 245 

other epithelial cells  (Waradon Sungnak, 2020; Yeager et al., 1992). Compared to ACE2, 246 

DPP4, which encodes the host receptor for MERS-CoV, was detected much more 247 

frequently overall, and especially in AT2, AT1 and T cells (Figure S3) (Raj et al., 2013; 248 

Waradon Sungnak, 2020). This single cell resolved view may contribute to a 249 

comprehensive map of the routes of respiratory viral entry.   250 

The leading cause of death for COVID-19 is Acute Respiratory Distress Syndrome 251 

(ARDS) which is characterized by failure of gas-exchange due to destruction of the 252 

alveolar region of the lung (Du et al., 2020). AT2 is an abundant epithelial cell type in the 253 

alveolar region and expresses all of the SARS-CoV-2 viral entry genes assayed here and 254 

likely bears the brunt of infection. Consequently, we focused on AT2 cells for follow up 255 

analysis. We found that the percentage of AT2 cells expressing ACE2 had an increasing 256 

trend in 30yo adult samples compared to 3yo samples (Figure 1D). In addition, we found 257 

a strong trend of increase in the percentage of AT2 cells expressing TMPRSS2 in adult 258 

samples compared to 3yo samples (41.2 ± 6.6% for 3yo and 57.4 ± 7.7% for 30yo, p = 259 

0.05 (t-test), Figure 1E). While very few ACE2+/TMPRSS2+ double positive AT2 nuclei 260 

were detected, the fraction of these nuclei in all AT2s increased with age (0.2 % (6 nuclei) 261 

in 30wkGA, 0.3% (5 nuclei) in 3yo and 0.5% (10 nuclei) in 30yo, Supplementary Table 2). 262 

Of note, one of the samples in the 30wkGA cohort D062 appeared to be an outlier in its 263 
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expression of multiple analyzed genes. A review of pathology notes revealed mild 264 

features of respiratory distress syndrome including epithelial autolysis and increased 265 

alveolar macrophages in this sample, suggesting potential reasons for the variation. In a 266 

supplementary analysis, excluding this sample resulted in stronger age-associated 267 

effects (Figure S2F, G). For example, there was a significant increase in the fraction of 268 

TMPRSS2+ AT2 cells between 30wkGA and 30yo samples (Figure S2G).  269 

The increase in proportion of AT2 cells expressing ACE2 and TMPRSS2 is unlikely 270 

due to differences in genes captured per nucleus as the adult samples had the lowest 271 

numbers of genes/nucleus, suggesting that the extent of expression increase is likely a 272 

conservative estimation (Figure S1C). In contrast to the percentage of AT2 nuclei 273 

expressing these genes, the expression levels per nucleus were not different across 274 

different age groups for either ACE2 (no nucleus had >1 UMI detected) or TMPRSS2 275 

(Figure 1F). Together, an increased proportion of host cells expressed TMPRSS2 and 276 

ACE2 in adults, the latter just a trend due to the sparsity of ACE2+ cells, suggesting that 277 

a higher percentage of cells in the adult lung can be infected by SARS-CoV-2.  278 

Since a large proportion of COVID-19 patients are elderly, we sought to compare viral 279 

entry gene expression in aged lungs to expression in our samples. The LungMap Human 280 

Tissue Core, which provided the frozen biopsies for this study, does not have donors 281 

older than ~30. We therefore instead, identified 4 publicly available scRNA-seq datasets 282 

from non-diseased lungs of ages >55 that served as controls in pulmonary fibrosis studies 283 

(Morse et al., 2019; Reyfman et al., 2019). We integrated snRNA-seq data from our study 284 

(n=9) with these 4 scRNA-seq samples (Supplementary Table 1) using Seurat 3 (Stuart 285 

et al., 2019). AT2 cells clustered together across all samples with minimal evidence for 286 

batch effects (Figure S4A). Compared to 30yo samples, we observed a trend for 287 

increased frequency of ACE2+ (p = 0.095) and TMPRSS2+ (p = 0.070) AT2 cells in 288 

the >55yo group (Aged; Figure S4B). While these patterns are consistent with 289 

epidemiological findings that elderly are at highest risk, we make these observations 290 

cautiously due to the multiple potential confounding variables present when comparing 291 

across independent datasets spanning multiple methodologies. 292 

 293 
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Annotation of cis-regulatory sequences linked to SARS-CoV-2 viral entry gene 294 

activity  295 

To investigate cis-regulatory elements driving cell-type specific and age-related 296 

patterns of SARS-CoV-2 viral entry gene expression, we examined snATAC-seq data 297 

generated from the same nuclei preparations. After batch correction and filtering of low-298 

quality nuclei and likely doublets, we clustered and analyzed a total of 90,980 single 299 

nucleus accessible chromatin profiles. We identified 19 clusters representing epithelial 300 

(AT2, AT2, club, ciliated, basal and neuroendocrine), mesenchymal (myofibroblast, 301 

pericyte, matrix fibroblast 1 and matrix fibroblast 2), endothelial (arterial, lymphatic, and 302 

2 clusters of capillaries), and hematopoietic cell types (macrophage, B-cell, T-cell, NK cell 303 

and enucleated erythrocyte) (Figure 2A). Supporting these cluster annotations, we 304 

observed cell type-specific patterns of chromatin accessibility at known marker genes for 305 

each cell type (Figure S5A).  306 

Focusing on SARS-Cov-2 viral entry genes, both ACE2 and TMPRSS2 were primarily 307 

accessible throughout their gene body in alveolar cells such as AT1, AT2, and airway 308 

cells such as club, ciliated, and basal cells (Figure 2B).  Conversely, the CTSL gene body 309 

exhibited chromatin accessibility across epithelial cells, mesenchymal cells, endothelial, 310 

and macrophages. BSG and FURIN also showed broad chromatin accessibility patterns 311 

with the highest activity in endothelial cells, such as capillaries (Figure 2B). Overall, the 312 

patterns of chromatin accessibility across cell types at genes involved in SARS-CoV-2 313 

cell entry substantiate our conclusions from snRNA-seq data, including the finding that 314 

ACE2 and TMPRSS2 are primarily expressed in alveolar and airway cells (Figure 1B,C). 315 

To identify specific cis-regulatory elements that might control cell type-restricted 316 

expression of the SARS-CoV-2 viral entry genes in the lung, we aggregated cells within 317 

each cell type and called accessible chromatin sites from the aggregated profiles using 318 

MACS2 (Zhang et al., 2008).  We then identified sites mapping within 650kb of each 319 

SARS-CoV-2 viral entry gene, and further identified sites that were co-accessible with the 320 

gene promoter using Cicero (Pliner et al., 2018). At the ACE2 locus, we identified 165 321 

accessible chromatin sites mapping within the ±650kb window (Figure 2C, 322 

Supplementary Table 4). Of these 165 sites, only two were co-accessible with the ACE2 323 

promoter (Figure 2C, Supplementary Table 5). We speculate that the low number of co-324 
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accessible sites is likely due to the small percentage of ACE2+ nuclei (Figure 1B). When 325 

examining the accessibility of the 165 peaks at the ACE2 locus across cell types, we 326 

observed clear sub-groupings of sites, including those specific to basal cells, specific to 327 

ciliated cells, and shared across basal, ciliated, AT1, AT2, and club cells (Figure 2C, 328 

Supplementary Table 5).  329 

At the TMPRSS2 locus, we identified 289 accessible chromatin sites mapping in the 330 

±650kb window, of which 37 were co-accessible with the TMPRSS2 promoter (Figure 2D, 331 

