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Abstract 1

We propose an efficient framework for genetic subtyping of SARS-CoV-2, the novel coronavirus that causes 2

the COVID-19 pandemic. Efficient viral subtyping enables visualization and modeling of the geographic 3

distribution and temporal dynamics of disease spread. Subtyping thereby advances the development of 4

effective containment strategies and, potentially, therapeutic and vaccine strategies. However, identifying 5

viral subtypes in real-time is challenging: SARS-CoV-2 is a novel virus, and the pandemic is rapidly 6

expanding. Viral subtypes may be difficult to detect due to rapid evolution; founder effects are more 7

significant than selection pressure; and the clustering threshold for subtyping is not standardized. We 8

propose to identify mutational signatures of available SARS-CoV-2 sequences using a population-based 9

approach: an entropy measure followed by frequency analysis. These signatures, Informative Subtype 10

Markers (ISMs), define a compact set of nucleotide sites that characterize the most variable (and thus most 11

informative) positions in the viral genomes sequenced from different individuals. Through ISM compression, 12

we find that certain distant nucleotide variants covary, including non-coding and ORF1ab sites covarying 13

with the D614G spike protein mutation which has become increasingly prevalent as the pandemic has spread. 14
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ISMs are also useful for downstream analyses, such as spatiotemporal visualization of viral dynamics. By 15

analyzing sequence data available in the GISAID database, we validate the utility of ISM-based subtyping by 16

comparing spatiotemporal analyses using ISMs to epidemiological studies of viral transmission in Asia, 17

Europe, and the United States. In addition, we show the relationship of ISMs to phylogenetic reconstructions 18

of SARS-CoV-2 evolution, and therefore, ISMs can play an important complementary role to phylogenetic 19

tree-based analysis, such as is done in the Nextstrain [1] project. The developed pipeline dynamically 20

generates ISMs for newly added SARS-CoV-2 sequences and updates the visualization of pandemic 21

spatiotemporal dynamics, and is available on Github at https://github.com/EESI/ISM and via an 22

interactive website at https://covid19-ism.coe.drexel.edu/. 23

Author Summary 24

The novel coronavirus responsible for COVID-19, SARS-CoV-2, expanded to reportedly 8.7 million confirmed 25

cases worldwide by June 21, 2020. The global SARS-CoV-2 pandemic highlights the importance of tracking 26

viral transmission dynamics in real-time. Through June 2020, researchers have obtained genetic sequences of 27

SARS-CoV-2 from over 47,000 samples from infected individuals worldwide. Since the virus readily mutates, 28

each sequence of an infected individual contains useful information linked to the individual’s exposure 29

location and sample date. But, there are over 30,000 bases in the full SARS-CoV-2 genome—so tracking 30

genetic variants on a whole-sequence basis becomes unwieldy. We describe a method to instead efficiently 31

identify and label genetic variants, or “subtypes” of SARS-CoV-2. Applying this method results in a 32

compact, 11 base-long compressed label, called an Informative Subtype Marker or “ISM”. We define viral 33

subtypes for each ISM, and show how regional distribution of subtypes track the progress of the pandemic. 34

Major findings include (1) covarying nucleotides with the spike protein which has spread rapidly and (2) 35

tracking emergence of a local subtype across the United States connected to Asia and distinct from the 36

outbreak in New York, which is found to be connected to Europe. 37

Introduction 38

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus responsible for the 39

COVID-19 pandemic, was first reported in Wuhan, China in December 2019. [2, 3]. In a matter of weeks, 40

SARS-CoV-2 infections had been detected in nearly every country, and as of July 2020, reported cases 41

continue to rapidly increase across multiple continents. Powered by advances in rapid genetic sequencing, 42
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there is an expansive and growing body of data on SARS-CoV-2 sequences from individuals around the 43

world. During the early stage of the pandemic, a substantial degree of heterogeneity was already identified, 44

with differences in 15% of the sites of the sequences. [4] SARS-CoV-2 will mutate over time as transmissions 45

occur and the virus spreads; although, notably, it has previously been observed that coronaviruses, which are 46

single strand RNA viruses with a relatively large genome size („30,000 bases), tend to have lower mutation 47

rates than other RNA viruses [5]. Central repositories are continuously accumulating SARS-CoV-2 genome 48

data from around the world, such as the Global Initiative on Sharing all Individual Data (GISAID) [6] 49

(available at https://www.gisaid.org/). 50

Researchers are presently using whole genome sequence alignment and phylogenetic tree construction to 51

study the evolution of SARS-CoV-2 on a macro and micro scale [1, 7–10]. For example, the Nextstrain group 52

has created a massive phylogenetic tree incorporating sequence data and applied a model of the time-based 53

rate of mutation to create a hypothetical map of viral distribution [1] (available at 54

https://nextstrain.org/ncov). Similarly, the China National Center for Bioinformation has established a 55

“2019 Novel Coronavirus Resource”, which includes a clickable world map that links to a listing of sequences 56

along with similarity scores based on alignment (available at https://bigd.big.ac.cn/ncov?lang=en) [11]. 57

