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Abstract 

 

Cytometry analysis has seen a considerable expansion in in recent years with the expansion in the 

maximum number of parameters that can be acquired in a single experiment. In response to this 

technological advance, there has been an increased effort to develop computational methodologies 

for handling high-dimensional data acquired by flow or mass cytometry. Despite the success of 

numerous algorithms and published packages to replicate and outperform traditional manual 

analysis, widespread adoption of these techniques has yet to be realised in the field of cytometry. 

Here we present CytoPy, a Python framework for automated analysis of high dimensional 

cytometry data that integrates a document-based database for a data-centric and iterative analytical 

environment. The capability of supervised classification algorithms in CytoPy to identify cell 

subsets was successfully confirmed by using the FlowCAP-I competition data. The applicability of 

the complete analytical pipeline to real world datasets was validated by immunophenotyping the 

local inflammatory infiltrate in individuals with and without acute bacterial infection. CytoPy is 

open-source and licensed under the MIT license. Source code is available online at the 

https://github.com/burtonrj/CytoPy, and software documentation can be found at 

https://cytopy.readthedocs.io/. 
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1. Introduction 

 

Cytometry data analysis has undergone a paradigm shift in response to the growing number of 

parameters that can be observed in any one experiment.  As the field evolves, the traditional method 

of manual gating by sub-setting single cell data into populations and encircling data points in hand-

drawn polygons in two-dimensional space has proven laborious, subjective, and difficult to 

standardise.  In response to these shortcomings, a cross-disciplinary effort has given birth to a new 

approach often termed „cytometry bioinformatics‟, to leverage complex computer algorithms and 

machine learning to automate analysis and improve the investigator‟s ability to extract meaning 

from high dimensional data. 

 

Where cytometry is used for data acquisition, the typical objective is to discern differences between 

groups of subjects or experimental conditions, or to identify a phenotype that correlates with an 

experimental or clinical endpoint.  To this end, a computational approach to analysis of cytometry 

data can take one of two strategies: to separate single cell data into groups or classifications, which 

then form the variables (often descriptive statistics of the obtained groups) the investigator uses to 

test their hypothesis, or directly model the acquired distribution of single cell data with respect to a 

chosen endpoint.  Classification strategies can be further subdivided: autonomous gating replicates 

traditional gating through the use of algorithms to cluster data in two-dimensional space 

(flowDensity (1), OpenCyto (2)); high-dimensional clustering groups cells according to their 

individual phenotypes (FlowSOM (3), PhenoGraph (4), Xshift (5), SPADE (6)); and supervised 

classification where training on an example of manually gated data produces a classifier capable of 

distinguishing cell populations (FlowLearn (7) and DeepCyTof (8)).  Modelling strategies have 

been successfully adopted in applications such as ACCENSE (9), CellCNN (10), and CytoDX (11) 

although this approach requires pooling of sample data and is therefore sensitive to batch effects. 
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In addition, various pieces of software have been developed for data handling, transformation, 

normalisation and cleaning (e.g. flowCore, flowIO, flowUtils, flowTrans, reFlow, flowAI), 

visualisation (e.g. ggCyto, t-SNE, UMAP, PHATE), and pipelines for specific applications (e.g. 

Citrus, MetaCyto, flowType/RchyOptimyx).  To date, there are over 30 different contributions to 

automated analysis (12; 13; 14; 15).  However, there is no widespread adoption of these methods as 

yet, nor is there a consensus on how to adopt such techniques, with much of the analysis pipeline 

left to the individual investigator to establish.  This inconsistency results in projects amassing 

collections of custom scripts and data management that are not standardised or centralised, which 

not only makes reproducing results difficult but also makes for a daunting landscape for newcomers 

to the field. 

 

We here introduce „CytoPy‟, a novel analysis framework that aims to mend these issues whilst 

granting access to state-of-the-art machine learning algorithms and techniques widely adopted in 

cytometry bioinformatics.  CytoPy is developed and maintained in the Python programming 

language, which prides itself on readability and is becoming the language of choice amongst the 

open source data science community (16).  CytoPy introduces a central data source for all single 

cell data, clinical/experimental metadata and analysis results, and provides a „low code‟ interface 

that is both powerful and beginner friendly.  

 

We demonstrate the capability of supervised classification techniques housed within CytoPy on the 

Flow Cytometry: Critical Assessment of Population Identification Methods (FlowCAP) data (17), 

which has been created for comparing the performance of automated analytical techniques for flow 

cytometry data.  As the FlowCAP data underwent extensive pre-processing prior to their publication 

and hence do not reflect the challenges encountered with primary data generated by individual users, 

an in-house dataset of local immune cells in samples collected from patients undergoing peritoneal 

dialysis and who presented with and without acute bacterial infection was generated to demonstrate 
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the applicability of CytoPy as a complete analytical pipeline for complex and unprocessed data. 

These data reflect the challenges presented by an observational study of complex clinical specimens 

collected over extended periods of time, often years. We believe that CytoPy provides a powerful 

and user-friendly framework to interrogate high dimensional data originating from investigations 

that utilise flow cytometry or mass cytometry for data acquisition, and has the potential to facilitate 

automated data analysis in a multitude of experimental and clinical contexts. 

 

2. Design and Implementation 

 

2.1. Building a framework that is data-centric 

 

Reliable data management is a cornerstone of successful analysis, by improving reproducibility and 

collaboration.  A typical cytometry project consists of many Flow Cytometry Standard (FCS) files, 

clinical or experimental metadata, and additional information generated throughout the analysis (e.g. 

gating, clustering results, cell classification, sample specific metadata).  A further complication is 

that any analysis is not static but an iterative process.  We therefore deemed it necessary to anchor a 

robust database at the centre of our software.  In CytoPy, projects are instantiated and housed within 

this database, which serves as a single dynamic data repository that is then accessed continuously 

throughout the subsequent analysis.  For the architecture of this database we chose a document-

orientated database, MongoDB (18), where data are stored in JSON-like documents in a tree 

structure.  Document-based databases carry many advantages, including simplified design, dynamic 

structure (i.e. database fields are not ‟fixed‟ and therefore resistant to unforeseen future 

requirements) and easy to scale horizontally, thereby improving integration into web applications 

and collaboration.  In this respect, CytoPy depends upon MongoDB being deployed either locally or 

via a cloud service, and MongoEngine, a Document-Object Mapper based on the PyMongo driver 

(19). 

 

2.2. Framework overview 
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An overview of the CytoPy framework is given in Figure 1 including a recommended pathway for 

analysis, although individual elements of CytoPy can be used independently.  CytoPy follows an 

object-orientated design with a document-object mapper for both commitment to, and collection 

from, the underlying database.  The user interacts with the database using an interface of several 

CytoPy classes, each designed for one or more tasks.  CytoPy is algorithm agnostic, meaning new 

autonomous gating, supervised classification, clustering or dimensionality reduction algorithms can 

be introduced to this infrastructure and applied to cytometric data using one of the appropriate 

classes. CytoPy makes extensive use of the Scikit-learn (20) and SciPy (21) ecosystems and follows 

the naming conventions commonly used in this space.  Throughout an analysis, whenever single 

cell data are retrieved from the database, they are stored in memory as Pandas DataFrames that are 

accessible for custom scripting at any stage. 

