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Abstract

Motivation: Drug-drug interactions (DDIs) are complex processes which may depend on many clinical
and non-clinical factors. Identifying and distinguishing ways in which drugs interact remains a challenge.
To minimize DDIs and to personalize treatment based on accurate stratification of patients, it is crucial that
mechanisms of interaction can be identified. Most DDIs are a consequence of metabolic mechanisms of
interaction, but DDIs with different mechanisms occur less frequently and are therefore more difficult to
identify.
Results: We developed a method (D4) for computationally identifying potential DDIs and determining
whether they interact based on one of eleven mechanisms of interaction. D4 predicts DDIs and their
mechanisms through features that are generated through a deep learning approach from phenotypic and
functional knowledge about drugs, their side-effects and targets. Our findings indicate that our method
is able to identify known DDIs with high accuracy and that D4 can determine mechanisms of interaction.
We also identify numerous novel and potential DDIs for each mechanism of interaction and evaluate our
predictions using DDIs from adverse event reporting systems.
Availability: https://github.com/bio-ontology-research-group/D4
Contact: arnoor@kau.edu.sa and robert.hoehndorf@kaust.edu.sa

1 Introduction
Concern about drug-drug interactions (DDI) in patients receiving multi-
drug therapy has risen in recent years (Qato et al., 2008) because such
patients may be at high risk. DDIs were found in the U.S to be linked with
0.054% of visits to the ER, 0.57% of admissions to hospital and 0.12% of
re-hospitalizations (Becker et al., 2007). It is expected that the impact of
DDIs on patients’ health will significantly increase as a result of a rise in the
number of drugs being prescribed to each individual patient (Percha and

Altman, 2013). Early identification of DDIs is challenging due to a number
of factors including the lack of information on DDIs prior to a new drug
being released to the market (Reis and Cassiani, 2010; LePendu et al.,
2013). The minimal information gained from clinical trials conducted
before a new drug is approved is generally not sufficient to thoroughly
test interactions with other medications, in particular where these are not
administered to patients participating in the study. Additionally, a narrow
focus on single mechanisms of interaction (Huitema et al., 2001) constitute
another factor that increases the challenge to identify and prevent DDIs.

There are now a number of computational methods that are able to
identify different mechanisms of interaction in DDIs (Berger and Iyengar,
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2 Noor et al.

2011), focusing mainly on the pharmacodynamic interactions (drug–
target, therapeutic and adverse drug effect) or pharmacokinetic interactions
(drug–protein). For those interactions, measures of similarity among
drugs and mechanistic information (Ferdousi et al., 2017), Semantic Web
Technologies and Linked Data in the life sciences (Kamdar and Musen,
2017), web data (Fokoue et al., 2016), textual (Abdelaziz et al., 2017;
Tari et al., 2010), and interaction networks (Bai and Abernethy, 2013;
Park et al., 2015) have been developed and successfully applied to predict
DDIs and ways in which drugs interact. Moreover, features that have
been used to identify and better understand DDIs and mechanisms of
interaction include molecular structure (Vilar et al., 2012), interaction
profile fingerprints (Vilar et al., 2013), phenotypic, therapeutic, chemical,
and genomic properties (Cheng and Zhao, 2014; Ferdousi et al., 2017),
model organism phenotypes (Hoehndorf et al., 2013), multiple interaction
mechanisms (Noor et al., 2016), and drug and protein properties (Kamdar
and Musen, 2017).

These methods can predict and identify different mechanisms of
interaction in DDIs. The majority of computational methods focuses
on single mechanisms of interaction (mainly interactions through drug
metabolic pathways) (Preissner et al., 2009; Tari et al., 2010; Leone
et al., 2010; Fournier et al., 2014). However, several mechanisms for
DDIs exist and some drugs interact through multiple mechanisms, such
as the interactions between statins and cyclosporine occurring through
the metabolism (CYP3A4) and transport (P-glycoprotein) pathways
(Holtzman et al., 2006). One challenge in predicting or inferring DDIs
across multiple mechanisms of interaction are the variety of features that
are required for prioritizing the different mechanisms. Another limitation
can be the use of a single training or evaluation dataset which may be
biased towards particular types of interactions. For example, methods that
rely on DDIs in the DrugBank database (Wishart et al., 2017) for training
or testing may perform well on the types of interactions in that database
but may not generalize to other datasets that include different types of
interactions (Peters et al., 2015; Grizzle et al., 2019).