In more granular studies, early work by researchers based in China, analyzing 103 genome sequences, 58

identified two highly linked single nucleotides, leading them to suggest that two major subtypes had emerged: 59

one called “L,” predominantly found in the Wuhan area, and “S,” which derived from “L” and found 60

elsewhere [12]. Subsequently, further diversity was recognized as the virus continued to spread, and 61

researchers developed a consensus reference sequence for SARS-CoV-2, to which other sequences may be 62

compared [13]. Researchers have continued to publish studies of the specific variants in the context of 63

localized outbreaks, such as the Diamond Princess cruise ship [14], as well as regional outbreaks and their 64

international connections [12,15–18]. 65

Efforts are also underway to identify potential genome sites and regions where selection pressure may 66

result in phenotypic variation. Particular focus has been given to the ORF (open reading frame) coding for 67

the spike (S) receptor-binding protein, which may impact the development of vaccines and antivirals [19]. 68

Notably, a group studying sequence variants within patients reported limited evidence of intrahost variation, 69

though they cautioned that the results were preliminary and could be the result of limited data [20,21]. 70

Intrahost variation thus represents yet another layer of complexity in evaluating that viral variation which 71

influences disease progression in an individual patient, or may be associated with events that can in turn 72

generate sequence variation in other individuals that patient infects. 73

Given the importance of tracking and modeling genetic changes in the SARS-CoV-2 virus as the outbreak 74
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expands, there is a need for an efficient methodology to quantitatively characterize groups of variation in the 75

SARS-CoV-2 virus genome by defining genetic subtypes of the virus. Exemplary potential applications of 76

quantitative subtyping include the following: 1) Characterizing potentially emerging variants of the virus in 77

different regions, which may ultimately express different phenotypes. 2) Monitoring variation in the viral 78

genome that may be important for vaccine development, for example due to emerging structural differences 79

in proteins encoded by different strains. 3) Designing future testing methodology to contain disease 80

transmission across countries and regions, for example developing specific tests that can characterize whether 81

a COVID-19 patient developed symptoms due to importation or likely domestic community transmission. 4) 82

Identifying viral subtypes that may correlate with different clinical outcomes in different regions and patient 83

subpopulations. 84

Phylogenetic trees obtained through sequence alignment may be utilized to map viral outbreaks 85

geographically and trace transmission chains [22,23] and have been applied to SARS-CoV-2 by, e.g., the 86

Nextstrain group as discussed above. At an early stage in the pandemic, however, phylogenetic trees may be 87

unreliable predictors of evolutionary relationships between viral strains circulating worldwide, because of 88

insufficient information regarding the molecular clock assumption, practical limits on data collection, and 89

sampling bias [24]. Accordingly, subtyping based on phylogenetic models may also be unreliable and change, 90

as the assumptions underlying the models change given more sequencing and continued variation in the viral 91

genome. The ISM approach described in this paper relies instead on compact measures of sequence similarity 92

that will remain conserved even as more genome sequence data is added over time. ISMs thus provide a 93

robust subtype definition, which can help track the virus as the pandemic progresses. Therefore, it may be 94

more efficient to focus on co-occurring patterns of only the sites of the more frequently occurring variation 95

within the viral genome to identify subtypes, rather than utilizing whole genome sequence data to cluster 96

viral genomes, which may contain additional confounding variation. 97

Moreover, the nomenclature of clades imply that the categorization of viruses in subtypes is static rather 98

than dynamic. SARS-CoV-2 is a novel virus in humans that is rapidly evolving, which makes it harder to 99

establish a stable nomenclature for genetic typing [10]. The Nextstrain project has sought to address these 100

challenges by providing their own clade definitions based on whether there are a certain number of mutations 101

at nucleotide positions in the sequence (at least two) and naming clades based on their estimated time of 102

emergence [25]. This shows that a conventional genetic subtype relying on whole genome phylogenetic trees 103

will be complicated by the changes in viral genome, especially early on in a pandemic before those changes 104

are clearly governed by selection pressure. Lineages will likely disappear and reemerge within different 105

geographical regions and over the course of time [10]. In addition, viral evolutionary analysis, such as by the 106
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Nextstrain group, relies on making assumptions solely on molecular evolution (the degree of sequence 107

similarity and branching points in defining genetic clades and other levels of organization) and not on 108

transmission models. 109

In this paper, we propose a methodology to complement phylogenetics-based transmission and evolution 110

models of SARS-CoV-2 that can consistently and rapidly identify subtypes without requiring an initial tree 111

reconstruction step—and, thereby, avoid the need to make assumptions about the molecular evolution clock 112

and clustering thresholds. To generate highly informative molecular signatures indicative of a subtype or 113

emerging lineage, we look to methods that have been successfully employed in the microbiome field to resolve 114

species/subspecies from 16S ribosomal RNA (16S rRNA) gene [26]. The 16S rRNA gene is a highly 115

conserved sequence and therefore can be used for phylogenetic analysis in microbial communities [27–31]. 116

One way to differentiate between closely related microbial taxa is to identify nucleotide positions in 16S 117

rRNA data (“oligotypes”) that represent information-rich variation [32]. This approach has also been used in 118

the reverse direction to find conserved sites as a way to assemble viral phylogenies [33]. Dawy et al. proposed 119

to use Shannon’s mutual information to identify multiple important loci for Gene mapping and marker 120

clustering [34]. Shannon Entropy [35] has been applied in multiple sequence alignment data to quantify the 121

sequence variation at different positions [32,36]. Given a position of interest, entropy can be used to measure 122

the amount of “randomness” at that position, as determined by whether sequences may have different bases 123

at a specific position. For instance, if there is an A at a given position across all aligned sequences, the 124

entropy will be 0, i.e., there is no “randomness” at that position. On the other hand, if at a given position 125

there is a G in 50% of the sequences and a T in the other 50%, the entropy will be 1 (i.e., essentially 126