 

Following the steps in Figure 1, a typical analysis in CytoPy would be performed as follows 

(functions are shown in italics and class names are shown in italics and title-case). 

(1) Single cell data are generated and exported from the flow/mass cytometer in FCS 2.0 or 3.0 

format.  Experimental and clinical metadata are collected in tabular format either as Microsoft 

Excel document or CSV file, with the only requirement being that metadata be in „tidy‟ format (22). 

(2) A Project is defined and populated with the single cell data and accompanying metadata.  Each 

subject (e.g. a patient, a cell line, or an animal) has a Subject document containing metadata that are 

dynamic and have no restriction on the data stored within, and that are associated to one or several 

FileGroup documents.  Each FileGroup document is representative of one or more FCS files 

associated to a single biological sample collected from the subject. The single cell data from the 

multiple files in a FileGroup are saved to disk as a Hierarchical Data Format (HDF) file. The 

FileGroup is linked to this file on disk but the data can be migrated to any drive of the user‟s 

choosing. The FileGroup and its associated HDF file contain all single cell data, gated populations, 

clusters and meta-information that attains to a single sample.  This also includes any isotype or 
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Fluorescence-Minus-One (FMO) controls.  Compensation is applied to single cell data at the point 

of entry using either an embedded spillover matrix or a provided CSV file.  The FileGroup is 

associated to an Experiment, containing all samples collected under one particular set of staining 

conditions.  There must always be a Panel document associated to an Experiment.  For this, the 

investigator must provide a „panel design‟ in the form of a simple Excel document (see CytoPy 

documentation https://cytopy.readthedocs.io/).  CytoPy then uses regular expression to match FCS 

metadata such as channel names to the expected panel and offers error handling for when 

discrepancies arise. 

(3) The common approach to cytometry data analysis is expert driven gating in sequential two-

dimensional space. Attempts to automate gating in the past have focused on the application of a 

single methodology (1; 23; 24) or an assortment of selected algorithms (2). CytoPy attempts to 

expand on the later approach with an open design, allowing the use of any unsupervised learning 

algorithm supported in Scikit-Learn or libraries that follow the Scikit-Learn template.  Algorithms 

that generate a label for each data-point can be handled using the PolygonGate object, converting 

the output into polygon gates by calculating the convex envelope of each cluster. Probabilistic 

models such as Gaussian Mixture Models are handled by the EllipseGate object, where elliptical 

gates are generated by drawing a confidence interval around the models components. Finally, we 

have designed a density based algorithm implemented in the ThresholdGate object, separating data 

in one or two-dimensional space based on properties of the estimated probability density function. 

In a traditional analysis, gates are applied in sequence to derive the cell population of interest. 

CytoPy replicates this with autonomous gates using the GatingStrategy class. Using this class, 

autonomous gates are defined once and then applied to subsequent samples. In each instance, 

algorithms will „fit‟ the new data they encounter (generating a data-driven strategy to gating) and 

then locate the expected populations, annotating accordingly. 

(4) The variation that separates biological specimens can originate from genuine biological 

differences but can also arise from technical variation introduced by pipetting errors, changes in 
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instruments, variation in experimental practice, or other uncontrollable experimental conditions. 

CytoPy offers the „variance‟ module, containing utilities for visualising the univariant and 

multivariant deviations between biological specimens.  If the data and study design allow, the user 

can consider pooling data and modelling the distribution of single cell data directly.  In some 

circumstances the user will have to consider the contribution of batch effects, and in such a case the 

investigator can use the SimilarityMatrix class in CytoPy to group subjects according to their 

statistical distance from one another. Representative data from each group can be used as training 

data for a supervised classification algorithm used to annotate the entire dataset without the need for 

manual gating or complex autonomous gating strategies. 

(5) Multiple strategies can be employed to classify cells based on a common phenotype.  Strategies 

such as autonomous gating and supervised classification are biased by the training data provided 

(and the gating strategy used to label those data) whereas high-dimensional clustering is an 

unsupervised method that groups cell populations according to their phenotype but can be difficult 

to critique.  CytoPy offers both supervised classification through the CellClassifier class and high 

dimensional clustering through the Clustering class, so that variables can be generated from either 

or both strategies.  Importantly, the results of either strategy can be committed to the database and 

then visually interpreted using a class called Explorer.  The Explorer class also facilitates 

exploratory data analysis with interactive plots of embedded space using multiple dimensionality 

reduction techniques. 

(6) Once cells have been classified, the user can test their hypothesis.  The single cell data are 

summarised into a „feature space‟, summary statistics that describe the cell populations.  This 

generates a large number of variables, many of which will be either uninformative or redundant.  

Filter and wrapper methods are applied to perform feature selection, finding only those variables 

important for predicting a clinical/experimental endpoint.  In addition, there are multiple methods 

available for visualising extracted features, thereby allowing the investigator to quickly determine 

whether certain patterns exist in the dataset. 
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3. Results 

 

3.1. Autonomous gating can standardise the cleaning of single cell data for rapid analysis 

 

To validate CytoPy we demonstrate its use on the characterisation of immune cells in peritoneal 

drain fluid and whole blood of peritoneal dialysis (PD) patients with and without acute bacterial 

infection.  We chose this dataset based on a wealth of previous experience in the field (25; 26; 27), 

the clinical relevance of acute peritonitis in those patients (28), and because of the technical 

challenges presented by the sample type.  Samples were collected between 2017 and 2019 and 

stained with a comprehensive panel of monoclonal antibodies to identify T lymphocytes, monocytes, 

dendritic cells, eosinophils and neutrophils as the major constituents of peritoneal immune cells, 

together with activation and differentiation markers on those populations (Supplementary Tables S2 

and S3).  

Cytometry data are highly variable and surface marker expression must often be identified amongst 

a backdrop of cellular debris and staining artefacts.  This is particularly relevant when studying 

complex samples such as local specimen taken from the site of acute infection.  In the case of 

individuals receiving PD, bacterial infection leads to the influx of billions of inflammatory cells, 

predominantly neutrophils, into the peritoneal cavity within a few hours (27). Traditionally the 

variability this introduces into analysis is handled by laborious and subjective manual gating. We 

generated a computational framework that grants access to numerous algorithms for the purpose of 

data-driven autonomous gating. The user can design a sequence of autonomous gates, save this 

sequence to a GatingStrategy, and then apply the sequence to subsequent data. This is exemplified 

in Figure 2, showing the identification of T lymphocytes from local immune cells in the peritoneal 

effluent of PD patients.  This example utilises density-driven threshold gates, where a threshold is 

determined based on properties of the Probability Density Function as estimated using Gaussian 

Kernel Density Estimation, and mixture models shown as elliptical gates. CytoPy hides the 
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daunting complexity of this process behind a low-code interface (Supplementary Figure S1), in an 

attempt to make cytometry bioinformatics more approachable for newcomers to the field. Many 

popular algorithms are accessible through this interface, including Birch, mini-batch K means and 

mixture models (Supplementary Figure S2). 

Autonomous gates are capable of replicating manual gates but are often dependent on the choice of 

hyperparameters and their optimal values may differ between data. Despite this, we have found 

their application is suitable for identification of large populations requiring simple gating strategies. 