A large number of information that may be used to predict DDIs
across multiple mechanisms is available in biological knowledge bases
and enriched with background knowledge through biomedical ontologies
(Hoehndorf et al., 2015). Recent deep learning methods have been used
successfully in multiple domains (LeCun et al., 2015), including prediction
of DDIs (Ryu et al., 2018) and on structured knowledge bases and
ontologies (Alshahrani and Hoehndorf, 2018; Smaili et al., 2018). A key
advantage of relying on structured knowledge is the ability to qualitatively
identify and interpret some prediction results.

We have developed a method for predicting DDIs together with
their mechanisms of interaction. Our method relies on a large set of
different DDI resources for training and evaluation, and a knowledge-based
algorithm that determines the likely mechanism through which a known
DDI arises. We generate features for drugs based on structured knowledge
and ontology-based annotations of drugs representing their side effects and
the functions of their targets, and we use these features as input to a neural
network classifier. We demonstrate that our method accurately identifies
known DDIs together with the mechanism of interaction, and we show
how our method can be used to discover new potential DDIs.

2 Results

2.1 Representation learning and feature generation

We use information about drug side effects, functions of drug protein
targets, and the mechanisms of interaction associated with known DDIs
in order to predict novel DDIs and their mechanisms. In addition
to this information, we also use background information about the
relationship between phenotypes, biological functions and processes, and

pharmacological data in the form of logical axioms and natural language
definitions represented in biomedical ontologies.

We represent drugs with their associated side effects (phenotypes)
from the SIDER database (Kuhn et al., 2015) and with the functions and
phenotypes associated with their protein targets using the set of targets
in DrugBank (Wishart et al., 2017). We use the phenotype annotations
of side effects from the Human Phenotype Ontology (HPO) database
(Köhler et al., 2018) and function annotations from the Gene Ontology
(GO) database (Ashburner et al., 2000; Consortium, 2016). We associate
a total of 848 drugs with side effects and 827 drugs with the GO functions
of their targets.

Each of these features is based on biomedical ontologies, in
particular the GO and HPO. Therefore, we also use the axioms in these
ontologies as background knowledge during feature generation. We use the
OPA2Vec tool (Smaili et al., 2018) to encode drugs, their ontology-based
associations, and the ontology axioms as n-dimensional feature vectors.
OPA2Vec treats the axioms and meta-data in ontologies, and the ontology-
based annotations of the drugs, as a corpus and uses Word2Vec to encode
the drug identifiers, their annotations and the ontologies as features vectors
(Smaili et al., 2018). To determine the effect of the different features
(annotations and ontologies) on the performance of our DDI prediction
models, we first generate features separately for each type of association.
Due to the different coverage of drugs with side effects and functions of
their targets, we also considered the intersections between phenotype and
functional annotations as well as the union. We use these feature vectors as
input to train a neural network to prediction DDIs after using a rule-based
approach to distinguish between their mechanisms of interaction. Figure 1
shows the workflow of our prediction method.

2.2 Annotation with DDI mechanisms

We generate a model based on supervised training data using only DDIs
that have been observed in a clinical context (in contrast to predicted
DDIs). We obtain DDIs from the Potential Drug-Drug Interaction (PDDI)
dataset (Ayvaz et al., 2015), an aggregation of 17 datasets of which 9 have
clinical evidences, with a resulting 39,815 pairs of DDIs. As we intend to
distinguish between different mechanisms of interaction, we first annotate
these DDIs with their interaction mechanisms.

We broadly distinguish between mechanisms of DDIs due to
pharmacokinetic, pharmacodynamic, multiple-pathway, and pharmacogenetic
interactions. Specifically, we utilize a rule-based inference engine
for drug-drug interaction discovery and demystification (D3) (Noor
et al., 2016) to annotate known DDIs with their mechanisms of
interaction. D3 applies rules on a knowledge graph to distinguish
between five pharmacokinetic mechanisms of interaction: protein binding,
metabolic induction, metabolic inhibition, transporter induction, and
transporter inhibition. D3 obtains information about these mechanisms
from DrugBank (Wishart et al., 2017) which characterizes DDIs on
the protein level. Pharmacodynamic mechanisms of interaction include
both competitive interactions (drugs sharing the same biological targets)
and additive interactions (drugs sharing the same side effects, same
mechanisms of interaction, or same indications). The information about
pharmacodynamic interactions in D3 is obtained from DrugBank (Wishart
et al., 2017), from SIDER for side effects (Kuhn et al., 2015), and the
National Drug File Reference Terminology (NDF-RT) (Brown et al., 2004)
for competitive action and indication. In addition, D3 obtains information
about multi-pathway interactions (drugs sharing at least one metabolism
and transport) from DrugBank, while the pharmacogenetic information is
from PharmGKB (Klein et al., 2001). We also add a “generic” mechanism
of interaction, i.e., a DDI with no specific mechanism of interaction. The
results are 11 mechanisms of interaction and one class for “generic” DDIs.
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Fig. 1: D4 workflow. Starting with drug annotations from HPO and GO, vectors were generated with OPA2Vec followed by annotation of DDIs with
their associated mechanism of action. The prediction process done by training ANN in order to which mechanism of action each DDI belong to.