“random”), and thus a relatively high entropy. Based on this property, oligotyping [32] utilizes variable sites 127

revealed by the entropy analysis to identify highly refined taxonomic units.1 128

Accordingly, we present herein a method to define a genetic signature, called an “informative subtype 129

marker” or ISM, for the viral genome that can be 1) utilized to define SARS-CoV-2 subtypes that can be 130

quantified to characterize the geographic and temporal spread of the virus, and 2) efficiently implemented for 131

identifying strains to potentially analyze for phenotypic differences. The method compresses the full viral 132

genome to generate a small number of nucleotides that are highly informative of the way in which the viral 133

genome dynamically changes. We draw on the aforementioned oligotyping approach developed for 16S rRNA 134

data [32] and build on its implementation of entropy and grouping patterns to address the particular 135

challenges of viral genomes. On top of oligotyping, we add error correction to account for ambiguities in 136

1It is important to note that while we use the term “random” in the foregoing, in the biological context, a position may have
a different base in different sequences due to selection pressure resulting in strains with different phenotypes, rather than purely
random variation.
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reported sequence data and, optionally, applied further compression by identifying patterns of base entropy 137

correlation. The resulting ISM, therefore, defines a viral genetic subtype (that can be related to a 138

phylogenetic “lineage”, see Comparison of ISM-defined subtypes to clades identified using phylogenetic trees) 139

in the sense that it is a compressed (reduced complexity) representation of a set of genetic features (a.k.a 140

genotype). 141

The ISM pipeline may complement a phylogenetic approach in that it can efficiently identify viral 142

subtypes of the population through genetic hotspots and do not rely on evolutionary model assumptions. 143

ISMs identify subtypes with slight differences between sequences where the sequence identity is ą99%, as is 144

the case of SARS-CoV-2 with OrthoANI of 99.8% (at the end of April 2020) [37]. ISMs include the key base 145

mutations in the marker identification itself. And thus, unlike phylogenetic lineages (i.e., clades and 146

subsequent emergent subtypes), ISM-defined subtypes are expressly differentiated by mutations with high 147

diversity (over the viral population). For example, the ISM label of a subtype can include mutation in 148

SARS-CoV-2’s spike protein, which may have an important phenotypic impact. 149

As a succinct and robust identifier, therefore, ISM-based subtyping can facilitate downstream analysis, 150

such as modeling and visualizing the geographic and temporal patterns of genetic variability of SARS-CoV-2 151

sequences obtained from the GISAID database. We have made the pipeline available on Github 152

https://github.com/EESI/ISM, where it will be continuously updated as new sequences are uploaded to 153

data repositories 2. We have also developed an interactive website showing the worldwide country-specific 154

distributions of ISM-defined subtypes, available at https://covid19-ism.coe.drexel.edu/ 155

Methods 156

Data collection and preprocessing 157

Nextstrain maintains a continually-updated, pre-formatted SARS-CoV-2 (novel coronavirus) sequence 158

dataset through GISAID (this dataset also includes sequences of other novel coronavirus sampled from other 159

hosts such as Bat). This dataset was downloaded from GISAID (http://www.gisaid.org) on June 17, 2020, 160

which contains 47,305 sequences. Our preprocessing pipeline then begins by filtering out sequences that are 161

less than 25000 base pairs (the same threshold used in Nextstrain project built for SARS-CoV-23). We also 162

included a reference sequence from National Center for Biotechnology Information4 (NCBI Accession 163

2The latest report at the time of paper submission, run on June 22, 2020, with data up to June 17, 2020, can be found in
https://github.com/EESI/ISM/blob/master/ISM-report-20200617-with_error_correction-compressed-SHORT-ISM.ipynb.

3https://github.com/nextstrain/ncov
4https://www.ncbi.nlm.nih.gov/
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number: NC 045512.2), resulting in an overall data set of 47,280 sequences. We then performed multiple 164

sequence alignment on all remaining sequences using MAFFT [38] with the “FFT-NS-2” method in 165

XSEDE [39]. After alignment, the sequence length was extended (for the present data set, up to 79716 nt) 166

due to gaps inserted into the sequences during the multiple sequence alignment. 167

Entropy analysis and ISM extraction 168

For the aligned sequences, we merged the sequence with the metadata provided by Nextstrain5 as of June 17,

2020, based on identification number, gisaid epi isl, provided by GISAID [6]. Given the fast-moving nature

of the pandemic, we filtered out sequences with incomplete date information in metadata (e.g. ”2020-01”) in

order to incorporate temporal information with daily resolution. In addition, we filtered out sequences from

unknown host or non-human hosts. The resulting final data set contained 45535 sequences excluding the

reference sequence. Then, we calculated the entropy at a given position i by:

Hpiq “ ´
ÿ

kPL

pkpiq ˚ log2ppkpiqq

where L is a list of unique characters in all sequences and pkpiq is a probability of observing a character k at 169

position i. We estimated pkpiq from the frequency of characters at that position. We refer to characters in 170

the preceding because, in addition to the bases A, C, G, and T, the sequences include additional characters 171

representing gaps (-) and ambiguities, which are listed in Supplementary file 2 — Sequence notation [40].6 172