Figure 3 shows the performance of autonomous gates for identifying common cell populations in 

peritoneal effluent by comparing their correlation with the same population identified manually by 

an expert analyst. It is evident that autonomous gates fail when a population is rare and/or displays 

poor separation from cells with similar phenotypes. The same observations were made when gating 

for T cell subsets, with good performance for CD4+ and CD8+ T cells, but poor performance for 

minor populations such as mucosal-associated invariant T (MAIT) cells and γδ T cells (data not 

shown).   

3.2. CytoPy provides accurate cell classification using supervised machine learning algorithms 

 

Unsupervised methods employed by autonomous gates may fail to generalise and struggle to 

reliably annotate rare cell populations, populations that significantly deviate between biological 

specimens, or populations that may be almost absent in some individuals yet abundant in others. 

Further to this, autonomous gates are only exposed to one or two dimensions of the n-dimensional 

feature space (that is, the vector of intensity values for all measured fluorochromes) rather than 

exploiting all available variables.  The nature of cytometry data lends itself well to supervised 

classification, given that a typical biological sample yields hundreds of thousands of events but 

current technologies are limited to measuring up to a maximum of approximately 40 variables for 

each cell, resulting in an abundance of observations. We therefore hypothesised that a supervised 

classifier, trained on one or more annotated examples and then exposed to all available variables in 
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the data, would result in increased performance. After consulting the literature we found that others 

had employed such techniques (8; 7) but no robust framework for their application exists. 

CytoPy offers the CellClassifier class as a blueprint for supervised classification in a cytometry 

framework. Through this class CytoPy exposes the popular machine learning libraries Scikit-Learn 

(20), XGBoost (29) and Keras (30) to the task of annotating cytometry data. The CellClassifier 

class follows the conventions of Scikit-Learn by providing a familiar application programming 

interface (API) and the apparatus for any classification algorithm to be integrated into the CytoPy 

framework.  In this study, we have chosen to demonstrate the following: XGBoost, a Feed-Forward 

Neural Network, Linear Discriminant Analysis, Support Vector Machines and K-Nearest 

Neighbours.  The choice of algorithms to include in this analysis was based on prior experience 

with classification tasks (31), examples in the literature of supervised classifiers in this domain (8; 

17; 23), and the relevance of including classifiers from multiple families (32). In order to validate 

the CellClassifier class and test the performance of each algorithm, we utilised the FlowCAP-I 

classification challenge (see Supplementary Methods). These data were chosen because of prior 

publication and their use for validation of algorithms applied to cytometry analysis (17; 8). As 

shown in Table 1, when judged by weighted F1 score we found acceptable performance for each 

algorithm applied (defined as an F1 score greater than 0.9) while XGBoost gave the best 

performance, and was therefore deemed the method of choice for the remainder of this study. 

 

3.3. CytoPy provides visual and quantitative tools for evaluating inter-sample variation, 

assisting the choice of suitable training data 

 

The FlowCAP-I data are suitable for validation of a method but are heavily pre-processed and 

simplified compared to data encountered in a complex observational study such as the peritonitis 

data introduced earlier. Studies designed to collect clinical specimens over several months or even 

years introduce unavoidable complications, for instance including but not limited to: deviations in 

experimental conditions, changes in instrument setup, and variation introduced by batch changes of 
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staining monoclonal antibodies. The technical variation combined with the biological variation 

observed for each specimen can make it difficult to determine their comparability and choose 

representative training data for a supervised learning approach to cytometry data annotation. 

 

CytoPy provides the variance module to visualise and quantify this variation, to assist the user in 

the choice of adequate training material. As an anchoring point, the user should choose a suitable 

“reference sample” to be used when comparing the observable variation amongst all samples in an 

experiment. A reference sample can be identified using the calculate_ref_sample function.  

Following the method presented by Li et al (8), CytoPy performs a pairwise computation of the 

Euclidean norm of each sample‟s covariance matrix, and selects the sample with the smallest 

average distance as reference.  This reference sample can then be used for univariate comparison of 

each channel using the marker_variance function (Figure 4A) or multivariate comparison using a 

dimensionality reduction technique such as Principle Component Analysis (PCA), achieved with 

the dim_reduction_grid function (Figure 4B). 

 

In Figure 4, the reference sample is shown in blue and compared to randomly selected samples 

shown in red; ten such samples are depicted to ease visual interpretation but there is no limit to the 

number of comparisons that can be made in a single plot.  While Figure 4A shows the degree of 

inter-sample variance for individual fluorochromes and highlights abnormalities in a single channel, 

Figure 4B shows the same ten randomly selected samples, individually plotted to overlay the 

reference sample, thus illustrating the multivariate drift of a sample compared to the chosen 

reference.  This allows for identification of samples that are explicit outliers and gives a general 

sense of the inter-sample variance in the complete immunological landscape measured. 

 

The approach illustrated in Figure 4 defines methods that are helpful for visually critiquing the 

quality of the dataset and that can identify anomalies that should be addressed by changing 
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technical procedures in data acquisition.  To proceed with classifying cells into known phenotypical 

subsets we must take into account this variation.  This is achieved in traditional manual gating by 

laboriously adjusting gates on a per-sample basis, with considerable variation depending on the 

investigator.  For automated classification by supervised methods, we instead choose our training 

data in such a way that inter-sample variation is accounted for.  CytoPy provides the 

SimilarityMatrix class and the output is shown for each sample type in Figure 5.  Unlike the 

visualisation techniques depicted in Figure 4, the SimilarityMatrix quantifies the inter-sample 

variation by computing a pairwise statistical distance for each possible combination of samples. In 

brief, the joint probability density function (PDF) of the n-dimensional feature space is estimated 

using a kernel density estimation (KDE; multiple implementations are available but CytoPy defaults 

to a fast convolution based technique (33)). Bandwidth for KDE can be given either as a floating 

point number used for each KDE computation, estimated for each sample using normal 

approximation (e.g. Silverman‟s method), or the optimal bandwidth for each sample can be 

estimated by cross-validation. The latter is the preferred and default method, whereby the optimal 

bandwidth is chosen by grid-search hyperparameter tuning using cross-validaiton; the optimal 

bandwidth being the one which maximises the total log probability density under the model. If the 

the number of cells observed are few, the number of dimensions many, or the user lacks 

computational resources, they can opt to perform dimension reduction prior to the KDE. The 

statistical distance for each pair of PDFs is calculated to generate a matrix of distances. The 

statistical distance shown in Figure 5 is the square root of the Jenson-Shannon divergence (the 

default choice for this function), given by: 

√
‖ ‖

 

Where m is the pointwise mean of the left probability vector p (PDF of the first sample) and the 

right probability vector q (PDF of the second sample).  KL is the Kullback-Leibler divergence.  The 

Jenson-Shannon distance returns a value between 0 and 1, where 0 indicates that the distributions p 
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and q are equivalent, and 1 that they are highly dissimilar (34; 35).  Any statistical distance (a 

function taking two probability vectors and outputting a metric distance) can be used, but by default 

the Jenson-Shannon distance is applied, chosen for its properties of symmetry and finite output (35; 

