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Abstract 
Introduction. Cross-sectional studies suggest that cardiovascular risk factors and Alzheimer’s 
disease (AD) biomarkers are associated with abnormal brain resting-state functional 
connectivity in aging and AD; however, evidence is missing regarding longitudinal changes in 
functional connectivity. In this study, we investigate whether cholesterol levels and blood 
pressure are associated with changes in functional connectivity over time in asymptomatic 
individuals at risk for AD. The analyses were repeated with cerebral β-amyloid (Ab) and tau 
deposition in a subset of the participants.  
Methods. The study sample included 247 cognitively unimpaired individuals (185 women/ 62 
men; mean [SD] age of 63 [5.3] years) of the PREVENT-AD cohort with a parental or multiple-
sibling history of sporadic AD. Plasma total-, HDL-, and LDL-cholesterol and systolic and 
diastolic blood pressure were measured at baseline. Global brain functional connectivity, and 
connectivity from canonical functional networks, were computed from resting-state functional 
MRI obtained at baseline and up to four years of annual follow-ups, using a predefined 
functional parcellation. A subset of participants underwent tau-PET ([18F]Flortaucipir) and Aβ-
PET ([18F]NAV4694). Vascular and AD measures were examined as predictors of brain 
functional connectivity changes in linear mixed-effects models.  
Results. Higher total-cholesterol and LDL-cholesterol levels were associated with greater 
reduction of functional connectivity in the default-mode network over time. In addition, while 
overall whole-brain functional connectivity showed an increase over time across the entire 
sample higher diastolic blood pressure was associated with reduction in whole-brain functional 
connectivity. The associations were similar when the analyses were repeated using two other 
functional brain parcellations. The findings with total-cholesterol and diastolic blood pressure 
were also similar but attenuated when performed in a subsample of participants with PET 
(n=91), whereas AD biomarkers were not associated with changes in functional connectivity 
over time in this subsample.  
Conclusion. These findings provide evidence that vascular burden is associated with a decrease 
in brain functional connectivity over time in older adults with elevated risk for AD. The impact 
of vascular risk factors on functional brain changes might precede AD pathology-related 
changes.  
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1 INTRODUCTION   

Alzheimer’s disease (AD) is a multifactorial disease that is characterized not only by 
pathological protein aggregation in the brain (Ab and tau), but also by early vascular 
dysfunctions and changes in brain functional connectivity.1-3 Brain regions that show a temporal 
correlation in blood-oxygenation-level-dependent (BOLD) signals, measured with resting-state 
functional magnetic resonance imaging (rs-fMRI), have been proposed to be intrinsically 
functionally connected. Consistent resting-state functional connectivity (RSFC) networks have 
been identified in a large number of studies, using different brain parcellations.4-6 Both aging7 
and neurodegenerative disease8 are characterized by alterations within these networks. With 
age, RSFC appears to decline within most networks but tends to increase between networks.7   
It has in fact recently been suggest that global and default-mode network (DMN) RSFC tend to 
increase up to the seventh decade, followed thereafter by an accelerated age-related decline.9 
Certain alterations in RSFC have been consistently linked to mild cognitive impairment and 
AD dementia, particularly with lower RSFC in the DMN, but also in the salience (SAL) and 
limbic (LIM) networks, as well as changes in global RSFC.10-16 AD-related changes in RSFC 
already appear in the asymptomatic stage, years before disease onset.17,18 Cognitively normal 
individuals with a family history of sporadic AD and individuals with subjective cognitive 
decline also present RSFC alterations.19-21 Functional changes associated with AD risk are not 
only linked to a reduction of RSFC, but also to compensatory increase in RSFC.17,20 

Vascular risk factors (VRF) such as dyslipidemia and hypertension are thought to impair 
healthy aging and to increase AD risk.22,23 Cross-sectional studies have demonstrated that 
higher vascular burden is associated with reduced cerebral metabolism, reduced 
cerebrovascular reactivity and an associated reduction in functional connectivity.24-27 
Hypertension has been suggested to impair RSFC in older adults.28 Higher total-cholesterol 
levels have been associated with both lower and higher RSFC within the DMN and lower RSFC 
within the SAL network,29,30 but associations have not been found in all studies.26 VRFs might 
therefore reduce brain functional health, which could increase vulnerability to AD pathology 
and/or cognitive impairments. VRFs being present prior to AD pathology in most individuals, 
the impact of VRF on brain integrity could precede the one related to AD pathology.22 