2.3 Performance in predicting interactions using
phenotypic and functional knowledge

We then use pairs of feature vectors as input for training an Artificial Neural
Network (ANN) to predict DDI interactions. We applied leave-one-drug-
out cross-validation in which one drug is held out for validation while all the
other drugs and their interactions were used as training data. This method
is different from splitting pairs of drugs and intended to avoid training
a model that primarily predicts interactions based on other interactions
seen during training. We evaluate the resulting model by ranking, for
each drug, all other drugs based on the output of the ANN sigmoid
classification score. We train separate models for each mechanism of
interaction, and Figure 2 shows the receiver operating characteristic (ROC)
curves for pharmacokinetic mechanism, pharmacodynamic mechanism,
multi-pathway mechanism, and pharmacogenetic mechanism (complete
results for all interaction mechanisms are provided as Supplementary
Figure 1. Table 1 provides a summary of the performance for the prediction
of each mechanism.

Our evaluation procedure is internal and may not translate to other sets
of drugs or DDIs. To provide an external evaluation of our method, we
use the TWOSIDES dataset, a dataset of potential DDIs that have been
derived statistically from adverse event reporting systems and electronic
health records (Tatonetti et al., 2012). TWOSIDES provides statistical
evidence for potential DDIs and associates each candidate DDI with a p-
value. If our model generalizes to datasets such as TWOSIDES, we expect
that high-confidence DDIs in TWOSIDES are also predicted as DDIs by
our method. For the purpose of our evaluation, we consider any DDI in
TWOSIDES associated with a p-value less than 0.05 as a positive and
compute the overall recall and precision using these positives obtained
from TWOSIDES. We also remove duplicates DDI between TWOSIDES
and our training before testing.

Table 2 shows the results of our comparison. The highest recall
across all mechanisms of interaction is 0.58 for the metabolic inhibition
mechanism while the lowest recall is 0.26 for DDIs sharing the same
indication. Our method achieves 0.22 as the highest precision for DDIs
sharing the same SNPs and the lowest precision is 0.09 for sharing the
same mechanism of action. When comparing against potential DDIs in
TWOSIDES, the ROCAUC of our method is 0.99 for DDIs sharing the
same mechanism of action, while the lowest ROCAUC (0.854) is for
DDIs with the same side effects (see Supplementary Figure 2). All of
our predictions together with the predicted mechanism and the associated

TWOSIDES confidence can be found at https://bio2vec.cbrc.
kaust.edu.sa/data/D4/predictions/.

Fig. 2: The ROC curves (micro-average over all drugs) for DDI prediction
for four different mechanisms: pharmacokinetic, pharmacodynamic,
multi-pathway, and pharmacogenetic interactions.

3 Discussion
Effective early detection of DDIs has been a desirable goal for
pharmaceutical companies and clinicians to avoid serious health
complications for patients. A variety of studies have been done for
discovering DDIs based on clinical and computational approaches, for
example through mining DDIs from scientific literature (Tari et al., 2010;

.CC-BY 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.08.032011doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.032011
http://creativecommons.org/licenses/by/4.0/


i
i

“output” — 2020/4/8 — 17:49 — page 4 — #4 i
i

i
i

i
i

4 Noor et al.

Table 1. Mechanisms of interaction used for phenotypic and functional
predictions along with the pharmacology levels and the ROCAUC for all
features. The features are Human Phenotype Ontology (HP) associations and
Gene Ontology (GO) associations, their intersection and their union.