Supplementary Tables 4 and 5). In agreement with TMPRSS2 gene accessibility in 332 

alveolar and airway cells, 113 out of the 289 elements exhibited patterns of accessibility 333 

specific to basal, ciliated, club, AT1, and AT2 cells. We observed a basal cell-specific 334 

cluster and two broader epithelial cell clusters (basal, ciliated, and club enriched; and 335 

club, AT1, and AT2 enriched) (Figure 2D, Supplementary Table 5). Notably, the majority 336 

of sites co-accessible with TMPRSS2 (25/37) were found within these broad alveolar- and 337 

airway-enriched clusters suggesting that these elements are likely responsible for 338 

alveolar and airway expression of TMPRSS2.  339 

Finally, at the CTSL, FURIN, and BSG loci we identified 262, 293, and 272 accessible 340 

chromatin sites, respectively, within a ±650kb window of which 6, 56, and 47 were co-341 

accessible with their respective gene promoters (Figure S5B, C, D, Supplementary 342 

Tables 4 and 5). Sites for all three genes exhibited broad patterns of accessible chromatin 343 

signal across cell types consistent with broad accessibility across gene bodies. This 344 

collection of cell-type resolved candidate cis-regulatory elements associated with SARS-345 

CoV-2 host genes will be critically important for follow up studies to determine how host 346 

cell genes are regulated and how genetic variation within these elements contributes to 347 

infection rate and disease outcomes. 348 

 349 

Cis-regulatory elements linked to TPMRSS2 are part of an age-related regulatory 350 

program associated with immune signaling in AT2 cells 351 

Having observed increasing percentages of TMPRSS2 expressing cells with age in 352 

AT2 cells (Figure 1E, Figure S2G), we speculated that TMPRSS2 may be under the 353 

control of an age-related cis regulatory program. To investigate whether an age-354 

associated cis-regulatory network exists in AT2 cells, we identified accessible chromatin 355 
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sites in AT2 cells that show dynamic accessibility across donor age groups. Based on our 356 

findings from snRNA-seq we speculate that these dynamics will be at least in part due to 357 

a higher number of cells expressing these genes rather than more activity within a cell. 358 

We tested all possible pairwise age comparisons between AT2 signal from each of the 359 

three groups of 30wkGA, 3yo, and 30yo donors while accounting for donor to donor 360 

variability (Figure 3A).  Overall, we identified 22,745 age-linked sites in AT2 cells which 361 

exhibited significant differences (FDR<0.05) in any pairwise comparison (Figure 3A, B). 362 

Clustering of these dynamic peaks revealed five predominant groups of age-dependent 363 

chromatin accessibility patterns (cI-cV, Fig 3B). 364 

We identified two clusters of AT2 sites exhibiting increasing accessibility with age 365 

including several sites at candidate genes for SARS-CoV-2 host genes (cIII 30yo enriched 366 

and cIV 3yo + 30yo) (Figure 3B, Figure S6A, B).  Intriguingly, these two clusters were 367 

enriched for processes related to viral infection and immune response such as viral 368 

release from host cell, interferon-gamma mediated signaling pathway, and positive 369 

regulation of ERBB signaling pathway (Figure 3C, Supplementary Table 6). Also, these 370 

age-dependent clusters were also enriched for phenotypes substantiated in mouse 371 

studies, such as pulmonary epithelial necrosis, increased monocyte cell number, and 372 

chronic inflammation (Fig. 3C, Supplementary Table 6). Further supporting an immune 373 

association with age-related chromatin accessibility in AT2 cells, we observed an 374 

enrichment of sequence motifs within these clusters for transcription factors involved in 375 

immune signaling such as STAT, IRF, and FOS/JUN (Figure 3D, Supplementary Table 376 

7). 377 

We focused on the TMPRSS2 locus and determined how many of the 37 accessible 378 

chromatin sites co-accessible with the TMPRSS2 promoter (in Figure 2D) showed 379 

increased accessibility with age in AT2 cells. We identified 13 sites with age-increased 380 

accessibility, of which 10 had significant effects (FDR < 0.05 via EdgeR and/or p < 0.05 381 

via t-test) (Figure 3E, F, Figure S6, Supplementary Table 5). Age-increasing sites linked 382 

to TMPRSS2 harbored sequence motifs for transcription factors such as NKX, FOXA, 383 

CEBPA, and inflammation-related factors such as STAT, IRF, and FOS/JUN (Figure 3G) 384 

many of which were corroborated by available ChIP-seq data in lung related samples (Oki 385 

et al., 2018). Furthermore, at 12 of the 13 age-increasing sites, we uncovered additional 386 
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evidence for enhancer-related histone modifications from ENCODE supporting that they 387 

have cis-regulatory activity (Figure 3H) (Consortium, 2012). When viewed in genomic 388 

context these sites showed a clear age-dependent increase in read depth likely reflecting 389 

a higher fraction of accessible nuclei (Figure 3I). 390 

 391 

Genetic variants predicted to affect age-increased TMPRSS2 sites are associated 392 

with respiratory phenotypes and TMPRSS2 expression 393 

 Mapping the discrete accessible chromatin sites at genes required for SARS-CoV-2 394 

viral entry allowed us to next characterize non-coding sequence variation that might affect 395 

regulation of these sites and contribute to phenotypic differences in the risk of lung 396 

disease. In particular, we focused on the 37 sites linked to TMPRSS2 activity including 397 

13 with age-increased chromatin accessibility.  398 

 In total, 8,002 non-singleton sequence variants in the gnomAD v3 database 399 

(Karczewski et al., 2019) overlapped a site either linked to or within 250kb of the 400 

TMPRSS2 promoter. To determine which of these variants might affect regulatory activity 401 

in AT2 cells, we applied a machine learning approach (deltaSVM) (Lee et al., 2015) to 402 

model AT2 chromatin accessibility and predict variants with allelic effects on chromatin 403 

(see Methods). We identified 721 variants with significant effects (FDR<0.1) on AT2 404 

chromatin accessibility, of which 148 mapped in an age-dependent site linked to 405 

TMPRSS2 (Figure 4A). Among these 148 variants, 14 were common (defined here as 406 

minor allele frequency > 1%) in at least one major population group in gnomAD, several 407 

of which were predicted to disrupt AT2 age-dynamic TF motifs such as FOS/JUN, IRF, 408 

STAT, RUNX, NKX and ESR1 (Figure 4A). The common variants generally had 409 

consistent frequencies across populations, except for rs35074065 which was much less 410 

common in East Asians (EAS) relative to other populations (MAF=0.005, Figure 4B). 411 

 We next determined whether common variants with predicted AT2 regulatory effects 412 

were associated with phenotypes related to respiratory function, infection, medication use 413 

or other traits using GWAS data generated using the UK Biobank (UKBB) (Sudlow et al., 414 

2015). Across the 11 variants tested for association in UKBB data, the most significant 415 

association was between rs35074065 and emphysema (p=5.64×10-7) (Figure 4C). This 416 

variant was also more nominally associated (p<0.005) with asthma (p=6.7×10-4) and 417 
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influenza vaccine (p=1.76×10-3). Furthermore, the majority of tested variants (8/11) were 418 

nominally associated (p<1x0-3) with at least one phenotype related to respiratory function 419 

or respiratory medication use including salmeterol + fluticasone propionate, which is 420 

commonly used to treat asthma and COPD (rs7279188 p=1.3×10-5), bacterial pneumonia 421 

(rs2838089 p=2.4×10-4), bronchiectasis (rs9974995 p=7.1×10-4, rs568517 p=8.1×10-4), 422 

and COPD (rs1557372 p=2.9×10-3) (Figure 4C).    423 

   Given that common AT2 variants showed predicted regulatory function and 424 

association with respiratory disease and infection phenotypes, we next asked whether 425 

these variants regulated the expression of TMPRSS2 using human lung eQTL data from 426 

the GTEx v8 release. Among variants tested for association in GTEx, we observed a 427 

highly significant eQTL for TMPRSS2 expression at rs35074065 (p=3.9×10-11) as well as 428 

more nominal eQTL evidence at rs1557372 (p=2.9×10-5) and rs9974995 (p=3.5×10-6). 429 