In the current study, we aimed to investigate how RSFC alterations develop over time in the 
presence of VRFs and AD biomarkers. We applied longitudinal rs-fMRI to delineate related 
changes in functional connectivity in cognitively normal individuals, who had a 2-3 fold higher 
risk for AD owing to a first-degree family history of AD.31 Our main hypothesis was that 
individuals with higher vascular burden will show a decrease in RSFC over time, and that this 
reduction would be predominant in the DMN. Second, we hypothesized that higher Ab and tau 
burden will result in similar effects, with tau also being associated with change in the limbic 
network. 
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2 MATERIALS AND METHODS  

Participants and Study design 

Study participants were recruited within the PResymptomatic EValuation of Experimental or 
Novel Treatments for Alzheimer Disease (PREVENT-AD) study, an ongoing longitudinal 
observational study initially enrolling 385 individuals.32 Most of this dataset is now openly 
accessible (https://openpreventad.loris.ca/). Study participants met the following inclusion 
criteria: (a) parental or multiple-sibling history of AD-like dementia, (b) ≥60 years old at 
enrollment or 55-59 years old if less than 15 years away from youngest affected relative’s age 
of symptom onset, (c) no major neurological diseases and (d) normal cognition. All participants 
underwent neuropsychological testing at baseline using the Repeatable Battery for the 
Assessment of Neuropsychological Status (RBANS),33 Clinical Dementia Rating (CDR)34 and 
the Montreal Cognitive Assessment (MOCA)35 to assess normal cognition. In the few cases of 
ambiguous CDR or MOCA assessments (n=15), participants were further evaluated with a 
more extensive neuropsychological test battery that was reviewed by neuropsychologists 
(including SV) and physicians (including JCSB) to ensure normal cognition. Figure 1 provides 
an overview of the study.  

In the current longitudinal analyses, 247 participants were included who had at least 2 valid 
fMRI scans. 

Standard protocol approvals, registrations, and patient consents 

The study was approved by the McGill University Faculty of Medicine Institutional Review 
Board. All participants received detailed study instructions and gave written consent prior to 
participation. 

VRF assessment 

All participants were examined medically, venous blood samples (non-fasting) and blood 
pressure were taken at baseline (see Supplementary material for more details). Plasma levels of 
total-, high-density (HDL)- and low-density lipoprotein (LDL)-cholesterol were measured by 
standard enzymatic methods (CHOD-PAP; Beckman Coulter, Synchron LX®, UniCel® DxC 
600/800 System and Synchron® Systems Lipid Calibrator). Blood pressure was assessed while 
seated in a standardized procedure using an automatic sphygmomanometer (Connex® ProBP™ 
3400; Welch Allyn).  

APOE Genotyping 

Genomic DNA was extracted from whole blood and APOE genotype was determined using the 
PyroMark Q96 pyrosequencer (Qiagen, Toronto, ON, Canada), as described previously.36 
Participants were classified as APOE ε4 carriers (one or two ε4 alleles) or noncarriers. 

MRI acquisition 

Participants underwent MRI annually (at baseline and at follow-ups from 1 to 4 years) on a 3T 
Siemens Trio scanner at the Brain Imaging Centre of the Douglas Mental Health University 
Institute (Montreal, Canada). Structural T1-weighted images were obtained with the following 
parameters: TR=2300ms, TE=2.98ms, number of slices=176, slice thickness=1mm. For 
resting-state functional MRI (rs-fMRI) scans, two consecutive functional T2*-weighted images 
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(each “run” with 150 volumes lasting 5min and 45s) were acquired using a blood-oxygen-level-
dependent (BOLD) sensitive, single-shot echo planar sequence (TR=2000ms; volumes=150; 
TE=30ms; FA=90°; matrix size=64x64; voxel size=4x 4x4mm3; 32 slices). The participants 
were asked to keep their eyes closed and to remain as still as possible during scanning.  

MRI analyses 

Preprocessing and analyses of the rs-fMRI data has been described previously,20 using the 
Neuroimaging Analysis Kit (http://niak.simexp-lab.org, v0.12.17), GNU Octave (v4.0), and the 
Minc toolkit (http://www.bic.mni.mcgill.ca/ServicesSoftware/ServicesSoftwareMinc ToolKit, 
v0.3.18). Briefly, the preprocessing of functional scans comprised motion-correction, slice-time 
correction, temporal filtering (0.01Hz high-pass cut-off), non-linear spatially normalization to 
the Montreal Neurological Institute ICBM152 symmetric template, resampling to 2mm3, and 
spatial smoothing with a 6mm full-width-half-maximum (FWHM) Gaussian kernel. Noise due 
to motion, slow time drifts, and average signals in white matter and the lateral ventricles was 
removed from the functional signal by multiple regression 
(http://niak.simexplab.org/pipe_preprocessing.html).20,37 In addition, time frames with in-
scanner head motion (mean framewise displacement (FD)) above 0.5mm were removed 
(scrubbed) from individual time series, along with one adjacent frame prior and two following 
frames after, to minimize artefacts caused by excessive motion.38 Further descriptions of the 
pipeline can be found on the NIAK website (http://niak.simexp-
lab.org/build/html/PREPROCESSING.html). Moreover, rs-fMRI images passed quality 
control if: (a) at least one out of two functional runs remained with a minimum of 70 frames 
(140s) after scrubbing; (b) no image artefacts were found during visual examination; (c) they 
were correctly co-registered to structural MRI and ICBM152 template (spatial correlation 
r>0.75, NIAK preprocessing report). 
In total, 1152 rs-fMRI scans were acquired within the PREVENT-AD cohort at 5 acquisition 
time points (baseline and follow-ups at year 1 to 4), of which 198 scans failed quality control, 
leaving 954 valid scans. For the current longitudinal analyses, participants were required to 
have at least 2 valid scans at different time points, resulting in 865 scans from 247 individuals 
(median [interquartile range] number of scans, 4 [2-4] and follow-up time, 3 [2-4] years) (see 
Table 1). 