Bases like N and -, which represent a fully ambiguous site and a gap respectively, are substantially less 173

informative. Therefore, we further define a masked entropy as entropy calculated without considering 174

sequences containing N and - in a given nucleotide position in the genome. With the help of this masked 175

entropy calculation, we can focus on truly informative positions, instead of positions at the start and end of 176

the sequence in which there is substantial uncertainty due to artifacts in the sequencing process. Finally, 177

high entropy positions are selected by two criteria: 1) entropy ą 0.23, and 2) the percentage of N and - is 178

less than 25%. Further details about the selection of these two criteria are provided in Supplementary file 1 — 179

Masked entropy threshold analysis. In the data set we processed for this paper, the entropy threshold yielded 180

20 distinct positions within the viral genome sequence. We built the Informative Subtype Markers (ISMs) at 181

these 20 nucleotide positions on each sequence. 182

5https://https://www.gisaid.org/
6The sequences are of cDNA derived from viral RNA, so there is a T substituting for the U that would appear in the viral

RNA sequence.
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Error correction to resolve ambiguities in sequence data and remove spurious 183

ISMs 184

The focus of the error correction method is to resolve an ISM that contains ambiguous symbols, i.e., a 185

nucleotide identifier that represents an ambiguous base call (as detailed in Supplementary file 2 — Sequence 186

notation [40]), such as N, which represents a position that could be A, C, T, or G. Our approach uses ISMs 187

with few or no ambiguous symbols to correct ISMs with many ambiguities. Given an ISM with an error, we 188

first find all ISMs that are identical to the subject ISM’s nucleotide positions without error. We refer here to 189

these nearly-identical ISMs as supporting ISMs. Then, we iterate over all positions with an error that must 190

be corrected in the subject ISM. For a given nucleotide position, if all other such supporting ISMs with 191

respect to the said erroneous position contain the same non-ambiguous base (i.e., an A, C, T, or G), then we 192

simply correct the ambiguous base to that non-ambiguous base found in the supporting ISMs. However, 193

when the supporting ISMs disagree at a respective nucleotide position, the method generates an ambiguous 194

symbol which represents all the bases that occurred in the supporting ISMs and compare this artificially 195

generated nucleotide symbol with the original position in the subject ISM. If the generated nucleotide symbol 196

identifies a smaller set of bases, e.g., Y representing C or T rather than N, which may be any base, then we use 197

the generated symbol to correct the original one. 198

When we applied the foregoing error correction algorithm to ISMs generated from the genome data set 199

analyzed in this paper, we found that 90.2% of erroneous ISMs were partially corrected (meaning at least one 200

nucleotide position with ambiguity was corrected for that ISM if not all), and 24.5% of erroneous ISMs were 201

fully corrected (meaning all positions with ambiguity were corrected to a non-ambiguous base (i.e., an A, C, T, 202

or G)). Since one ISM may represent multiple sequences in the data set, overall the error correction algorithm 203

was able to partially correct 96.0% of sequences identified by an erroneous ISM, and 32.4% of such sequences 204

were fully corrected. 205

The error correction method necessarily results in the replacement of ISMs with an ambiguous base at a

site by another ISM without an error at that site. We expect, and have observed that the abundance of

non-ambiguous ISMs are inflated by the error correction process. Here, we utilize the inflation rate of ISMs

to quantify the difference in abundance of an ISM before and after error correction process. The inflation

rate is defined by:

Inflation rate “
NEC ´N

N

where N is the abundance of an ISM of interest (typically an ISM with few or no ambiguous bases) before 206

error correction, and NEC is the abundance of that ISM after error correction. 207

8/44

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.04.07.030759doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.030759
http://creativecommons.org/licenses/by-nd/4.0/


Quantification and visualization of viral subtypes 208

At the country/region level, we assess the geographic distribution of SARS-CoV-2 subtypes, and, in turn, we 209

count the frequency of unique ISMs per location and build charts and tables to visualize the ISMs, including 210

the pie charts, graphs, and tables shown in this paper. All visualizations in this paper and our pipeline are 211

generated using Matplotlib and Plotly [41,42]. To improve visualization, ISMs that occur with frequency of 212

less than 5% in a given location are collapsed into “OTHER” category per location. Our pipeline then 213

creates pie charts for different locations to show the geographical distribution of subtypes. Each subtype is 214

also labeled with the earliest date associated with sequences from a given location in the dataset. 215

The abundance table based ordination is widely used to visualize community ecology in the 216

microbiome [43]. [44] also used Principal Components Analysis (PCA) to produce a two-dimensional visual 217

summary of the genetic variation in human populations. In our application, we can use the abundances of 218

different ISMs in a country as features to quantify the genetic variation pattern of SARS-CoV-2 sequences. 219

In our analysis, we select countries that have more than 100 viral sequences uploaded in order to have 220

enough ISMs to viably generate such an abundance table. Then, the number of sequences is down-sampled 221

to 100 for each country/region with more than 100 sequences so that all countries/regions have the same 222

effective “sequencing depth.” Therefore, results are not biased by the different number of submissions in 223

different countries. We then construct the ISM abundance table. The elements in the abundance table 224

represent the abundance of an ISM in a country/region after down-sampling, where each column is an ISM. 225