Furthermore, in fine-mapping data, rs35074065 had a high posterior probability 430 

(PPA=41.6%) and therefore likely has a direct casual effect on TMPRSS2 expression 431 

(Figure 4D). This variant further disrupted sequence motifs for IRF and STAT transcription 432 

factors, suggesting that its effects may be mediated through interferon signaling and anti-433 

viral programs (Figure 4D).  434 

 As the TMPRSS2 eQTL at rs35074065 was identified in bulk lung samples, we finally 435 

sought to determine the specific cell types driving the effects of this eQTL. Using cell type-436 

specific expression profiles derived from our snRNA-seq data, we estimated the 437 

proportions of 14 different cell types present in the 515 bulk lung RNA-seq samples from 438 

GTEx v8 (Figure 4E) (Aguet et al., 2019). We then tested the association between 439 

rs35074065 and TMPRSS2 expression while including estimated cell type proportions for 440 

each sample in the eQTL model (see Methods). We observed highly significant 441 

association when including AT2 cell proportion (p=3.8×10-18) as well as macrophage 442 

proportion (p=4.0×10-12), supporting the possibility that the TMPRSS2 eQTL at 443 

rs35074065 acts through AT2 cells and macrophages (Figure 4F).        444 

 445 

 446 

DISCUSSION 447 
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In this study, we focused on the lung, the organ at the center of COVID-19 morbidity 448 

and mortality. We generated a snATAC-seq reference dataset of the healthy human lung 449 

at three postnatal stages, and in parallel generated snRNA-seq data from the same 450 

samples to allow comparison with gene expression. Importantly, datasets were produced 451 

using uniform tissue procurement and single nucleus technologies for both modalities 452 

across samples. This consistency allowed us to uncover age-associated dynamics in 453 

gene expression and regulation. While we focus on COVID-19 related genes in this study, 454 

the datasets more broadly enable in-depth analysis of cell-type resolved dynamics of 455 

chromatin accessibility and gene expression in the human lung. We hope these datasets 456 

will be further utilized by the community to enhance knowledge and treatment of lung 457 

diseases.  458 

One of the strongest findings that has been corroborated by multiple large-scale 459 

epidemiological studies is that infants and children, while still susceptible to infection, 460 

generally do not develop symptoms as severe as adults (Bi et al., 2020; CDC, 2020). 461 

Although the underlying molecular basis of this skew is unclear and is likely multifactorial, 462 

our data demonstrate that ACE2+ and TMPRSS2+ and ACE2+/TMPRSS2+ are detected 463 

in a higher proportion of AT2 nuclei in adult samples compared to the younger samples. 464 

These findings suggest that SARS-CoV-2 may enter proportionally fewer cells in younger 465 

lungs compared to adult lungs, leading to tempered viral replication and damage. While 466 

we await clinical validation of this finding, this difference in viral entry factors, in addition 467 

to likely differences in immune response to viral infection, may explain the age-related 468 

bias in COVID-19 severity.  469 

The observed increase in the proportion of cells expressing viral entry genes is further 470 

corroborated by age-related changes in accessible chromatin, which offers insight for 471 

using gene regulatory mechanisms to restrict the expression of viral entry genes. For 472 

example, at the TMPRSS2 locus we identified 10 accessible chromatin sites that showed 473 

significantly increased accessibility with age. These sites may therefore represent cis 474 

regulatory elements that contribute to activation of TMPRSS2 gene expression in an 475 

increasing number of cells in adults and represent possible sites to modulate in order to 476 

restrict expression. Furthermore, one of the age-dependent sites harbors a sequence 477 
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variant (rs35074065) significantly associated with TMPRSS2 expression and respiratory 478 

phenotypes, suggesting it may be of particular value in this context.   479 

To explore potential avenues for manipulating the expression of viral entry genes, we 480 

identified transcription factors enriched in sites with increased chromatin accessibility in 481 

adult AT2 cells compared to younger AT2 cells. These included transcription factors 482 

involved in stress and immune responses. For example, key interferon pathway-related 483 

factors STAT and IRF have binding sites in the 10 age-increased TMPRSS2 peaks. The 484 

likely causal TMPRSS2 eQTL variant rs35074065 is predicted to disrupt STAT and IRF 485 

binding, raising the possibility that STAT and/or IRF binding at this site may directly control 486 

TMPRSS2 gene expression.  487 

While our findings suggest that interferon pathway transcription factors may play a 488 

role in regulating the expression of SARS-CoV-2 entry genes such as TMPRSS2, 489 

extensive preclinical studies are needed to validate this regulation in an in vivo context. 490 

As a key anti-viral factor, interferon is stimulated in host cells upon infection by viruses, 491 

likely including SARS-CoV-2 (Lukhele et al., 2019; Mesev et al., 2019; Xia et al., 2018). 492 

The literature contains conflicting data regarding whether and how viral infection may act 493 

through the interferon pathway to regulate viral entry gene expression. For example, 494 

binding of the original SARS-CoV spike protein to ACE2 receptor in mice led to reduced 495 

Ace2 expression in the lung (Kuba et al., 2005). However, a recent single-cell study 496 

suggested that viral-induced interferon activation stimulates ACE2 expression (Ziegler, 497 

2020). We caution that the potential effect of interferon signaling on COVID-19 needs to 498 

be investigated beyond viral entry, as the pathway likely has distinct roles in the different 499 

phases of the disease.  500 

In our lung snRNA-seq data, ACE2 is detected in a very small number of cells, a 501 

finding that is corroborated by a number of recent single cell studies (Qi et al., 2020; 502 

Waradon Sungnak, 2020; Zhao et al., 2020; Ziegler, 2020; Zou et al., 2020). The low 503 

fraction of nuclei that are ACE2 positive could be due to low overall expression which in 504 

turn results in significant dropout in single cell or single nucleus RNA-seq. This suggests 505 

the possibility that ACE2 may not be needed at high levels for viral attachment to host 506 

cells. Alternatively, it is plausible that alternative receptors such as BSG also facilitate 507 

SARS-CoV-2 attachment in vivo. Compared to ACE2, BSG is expressed and co-508 
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expressed with proteases in a higher fraction of nuclei in AT2 and in additional cell types 509 

in the human lung.  510 

To limit SARS-CoV-2 infection by manipulating the expression of viral entry proteins, 511 

we caution that inhibiting ACE2 expression should not be a recommended strategy. Aside 512 

from being a viral receptor gene, ACE2 is also required for protecting the lung from injury-513 

induced acute respiratory distress phenotypes, the precise cause of COVID-19 mortality 514 

(Imai et al., 2005). Thus, inhibiting ACE2 expression may compromise the ability of the 515 

lung to sustain damage. In comparison, Tmprss2 mutant mice show no defects at 516 

baseline and are more resistant to the original SARS-CoV infection (Iwata-Yoshikawa et 517 

al., 2019; Kim et al., 2006). Thus, manipulating the expression of genes such as 518 

TMPRSS2 may represent a safer path to limit SARS-CoV-2 viral entry. TMPRSS2 is also 519 

involved in the entry of other respiratory viruses such as influenza, suggesting that 520 

modulating its expression may also be effective in deterring entry and spread of other 521 

viruses (Limburg et al., 2019).  522 

In this study, we present the first snATAC-seq dataset of the human lung and 523 

complementary snRNA-seq data from the same samples. Here, we used COVID-19 524 

genes to demonstrate how this dataset can be utilized. As COVID-19 GWAS data 525 

emerge, our datasets will offer a powerful cell type-resolved platform to interrogate 526 

mechanisms that may underlie genetic differences in the susceptibility and response to 527 