36).  The SimilarityMatrix outputs a heatmap where the colour of each cell corresponds to the 

Jenson-Shannon distance of the x, y axis pair that overlaps on the given cell.  The axes of the 

heatmap are clustered using single linkage clustering.  Clustering on the pairwise Jenson-Shannon 

distance reveals groups of samples that are similar in the distribution of their single cell subsets in 

high dimensional space.  Classification of cell populations in these groups can be performed 

independently per group but with the same objective of identifying phenotypically distinct cell 

populations.  For each group, the investigator chooses training data (a uniform sample of cells from 

each member of the group) using the calculate_ref_sample function, or can choose to sample 

multiple members of a group with the create_ref_sample function to generate a new FileGroup 

containing cells from many specimens. Suitable training data are then annotated for the cell 

phenotypes of interest (e.g. for T lymphocytes this might be CD4
+
 and CD8

+
 T cell subsets) using 

the gating infrastructure discussed in section 3.1. Once annotated a classifier is trained using the 

labelled reference and subsequently predicts the cell populations for the remaining members of the 

group.  This approach accounts for the inter-sample variation, and therefore improves the classifiers‟ 

ability to generalise. 

 

3.4. Supervised classification algorithms can reliably identify cell subsets in complex sample 

types whilst providing tools to inspect and diagnose anomalies 

In Figure 5, biological samples were clustered on pairwise Jenson-Shannon distances to reveal 

groups of samples of relatively high similarity; clustering results are shown as a dendrogram on the 

axis of each two-dimensional heatmap matrix.  Groups are derived by cutting the dendrogram at a 

level that was heuristically chosen through visual inspection of the dendrogram.  This process was 

repeated for each sample type and set of staining conditions to generate the groups shown in Figure 

6A where each group was treated independently during supervised classification.  
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Figure 6A shows the performance of XGBoost classification of all leukocyte subsets in peritoneal 

drain fluid and more detailed subsets of the T cell compartment in peritoneal drain fluid and in 

PBMCs from whole blood.  Performance is given as the weighted F1 score, a metric that captures 

the harmonic mean between precision and sensitivity, and is weighted by class support (the number 

of true instances for each label), which provides a value between 0 and 1, where 1 is the best 

possible score.  This metric was captured by monitoring the performance of XGBoost on five 

randomly chosen validation samples from each classification group of each experimental condition 

and/or sample type.  The validation samples were labelled by manual gating.  Performance was best 

for PBMCs from whole blood where the weighted F1 score on average was above 0.95.  

Performance was worst for identifying leukocyte subsets in peritoneal effluent, which reflects the 

complex nature of the sample type and the diversity of cell subsets we intend to describe.  The 

situation for T cell subsets classified from drain fluid was more complicated.  For groups 2 and 3 

performance was optimal (average weighted F1 score ≥ 0.95) yet for group 1 there was one 

significant outlier; one validation sample gave a weighted F1 score of 0.6, outside the interquartile 

range for this group.  Of note, CytoPy provides functionality to easily visualise and explore the 

results of CellClassifier objects.  For the particular outlier mentioned, Figures 6B and 6C show 

detailed results of the classification of T cell subsets.  Figure 6B is a heatmap representation of a 

confusion matrix, provided if the user provides a value of True to the argument confusion_matrix, in 

the validation method of CellClassifier.  The confusion matrix in Figure 6B shows „predicted labels‟ 

versus the „true label‟; the ground truth being the results of manual gates.  The values shown in the 

confusion matrix were normalised across each row (true label) meaning the values on the diagonal 

were equivalent to the accuracy for each class.  The confusion matrix revealed that although this 

sample scored poorly in terms of Weighted F1 score, the classification accuracy was greater than 95% 

for all but two classes: γδ T cells and unclassified cells, i.e. those that would not fall into any „gate‟.  

52% of cells that had been classed as γδ T cells by the manual gate in this particular sample were 

instead left unclassified and a large majority of unclassified cells from manual gating were 
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classified into other categories by the XGBoost algorithm.  The inclusion of unclassified cells into 

one or more other subsets was least concerning as it likely reflected the subjective nature of manual 

gating; the close fit of a gate to its chosen population being one common subjective property of 

manual gates.  The classification of γδ T cells was of greater concern, as this is a T cell subset that is 

relatively rare in many individuals and hence challenging to assess, yet of significant importance 

especially in Gram negative infections (37).  

 

The CellClassifier of CytoPy converts its classification results to population data and is associated 

back to the FileGroup. This makes comparison of supervised classification to the results of manual 

gating, semi-autonomous gating or clustering analysis straight-forward.  For example, the 

back_gating method of GatingStrategy allows the investigator to plot the results of multiple 

methods on familiar bi-axial plots for comparison.  As illustration, Figure 6C shows the 

interrogation of data likely to represent an outlier in the analysis.  Overlaid is the result of the 

XGBoost classification for Vδ2
+
 γδ T lymphocytes (red points) and the manual gate for the same 

subset (yellow line).  Vδ2
+
 γδ T cells were unusually sparse in this particular patient sample, which 

explains the poor classification performance in this instance.  Of note, upon visual inspection the 

XGBoost algorithm was equally suited at identifying rare cell types compared to manual gating; and 

classification of γδ T cells was performed correctly by the XGBoost algorithm in all other samples 

(additional examples shown in Supplementary Figure S3 and S4). 

 

3.5. Unbiased cell classification by high dimensional clustering 

Although supervised classification provides us with one methodology for identifying cell subsets, it 

is biased by the gating strategy used in labelling training data.  In recent years, numerous clustering 

algorithms have been proposed for high-dimensional clustering of single cell data.  Two popular 

solutions are PhenoGraph (4) and FlowSOM (3; 38), both of which are available in CytoPy through 

the Clustering class.  As with the CellClassifier class, Clustering is agnostic to the clustering 
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algorithm of choice.  Semi-automated gating, XGBoost classification, and PhenoGraph clustering 

are comparable in their identification of major cells subsets (Supplementary Figure S5) but using 

unison of methods (i.e. XGBoost classification and PhenoGraph clusters) provides many benefits 

and is encouraged in the CytoPy framework; high dimensional clustering offers the opportunity for 

exploratory data analysis, and obtained clusters can be contrasted with populations identified from 

supervised classification to improve the confidence of reported results. 

 

Exploratory data analysis in CytoPy is facilitated by the Explorer class, which encapsulates the 

single cell data of one or multiple patients after clustering and supervised classification has been 

performed, and houses the data within a Pandas DataFrame.  Operations can be performed on the 

DataFrame independently allowing custom scripting, but the Explorer class carries many utility 

functions that are designed for exploratory data analysis.  Examples include methods for associating 

metadata to clusters (e.g. the patient phenotype), dimensionality reduction techniques, and 

interactive plotting tools. 

 

Clustering is performed on a per-sample basis but to explore the immune landscape of the entire 

cohort, a consensus must be found such that similar clusters between patients can be grouped.  This 

consensus gives rise to comparisons in cell abundance and phenotype between clinical phenotypes.  