We use Bray-Curtis dissimilarity [45] to quantify the dissimilarity of ISM compositions between a pair of 226

regions and form a pairwise Bray-Curtis dissimilarity matrix. Finally, we employ PCA to reduce the 227

dimensionality of the pairwise Bray-Curtis dissimilarity matrix, plotting the first two components to visualize 228

the genetic variation patterns of those countries/regions. 229

To study the progression of SARS-CoV-2 viral subtypes in the time domain, we group all sequences in a

given location that were obtained no later than a certain date (as provided in the sequence metadata)

together and compute the relative abundance (i.e., frequency) of corresponding subtypes. Any subtypes with

a relative abundance that never goes above 2.5% for any date are collapsed into “OTHER” category per

location. The following formula illustrates this calculation:

ISMps,cqptq “
Ns,cptq

Ncptq

where ISMps,cqptq is the relative abundance of a subtype, s, in location, c, at a date t, Ns,cptq is the total 230

number of instances of such subtype, s, in location, c, that has been sequenced no later than date t and 231
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Ncptq is the total number of sequences in location, c, that has been sequenced no later than date t. 232

Comparison of ISM subtyping to phylogenetic analysis 233

Nextstrain [1] provides a phylogeny method to track and visualize the dynamic of SARS-CoV-2 sequences. 234

To obtain the results presented here, we downloaded the Nextstrain tree data from 235

https://nextstrain.org/ncov on June 17, 2020. Since both the ISMs and the Nextstrain phylogenetic 236

tree were generated based on the GISAID database, they may be easily compared. We present two 237

comparisons in this paper: 1) ISM hamming distance and phylogenetic tree branch length; 2) ISM clusters 238

defined at different entropy thresholds and Nextstrain defined “clades”. 239

The highest-abundance ISMs are involved with hundreds, if not thousands, of sequences. For a given ISM, 240

we can find the lowest common ancestor (LCA) node in the phylogenetic tree of all sequences with that ISM. 241

The branch length between the LCA and the root can be considered as the inferred evolutionary distance 242

between the reference sequence and the LCA node. Hamming distance between our ISMs measures the 243

divergence between two clusters of sequences. We can compare branch length between the root and LCA 244

with the Hamming distance between a given ISM and the reference ISM. Then, we compute the Pearson 245

correlation coefficient to measure the correlation between the evolutionary distance from the reference 246

genome (inferred by the phylogenetic tree) and the Hamming distance between ISMs and the reference ISM. 247

In Nextstrain data, there are 5 “clades”, namely, 19A, 19B, 20A, 20B and 20C, defined in [25]. Different 248

sequences are assigned to those 5 “clades” based on genetic variations in the sequence. Since our ISMs are 249

clusters of sequences with similar genetic variations, the Nextstrain “clades” provides us a good interface to 250

study how our entropy threshold influences the ISM definition by comparing the overlaps between Nextstrain 251

“clades” grouped sequences and ISM grouped sequences. To measure the similarity between ISM labels and 252

“clade” labels of sequences, we use two clustering metrics, homogeneity and completeness as proposed in [46]. 253

A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a 254

single class. A clustering result satisfies completeness if all the data points that are members of a given class 255

are elements of the same cluster [46]. We vary the entropy threshold to form different sets of ISM clusters of 256

sequences and compare each set with Nextstrain “clades” using homogeneity and completeness. 257

Results and Discussion 258

We begin by identifying and mapping the sites that form an ISM for each genome based on sequence entropy. 259

Then, we analyze the properties of ISMs and validate the ISMs generated from SARS-CoV-2 data as of June 260
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17, 2020. We present ISM abundance inflation introduced by error correction, demonstrate how ISMs evolve 261

as a function of entropy threshold, and show how entropy values at different positions change over time. 262

Then, we show the visualization of spatiotemporal dynamics based on ISMs. We analyze the geographic 263

distribution of SARS-CoV-2 genetic subtypes identified by ISMs, as well as the temporal dynamics of the 264

subtypes. We also visualize the viral genetic variation patterns of different regions based on their ISM 265

subtype abundances. Then, we evaluate the results of ISM subtyping in comparison with current genetic 266

variation studies of SARS-CoV-2. Finally, we compare the ISM subtypes to viral “clades” that were 267

determined by Nextstrain, in order to demonstrate how ISMs relate to evolutionary relationships predicted 268

by phylogenetic methods. 269

Identification and Mapping of Subtype Markers 270

In this section, we briefly discuss the potential functional relevance of the identified ISM locations. We 271

further demonstrate that minimal artifacts are introduced by the error correction methodology, which 272

indicates that ISM identification is stable with respect to the choice of entropy threshold within a reasonable 273

range. Finally, we generate compressed ISM labels based on correlated entropy variation between ISM sites. 274

Identification of ISM locations by whole genome sequence entropy analysis 275
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Figure 1. Overall entropy as a function of nucleotide position for all SARS-CoV-2 sequences in the data set.
The peaks in this figure corresponds to highly variable positions and positions with 0 or lower entropy values
represent conservative regions in the aligned viral genomes.
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The first step in the ISM subtyping pipeline is the determination of the entropy at each nucleotide 276

position in the SARS-CoV-2 genome in order to identify the sites that will make up the ISM. Entropy is used 277

to quantify the variation at different positions for sequence alignment result. For a given position with high 278

entropy value, there are more than 1 nucleotides showing up frequently at this position across all the aligned 279

sequences. On the other hand, if the entropy value is low at a position, it implies that this position is more 280

conserved across all aligned sequences. Figure 1 shows the overall entropy at each nucleotide position, 281

determined based on calculating the masked entropy for all sequences as described in the Methods section. 282

Notably, at the beginning and end of the sequence, there is a high level of uncertainty. This is because there 283

are more N and - symbols, representing ambiguity and gaps, in these two regions (gaps are likely a result of 284

artifacts in MAFFT’s alignment of the viruses or its genomic rearrangement [21], and both ambiguous 285

base-calls (N’s) and gaps (-’s) may result due to the difficulty of accurately sequencing the genome at the 286

ends). After applying filtering to remove low entropy positions and uncertain positions, we identified 20 287

informative nucleotide positions in the sequence to generate informative subtype markers (see filtering details 288

in Methods section).
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Figure 2. Number of sequences containing the 20 most abundant ISMs (after error correction) within the
total data set (out of 45535 sequences), indicating the rapid drop off in frequency after the first few most
prevalent ISMs.