SARS-CoV-2 infection. Furthermore, our results suggest that modulation of the interferon 528 

pathway is a possible avenue to restrict TMPRSS2 expression and viral entry. 529 

Identification of regulators that restrict the expression of viral entry genes without 530 

detrimentally affecting other aspects of the normal antiviral response will be a safe and 531 

effective strategy towards combating COVID-19. We note that this work is a product of 532 

the NHLBI-funded LungMap consortium, and our joint goal is to provide the community 533 

with fundamental knowledge of the human lung to help combat COVID-19.  534 

 535 

  536 
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FIGURE LEGENDS 561 

 562 

Figure 1. snRNA-seq of human lungs reveals expression of SARS-CoV-2 cell entry 563 

genes in the epithelial cell lineage. A UMAP embedding and clustering result of 46,500 564 

snRNA-seq data from 9 donors (Premature born (30 weekGA of pregnancy), 3 yo, 30 yo; 565 

n = 3 per time point) identifies 31 clusters. Each dot represents a nucleus. Spread-out 566 

grey dots correspond to nuclei of unclassified cluster. B, C Cluster specific violin blots of 567 

gene expression of B ACE2 and C TMPRSS2. D, E Fraction of AT2 cells with expression 568 

of ACE2 and TMPRSS2 at each time point. All data are represented as mean ± SD. p 569 

values derived from t-tests; One-way ANOVA did not reach significance. F Box plot of log 570 

normalized expression of TMPRSS2 in AT2 cells at each time point. Displayed are the 571 

median expression values for AT2 nuclei in individual samples with at least 1 UMI.  572 

 573 

Figure 2. snATAC-seq analysis of human lungs reveals candidate cis regulatory 574 

elements for ACE2 and TMPRSS2. A UMAP embedding and clustering results of 575 

snATAC-seq data from 90,980 single-nucleus chromatin profiles from ten donors 576 

(Premature born (30 weekGA, n = 3), 4 month old (n = 1), 3 yo (n = 3) and 30 yo (n = 3)). 577 

B Gene accessibility of candidate SARS-CoV-2 cell entry genes.  C Union set of peaks 578 

identified in all clusters surrounding ACE2 (+/- 650 kb) and elements that show co-579 

accessibility (co-accessibility score > 0.05) with the ACE2 promoter via Cicero 580 

(Cusanovich et al., 2018) (top panel). Hierarchical clustering of the relative proportion of 581 

cells (see methods) with a fragment within 165 peak regions surrounding ACE2 (lower 582 

panel). Asterisks highlight peaks co-accessible with the ACE2 promoter via Cicero. 583 

Horizontal red box highlights peaks with increased relative accessibility shared in basal, 584 

ciliated, AT1, AT2 and club cells as compared to other cell types. Vertical red box 585 

highlights peaks with increased relative accessibility in AT2 cells. D Union set of peaks 586 

identified in all clusters surrounding TMPRSS2 (+/- 650 kb) and elements that show co-587 

accessibility with the TMPRSS2 promoter (top panel; co-accessibility score >0.05 588 

(Cusanovich et al., 2018)). Hierarchical clustering of the relative proportion of cells with a 589 

fragment within 289 peak regions surrounding TMPRSS2 (lower panel). Horizontal red 590 

box highlights peaks with increased relative accessible cells shared in basal, ciliated, 591 
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club, AT1 and AT2 cells as compared to other cell types. Vertical red box highlights peaks 592 

with increased relative accessibility in AT2 cells. Asterisks highlight peaks co-accessible 593 

with the TMPRSS2 promoter.  594 

 595 

Figure 3. Age-increasing accessible chromatin in AT2 cells exhibits signatures of 596 

immune regulation and harbors TMPRSS2-linked sites of chromatin accessibility. 597 

A Differential analysis was performed on AT2 cells using pairwise comparisons between 598 

three ages with replicates (n = 3 per stage). B K-means cluster analysis (K=5) of relative 599 

accessibility scores (see Methods) for 22,845 age-dynamic peaks (FDR < 0.05, EdgeR) 600 

in AT2 cells.  Clusters III and IV show increasing accessibility with age and contain seven 601 

TMPRSS2-co-accessible sites. C GREAT (McLean et al., 2010) analysis of elements in 602 

group cIII (left panel) and cIV (right panel) shows enrichment of immune related gene 603 

ontology terms. D Transcription factor motif enrichment analysis of elements in cIII and 604 

cIV. E Classification of age-dynamic patterns across the 37 TMPRSS2-co-acessible sites 605 

based on the relative percentage of AT2 cells with at least one fragment overlapping each 606 

peak. Red bars indicate dynamic peaks identified from analysis in B (FDR < 0.05, EdgeR). 607 

F Locus restricted differential analysis of TMPRSS2-linked peaks with increased 608 

accessibility in AT2 with aging (top panel in 3E). Black asterisk, p < 0.05 (T-test); Red 609 

asterisk, FDR < 0.05 (EdgeR) from dynamic peak analysis in B. G Annotation of motifs 610 

and evidence for transcription factor association within age-increased peaks. Blue bar, 611 

Motif present (FIMO); Green bar, Motif present (FIMO) and transcription factor 612 

association (ChIP-Atlas). H Overlap with ENCODE histone modification ChIP-seq data 613 

(Consortium, 2012) from SCREEN. I Genome browser representation of four TMPRSS2-614 

linked peaks across age groups. 615 

 616 

Figure 4. Genetic variants predicted to affect age-increasing AT2 accessible 617 

chromatin are associated with respiratory phenotypes and TMPRSS2 expression. 618 

A Top: genome browser view of sites linked to TMPRSS2 activity including those with 619 

age-dependent increase in activity. Right:  Non-singleton genetic variants in gnomAD v3 620 

mapping in each age-dependent site with predicted effects (FDR<.10) on AT2 chromatin 621 

accessibility using deltaSVM. Variants within each site are organized based on whether 622 
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the reference (ref) or alternate (alt) allele has a higher predicted effect. Left: DeltaSVM 623 

scores of variants with predicted effects on AT2 chromatin accessibility and common 624 

(defined as MAF>1%) in at least one major population group in gnomAD v3, annotated 625 

with sequence motifs overlapping the variant for TF families enriched in age-increased 626 

AT2 sites. B Population frequency of variant rs35074065, which had predicted AT2 627 

effects and was present at much lower frequency in East Asians relative to other 628 

population groups. AFR: African, AMR: Latino/American, ASJ: Ashkenazi Jewish, EAS: 629 

East Asian, FIN: Finnish, EUR: European (non-Finnish). C Association of common 630 

variants with predicted AT2 effects with human phenotypes in the UK Biobank. The 631 

majority of tested variants show at least nominal evidence (p<0.005) for association with 632 

phenotypes related to respiratory disease, infection and medication. D Fine-mapping 633 

probabilities for an TMPRSS2 expression QTL in human lung samples from the GTEx 634 

project release v8. The variant rs35074065 has the highest casual probability (PPA=.42) 635 

for the eQTL, maps in an age-dynamic AT2 site and is predicted to disrupt binding of IRF 636 

and STAT TFs. Variants are colored based on r2 with rs35074065 in 1000 Genomes 637 

Project data using all populations. E Estimated cell type proportions for 515 human lung 638 

samples from GTEx derived using cell type-specific expression profiles for cell types with 639 

more than 500 cells from snRNA-seq data generated in this study. F Association p-values 640 

between rs35074065 genotype and TMPRSS2 lung expression after including an 641 

interaction term between genotype and estimated cell type proportions for each sample. 642 

We observed stronger eQTL association when including an interaction with AT2 cell 643 

proportion as well as macrophage proportion.  644 
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METHODS 645 
 646 