To achieve this, CytoPy uses meta-clustering.  In brief, each subject is independently min-max 

normalised, and the centroid of each cluster calculated.  The centroids of clusters for each subject 

are then merged to form a dataframe that describes the clustering results of all subjects.  Finally, a 

clustering algorithm of choice is applied to this dataframe (see Supplementary Methods).  As 

example for the successful utilisation of PhenoGraph, Figure 7A shows the results of meta-

clustering for total leukocytes in the peritoneal drain fluid of individuals receiving PD.  The 

Uniform Manifold Approximation and Projection (UMAP) (39) plot shows all clusters (solid filled 

circles) from all patients displayed in two-dimensional space.  The colour of a cluster corresponds 
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to the associated meta-cluster while the size cluster represents the proportion of cells within the 

cluster (relative to the total CD45
+
 single immune cells in each individual patient).  The nature of 

the UMAP plot is such that clusters of similar phenotype are arranged closer to one another.  

However, CytoPy allows to utilise any dimensionality reduction technique (e.g. PCA, Isomap, 

PHATE (40) etc), depending on the preference of the investigator and the specific question to be 

addressed.  Meta-clusters are manually labelled according to their phenotype, as displayed in the 

heatmap of Figure 7A.  Clusters can be colour-coded using any desired metadata.  For instance, 

given an instance of Explorer named explorer, one could associate the clinical phenotype of a 

patient to their clusters using the following single line of code: 

explorer.load_meta(variable=’peritonitis’) 

 

For each patient in this example, the database is queried for the variable named „peritonitis‟ (as in 

“does this patient have acute peritonitis?”) and populates the Pandas DataFrame stored in the 

explorer object.  The UMAP plot is then repeated by colour-coding according to the metadata, as 

shown in Figure 7B.  The distribution of clusters of different clinical phenotypes in the UMAP plot 

reveals changes in the immunological response.  Subsets of cell compartments (e.g. „Monocytes_0‟, 

„Monocytes_1‟ etc.) can be consolidated and the proportion of cells within these consolidated 

groups (as percentage of all CD45
+
 immune cells) is shown in the boxplots of Figure 7B. 

 

Applying this cluster analysis to a cohort of PD patients, CytoPy found that acute bacterial 

peritonitis resulted in a dramatic shift in the composition of local immune cells, with a significant 

increase in the proportion of neutrophils and a parallel drop in the relative proportion of 

monocytes/macrophages, dendritic cells (DCs), B cells and T cells .  These findings corresponded 

well with previous studies showing a significant influx of inflammatory cells into the peritoneal 

cavity on the first day of presenting with acute symptoms, compared to stable individuals in the 

absence of peritoneal inflammation (25; 26; 27; 41)  
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Figure 8 shows the same set of analytical techniques applied to the local T cell populations in 

individuals receiving PD.  Figure 7A shows a UMAP plot of clusters, coloured according to their 

associated meta-cluster and revealing clean separation not only of CD4
+
 and CD8

+
 T cells as the 

major T cell populations but also of unconventional T cell populations such as Vα7.2
+
 CD161

+
 

MAIT cells and Vδ2
+
 γδ T cells.  Figure 8B shows the same clusters as in Figure 8A but now 

colour-coded by the metadata regarding the presence or absence of bacterial infection.  The 

differences in T cell subsets between stable controls and those with acute peritonitis were subtle and, 

due to the small size of this cohort, not statistically significant.  Of note, CytoPy allows to explore 

the composition of the T cell compartment in even more detail, as illustrated for the CD8
+
 T cell 

subset (Figure 8C).  Here, PhenoGraph was capable of discerning distinct memory and effector 

subsets based on the expression of the surface markers CD45RA, CD27 and CCR7 (Figure 8C) 

further validating CytoPy as a reliable method for exploring changes in immune response in large 

flow cytometry data. 

 

3.6. Feature extraction and feature selection reveal variables that differentiate the immune 

response during acute peritonitis compared to stable controls 

Following cell classification by both biased and unbiased methodology, the immunological 

landscape of the observed subjects can be summarised in CytoPy into a „feature matrix‟.  This 

includes the relative abundance of populations as identified by supervised classification and clusters 

produced by techniques such as PhenoGraph.  There will be significant overlap here, and therefore 

the user may choose to specify to generate a consensus between the results of supervised 

classification and clustering by way of an average of the two methods.  Supervised classification is 

more robust towards underlying batch effects but biased by the gating strategy imposed upon the 

training data, whereas clustering is unbiased but not stable to batch effects.  By combining both 

methods the investigator can overcome the limitations that they present individually. 
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The methods described are implemented in the feature_extraction module of CytoPy.  Once a 

feature matrix has been generated dimensionality reduction techniques can be employed to reveal 

immediately if subjects separate in accordance to the experimental or clinical endpoint of interest.  

Figure 9A shows a PCA plot where peritonitis patients and stable controls clearly separated across 

two components, as expected from earlier studies by us (25; 27) and from the analysis shown in 

Figure 7.  

 

Filtering techniques can be employed within CytoPy to remove variables of low variance or identify 

high multi-colinearity (Supplementary Figure 2).  This is often necessary to remove redundant 

variables.  The immunological pattern that differentiates a clinical state or experimental end-point 

can then be visualised in a radial plot as shown in Figure 8B.  In this example, cell populations are 

marked on the axis and the internal value is the proportion of cells relative to their respected parent, 

after consolidating the results of both PhenoGraph clustering and XGBoost classification.  Figure 

9B confirms the observations made in the exploratory data analysis of clustering results (Figures 7 

and 8): although subtle differences exist in the T cell compartments, it is the stark differences in the 

proportion of myeloid cells that differentiates those with peritonitis compared to stable controls.  

Where further feature selection is necessary, CytoPy offers embedded methods in the form of L1-

regularised linear models, where variables can be selected according to whether their coefficient 

remains non-zero as the regularisation parameter decreases. (Supplementary Figure S6). 

 

4. Availability and Future Directions 

CytoPy represents a framework for the analysis of cytometry data that facilitates automated analysis 

whilst introducing robust data management and an iterative analytical environment.  The present 

study shows the ability of CytoPy to characterise the FlowCAP-I dataset with high precision and 

identified XGBoost as optimal classification algorithm for gating with supervised methods.  To 

demonstrate the capabilities of CytoPy on real-world data, we chose to analyse samples from 

patients with and without acute peritonitis, taking advantage of our extensive experience with this 
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type of samples over more than a decade.  Initially acquiring such samples on a four colour BD 

FACSCalibur flow cytometer with two lasers and simple FSC/SSC settings (42), we later utilised an 

eight colour BD FACSCanto with three lasers and FSC/SSC area/height channels (24; 34; 35), and 

now in the present study took advantage of a 16 colour BD LSR Fortessa with four lasers and 

FSC/SSC area, height, width, and time, thus illustrating the technological advance in the field but 

also the increasing complexity of the data acquired.  The exquisite and elegant performance of 

CytoPy confirmed a striking increase in total neutrophils at the site of infection and a parallel 

decrease in the proportion of monocytes/macrophages, dendritic cells and T cells, in agreement with 

previous findings (26; 27), thereby validating the utility of CytoPy. 