289

Importantly, even though the combinatorial space for ISM is potentially very large due to the substantial 290
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number of characters that may present at any one nucleotide position, only certain ISMs occur in substantial 291

quantities in the overall sequence population. Figure 2 demonstrates the rapid decay of the frequency of 292

sequences with a given ISM. In particular, the plot shows that the first three ISMs represent subtypes that 293

have more than 4000 sequences worldwide. 294

Some potential reasons for the rapid drop off in the frequency relative to the diversity of ISMs may 295

include the following: First, since the virus is transmitting and expanding so quickly, and the pandemic is 296

still at a relatively early stage, there has not been enough time for mutations that would affect the ISM to 297

occur and take root. In that case, we would expect the number of significant ISMs to rise over time. Second, 298

the population of publicly available sequences is biased to projects in which multiple patients in a cluster are 299

sequenced at once: e.g., a group of travelers, a family group, or a group linked to a single spreading event 300

(there are sequences from cruise vessels in the database). We expect that the impact of any such clustering 301

will be diminished in time as more comprehensive sequencing efforts take place. Third, ISMs may be 302

constrained by the fact that certain mutations may result in a phenotypic change that may be selected 303

against. In this case, we may expect a steep change in a particular ISM or close relative in the event that 304

there is selection pressure in favor of the corresponding variant phenotype. However, as of yet there has been 305

no solid evidence of mutations within SARS-CoV-2 that are associated with selection pressure, i.e., as being 306

more transmissible or evading antibodies, though studies do suggest the possibility [19, 47,48]. 307

Figure 2 also shows that despite the application of the error correction method detailed in the Methods 308

section, some symbols representing ambiguously identified nucleotides, such as S and D still remain in the 309

ISMs. These represent instances in which there was insufficient sequence information to fully resolve 310

ambiguities. We expect that as the number of publicly available sequences increases, there will likely be 311

additional samples that will allow resolution of base-call ambiguities. That said, it is possible that the 312

ambiguity symbols in the ISMs reflect genomic regions or sites that are difficult to resolve using sequencing 313

methods, in which case the ISMs will never fully resolve. Importantly, however, because of the application of 314

the error correction algorithm, there are fewer spurious subtypes which are defined due to variants arising 315

from sequencing errors, and all remaining ISMs are still usable as subtype identifiers. 316

Potential functional significance of ISM locations 317

After the informative nucleotide positions were identified, we then mapped those sites back to the annotated 318

reference sequence for functional interpretation [13]. As a practical matter, because the ISM is made up of 319

the high-diversity sites within the SARS-CoV-2 genome, it inherently includes the major loci of genetic 320

changes that are being identified in population studies worldwide. The ISM also excludes sites at the ends of 321
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Table 1. Mapping ISM sites to the reference viral genome

Site Nucleotide Position Entropy Annotation
1 241 0.86092 Non-coding Region
2 1059 0.68346 ORF1ab
3 2480 0.23123 ORF1ab
4 2558 0.24007 ORF1ab
5 3037 0.86980 ORF1ab
6 8782 0.40949 ORF1ab
7 11083 0.45757 ORF1ab
8 14408 0.86807 ORF1ab
9 14805 0.49255 ORF1ab
10 17747 0.23734 ORF1ab
11 17858 0.23409 ORF1ab
12 18060 0.24005 ORF1ab
13 20268 0.28748 ORF1ab
14 23403 0.86829 S surface glycoprotein
15 25563 0.78760 ORF3a
16 26144 0.44564 ORF3a
17 28144 0.40928 ORF8
18 28881 0.88582 nucleocapsid phosphoprotein
19 28882 0.88370 nucleocapsid phosphoprotein
20 28883 0.88174 nucleocapsid phosphoprotein

the genome in which variation is most likely to be the result of sequencing artifacts. As shown in Table 1, we 322

found that all but one of the nucleotide positions that we identified were located in coding regions of the 323

reference sequence. The majority of the remaining sites (12/19) were found in the ORF1ab polyprotein, 324

which encodes a polyprotein replicase complex that is cleaved to form nonstructural proteins that are used as 325

RNA polymerase (i.e., synthesis) machinery [49]. One site is located in the reading frame encoding the S 326

surface glycoprotein, which is responsible for viral entry and antigenicity, and thus represents an important 327

target for understanding the immune response, identifying antiviral therapeutics, and vaccine design [50,51]. 328