Human subjects and tissue collection 647 

Donor lung samples were provided through the federal United Network of Organ 648 

Sharing via National Disease Research Interchange (NDRI) and International Institute for 649 

Advancement of Medicine (IIAM) and entered into the NHLBI LungMAP Biorepository for 650 

Investigations of Diseases of the Lung (BRINDL) at the University of Rochester Medical 651 

Center overseen by the IRB as RSRB00047606, as previously described (Ardini-Poleske 652 

et al., 2017; Bandyopadhyay et al., 2018). Portions (0.25-1.0 cm3) of small airway region 653 

of right middle lobe (RML) lung tissue were frozen in cryovials over liquid nitrogen and 654 

placed at -800C for storage. Upon request, while kept frozen on dry ice, a tissue piece 655 

(approximately 100 mg) was chipped off the sample. These smaller samples were then 656 

shipped in cryovials to UCSD on an abundance of dry ice. 657 

 658 

Single nucleus ATAC-seq data generation 659 

Combinatorial barcoding single nucleus ATAC-seq was performed as described 660 

previously with modifications (Cusanovich et al., 2015; Fang et al., 2019; Preissl et al., 661 

2018) and using new sets of oligos for tagmentation and PCR (Supplementary Table 8). 662 

Briefly, for each sample, lung tissue was homogenized using mortar and pestle on liquid 663 

nitrogen. 1 ml nuclei permeabilization buffer (10mM Tris-HCL (pH 7.5), 10mM NaCl, 3mM 664 

MgCl2, 0.1% Tween-20 (Sigma), 0.1% IGEPAL-CA630 (Sigma) and 0.01% Digitonin 665 

(Promega) in water (Corces et al., 2017)) was added to 30 mg of ground lung tissue and 666 

tissue was resuspended by pipetting for 8-15 times. Nuclei suspension was incubated for 667 

10 min at 4°C and filtered with 30 μm filter (CellTrics). Nuclei were pelleted with a swinging 668 

bucket centrifuge (500 x g, 5 min, 4°C; 5920R, Eppendorf) and resuspended in 500 μL 669 

high salt tagmentation buffer (36.3 mM Tris-acetate (pH = 7.8), 72.6 mM potassium-670 

acetate, 11 mM Mg-acetate, 17.6% DMF) and counted using a hemocytometer. 671 

Concentration was adjusted to 2,000 nuclei/9 μl, and 2,000 nuclei were dispensed into 672 

each well of one 96-well plate. For tagmentation, 1 μL barcoded Tn5 transposomes (Fang 673 

et al., 2019) was added using a BenchSmart™ 96 (Mettler Toledo), mixed five times and 674 

incubated for 60 min at 37 °C with shaking (500 rpm). To inhibit the Tn5 reaction, 10 µL 675 
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of 40 mM EDTA were added to each well with a BenchSmart™ 96 (Mettler Toledo) and 676 

the plate was incubated at 37 °C for 15 min with shaking (500 rpm). Next, 20 µL 2 x sort 677 

buffer (2 % BSA, 2 mM EDTA in PBS) was added using a BenchSmart™ 96 (Mettler 678 

Toledo). All wells were combined into a FACS tube and stained with 3 µM Draq7 (Cell 679 

Signaling). Using a SH800 (Sony), 20 2n nuclei were sorted per well into eight 96-well 680 

plates (total of 768 wells) containing 10.5 µL EB (25 pmol primer i7, 25 pmol primer i5, 681 

200 ng BSA (Sigma). Preparation of sort plates and all downstream pipetting steps were 682 

performed on a Biomek i7 Automated Workstation (Beckman Coulter). After addition of 1 683 

µL 0.2% SDS, samples were incubated at 55 °C for 7 min with shaking (500 rpm). 1 µL 684 

12.5% Triton-X was added to each well to quench the SDS. Next, 12.5 µL NEBNext High-685 

Fidelity 2× PCR Master Mix (NEB) were added and samples were PCR-amplified (72 °C 686 

5 min, 98 °C 30 s, (98 °C 10 s, 63 °C 30 s, 72°C 60 s) × 12 cycles, held at 12 °C). After 687 

PCR, all wells were combined. Libraries were purified according to the MinElute PCR 688 

Purification Kit manual (Qiagen) using a vacuum manifold (QIAvac 24 plus, Qiagen) and 689 

size selection was performed with SPRI Beads (Beckmann Coulter, 0.55x and 1.5x). 690 

Libraries were purified one more time with SPRI Beads (Beckmann Coulter, 1.5x). 691 

Libraries were quantified using a Qubit fluorimeter (Life technologies) and the 692 

nucleosomal pattern was verified using a Tapestation (High Sensitivity D1000, Agilent). 693 

The library was sequenced on a HiSeq4000 or NextSeq500 sequencer (Illumina) using 694 

custom sequencing primers with following read lengths: 50 + 10 + 12 + 50 (Read1 + 695 

Index1 + Index2 + Read2). Primer and index sequences are listed in Supplementary 696 

Table 8. 697 

 698 

Single nucleus RNA-seq data generation 699 

Droplet-based Chromium Single Cell 3’ solution (10x Genomics, v3 chemistry)(Zheng 700 

et al., 2017) was used to generate snRNA-seq libraries. Briefly, 30 mg pulverized lung 701 

tissue was resuspended in 500 µl of nuclei permeabilization buffer (0.1% Triton X-100 702 

(Sigma-Aldrich, T8787), 1X protease inhibitor, 1 mM DTT, and 0.2 U/µl RNase inhibitor 703 

(Promega, N211B), 2% BSA (Sigma-Aldrich, SRE0036) in PBS). Sample was incubated 704 

on a rotator for 5 minutes at 4°C and then centrifuged at 500 rcf for 5 minutes (4°C, run 705 

speed 3/3). Supernatant was removed and pellet was resuspended in 400 µl of sort buffer 706 
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(1 mM EDTA 0.2 U/µl RNase inhibitor (Promega, N211B), 2% BSA (Sigma-Aldrich, 707 

SRE0036) in PBS) and stained with DRAQ7 (1:100; Cell Signaling, 7406). 75,000 nuclei 708 

were sorted using a SH800 sorter (Sony) into 50 µl of collection buffer consisting of 1 U/µl 709 

RNase inhibitor in 5% BSA; the FACS gating strategy sorted based on particle size and 710 

DRAQ7 fluorescence. Sorted nuclei were then centrifuged at 1000 rcf for 15 minutes (4°C, 711 

run speed 3/3) and supernatant was removed. Nuclei were resuspended in 35 µl of 712 

reaction buffer (0.2 U/µl RNase inhibitor (Promega, N211B), 2% BSA (Sigma-Aldrich, 713 

SRE0036) in PBS) and counted on a hemocytometer. 12,000 nuclei were loaded onto a 714 

Chromium controller (10x Genomics). Libraries were generated using the Chromium 715 

Single Cell 3′ Library Construction Kit v3 (10x Genomics, 1000078) according to 716 

manufacturer specifications. CDNA was amplified for 12 PCR cycles. SPRISelect reagent 717 

(Beckman Coulter) was sued for size selection and clean-up steps. Final library 718 

concentration was assessed by Qubit dsDNA HS Assay Kit (Thermo-Fischer Scientific) 719 

and fragment size was checked using Tapestation High Sensitivity D1000 (Agilent) to 720 

ensure that fragment sizes were distributed normally about 500 bp. Libraries were 721 

sequenced using the NextSeq500 and a HiSeq4000 (Illumina) with these read lengths: 722 

28 + 8 + 91 (Read1 + Index1 + Read2).  723 

 724 

Single nucleus RNA-seq analysis 725 

Sequencing reads were demultiplexed (cellranger mkfastq) and processed (cellranger 726 

count) using the Cell Ranger software package v3.0.2 (10x Genomics). Reads were 727 

aligned to the human reference hg38 (Cell Ranger software package v3.0.2). Reads 728 

mapping to intronic and exon sequences were retained. Resulting UMI feature-barcode 729 

count matrices were loaded into Seurat (Stuart et al., 2019). All genes represented in >=3 730 

nuclei and cells with 500-4000 detected genes were included for downstream processing. 731 