Mechanism of Interaction Pharmacology Level
Features AUC score

HPO GO HPO∩GO HPO∪GO

Protein-binding Pharmacokinetic 0.698 0.730 0.702 0.781
Metabolic-induction Pharmacokinetic 0.762 0.816 0.792 0.856
Metabolic-inhibition Pharmacokinetic 0.727 0.785 0.740 0.820
Transporter-induction Pharmacokinetic 0.824 0.829 9.842 0.894
Transporter-inhibition Pharmacokinetic 0.788 0.803 0.780 0.843

Biological-targets Pharmacodynamic 0.890 0.930 0.904 0.947
Side-effects Pharmacodynamic 0.668 0.724 0.677 0.747

Mechanism-of-action Pharmacodynamic 0.755 0.851 0.787 0.855
Indications Pharmacodynamic 0.887 0.929 0.905 0.947

Metabolism-Transporter Multi-pathway 0.817 0.833 0.811 0.873
SNPs Pharmacogenetic 0.833 0.846 0.829 0.878

Table 2. Recall and precision for D4 predictions when compared to TWOSIDES
associations with a p-value less than 0.05.

Mechanism of Interaction
TWOSIDES

Recall Precision

Protein-binding 0.471 0.137
Metabolic-induction 0.581 0.115
Metabolic-inhibition 0.585 0.124
Transporter-induction 0.434 0.203
Transporter-inhibition 0.509 0.154

Biological-targets 0.268 0.181
Side-effects 0.551 0.138

Mechanism-of-action 0.559 0.096
Indications 0.268 0.181

Metabolism-Transporter 0.444 0.177
SNPs 0.464 0.225
DDIs 0.534 0.149

Percha et al., 2012), Adverse Event Reporting Systems (Ibrahim et al.,
2016), and the Electronic Health Record (Pathak et al., 2013). Clinical
studies are conducted to determine suspected interactions (Wienkers and
Heath, 2005), yet their investigative processes are slow and often consider
only a small numbers of drugs and targets (Bjornsson et al., 2003)
suspected to result in interactions. Our method can be used to suggest
potential interactions to consider in clinical studies so as to improve their
efficiency and detect interactions that may not be obvious. Suggesting the
mechanisms in addition to the mere presence of an interaction can further
be used to design targeted studies.

We developed the D4 method that predicts DDIs and identifies the
role of mechanisms of interaction by using the phenotypic, functional, and
mechanistic features of drugs. Our method is based on incorporating a large
volume of biological background information in the form of ontologies
and annotations of drugs. This background knowledge is encoded using a
machine learning method that combines ontology axioms with structured
annotations of drugs and their targets. While there is a large number
of methods to predict DDIs (Ryu et al., 2018; Zhou et al., 2018; Wang
et al., 2019; Sun et al., 2019), D4 specifically predicts the mechanisms of
the interaction, focusing on 11 common mechanisms. We have validated
our method both on the training data we used as well as on an external
dataset obtained from mining adverse event reporting systems and could
demonstrate the our method can accurately predict DDIs.

D4 has some limitations that should be addressed in future work.
First, for a new DDI that occurs due to chemical structure or
interaction, D4 method will currently not be able to identify any
interactions because D4 does not consider the structural properties of

the chemical; instead, D4 relies only on publicly available, semantically
coded qualitative information about drugs. One possibility to address
this issue is combine D4 with DDI prediction methods that utilize
structure (Ryu et al., 2018). Second, DDIs are complex processes
that are commonly the result of multiple factors, and D4 will only
predict individual types of interactions and not consider their potential
interactions. Incorporating additional interactions, including protein-
protein interactions and metabolic interactions may further improve the
utility of D4.

4 Methods

4.1 Data sources

To generate drug–phenotype associations, we use the SIDER database
(Kuhn et al., 2015) downloaded on November 10, 2018 (http://
sideeffects.embl.de/media/download/meddra_all_se.

tsv.gz). We map the side-effects, represented by their UMLS identifiers,
to their respective HPO terms using a groovy script using owl-api.

As a result we obtain 62,777 non-duplicate drug–HPO associations.
To associate drugs with functions from the Gene Ontology, we
use the drug-target associations (https://www.drugbank.ca/
releases/5-1-2/downloads/target-approved-polypeptide-sequences)
from DrugBank (Wishart et al., 2017), downloaded on November 20, 2018.
To annotate targets with functional information, we use the GO annotations
from the GO database (Ashburner et al., 2000), downloaded on November
25, 2018. In total, we obtain 78,137 unique drugs–GO associations.

As resource of DDIs for training, we downloaded the PDDI
dataset (Ayvaz et al., 2015) (https://github.com/dbmi-pitt/
public-PDDI-analysis/tree/master/) on November 10,
2018, and we use a selection of more “conservative” datasets: NDF-
RT, Crediblemeds, ONC-HighPriority, ONC-Non-interruptive, OSCAR,
HIV, HEP, and FRENSH. We combine and remove overlap between these
resources and then map them to STITCH identifiers using their Anatomical
Therapeutic Chemical (ATC) identifiers. As a consequence, we obtain
39,815 unique pairs of DDIs.