 

We know of no other framework to date that offers the flexibility provided by CytoPy whilst also 

providing a low-code API for easy application. Existing platforms include the likes of CytoBank 

(43) which – whilst boasting ease of use and a diverse offering of existing cytometry clustering 

algorithms – is a proprietary product that would not allow for collaboration and expansion of 

methodologies through the open-source bioinformatics community. In contrast, CytoPy will remain 

open-source to encourage bioinformaticians and developers to expand on existing technologies. 

Alternative open-source frameworks include OpenCyto (2) and Cytofkit (44). OpenCyto is focused 

on the application of autonomous gates, whereas Cytofkit exposes popular high-dimensional 

clustering algorithms in an easy interface. Despite their successful application in the literature, 

neither framework provides the diversity offered in CytoPy, where autonomous gates, supervised 

classification, and high dimensional clustering can not only be performed in one analytical pipeline, 

but their outputs visualised and contrasted with one another. This results in increased confidence in 

our findings as we can assess the conformity of multiple methodologies applied to the same data. 

Additionally, these existing frameworks do not provide the robust data management that CytoPy 

offers, with each analytical process being captured in a central database.   
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We have chosen to develop and maintain CytoPy in Python, a programming language with growing 

popularity in the bioscience domain.  The application of the popular Python deep learning 

frameworks such as Tensorflow (45) and Keras (30) offer potential for the autonomous analysis of 

cytometry data (8; 10; 38; 51).  It is our intention to incorporate these methodologies in a future 

release.  The agnostic object orientated design of CytoPy facilitates such additional 

implementations in a straight-forward manner.  It is this agnostic design and the introduction of a 

document-based database as central repository for cytometry analysis that sets CytoPy apart from 

alternative solutions.  

 

In addition to providing a new data-centric framework for applying existing methods of single cell 

classification and clustering, CytoPy offers novel tools to aid the analytical pipeline.  In this study, 

we highlight the difficulties presented in complex cytometry data and demonstrate autonomous 

methods that improve the efficiency of pre-processing.  We show how CytoPy can visualise and 

quantify the inter-sample variation, helping to account for batch-effects.  Prior attempts to mitigate 

or remove batch-effects have either been tied to the application of gates in two-dimensional space 

(46; 47), involve manipulation of the input space in such a way that biological signals could be lost 

or distorted (48; 49), or requires some technical intervention during data acquisition (50).  Here, we 

introduce an alternative strategy, instead of removing batch-effect by transforming or aligning the 

data, we propose a statistical measure be used to group data and supervised classification performed 

on each group individually.  However, we appreciate the impact that a reliable method for 

mitigating or removing batch effect prior to analysis might have and are open to the integration of 

data normalisation or transformation methodologies that would achieve this and would see that it 

fits the data-centric design of CytoPy.  

 

As high-dimensional cytometry analysis continues to grow in popularity there will be increasing 

demand for an analytical framework that is friendly for those who are new to programming, 
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provides a database that directly relates metadata to single cell data, and scales in a fashion that 

encourages collaboration and expansion.  CytoPy meets all these criteria whilst remaining open-

source and freely available on GitHub (https://github.com/burtonrj/CytoPy). In future releases we 

wish to open CytoPy up to a wider audience through the integration of a graphical user interface, 

and we hope to expand the capabilities of CytoPy by continuing to support new methodologies in 

the cytometry domain. Those wishing to collaborate with us or extend our software capabilities 

should consult the documentation (https://cytopy.readthedocs.io/) and make a pull request on our 

GitHub repository. 
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5. Supplementary Methods 

5.1. FlowCAP 

To assess the ability of CytoPy to classify cells we used the datasets provided in the Flow 

Cytometry: Critical Assessment of Population Identification Methods (FlowCAP) challenge [21], 

where the challenge is to accurately separate cells into subsets based on single cell phenotype.  The 

FlowCAP-I data consist of four human studies (graft-versus-host disease, diffuse large B-cell 

lymphoma, symptomatic West Nile virus infection, and normal donors) and one mouse study 

(hematopoietic stem cell transplant).  Data were labelled and pre-processing performed (removal of 

debris, dead material, and with fluorescence compensation applied) at source by the laboratory 

responsible for acquiring the original data. Here, classifiers were trained on 25% of data and 

classification performance tested on the remaining 75%.  Performance was reported as the average 

of weighted F1 scores across all five datasets, where the F1 score for data with | | set of possible 

classes is given as:  

| |
∑  

 

Run time was determined as the number of seconds elapsed for training and classification, as an 

average across every sample classified.  Five supervised machine learning algorithms, housed 

within CytoPy, were compared without hyperparameter tuning: 

1. Feed-forward neural network with three layers of size 12, 6 and 3 nodes, L2 penalty of 

1×10
−4

, ReLU activation function on the hidden layers, softmax activation function on the 

outer most layer, and categorical cross-entropy as the loss function; implemented in Keras 

v2.3. 

2.  XGBoost  withdefault hyperparameters; implemented in XGBoost v0.9. 
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3. Linear Discriminant Analysis with singular value decomposition with no shrinkage and 

number of components equal to min(n classes – n features); implemented in Scikit-Learn 

v0.22. 

4. K-Nearest Neighbours with number of neighbours used in constructing tree equalling 5 and 

„ball tree‟ algorithm to compute nearest neighbour for classification; implemented in Scikit-

Learn v0.22. 

5. Support Vector Machine with radial basis function kernel; implemented in Scikit-Learn 

v0.22. 

In each instance, data were standardised by removing the mean and scaling to unit variance; 

standard scores for each sample is given as ( ) where u is the mean and s the standard 

deviation.  

5.2. Patients  

The study cohort comprised 37 adult individuals receiving peritoneal dialysis (PD) who were 

admitted between October 2016 and October 2018 to the University Hospital of Wales, Cardiff, on 

day 1 of acute peritonitis, before commencing antibiotic treatment (34.6% female; median age 68 

years, range 22-91 years).  20 age and gender-matched individuals receiving PD and with no 

previous infections for at least 3 months served as stable, non-infected controls (35.0% female; 

median age 69.5 years, range 28-93 years).  Subjects known to be positive for HIV or hepatitis C 

virus were excluded.  Clinical diagnosis of acute peritonitis was based on the presence of abdominal 

pain and cloudy peritoneal effluent with >100 white blood cells/mm
3
.  According to the 

microbiological analysis of the effluent by the routine Microbiology Laboratory, Public Health 

Wales, episodes of peritonitis were defined as infections caused by Gram-positive or Gram-negative 

organisms.  Cases of fungal infection and negative or unclear culture results were excluded from 

this analysis.  Basic patient demographics can be found in the Supplementary Methods and a 

summary of the bacterial culture results for patients with peritonitis are shown in Supplementary 
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Table S1.  All methods were carried out in accordance with relevant guidelines and regulations, and 

written informed consent was obtained from all subjects.  Recruitment of PD patients was approved 

by the South East Wales Local Ethics Committee under reference number 04WSE04/27, and 

conducted according to the principles expressed in the Declaration of Helsinki.  The study was 

registered on the UK Clinical Research Network Study Portfolio under reference numbers #11838 

"Patient immune responses to infection in Peritoneal Dialysis" (PERIT-PD).   