Table 1: Overview MRI flow  

Reasons for failure of quality control: a <70 unscrubbed frames per run; b image artefacts; c registration failure. 
For 7 participants the first valid MRI scans were available at follow-up year 1 (n=5) and year 2 (n=2) instead at 
baseline. BL, baseline; FU, follow-up. 
 

Numbers of: BL FU year 1 FU year 2 FU year 3 FU year 4 Total 

acquired MRI scans 363 294 232 169 94 1152 

failed quality control 
(reason a/b/c) 

-51 
(50a/1b) 

-51 
(48a/3c) 

-43 
(42a/1c) 

-37 
(37a) 

-16 
(16a) 

-198 
(193a/1b/4c) 

valid MRI scans 312 243 189 132 78 954 

individuals with at 
least 2 valid MRI scans 
(with one/ two runs) 

240 
(20/220) 

232 
(17/215) 

185 
(28/157) 

130 
(13/117) 

78 
(12/66) 

865 
(90/775) 

      = 247 unique 
individuals 
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For a priori network-based and global connectivity analyses we used the “Schaefer 
parcellation”.4 This parcellation scheme includes 400 predefined regions-of-interest (ROIs) 
classified into 7 neocortical functional networks (default mode [DMN], salience and ventral 
attention [SAL/VAN], fronto-parietal [FPN], limbic [LIM], dorsal attention [DAN], visual 
[VIS] and somatomotor network [SM]). To ensure the robustness of our findings, we repeated 
our analyses, using 2 different predefined parcellation schemes. The second parcellation was 
the “MIST parcellation”6, consisting of 444 symmetric ROIs that belong to 7 functional 
networks (DMN, SAL/VAN, FPN, LIM, VIS, SM and cerebellum). We restricted the analyses 
to neocortical functional networks to match the Schaefer parcellation and therefore excluded 
the cerebellum. The third atlas was the “Power parcellation”, including 264 ROIs, made up of 
5mm radius spheres39 set around network coordinates predefined by Power et al.5; thus, varying 
in shape and number from the other two parcellation schemes. Here, we restricted our network 
analyses to the 7 matching neocortical functional networks, i.e. DMN, SAL, VAN, FPN, DAN, 
VIS and SM, and included 8 additional spherical ROIs (5mm radius) encompassing the LIM as 
done previously.39 

For each atlas, the average time series from each parcel was extracted, correlated with one 
another (Pearson) and Fisher z-transformed, using Matlab (R2018b). Hence, single-subject 
correlation matrices were created (400x400, 444x444 and 272x272 for the Schaefer, MIST and 
Power parcellation, respectively). For participants who had 2 valid rs-fMRI runs per visit, 
correlation matrices were averaged after processing. Results were essentially unchanged when 
correcting our subsequent statistical models for the number of valid runs (1 or 2) at each visit. 
Given the ambiguous interpretation of negative correlations, correlation matrices were 
thresholded to keep only positive correlations.40 Finally, correlation estimates from parcels of 
the same network were averaged, providing a mean RSFC within each functional network. In 
addition, we computed the global (whole-brain) RSFC for each participant, corresponding to 
the average connectivity of each ROI to the entire rest of the cerebrum (Schaefer: 400x400; 
MIST: 387x387 (cerebellum ROIs excluded); and Power: 232x232 (cerebellum and as 
uncertain defined ROIs excluded)). We investigated both network-specific and global 
functional connectivity given that specific and global brain connections seem to be 
differentially associated to brain alterations and AD-related biomarkers.12 An overview of the 
rs-fMRI processing and analyses is represented in Figure 1. 
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Figure 1: Study flow chart and fMRI analyses. In total, 385 eligible PREVENT-AD participants were 
followed annually over up to 4 years. Vascular risk factors were assessed at baseline. Resting-state functional 
magnetic resonance images (rs-fMRI) were acquired at baseline and follow-up year 1 to 4. Finally, 247 
participants with 865 scans were included in the current study, who had at least 2 valid rs-fMRI scans across 
baseline (n=240 scans), follow-up year 1 (n=232), year 2 (n=185), year 3 (n=130) and year 4 (n=78). For 7 
participants the first valid MRI scan was available at follow-up year 1 (n=5) and 2 (n=2) instead of at baseline. 
(A) Individual time series of preprocessed scans were extracted from each parcel, defined by the Schaefer 
parcellations. Analyses were repeated with the MIST and Power atlas. (B) Correlation matrices were obtained by 
correlating the time series of each parcel with one another. Correlation matrices were Fisher z-transformed and 
thresholded by only keeping positive correlations. (C) Extracted mean correlations represent the indirect measure 
of network-based (multicolored squares) and global (red square) resting-state functional connectivity (RSFC). A 
subsample of 91 participants that had two rs-fMRI scans underwent Aβ and tau PET scanning during the course 
of the study. 
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PET assessment and processing 