UMI counts were log-normalized and scaled by a factor of 10,000 using the 732 

NormalizeData function. Top 3000 variable features were identified using the 733 

FindVariableFeatures function and finally scaled using the ScaleData function. Barcode 734 

collisions were removed for individual datasets using DoubletFinder (McGinnis et al., 735 

2019) with following parameters: pN =0.15 and pK = 0.005, anticipated collision rate = 736 

10%. Clusters were assigned a doublet score (pANN) and classification as “doublet” or 737 
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“singlet”; called doublets and cells with a pANN score > 0 were removed. UMI matrices 738 

for datasets were merged and corrected for batch effects due to experiment date, donor, 739 

and sex using the Harmony package (Korsunsky et al., 2019). UMAP coordinates and 740 

clustering were performed using the RunUMAP, FindNeighbors, and FindClusters 741 

functions in Seurat with principal components 1-23. 25-26, and 28. Clusters were 742 

annotated, and putative doublets as defined by expression of canonically mutually 743 

exclusive markers were excluded from analysis; remaining cells were re-clustered using 744 

the previously described parameters. Final cluster annotation was done using canonical 745 

markers. For genes of interest such as (e.g. ACE2, TMPRSS2), nuclei with at least one 746 

UMI for the gene were considered “expressing”. To analyze changes in percentage of 747 

nuclei expressing we performed One-way ANOVA (ANalysis Of VAriance) with post-hoc 748 

Tukey HSD (Honestly Significant Difference) using GraphPad Prism version 8.0.0 for 749 

Windows, GraphPad Software, San Diego, California USA, www.graphpad.com. Due to 750 

one potential outlier in the 30wkGA group (D062) we performed in addition a simple t-test 751 

comparing 3 yr to 30 yr groups. Differential gene expression analysis between ACE2+ 752 

and ACE2- AT2 cells we used FindAllMarkers with parameters logfc = 0, min.pct = 0, 753 

test.use = "wilcox", verbose = TRUE. 754 

 755 

Normalization and comparison of gene expression frequency across snRNA-seq 756 

and scRNA-seq datasets 757 

Single cell RNA-seq (10x Genomics 3’ v2) of 4 aged (>55yr) control lungs were 758 

obtained from publicly available data (Morse et al., 2019; Reyfman et al., 2019). Raw 759 

gene expression matrices were downloaded from Gene Expression Omnibus (GEO) 760 

repository (GSE128033 and GSE122960). Cells were filtered using the following 761 

commonly used criteria: >500 expressed genes and <10% UMIs mapped to mitochondrial 762 

DNAs. In addition, cells with greater than or equal to 40,000 UMIs were excluded from 763 

the downstream analysis; this filtration criterion was selected based on the distribution of 764 

UMIs in single cells in individual donors. Seurat (version 3) (Stuart et al., 2019) was used 765 

to identify AT2 cells from individual aged donors. Nuclei from the 9 libraries generated in 766 

this study and cells from libraries for the 4 aged donors were integrated using the Seurat 767 

3 standard integration pipeline (Stuart et al., 2019).   768 
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We calculated ACE2 and TMPRSS2 expression frequency in AT2 cells (percentage 769 

of AT2 cells with >0 UMI) in individual donors. We then performed median based 770 

normalization, so all donors reached the same median value. In calculating the median 771 

value for each donor, the expression frequency values of genes (n=26,260) common in 772 

both datasets were used.  773 

 774 

Single nucleus ATAC-seq analysis 775 

For each sequenced snATAC-Seq libraries, we obtained four FASTQ files paired-end 776 

DNA reads as well as the combinatorial indexes for i5 (768 different PCR indices) and T7 777 

(96 different tagmentation indices; Supplementary Table 8). We selected all reads with 778 

<= 2 mistakes per individual index (Hamming distance between each pair of indices is 4) 779 

and subsequently integrated the full barcode at the beginning of the read name in the 780 

FASTQ files (https://gitlab.com/Grouumf/ATACdemultiplex/). Next, we used trim galore 781 

(v.0.4.4) to remove adapter sequences from reads prior to read alignment. We aligned 782 

reads to the hg19 reference genome using bwa mem (v.0.7.17) (Li and Durbin, 2009) and 783 

subsequently used samtools (Li et al., 2009) to remove unmapped, low map quality 784 

(MAPQ<30), secondary, and mitochondrial reads. We then removed duplicate reads on 785 

a per-cell basis using MarkDuplicates (BARCODE_TAG) from the picard toolkit. As an 786 

initial quality cutoff, we set a minimum of 1,000 reads (unique, non-mitochondrial) and 787 

observed 120,090 cells passing this threshold. 788 

We used a previously described pipeline to identify snATAC-seq clusters (Chiou et 789 

al., 2019). Briefly, we used scanpy (Wolf et al., 2018) to uniform read depth-normalize 790 

and log-transform read counts within 5 kb windows. We then identified highly variable (hv) 791 

windows (min_mean=0.01, min_disp=0.25) and regressed out the total read depth across 792 

hv windows (usable counts) within each experiment. We then merged cells across 793 

experiments and extracted the top 50 PCs, using Harmony (Korsunsky et al., 2019) to 794 

correct for potential confounding factors including donor-of-origin and biological sex. We 795 

used Harmony-corrected components to build a nearest neighbor graph 796 

(n_neighbors=30) using the cosine metric, which was used for UMAP visualization 797 

(min_dist=0.3) and Leiden clustering (resolution=1.5) (Traag et al., 2019).  798 
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Prior to the final clustering results, we performed iterative clustering to identify and 799 

remove cells mapping to clusters with aberrant quality metrics. First, we removed 3,183 800 

cells mapping in clusters with low read depth. Next, we removed 20,718 cells mapping in 801 

clusters with low fraction of reads in peaks. Finally, we re-clustered the cells at high 802 

resolution and removed 5,209 cells mapping in potential doublet sub-clusters. On 803 

average, these sub-clusters had higher usable counts, promoter usage, and accessibility 804 

at more than one marker gene promoter. After removing all of these cells, our final clusters 805 

consisted of 90,980 cells. To identify marker genes for each cluster, we used linear 806 

regression models with gene accessibility as a function of cluster assignment and usable 807 

counts across single cells. 808 

 809 

Computing relative accessibility scores 810 

We define an accessible locus as the minimal genomic region that can be bound and 811 

cut by the enzyme. We use 𝐿 ⊂ 𝑁 to represent the set of all accessible loci. We further 812 

define a pseudo-locus as the set of accessible loci that relates to each other in a certain 813 

meaningful way (for example, nearby loci, loci from different alleles). In this example, 814 

pseudo-loci correspond to peaks. We use {𝑑 ∣ 𝑑 ⊂ 𝐿} to represent the set of all pseudo-815 

loci. Let 𝑎  be the accessibility of accessible locus 𝑙, where 𝑙 ∈ 𝐿. We define the 816 

accessibility of pseudo-locus 𝑑  as 𝐴 = ∑ 𝑎∈ , i.e., the sum of accessibility of 817 

accessible loci associated with di. Let 𝐶  be the library complexity (the number of distinct 818 

molecules in the library) of cell 𝑗. Assuming unbiased PCR amplification, then the 819 

probability of being sequenced for any fragment in the library is: 𝑠 = 1 − (1 − )𝑘 , where 820 

𝑘  is the total number of reads for cell 𝑗. If we assume that the probability of a fragment 821 

present in the library is proportional to its accessibility and the complexity of the library, 822 

then we can deduce that the probability of a given locus 𝑙 in cell 𝑗 being sequenced is: 823 