5.3 Flow cytometry   

Peritoneal leukocytes were harvested from overnight dwell effluents and processed as described 

previously (27; 41); samples were treated with DNase (Sigma; 1:2,500 dilution) when excessive 

debris was visually apparent.  Leukocyte populations in total effluent were stained using 

monoclonal antibodies against CD1c, CD3, CD14, CD15, CD16, CD19, CD45, CD116, HLA-DR 

and Siglec-8 (Supplementary Table S2) and identified as CD45
+
 immune cells, CD3

+
 T cells, 

CD19
+
 B cells, CD15

−
CD14

+
 monocytes/macrophages, CD15

+
 neutrophils, CD15

−
CD14

+/−
CD1c

+
 

dendritic cells, and CD15
−
Siglec-8

+
 eosinophils.  T cell subsets in peripheral blood mononuclear 

cells (PBMCs) and in peritoneal effluent were stained after Ficoll-Paque (Fisher Scientific) 

separation of blood and peritoneal leukocytes, respectively, using monoclonal antibodies against 

CD3, CD4, CD8, CD161, TCR-Vα7.2, TCR-Vδ2, TCR-pan-γδ, CD45RA, CCR7 and CD27 

(Supplementary Table S3).  Cell acquisition by flow cytometry was performed using a 16 colour 

BD LSR Fortessa cell analyser (BD Biosciences).  Live single cells were gated based on side and 

forward scatter area/height and live/dead staining (fixable Aqua; Invitrogen).  

5.4 Meta-clustering 

Meta-clustering was performed to find a consensus amongst the individual clustering results of 

many individual samples.  Each sample was independently normalized; that is, each feature was 

scaled: 
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( )

( ) ( )
 

Where x is the original value for a given feature and xnorm is its values scaled between zero and one.  

Once each sample was individually normalized, the clusters from each sample were extracted and 

their centroid calculated; by default this was given as the median of their feature vector but other 

definitions of center can be used (e.g. mean, geometric mean etc.).  Cluster centroids were 

annotated as to which sample they originated from and their original cluster ID and then 

concatenated  into a single dataframe.  This dataframe was then used as the input to a clustering 

algorithm of the user‟s choosing. 
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7. Tables 

Model Weighted F1 score (mean [95% CI]) Runtime (seconds) 

Feed-Forward Neural Network (4 layers) 0.966 [0.956 – 0.975] 9.62 

K-Nearest Neighbours 0.917 [0.884 – 0.948] 0.93 

Linear Discriminant Analysis 0.918 [0.892 – 0.943] 0.61 

Support Vector Machine (Radial Kernel) 0.964 [0.955 – 0.972] 8.68 

XGBoost 0.980 [0.976 – 0.984] 18.6 

 Table 1. Performance of five different supervised classifiers on FlowCAP-I data. 
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8. Figures 

Figure 1: Overview of the CytoPy framework and list of primary dependencies. Single cell data 

and experiments/clinical metadata (1) are used to populate a project within the CytoPy database (2). 

The CytoPy database models analytical data in MongoDB documents (cylinder) and an interface of 

CytoPy classes retrieves and commits data to this database (dotted rounded rectangle). The 

components of this interface are used to complete the following tasks. (3) Autonomous gating 

identifies a clean „root‟ population for analysis. (4) Inter-sample variation is visualised, quantified, 

and samples are grouped according to their similarity in high-dimensional space. (5) Cells are 

classified by supervised and unsupervised methodologies and visualised for exploratory data 

analysis. (6) Finally, single cell data can be summarised and feature selection techniques employed 

to find variables of interest. 
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Figure 2: Examples of using autonomous gates for identification of immune cells in a biological 

sample, as exemplified by the identification of T lymphocytes in peritoneal drain fluid from a 

patient with acute peritonitis. Algorithm-driven gates are applied on each two-dimensional plot in 

accession according to a user defined gating template and population hierarchy. The first gate (A) in 

the sequence filters out the majority of debris using a static rectangular boundary applied to forward 

scattered light area (FSC-A) and sideward scattered light area (SSC-A). Those events positive for 

the pan-T cell marker CD3 are identified with a density-dependent autonomous gate (B) that finds a 

threshold at the point of minimal density using properties of a probability density function. (C) 

Density-dependent autonomous gating then identifies live cells within the CD3
+
 cell population; 

those below the threshold found for live/dead stain. Live single CD3
+
 cells are further discriminated 

from other events by applying Gaussian mixture models to create an elliptical gate (D) using FSC-A 

and forward scattered height (FSC-H), and a density-dependent gate (E) using sideward scattered 

light width (SSC-W). Finally, the T cell population is identified using FSC-A and SSC-A and 

encapsulated by an elliptical gate generated by a Gaussian mixture model. 
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Figure 3: Comparison of autonomous gates and expert manual gating when identifying major 

immune cell subsets in peritoneal effluent. From left to right, the bar chart shows the most populous 

cell subsets such as neutrophils (CD19
- 
CD3

-
 CD14

- 
Siglec8

- 
CD15

+
) down to small populations 

such as B cells (CD19
+ 

CD3
-
) and Eosinophils (CD19

- 
CD3

-
 CD14

- 
Siglec8

+ 
CD15

+/-). The 

accompanying line plot shows the R-squared value when comparing the correlation between the 

population size detected by expert manual gating vs. autonomous gates.    
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Figure 4: Variance in cell marker abundance as measured by flow cytometry for T cells in 

peritoneal drain fluid (CD3
+
 lymphocytes). A reference subject (325-01) is shown in blue and 9 

other randomly selected subjects are overlaid for comparison in red. (A) Variation in individual 

parameters can be shown by kernel density estimation as shown here for 6 common parameters of 

interest in T cell biology, identifying all T cells (CD3) or the helper T cells (CD4) and cytotoxic T 

cells (CD8) populations, as well as surface markers associated with specific effector and memory 

subsets within these populations (CD45RA, CD27, CCR7). (B) Multi-variant drift can be visualised 

using dimensionality reduction techniques such as PCA. The same reference subject 325-01 as 

shown in (A) is given in blue and in each plot a different subject in red is overlaid. 
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Figure 5: Heatmap display of pairwise Jenson-Shannon Distances for all leukocyte subsets present in peritoneal drain fluid and subsets within the T 

cell compartment present in peritoneal drain fluid and whole blood. Jenson-Shannon distance is given as √JSD(p,q) where p and q are the PDFs of each 

given pair as estimated using a Gaussian kernel and JSD is a function for Jenson-Shannon divergence. Single linkage clustering is applied to each 

matrix to reveal groups of broad similarity. 
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Figure 6: Performance of XGBoost for cell classification of CD45
+
 leukocytes from peritoneal drain fluid and T cells from peritoneal drain fluid and 

whole blood. Groups are generated from all patients (infected and non-infected) as described in Figure 4. XGBoost performance was assessed by 

weighted F1 score on 5 randomly chosen validation samples within each independent group (A); where groups represent samples clustered on pairwise 

JSD and an independent classifier is trained for each group. (B) Classification performance of individual classes for an obvious outlier in T 

lymphocytes from drain fluid, group 1 (weighted F1 score equal to 0.6) is shown visually as a confusion matrix. The values in each row are normalised 

according to class support (the number of events in a given class). The diagonal of the confusion matrix is equivalent to the accuracy of classification 

for a particular class. (C) Back-gating functionality allows for close inspection of supervised classification results and comparison to manual gates, 

semi-autonomous gates, or clustering results. The classification of γδ T cells in this example is compared to a manual gate. 
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Figure 7: PhenoGraph meta-clustering results for CD45
+
 leukocytes present in peritoneal drain 

fluid from all available patient samples. (A) The heatmap shows the phenotype of meta-clusters. 