In a subsample of 91 (37%) participants, PET scans using [18F]NAV4694 (NAV) for amyloid-
β and [18F]AV1451 (Flortaucipir) for tau were acquired at the McConnell Brain Imaging Centre 
of the Montreal Neurological Institute (MNI) on a PET Siemens/CTI high-resolution scanner 
during the course of the study.23 Static acquisition frames were obtained for Aβ at 40-70 min. 
and for tau at 80-100 min. post-injection. More information about PET assessment are available 
in the supplement. PET data were pre-processed using a standard pipeline (see 
https://github.com/villeneuvelab/vlpp for details). Briefly, 4D PET images were averaged and 
linearly co-registered to individual’s T1-weighted images, before being masked to exclude CSF 
binding and smoothed with a 6mm3 Gaussian kernel. Individual T1-weighted images were 
segmented based on the Desikan-Killiany atlas using the semiautomated FreeSurfer processing 
stream version 5.3.41 Standardized uptake value ratios (SUVR) were computed for Aβ42 and 
tau43 by dividing the tracer uptake by cerebellar gray matter and inferior cerebellar gray matter 
uptake, respectively. We restricted the ROI analyses to FreeSurfer-derived AD-typical regions, 
i.e. weighted mean SUVRs from frontal, temporal, parietal and posterior cingulate cortex for a 
global Aβ quantification42 and from the entorhinal cortex for tau quantification.44 

Statistical analyses 

Analyses were performed with R 3.5.2 (The R Foundation) and SPSS 24.0 (IBM Corp., 
Armonk, NY). Two-tailed p-values <0.05 were considered to be significant. First, we run cross-
sectional general linear models, corrected for baseline age, sex, vascular medication (intake or 
non-intake of drugs against dyslipidemia and/or hypertension) and mean FD, to test for 
associations between VRFs and network/global RSFC at baseline. In our principal analyses, we 
run linear mixed-effects models (lmer function of the lme4 package45) to test whether VRFs at 
baseline were associated with longitudinal changes in RSFC, separately in each network and 
globally throughout the whole cerebrum. All models were corrected for baseline age, sex and 
vascular medication and mean FD at each visit as well as their interactions with time. Follow-
up time was operationalized individually as years from baseline. We included all VRFs in one 
model, except for total- and LDL-cholesterol, which showed high multicollinearity (variance 
inflation factor > 5: total-cholesterol ~9 and LDL-cholesterol ~8). Hence, we performed 2 
separate models for each RSFC network and global connectivity, using the following equations:  

Model A) RSFC ~ total-cholesterol * time + HDL-cholesterol * time + systolic blood pressure 
* time + diastolic blood pressure * time + covariates * time + (time|ID)  
Model B) RSFC ~ LDL-cholesterol * time + HDL-cholesterol * time + systolic blood pressure 
* time + diastolic blood pressure * time + covariates * time + (time|ID) 

Results from each parcellation (and for each Model A and B if applicable) were separately 
evaluated for significance at a False Discovery Rate (FDR) corrected p-values <0.05. When 
results survived FDR correction it was explicitly stated in the manuscript. 

To test for an overall change in RSFC over time, without taking VRFs into account, we also 
considered linear mixed-effects models including time as the independent variable, adjusted for 
age, sex and mean FD.  

In exploratory analyses, we tested for an association of Aβ and tau deposition with changes in 
RSFC in a subgroup of PET participants (n=91), using linear mixed-effects models corrected 
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for age, sex and mean FD. Here, the RSFC time variable was centered on the PET visit for each 
individual, since the PET scans were acquired during the course of the study. Analyses with 
main VRF findings on RSFC were repeated in the same subsample of PET participants to test 
if these associations are comparable with PET findings on RSFC changes (here p-values <0.1 
were reported as trend-level). 