High-entropy nucleotide positions were also found in the nucleocapsid formation protein, which is important 329

for packaging the viral RNA [52]. A study has also shown that, like the spike protein, the internal 330

nucleoprotein of the virus is significant in modulating the antibody response [53]. Other sites were found in 331

the ORF3a and ORF8, which, based on structural homology analysis do not have known functional domains 332

or motifs, and have diverged substantially from other SARS-related variants which contained domains linked 333

to increased inflammatory responses [54,55]. 334

In sum, the majority of high-entropy sites are in regions of the genome that may be significant for disease 335

progression, as well as the design of vaccines and therapeutics. Accordingly, ISMs derived from the 336

corresponding nucleotide positions can be used for viral subtyping for clinical applications, such as 337

identifying variants with different therapeutic responses or patient outcomes, or for tracking variation that 338
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may reduce the effectiveness of potential vaccine candidates. Unlike phylogenetic clusters, the ISM includes 339

information about the single nucleotide variation (SNV) directly in the nomenclature. The subtypes which 340

are identified are not a function of a selected clustering algorithm or a feature that has been selected as being 341

relevant to a cluster. 342

Evaluating artifacts in ISM abundance due to error correction 343

Even though the SARS-CoV-2 data set appears to be large, it represents only a small sample of the full 344

scope of cases. Therefore, tracking the pandemic requires using as much global data as possible, which means 345

that imperfect sequence data must be tolerated to avoid losing potentially relevant samples. However, error 346

correction will only be useful if it can maintain the integrity of the data, in particular, permit accurate 347

identification of viral subtype abundance. In our case, we expect and do observe that the abundance of 348

non-ambiguous ISMs will be inflated sightly by the error correction process. Supplementary file 3 — ISM 349

inflation by error correction shows the inflation rate of highest-abundance ISMs after error correction. 350

We can see from Supplementary file 3 — ISM inflation by error correction that the error correction 351

process only inflates the frequency of the highest-abundance ISMs in our database by less than 10%. To 352

demonstrate that the error correction is a conservative process, we further show an ISM, 353

CCACCCGCCCACAAGGTGGG, which is inflated by 10.79% as a case study. Half of the inflation arises due to 354

sequences with ISM CCACCCGCCCACNAGGTGGG with 1.0 hamming distance away from the corrected ISM (there 355

is an N instead of an A at position 13 in the ISM). Our error correction process corrects that N to A because 356

all non-ambiguous ISMs with the same nucleotide configuration except for position 13 (non-ambiguous ISMs 357

have an A at position 13 instead of N). Accordingly, ISM abundance inflation due to error correction will be 358

generally conservative, and will not confound population-level analyses of ISM subtypes based on their 359

relative abundance. 360

Sensitivity of ISM labels to the selection of the entropy threshold 361

To demonstrate the influence of the entropy threshold on ISM identification, we show a Sankey diagram in 362

Figure 3. Figure 3 was constructed by first defining different sets of ISMs based on entropy threshold of 0.1, 363

0.23 (the major entropy threshold in our manuscript that result in 20 ISM sites), 0.4, 0.6 and 0.8. A stripe on 364

the diagram represents an ISM (as labeled on the plot). The diagram tracks ISM identification according to 365

sequences grouped by respective ISMs. For example, ISMs defined at a higher entropy threshold each likely 366

identify more sequences (i.e. more sequences will likely have the same given ISM). Correspondingly, there will 367

be an increased number of ISMs which are more refined (each identifying smaller collections of sequences), at 368

15/44

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.04.07.030759doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.030759
http://creativecommons.org/licenses/by-nd/4.0/


a lower entropy threshold. The width of the stripe corresponds to the number of sequences with that ISM. 369

The Sankey diagram further shows that ISMs defined at a lower entropy threshold can “merge” together 370

as the entropy threshold moves higher. For example, TCTTGGGGG and TCTTGTGGG are two different ISMs if we 371

choose 0.6 as the entropy threshold. They can be differentiated by the 6th position (a G/T variation). 372

However, when the threshold moves higher to 0.8, this position is dropped from the ISM, as its entropy now 373

falls below the threshold. As a result, the two ISMs are merged into TTTGGGG. Some ISMs are stably identified 374

throughout, while other ISMs merge together at different entropy thresholds. We can see from Figure 3 that 375

the entropy threshold acts as a way to tune the resolution of subtype definition. When choosing a high 376

entropy, positions that can differentiate relatively smaller (less abundant) subtypes are ignored. On the other 377

hand, setting the entropy threshold lower reveals more ISM subtypes. For example, TCACTCGTCCACAGGGTAAC 378

is defined at 0.23 threshold and when set to 0.1 threshold, 5 additional less-abundant ISMs emerge. We can 379

thus observe, based on the diagram, that some subtypes are more “stable” markers than others. However, 380

there are also some ISMs that are not sensitive to the selection of entropy threshold. For example, the 381

subtype labeled as TTACTCGTCCACAGTGTGGG (particularly found in genetic sequences from New York state 382

and some European countries, as discussed below) does not merge with other high-abundance ISMs until the 383

entropy threshold is set to 0.7. Therefore, this ISM may be considered to be a stable marker. Overall, the 384

most abundant ISMs are generally stable for an entropy threshold between 0.23 and 0.4. 385

We can also track how the entropy at individual variable positions evolve as a function of time. Figure 4 386

shows how the entropy at sites labeled by their position on the reference genome changes over time, as more 387

sequences are collected and the genetic sequences change. Here, we visualize the dynamic of entropy values 388

at different positions over time. That is, given a nucleotide position in the reference genome and the number 389

of weeks since December 24, 2019, we compute the entropy of that position using all sequences collected by 390

that time. 391

We can see that at the earliest stages of the pandemic, the ISM positions corresponding to nucleotide 392

positions 8782 and 28144 in the reference sequence had the highest entropy, i.e., high variation in these two 393

positions were found in sequences collected by Early February. Subsequently, the entropy values of these two 394

positions drop. Notably, Figure 4 shows how the highly varying spike protein mutation at position 23403 (the 395