Individual clusters from all patients are shown in a UMAP plot where each colour filled circle is a 

unique cluster from an individual subject. Its colour corresponds to its meta-cluster enrolment and 

its size the proportion of cells relative to the number of CD45
+
 leukocytes. (B) Patient phenotype 

(stable control or acute peritonitis) is categorised by colour in a UMAP plot, showing individual 

clusters from all patients, and box plots show the difference in the proportion of cells as a 

percentage of CD45
+
 leukocytes; the difference in distribution of population proportions was tested 

by Mann-Witney U test; **** p ≤ 0.001 
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Figure 8: PhenoGraph meta-clustering results for T cells in peritoneal  drain fluid from all available 

patient samples. (A)  The heatmap shows the phenotype of meta-clusters. Individual clusters from 

all subjects are shown in a UMAP plot where each colour filled circle is a unique cluster from an 

individual subject. Its colour corresponds to its meta-cluster enrolment, and its size the proportion 

of cells relative to the number of T cells. (B) Meta-cluster results can be coloured by patient 

phenotype to reveal regions that distinguish clinical endpoints. Patient phenotype is contrasted by 

colour in clusters on a UMAP plot and in box plots of major T cell subsets as a percentage of total T 

cells. (C) Close inspection of CD8
+
 T cells shows that functionally distinct effector/memory subsets 

can be identified by PhenoGraph clustering. 
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Figure 9: (A) Principle component analysis of all identified cell populations shows separation of 

patients with acute peritonitis from stable controls. (B) Radial plot of major cell subsets given as the 

proportion of their derived parent population (MAIT cells, γδ T cell, CD8 T cells, CD4 T cells: 

proportion of total T cells; all others: proportion of CD45
+
 immune cells). Values shown are the 

consensus of XGBoost classification and PhenoGraph clustering. 
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9. Supplementary data 

Supplementary Figure S1: Demonstration of low-code API for generation of an autonomous gate 

and subsequent application of gate to new data. Generation of a new gating strategy and import of 

existing cytometry data is simplified by the GatingStrategy class (A). Autonomous gates can then 

be defined and associated to a GatingStrategy object (B) using any existing algorithm in the Scikit-

Learn library and libraries that follow the Scikit-Learn standard template architecture (e.g. 

HDBSCAN). A preview of the gate is generated that the use can then annotate with the 

label_children method (C). When applying this gate to new data (D), the chosen algorithm is „fitted‟ 

to the newly encountered data and resulting clustered matched to the clusters generated when the 

gate was defined (as shown in the prior steps, B and C).  
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Supplementary Figure S2: Analysis of CD4
+
 T lymphocytes from PBMC. Cells are separated 

based on their expression of the surface markers CD45RA and CD27, which delineate CD45RA
+
 

CD27
+
 naïve, CD45RA

−
 CD27

+
 central memory and CD45RA

−
 CD27

−
 effector memory subsets. 

Examples of different algorithms available through the CytoPy‟s Gate API are shown.  

 
 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.04.08.031898doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.031898
http://creativecommons.org/licenses/by/4.0/


Supplementary Figure S3: Analysis of T cells from PBMC based on their expression of the 

surface markers CD161 and Vα7.2 for the identification of MAIT cells. Shown are data from six 

individual PD patients after annotation by XGBoost. Data points corresponding to those cells 

annotated as belonging to the CD161
+
 Vα7.2

+
 MAIT cell subset are visualised in black.  
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Supplementary Figure S4: Analysis of T cells from PBMC based on their expression of the 

surface markers pan- γδ and Vδ2 for the identification of Vδ2
+
 γδ T cells. Shown are six separate 

subjects after annotation by and XGBoost classification model. Shown are data from six individual 

PD patients after annotation by XGBoost. Data points corresponding to those cells annotated as 

belonging to the Vδ2
+
 γδ T cell subset are visualised in black.  
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Supplementary Figure S5: PHATE plots showing the classification of T lymphocyte subsets in 

whole blood by (A) manual gating, (B) XGBoost classification, and (C) PhenoGraph clustering. 
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Supplementary Figure S6: Visualisation of feature selection techniques.  (A) Variance of 

population proportions for all classified populations and clusters for cells isolated from peritoneal 

drain fluid (local) and whole blood (PBMCs).  (B) Cell populations and clusters are summarised 

into common compartments and variation in proportion relative to parent population shown.  (C) 

Support Vector Machine with a linear kernel was used to classify patient phenotype.  The coefficient 

(y-axis) associated with each variable included in the feature space of this classifier is shown as the 

L1 regularisation parameter (x-axis) decreases.  Variables of increasing importance to accurate 

classification of patient phenotype will take longer to converge to 0 as the regularisation parameter 

decreases. 
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Culture result n 

Coagulase-negative Staphylococcus 4 

Staphylococcus aureus 2 

Streptococcus agalactiae 1 

Streptococcus mitis 1 

Alpha-haemolytic Streptococcus 1 

Corynebacterium amycolatum 1 

Escherichia coli 1 

Pseudomonas aeruginosa 1 

Yeast 1 

No growth 4 

Supplementary Table S1. Summary of microbiological culture results for peritoneal dialysis 

patients with acute peritonitis 

 

 

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.04.08.031898doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.031898
http://creativecommons.org/licenses/by/4.0/


 

Marker/Cytokine Fluorochrome Manufacturer (Clone) 

CD45 Alexa Fluor 700 BioLegend (2D1) 

CD14 FITC BioLegend (63D3) 

CD16 Per-CP Cy5.5 BioLegend (3G8) 

CD3 APC/Fire BioLegend (UCHT1) 

Siglec-8 APC BioLegend (7C9) 

CD1c Brilliant Violet 421 BioLegend (L161) 

CD15 Brilliant Violet 605 BioLegend (SSEA-1) 

HLA-DR Brilliant Violet 711 BioLegend (L243) 

CD116 PE BioLegend (4H1) 

CD19 PE-Cy7 BioLegend (HIB19) 

  Supplementary Table S2. Staining panel for leukocytes 

 

Marker Fluorochrome Manufacturer (Clone) 

CD3 APC/Fire BioLegend (UCHT1) 

CD4 PE-Cy5.5 BioLegend (OKT4) 

CD8 Brilliant Violet 711 BioLegend (RPA-T8) 

CD161 APC Miltenyi Biotec (191B8) 

Vα7.2 Brilliant Violet 605 Biolegend (3C10) 

TCR-pan-γδ PE-Cy5 Beckman Coulter (IM2662) 

Vδ2 PE BD Biosciences (B6 RUO) 

CCR7 Brilliant Violet 421 BioLegend (G043H7) 

CD27 PE-Cy7 BioLegend (M-T271) 

CD45RA PE Dazzle BioLegend (HI100) 

  Supplementary Table S3. Staining panel for T lymphocytes 
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