In all linear mixed-effects models, we included individual RSFC intercepts and slopes as 
random effects. All continuous variables were z-transformed prior to model estimation. All 
models used the restricted maximum likelihood method and were fit with an unstructured 
variance-covariance and type III sum of squares. Denominator degrees of freedom were 
calculated with the Satterthwaite approximations. 
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3 RESULTS 

Participant characteristics 

In total, 247 participants were included in the current longitudinal analyses. At study entry, they 
were on average 63 years old, 75% were female, they had a mean education of 15.4 years and 
39% carried at least one APOE ε4 allele. Participants were on average 11 years away from their 
relative’s age at AD dementia symptom onset. The subgroup of 91 participants with PET 
showed low to moderate levels of Ab and tau deposition. See Table 2 for further details. 
Participants were generally in good health, but nevertheless presented a wide range of VRFs. 
Abnormal levels of VRFs were predominantly recorded for total-cholesterol levels (>5.2 
mmol/L; 63% of the participants), LDL-cholesterol (>3.4 mmol/L; 38%), systolic blood 
pressure (≥130 mmHg; 43%), diastolic blood pressure (≥80 mmHg; 29%) and body mass index 
(>30 kg/m2; 14%). About 4% of the study sample was diagnosed with diabetes and 4% of the 
participants reported current smoking.  
 
Table 2: Participant characteristics at baseline 

a The spEYO could not be calculated for 16 participants, due to missing information about the family’s age of 
onset. b LDL-cholesterol values were missing for 7 participants, due to laboratory measurement failures. cA 
subsample of 91 participants underwent b-amyloid (Aβ) and tau PET scanning during the course of the study. d 

The sample size of the fMRI data differs between BL (n=240), FU year 1 (n=232), FU year 2 (n=185); FU year 3 
(n=130); FU year 4 (n=78). APOE ε4, apolipoprotein E ε4; BL, baseline; FD, framewise displacement; FU, 
follow-up; EYO, estimated years to symptom onset of sporadic Alzheimer’s disease, calculated by subtracting 
the age at family’s symptom onset from the participant’s age at baseline.  

Characteristics  Mean  (SD; range) 

Sample size [No.] 247 

Age [years] 62.90 (5.31; 55–83) 
Sex [No. women (%)] 185  (75) 
Education [years] 15.37 (3.58; 7–29) 
APOE ε4 [No. carrier, ≥1 ε4 allele (%)] 96  (39) 
spEYO [years] a -10.93  (7.58; -28–16) 
Plasma lipids [mmol/L]  
  Total-cholesterol 5.48  (0.99; 2.20–8.30) 
  HDL-cholesterol 1.57  (0.40; 0.74–3.04) 
  LDL-cholesterol b 3.09  (0.85; 0.78–5.77)  
Arterial blood pressure [mm Hg]  
   Systolic blood pressure 127.50  (15.87; 82–174) 
   Diastolic blood pressure 73.46  (9.17; 51–110) 
Medication [No. (%)] 80  (32.4) 
   Lipid-lowering drugs 24  (9.7) 
   Antihypertensive drugs 32  (13.0) 
   Lipid-lowering & antihypertensive drugs 24  (9.7) 
AD PET biomarkers, median (IQR), [range]c  

 Ab, [18F]NAV-4694 SUVR   1.21 (1.14-1.29), [1.05-2.81] 
 tau, [18F]AV-1451 SUVR   1.04 (0.98-1.14), [0.84-1.66] 
Mean FD d  
(BL, FU1, FU2, FU3, FU4) 

0.22 (0.05; 
0.09–0.33) 

0.22 (0.05; 
0.09–0.35) 

0.23 (0.05; 
0.12–0.34) 

0.23 (0.04; 
0.10–0.33) 

0.23 (0.05; 
0.11–0.34) 
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Impact of VRFs on baseline RSFC 

At baseline, we found no associations between VRFs and network or global functional 
connectivity (all p’s≥0.05), except that higher HDL-cholesterol levels were associated with 
lower baseline RSFC within the DMN (Schaefer, b=-0.146, p=0.023; Power, b=-0.141, 
p=0.028) and DAN network (Power, b=-0.129, p=0.045, see eTable 1). 