𝑝 ∝ 𝑎 𝐶 𝑠 . For any pseudo-locus 𝑑 , the number of reads in 𝑑  for cell 𝑗 follows the 824 

Poisson binomial distribution, and its mean is 𝑚 = ∑ 𝑝∈ ∝ 𝐶 𝑠 ∑ 𝑎∈ = 𝐶 𝑠 𝐴 . 825 

Given a pseudo-locus (or peak) by cell count matrix 𝑂, we have: ∑ 𝑂 = ∑ 𝑚 . 826 

Therefore, 𝐴 = 𝑍
∑

∑
, where 𝑍 is a normalization constant. When comparing across 827 
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different samples the relative accessibility may be desirable as they sum up to a constant, 828 

i.e., ∑ 𝐴 = 1 × 10 . In this case, we can derive 𝐴 =
∑

∑
∗ 10 . 829 

 830 

Calculating the relative percent of cells with accessibility at a locus 831 

To correct for biases occurring from differential read depths between clusters, we used 832 

the following strategy to determine the relative ratio of cells with accessibility at a given 833 

locus. We defined the set of accessible loci L of a given dataset D as the genomic regions 834 

covered by the set peaks P inferred from D. We define X the set of cells from D, and 𝑆 a 835 

partitioning of X. For a given partition 𝑆 ∈ 𝑆 and for each feature 𝑝 ∈ 𝑃, we computed 836 

𝑚  the ratio of cells from 𝑆  with at least one read overlapping 𝑝 . We then defined the 837 

score 𝑠 of loci 𝑝  in 𝑆  as 𝑠 = 10 .
∑  ∈

. We finally define the relative ratio of cells 838 

normalized across the different clusters as 𝑅𝑆 =
∑  ∈

.  839 

 840 

Associating promoters to candidate distal regulatory elements. 841 

To identify AT2 co-accessible loci with the promoters of TMPRSS2, ACE2, FURIN, 842 

BSG, and CTSL we used Cicero (Pliner et al., 2018). First, we performed a Cicero 843 

analysis for each individual cluster using a genomic window of 1 Mb (co-accessibility 844 

score >0.05). In addition, we performed Cicero using a random subset of 15,000 nuclei 845 

from the complete dataset and a genomic window of 250 kb (co-accessibility score >0.05). 846 

We then defined the promoter regions of ACE2, TMPRSS2, FURIN, BSG, and CTSL as 847 

transcriptional start site (TSS) +/- 1 kb and selected the sites co-accessible with each of 848 

the promoters (co-accessibility score >0.05). Finally, we merged the elements co-849 

accessible with the gene promoters from both analyses to generate a union set of 850 

candidate elements. 851 

 852 

Identification and clustering of AT2 peaks with changes in chromatin accessibility 853 

genome-wide 854 

We used edgeR (Robinson et al., 2010) to identify differential accessible peaks 855 

between each of pair of time points. As input we used the 122,352 peaks in AT2 cell. 856 
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Dataset ID and sex were used as technical covariates. Sites with False Discovery Rate 857 

(FDR) < 0.05 after Benjamini-Hochberg correction were considered significant. Next, we 858 

performed K-means using the relative accessibility score with a loci x timepoints matrix. 859 

We used K from 5 to 8 and computed the Davis-Bouldin index to determine the best K to 860 

partition the loci. let 𝑅 =  
( )

 with 𝑠  the average distance of each sample from cluster 861 

x and  𝑑  the distance between the centroids of clusters x and y. The Davies-Bouldin 862 

index is defined as 𝐷𝐵 =  ∑ max(𝑅 ),  ∈  and low DB scores indicate better partitioning.  863 

We obtained an optimal partition with K=5. 864 

 865 

Identification of AT2 peaks with changes in chromatin accessibility at candidate 866 

gene loci 867 

The ensemble of cells X from D can be divided per timepoint, cell subtype, or donor. 868 

We identified for individual donors the relative % of cells with at least one read in peaks 869 

associated with ACE2, TMPRSS2, FURIN, BSG, and CTSL promoters. As a background 870 

to calculate the relative % of cells, we used the merged set of peaks from all the clusters. 871 

Then, we computed a Student test for two independent samples with equal variance for 872 

each pair of categories: 30 wkGA, 3 yo and 30 yo. For each element the relative % of cells 873 

were used as measurement variable and the timepoint as nominal variable.  874 

 875 

Annotation of genomic elements 876 

The GREAT algorithm (McLean et al., 2010) was used to annotate distal genomic 877 

elements using the following settings: 2 nearest gene within 1Mb. 878 

 879 

Transcription factor related analyses 880 

De novo motif enrichment analysis in genomic elements was performed using 881 

HOMER (Heinz et al., 2010) with standard parameters. Motif scanning was performed 882 

using FIMO (Grant et al., 2011) online interface and default parameters. Motif files were 883 

downloaded from JASPAR (Fornes et al., 2020) in MEME format. Motifs scanned were 884 

MA0102.4 (CEBPA), MA0673.1(NKX2-8), MA0153.1(HNF1B), MA0503.1(NKX2-5), 885 

MA0877.2(BARHL1), PB0022.1(GATA5), MA0490.1(JUNB), PH0171.1(NKX2-1), 886 
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MA0148.1(FOXA1), MA0144.1(STAT3), MA0517.1(STAT1::STAT2), MA0050.1(IRF), 887 

MA0007.2(AR), and MA0592.1(ESRRA). To identify overlap with TF ChIP-seq sites, we 888 

used ChIP-atlas (Oki et al., 2018). We downloaded a BED file for “TFs and other” antigens 889 

across all lung related samples from the Peak Browser. We intersected these peaks with 890 

the TMPRSS2-linked peaks and the FIMO motifs (Grant et al., 2011). In addition, we 891 

downloaded enhancer related histone modifications (H3K4me1, H3K27ac) from the 892 

SCREEN database and intersected with the peak lists (Consortium, 2012). 893 

 894 

Predicting variant effects on chromatin accessibility 895 

We used deltaSVM (Lee et al., 2015) to predict the effects of variants on chromatin 896 

accessibility in AT2 cells. First, we extracted the sequences underlying AT2 sites that 897 

were promoter-distal (>±500 bp from GENCODE v19 transcript TSS for protein-coding 898 

and long non-coding RNA genes). As described previously (Chiou et al., 2019), we trained 899 

an AT2 sequence-based model and used it to predict effects for all possible combinations 900 

of 11mers. Next, to compile a comprehensive set of variants to test, we downloaded lists 901 

of variants from gnomAD v3 (Karczewski et al., 2019) and filtered out variants that were 902 

singletons or indels longer than 3 bp. We then used the liftOver (Tyner et al., 2017) utility 903 

to transform GRCh38 into GRCh37/hg19 coordinates. We retained variants from either 904 

dataset that mapped within TMPRSS2 linked sites and extracted sequences in a 19 bp 905 

window around each variant (±9 bp flanking each side). Finally, we calculated deltaSVM 906 

z-scores for each variant by predicting deltaSVM scores, randomly permuting 11mer 907 

effects and re-predicting deltaSVM scores, and using the parameters of the null 908 

distribution to calculate deltaSVM z-scores. From the z-scores, we calculated p-values 909 

and q-values and defined variants with significant effects using a threshold of FDR<0.1.  910 