We represent phenotypes using the cross-species PhenomeNET
ontology (Hoehndorf et al., 2011), obtained from the AberOWL
ontology repository on November 10, 2018, and we represent
functions and cellular locations using the Gene Ontology obtained from
the Gene Ontology website (http://www.geneontology.org/
page/download-ontology) on November 10, 2018.

We use the TWOSIDES database (Tatonetti et al., 2012), downloaded
on November 20, 2018, for additional validation. TWOSIDES provides
a p-value for each potential DDI, and we use a threshold of ≤ 0.05 to
consider interactions in TWOSIDES as positive.

4.2 Feature generation through embeddings

We use the latest version of OPA2Vec (Smaili et al., 2018) downloaded
from (https://github.com/bio-ontology-research-group/
opa2vec) on December 5, 2018 to generate feature vectors from
ontologies and their annotations. OPA2Vec generates a corpus
characterizing drugs based on the drug entity, its annotations, class axioms,
and metadata from the ontologies. To generate drug embeddings based
on phenotypes (side effects), drugs are gathered from SIDER database
(drugs-side-effects associations); drugs that do not exist in our gold-
standard are removed, leading to 849 drugs. OPA2Vec then generates
embeddings for the list of drugs (849 entities) using the following inputs:
1) drugs associations with phenotypes (62,777 associations), and the
PhenomeNET.owl ontology file, and the drug identifiers representing
types of drugs.
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For the drugs embeddings based on the GO functions of the drugs’
targets we collected drugs from DrugBank and removed drug identifiers
that do not exist in our evaluate set, resulting in 827 drugs. Then these 827
drug representations with 78,137 drug–GO associations, together with the
OWL version of GO, were used as inputs for OPA2Vec to generated the
drug embeddings. We considered also the union and intersections when
generating the embeddings because of the different coverage of drugs with
side effects and functions of their targets. The union and interactions
between HPO and GO was computed on the list of drugs we conclude
and their associations; PhenomeNET.owl was used as ontology as it
includes the GO. Therefore, four different embeddings representing drugs
were generated.

For all four embeddings, we used the following OPA2Vec parameters:
the skipgram model with window size 5 and a minimum count of 2, and
an embedding size of 200. All of the embeddings we generated can be
found on https://bio2vec.cbrc.kaust.edu.sa/data/D4/

embeddings/.

4.3 D4 mechanistic inferential engine

For predicting mechanisms of interaction, we used the D3 system (Noor
et al., 2016) which is able to suggest mechanisms for an observed DDI.
To assure the completeness and update of the information, we updated the
knowledge graph to the last update from DrugBank (https://www.
drugbank.ca/releases/5-1-2/downloads/all-full-database),
SIDER (http://sideeffects.embl.de/media/download/
meddra_all_se.tsv.gz), NDF-RT from Unified Medical Language
System (UMLS) (Bodenreider, 2004), and PharmGKB (Hewett et al.,
2002) (https://www.pharmgkb.org/downloads) sources.

In addition, we added a new pharmcodynamic inference based on the
following rule: if two drugs treat the same disease they may interact.
We also separate the additive pharmacodynamic mechanisms used in the
previous work on the D3 system into two inferences: 1) same mechanisms
of interaction and 2) same side-effects. These modifications ensure that
inferred DDI mechanisms are mutually exclusive. Supplementary Table
1 illustrates the condition of each mechanism of interaction along with
sources of information.

4.4 D4 supervised artificial neural network model

We trained a feed-forward neural network to predict whether two drugs
interact based on the features vectors (generated by OPA2Vec) for both
drugs. To optimize hyperparameters of the neural network classifier, we
optimized hyperparameters using Hyperas (https://github.com/
maxpumperla/hyperas). The neural network architecture is provided
in Supplementary Table 2.

The input to the neural network classifier is a vector of dimension 400,
representing two features vectors generated for two drugs. The output is
a sigmoid classifier indicating whether a DDI exists, or what mechanism
of interaction underlies a DDI. In our evaluation, we fix one drug and
predict potential interactions for all other drugs; we then rank the prediction
scores from the sigmoid classifier for all potential interaction partners. We
compute the TPR curve by plotting the true positives rate as a function of
the false positive rate; statistics of true and false positives are computed
per drug and plots show the results based on the micro average (per drug).
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