Global and network specific longitudinal change in RSFC across all individuals 

We examined if RSFC changes over time without testing for an effect of VRFs. We found an 
overall increase in global RSFC over time when adjusted for age, sex and mean FD (Schaefer: 
b=0.009, s.e.=0.003, t=2.97, p=0.003; black dotted lines in Figure 3). Similar results were 
obtained when using the MIST and Power parcellation (MIST: b=0.009, s.e.=0.003, t=3.00, 
p=0.003; Power: b=0.010, s.e.=0.002, t=2.48, p=0.014; eFigure 2). No significant changes in 
DMN RSFC were observed over time across all individuals and all 3 parcellations (all 
p’s≥0.05). An overall increase in RSFC was found within specific functional networks across 
all individuals (Schaefer: in LIM and DAN, b’s ≥0.016, s.e.’s ≤0.006, t’s ≥2.97 p’s <0.003; 
MIST: in FPN and LIM, b’s ≥0.010, s.e.’s ≤0.004, t’s ≥2.09 p’s ≤0.037; Power: in DAN and 
SM, b’s ≥0.011, s.e.’s ≤0.007, t’s ≥2.05 p’s ≤0.040; eFigure 2). 

Impact of VRFs on longitudinal change in RSFC 

Using longitudinal analyses, we found no associations between any of the cholesterol values 
and global connectivity changes over time (Schaefer, all p’s≥0.05; Figures 2 and 3, eTable 2). 
Higher total-cholesterol levels were associated with decreased functional connectivity within 
the DMN (Schaefer, b=-0.013, s.e.=0.004, t=-3.26, p=0.001; Figures 2 and 3, eTable 2). This 
association survived FDR-correction and was similar when using the MIST and Power brain 
parcellations (eFigures 1 and 2, eTables 3 and 4). When the study sample was restricted to 
PET participants, this association was attenuated to trend-level (n=91, Schaefer, ß=-0.005, 
s.e.=0.003, t=-1.86, p=0.064). Higher total-cholesterol was also related to a reduction in RSFC 
within the SAL network; however, this was only seen with the Power parcellation atlas 
(eFigures 1 and 2, eTable 4). Higher LDL-cholesterol levels were associated with a decline in 
DMN RSFC (Schaefer, b=-0.010, s.e.=0.004, t=-2.30, p=0.023; Figures 2 and 3, eTable 2). 
This was also shown with the MIST parcellation, and at trend-level with the Power parcellation 
(eFigures 1 and 2, eTables 3 and 4). This association was attenuated when restricting analysis 
to PET participants (n=91, Schaefer, b=-0.004, s.e.=0.002, t=-1.45, p=0.138). No longitudinal 
effects on RSFC were found for HDL-cholesterol.  

With regard to blood pressure, higher diastolic blood pressure levels were associated with a 
reduction of global RSFC over time (Mean Model A and B; Schaefer, b=-0.010, s.e.=0.004, t=-
2.24, p=0.026; Figures 2 and 3, eTable 2). This association was similar when using the MIST 
and Power brain parcellations (eFigures 1 and 2, eTables 3 and 4). This association reached 
trend-level, when the study sample was restricted to the PET participants (n=91, Schaefer, ß=-
0.004, s.e=0.002, t=-1.68, p=0.095). At the network level, associations were also found between 
higher diastolic blood pressure and reduction in RSFC within the DMN (Model A only; 
Schaefer, b=-0.008, s.e.=0.004, t=-2.00, p=0.047), SAL/VAN (Model A only; Schaefer, b=-
0.010, s.e.=0.005, t=-1.98, p=0.049) and SM networks (Mean Model A and B; Schaefer, b=-
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0.017, s.e.=0.008, t=-2.07, p=0.040) (Figure 2, eFigure 2 and eTable 2). The association 
between diastolic blood pressure and SAL/VAN RSFC was similar when using the MIST 
parcellations (eFigures 1 and 2, eTable 3). No associations were found between systolic blood 
pressure and change in RSFC. All detailed statistical results can be found in eTables 2-4. 

Impact of AD-related biomarkers on longitudinal change in RSFC 

No association were found between global cerebral Ab deposition or tau deposition in the 
entorhinal cortex and RSFC changes over time, using all three parcellations (p’s≥0.05; eTable 
5-7). 

 
Figure 2: Summary of associations of VRF and AD biomarkers with functional connectivity changes over 
time from linear mixed effect models. T-values represent effects of (A) total-, HDL- and LDL-cholesterol, (B) 
systolic and diastolic blood pressure as well as (C) b-amyloid- (Ab) and tau-PET SUVR on each RSFC network 
and on global RSFC, using the Schaefer parcellation atlas. Regarding vascular risk factors, mixed effects models 
were run either with total-cholesterol, HDL-cholesterol, systolic and diastolic blood pressure (Model A) or with 
LDL-cholesterol, HDL-cholesterol, systolic and diastolic blood pressure (Model B) as independent variables. 
For better visualisation, we averaged the t-values of both models for HDL-cholesterol and systolic and diastolic 
blood pressure, since they were highly similar (see eTable 2-4 for separate statistics). DAN, dorsal attention 
network; DMN, default mode network; FPN, fronto-parietal network; FTP, flortaucipir tracer; LIM, limbic 
network; NAV, Navidea tracer; SAL, salience network; SM, somatomotor network; VAN, ventral attention 
network and VIS, visual network.  p<0.05 only in model A or B, * p<0.05, ** p<0.01. Results that survived 
correction for false discovery rate are indicated by FDR. 