We identified common variants defined as minor allele frequency >.01 in at least one 911 

major population group.  For each common variant, we obtained sequence surrounding 912 

each variant allele and predicted sequence motifs from the JASPAR database (Fornes et 913 

al., 2020) using FIMO (Grant et al., 2011), and focused on motifs of TF families enriched 914 

in age-dependent AT2 chromatin.  915 

 916 

Phenotype associations for predicted effect variants 917 
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We downloaded UK biobank round 2 GWAS combined sex results (Lab, 2020; Sudlow 918 

et al., 2015). We used broad disease categories from the ICD-10-CM to classify ICD10 919 

phenotypes, except for ICD10 codes relating to unclassified symptoms, external causes 920 

of morbidity, and factors influencing health status and contact with health services. We 921 

combined all non-cancer, self-reported diseases into a single category (self-reported) as 922 

well as all treatments and medications (medication). We then extracted GWAS 923 

association results for variants that were not tagged as low confidence variants, had 924 

significant deltaSVM effects, and mapped in TMPRSS2-linked aging-related sites. From 925 

these variants, we removed one (rs199938061) which was in perfect linkage 926 

disequilibrium with another variant.  927 

 928 

Deconvoluting the TMPRSS2 lung eQTL  929 

We used MuSiC (v.0.1.1) (Wang et al., 2019) to estimate the proportions of lung cell 930 

types with >500 cells from our scRNA-seq dataset in lung bulk RNA-seq samples from 931 

the GTEx v8 release (Aguet et al., 2019). We combined cell type labels for capillary (distal 932 

and proximal), macrophages (M1 and M2), matrix fibroblasts (1 and 2), and NK/T cells. 933 

We modeled the relationship between TMM-normalized TMPRSS2 expression as a 934 

function of the interaction between genotype and cell type proportion, while considering 935 

the covariates used in the original GTEx data including sex, sequencing platform, PCR, 936 

5 genotype PCs, and 59 inferred PCs from the expression data. From the original inferred 937 

PCs, we excluded inferred PC 1 because it was highly correlated with AT2 cell type 938 

proportion (Spearman ρ=0.67). 939 
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SUPPLEMENTARY FIGURE LEGENDS 941 

 942 

Figure S1. Quality control of snRNA-seq and snATAC-seq datasets. A 943 

Representative UMI barcode distribution output from CellRanger pipeline for snRNA-seq 944 

libraries from human lung. B Number of nuclei passing quality control filtering for snRNA-945 

seq libraries. C Genes detected per nucleus. D Sequencing saturation of snRNA-seq 946 

libraries. E Nuclei with less than 1,000 uniquely mapped reads were filtered from 947 

snATAC-seq datasets. F Number of nuclei passing quality control filtering for snATAC-948 

seq libraries. G Average number of reads per nucleus. H Fraction of reads in peak regions 949 

per dataset. All data are represented as mean ± SD. 950 

 951 

Figure S2. Marker plots for cluster annotation and expression profiling of candidate 952 

genes involved in SARS-CoV-2 cell entry. A Dot plot of marker genes used for cluster 953 

annotation. B-D Cell type specific gene expression of candidate genes for cell entry. Violin 954 

plots display expression values per nucleus for genes encoding B Cathepsin L (CTSL), 955 

C FURIN (FURIN) and D Basigin (BSG, CD147). E Correlation of ACE2+ and TMPRSS2+ 956 

AT2 cells with linear regression. F, G Fraction of AT2 cells with expression of ACE2 and 957 

TMPRSS2 at each time point. Data are the same as Fig. 1D, E, but with potential outlier 958 

sample D062 removed. * p <0.05 (One-way ANOVA with post-hoc Tukey test).  959 

 960 

Figure S3. Expression analysis of viral entry genes. Displayed are violin plots of 961 

expression levels for entry genes related to other viruses including SARS-CoV, MERS, 962 

coronavirus associated with common cold, Rhinovirus, Respiratory Syncytial Virus (RSV), 963 

Adenovirus, Influenza Virus. 964 

 965 

Figure S4. Integrative analysis of ACE2 and TMPRSS2 expression in lungs from 966 

aged individuals.  A Seurat3 Standard Integration (Stuart et al., 2019) was applied to 967 

snRNA-seq data for 9 donors generated as part of this study and publicly available 968 

scRNA-seq datasets 4 additional donor lungs (age> 55). AT2 cells from 13 donors were 969 

clustered together via Louvain clustering with minimal batch variation. Left panel: t-SNE 970 

visualization of cells colored by major cell type annotation. Epi other: predicted non-AT2 971 
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epithelial cells. Right panel: t-SNE visualization of cells colored by donor information. B 972 

Normalized expression frequency of ACE2 (left) and TMPRSS2 (right) in AT2 cells. p 973 

value was calculated using one-tailed t-test comparing normalized frequency in donors of 974 

30yo group and aged group.  975 

 976 

Figure S5. Marker plots for cluster annotation of snATAC-seq and profiling of peaks 977 

at candidate genes for SARS-CoV-2 cell entry. A Dot plot of marker genes used for 978 

cluster annotation. B-D Cell type resolved chromatin accessibility at peaks within +/- 650 979 

kb of candidate genes for cell entry. Displayed are data for B FURIN (FURIN) and C 980 

Basigin (BSG, CD147) D Cathepsin L (CTSL). Values are displayed as row normalized 981 

proportion of cells with a fragment in a peak region. Black asterisks denote co-982 

accessibility from Cicero >0.05 (Cusanovich et al., 2018). 983 

 984 

Figure S6. Quantification of peaks with increased accessibility with age at tested 985 

loci and donor resolved activity of sites not increased at TMPRSS2 locus. A Number 986 

of peaks within +/- 650 kb of candidate genes for cell entry overlapping cIII and cIV from 987 

Figure 3B. B Number of peaks co-accessible with the promoter of candidate genes for 988 

cell entry overlapping cIII and cIV from Figure 3B. C Donor resolved analysis of 24/37 989 

peaks at the TMPRSS2 gene locus. Red asterisks denote FDR <0.05 (EdgeR) and black 990 

asterisks denote p < 0.05 via t-test. 991 

 992 

 993 
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SUPPLEMENTARY TABLE LEGENDS 995 

Supplementary Table 1. Donor metadata tables. Sheet 1: 30wkGA - 30yo: Donor ID, 996 

age, sex, race, clinical pathology diagnosis (clinPathDx), gestational age, overall quality 997 

of the lung tissue assessment, type of death and cause of death were listed. Not shown 998 

are data on body weight, body height, total lung weight and radial alveolar count 999 

assessment of alveolarization. All were all within normal limits for age. Abbreviations: 1000 

DCD: donor after cardiac death; DBD: donor after brain death; GA: gestational age; 1001 

RDS: respiratory distress syndrome. Sheet 2: aged cohort: Donor ID, age, sex, smoking 1002 

history, race and cause of death were listed (Morse et al., 2019; Reyfman et al., 2019). 1003 

 1004 

Supplementary Table 2. Cluster composition and number and fraction of nuclei 1005 

expressing candidate for SARS-CoV2 cell entry. 1006 

 1007 

Supplementary Table 3. Differential expressed analysis between ACE2+ and ACE2- as 1008 

well as TMPRSS2+ and TMPRSS2- AT2 cells. 1009 

 1010 

Supplementary Table 4. Annotation of peaks within a window of +/- 650 kb of 1011 

candidate genes for SARS-CoV2 cell entry. 1012 

 1013 

Supplementary Table 5. Annotation of peaks co-accessible with candidate genes for 1014 

SARS-CoV2 cell entry and age-associated changes of chromatin accessibility of peaks 1015 

co-accessible with TMPRSS2 promoter. 1016 

 1017 

Supplementary Table 6. GREAT analysis of peaks increasing with age in AT2 cells 1018 

(groups cIII and cIV in Fig 3B). 1019 

 1020 

Supplementary Table 7. De novo motif enrichment analysis of peaks increasing with 1021 

age in AT2 cells (groups cIII and cIV in Fig 3B). 1022 

 1023 

Supplementary Table 8. Indexes and primer sequences for snATAC-seq libraries. 1024 
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