†
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Figure 3: Change in resting-state functional connectivity, assessed using the Schaefer brain parcellation, 
as a function of vascular risk factors. These graphs are a longitudinal representation of a subset of the results 
shown in Figure 2. Results were only plotted when significant results were replicated with at least one other 
parcellation (MIST or Power). For visualisation purposes, we divided the continuous measures of (A) total-
cholesterol, (B) LDL-cholesterol and (C) diastolic blood pressure into tertiles. Predicted RSFC estimates from 
linear-mixed effects models were plotted against follow-up time from baseline. Shaded regions represent 95% 
confidence intervals. Results that survived correction for false discovery rate are indicated by FDR. The dotted 
black lines represent the mean change in RSFC across all individuals. Total- and LDL-cholesterol exhibit a high 
multicollinearity, so separate models were run including one or the other (“total-cholesterol Model A” and the 
“LDL-cholesterol Model B”). All other vascular measures, and their interaction with time, were as well included 
in both models as predictors of RSFC changes. For better visualisation, graphics of diastolic blood pressure 
results were shown only for Model A, but statistics are presented from both Model A and B. dBP, diastolic blood 
pressure; DMN, default mode network; LDL, low-density lipoprotein; Mod, Model; RSFC, resting-state 
functional connectivity; tChol, total-cholesterol. 
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4 DISCUSSION  

We investigated the impact of cholesterol and blood pressure on longitudinal RSFC changes 
within a well-established set of predefined functional networks covering the entire brain. The 
current study provides evidence that vascular burden contributes to RSFC trajectories in 
middle-to-late life adulthood. While RSFC was quite stable or slightly increasing across a 4-
year follow-up (IQR 2-4 years), higher total- and LDL-cholesterol levels were associated with 
reductions in DMN RSFC over time, whereas higher diastolic blood pressure was associated 
with reduced whole-brain RSFC. In contrast, AD-related biomarkers showed no association 
with RSFC changes over time. These last analyses were unfortunately only performed in a 
subset of the cohort and will therefore need to be replicated. Given that decreased RSFC is 
usually associated with older age and clinical AD, VRFs may impair brain integrity 
independently and likely prior to AD pathology. In addition of being a risk factor for AD, some 
evidences suggest that vascular brain changes might precede AD-specific biomarker changes.1 

We found an association of higher total- and LDL-cholesterol levels with a reduction in RSFC 
specifically within the DMN, whereas other functional networks showed no consistent changes 
in RSFC linked to cholesterol levels. The DMN has been suggested to have the highest 
metabolic rate in the brain, and to be involved in a large variety of demanding cognitive 
tasks.27,46-48 This high economical load may render the DMN preferentially vulnerable to aging 
and AD in comparison to other functional networks.18,49 Elevated vascular risk, measured via 
composite VRF measures, has been associated with a reduction in glucose metabolism,50 resting 
cerebral blood flow51 and cerebrovascular reactivity in DMN regions.52 Those vascular effects 
might evolve gradually in the presence of chronically elevated cholesterol levels and lead to 
disturbed brain functions. In comparison to other networks, RSFC seem to be related to 
cerebrovascular integrity particularly within the DMN.53,54 In line with this, a decrease in 
RSFC54 and functional connectivity density55 in the DMN has been found in patients with mild 
cognitive impairment with moderate to severe white matter hyperintensities, a measure of 
vascular brain integrity. 

A reduction of DMN RSFC with advancing age has been recently shown in a longitudinal study 
with healthy older adults aged 60 years and older,56 a finding that was not replicated in our 
cohort. In contrast, our data suggests no change of DMN RSFC over time in the general cohort. 
When dividing the individuals by VRF profile, we found rather an increased or no change in 
DMN RSFC in individuals with lower to moderate cholesterol levels, whereas a decline in 
DMN RSFC was seen in the presence of high total- and LDL-cholesterol burden (see low, 
medium and high tertiles slopes in Figure 3). These differential trajectories highlight the 
relevant contribution of high VRFs to detect a decline in RSFC. Decline in DMN RSFC have 
been repetitively associated with clinical AD10,  it is therefore possible that VRFs increase 
vulnerability to AD by creating early brain alteration in individuals at risk of AD.  

Researchers have recently begun to investigate not only network-based RSFC, but also global 
RSFC (i.e. connectivity of each grey matter region with all other grey matter regions), as both 
seem to represent complementary predictors of AD pathologies and their propagation.9,12 Brain 
regions with high global RSFC are proposed to represent hub regions in the brain, mainly but 
not all of which are located within the DMN, showing especially high metabolic activity, 
neuronal activity and vulnerability to AD pathologies.9,57 While higher cholesterol levels 
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showed network-specific associations with reduction in RSFC, higher diastolic, but not systolic, 
blood pressure was associated with reduction of global RSFC over time. Diastolic hypertension 
may specifically accelerate age-related sclerotic changes in small arterioles spread across the 
brain,58 leading to reduced cerebral perfusion, white matter lesions, atrophy and finally 
cognitive impairment.59-61 It has been also suggested that diastolic blood pressure is associated 
earlier on with structural impairment than systolic blood pressure; a similar time course may 
appear for functional impairment.62  

Finally, we found increases in network and global RSFC over time across all individuals, 
without taking VRF differences into account. This hyperconnectivity has been reported in 
previous studies9,20,63 and has been typically interpreted as compensatory mechanisms to 
maintain cognitive function that starts to be compromised with aging and early AD.64 Newer 
concepts posit that neurons in the DMN might be unable to handle costly metabolic alterations 
due to higher pathology-induced processing burden, leading to a transfer of processing burden 
to downstream regions and/or noisy inefficient synaptic communications, which results in a 
short-term hyperconnectivity.13,63  Particularly, most central and metabolically active hub 
regions are likely to express increased connectivity.63 Increases in RSFC have been proposed 
to occurs until individuals reach an age of ~74 years, after which a decline in RSFC begins.9 
Our study with relatively young older adults (mean age of 63 years) suggests that such a 
cascading network failure might be accelerated in the presence of VRFs, by preluding the 
tipping point where high VRF burden overwhelms neurons of hub regions, resulting in 
functional disconnection. 

In contrast to our consistent VRF findings and to previous AD-related studies18,65, we did not 
find associations of Ab and tau deposition with changes in RSFC in our cohort at risk for AD. 
One can hypothesize that VRF may predate AD pathology, increase brain vulnerability and/or 
contribute to AD pathogenesis22,66; a hypothesis that needs further investigations. Our relatively 
small sample size might also have precluded us to identify mild associations. It will for instance 
be of high interest to replicate the association between tau and the limbic network (Schaefer, t-
value = -1.785), the network that best overlap tau pathology, in a larger sample of older adults 
with more severe pathology.  

A strength of our study is its longitudinal design to assess trajectories of functional connectivity 
in the context of vascular- and AD-related burden. Since RSFC was measured prospectively 
from the time point of VRF assessment, it can be hypothesised that VRFs may induce changes 
in RSFC; although this needs to be proven by future interventional trials. The reproduction of 
our results, using 3 different parcellation atlases, further strengthens their validity. There are 
also several caveats that must be taken into consideration when interpreting our findings. First, 
blood pressure values were assessed only from one measurement instead of averaging values 
of multiple measurements at baseline. Second, we used peripheral measures to assess 
cholesterol and blood pressure levels. 24S-hydroxycholesterol (the predominant metabolite of 
brain cholesterol), cerebral perfusion pressure or measures of cerebrovascular impairment (i.e. 
white matter lesions, lacunes, and microbleeds) may provide more direct evidence about a 
relationship between vascular burden, vascular brain injuries and changes in RSFC. Third, 
vascular burden was expressed only by elevated levels of cholesterol and blood pressure in our 
otherwise healthy cohort. The impact of other common VRFs, such as diabetes, smoking and 
obesity, still needs to be assessed in future studies. Nevertheless, the presence of VRFs was in 
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general comparable to the US population,67 except that current smoking was on average 10-
fold lower in the PREVENT-AD cohort, suggesting that our results are extendible to further 
populations. Fourth, it needs to be further explored if the observed VRF-related changes in 
RSFC reflect changes in blood flow, changes in neuronal activity or both.68 Fifth, levels of 
cerebral AD-related PET biomarkers were low to moderate in our relatively young cohort and 
the sample size was limited, therefore, associations of Ab and tau with longitudinal RSFC may 
have been harder to detect. 

In sum, our results suggest a significant contribution of VRFs to changes in DMN and global 
RSFC in cognitively normal older adults. This change seems to precede the effect of AD 
pathology in RSFC. In our cohort that includes only relatively young cognitively normal older 
adults with an elevated risk to develop AD, we found no effect of Ab or tau on RSFC change 
suggesting this effect might only be capture later in the course of the disease. It will be of 
interest to follow these individuals over time to assess when AD pathology starts to impair 
RSFC and if VRFs and Ab/tau burden have an additive or a synergistic effect on brain 
connectivity. 
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