A to G spike protein mutation, which has been found to be abundant in Europe and US and has since spread 396

around the world [47], evidently became prevalent in the middle stage (in early March). In addition, we 397

observe that there are some ISM positions which appear to covary, as indicated by the correlation between 398

the changes in their entropy values. For example, the entropy of positions 8782 and 28144 covary, which is 399

consistent with the correlation of the SNVs at these positions in genome sequence data available early on in 400
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Figure 3. Sankey Diagram of the most abundant 20 ISMs defined by an entropy threshold of 0.1 and how
they relate to ISMs defined at other entropy thresholds. This figure shows that the most abundant ISMs are
generally stable for an entropy threshold between 0.23 and 0.4.
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241: Non coding region
1059: ORF1a polyprotein
2480: ORF1a polyprotein
2558: ORF1a polyprotein
3037: ORF1a polyprotein
8782: ORF1a polyprotein
10097: ORF1a polyprotein
11083: ORF1a polyprotein
14408: ORF1ab polyprotein
14805: ORF1ab polyprotein
17247: ORF1ab polyprotein
17747: ORF1ab polyprotein
17858: ORF1ab polyprotein
18060: ORF1ab polyprotein
20268: ORF1ab polyprotein
23403: surface glycoprotein
23731: surface glycoprotein
25202: surface glycoprotein
25429: ORF3a protein
25563: ORF3a protein
26144: ORF3a protein
28144: ORF8 protein
28881: nucleocapsid phosphoprotein
28882: nucleocapsid phosphoprotein
28883: nucleocapsid phosphoprotein

Figure 4. Entropy value changes over time at different ISM positions. Each curve in this figure represents
the entropy of a highly variable position over time. The position in reference genome is labeled on the right
end of the curve. The gene name associated with that position is labeled in the legend.
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Table 2. The most abundant nucleotide configurations at certain covarying positions and the number of
sequences associated with them. The first column shows the group of covarying positions; The second
column shows most abundant nucleotide configurations at those positions; The third column shows the

number of sequences associated with the nucleotide configurations listed in the second column and the fourth
column is the representative positions we picked to represent all the positions in this group. From this table,

we can see that we can reduce the ISM size by 45% at a small cost to resolution

Covarying group NT configurations Coverage Representative position
241, 3037, 14408, 23403 TTTG, CCCA 96.19% 23403

2480, 2558 AC, GT 98.68% 2558
8782, 28144 CT, TC 98.52% 8782

17747, 17858, 18060 CAC, TGT 98.38% 18060
28881, 28882, 28883 GGG, AAC 98.94% 28881

the pandemic (i.e., before February 2020) [12]. 401

Correlated/Covarying positions allow compression of the ISM representation 402

As indicated by Figure 4, the number of sites with sufficient entropy to be included in the ISM increases over 403

time, as genetic changes occur and accumulate. This means that a representative ISM is a 20-base long 404

identifier as of June 2020, which is unwieldy as a subtype identifier. Moreover, as shown in Figure 4, there 405

are nucleotide sites with entropy covarying over time, representing correlations in genetic changes which 406

result in redundancy in the ISM. Therefore, we may select a subset of positions to represent all the covarying 407

positions to reduce the size of our ISMs. This results in a more compact identifier, which, at a small cost to 408

resolution, provides for more efficient subtype differentiation and categorization. 409

Table 2 shows the most abundant nucleotide configurations at certain covarying positions and how many 410

variations can be preserved after compression. The most abundant nucleotide configurations cover at least 411

96% of the sequences for each covarying group (the third column in Table 2). We further validate the groups 412

of covarying nucleotide sites identified by the temporal entropy curve in Figure 4 by Linkage Disequilibrium 413

(LD) analysis, which measures the degree of nonrandom association between two loci on a genome [56]. The 414

results, included as Supplementary file 4 — Pairwise Linkage disequilibrium between high linkage sites, show 415

that the sites within each covarying group have significant linkage with high pairwise r2 values (generally 416

greater than 0.95). Linkage disequilibrium is a measure of the degree of nonrandom association between two 417

loci [56]. This is in line with previous studies of LD on SARS-CoV-2 [12,57,58], which found, e.g., that 418

positions 8782 and 28144 showed high significant linkage, with an r2 value of 0.954 [12]. 419

We then select the representative positions with the highest entropy within each covarying group that can 420

cover all of the most abundant nucleotide configurations. Compression reduces the ISM length from 20 to 11 421

nucleotides. 422
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Table 3. Map between 20-NT ISM and 11-NT compressed ISM

20-NT ISM 11-NT compressed ISM sequences involved
TCACTCGTCCACAGGGTAAC CCCGCCAGGGA 10565
TTACTCGTCCACAGTGTGGG TCCGCCAGTGG 7252
TCACTCGTCCACAGGGTGGG CCCGCCAGGGG 6890
CCACCCGCCCACAAGGTGGG CCCGCCAAGGG 3112
TCACTCGTCCACAGTGTGGG CCCGCCAGTGG 2118
TCACTCGTCCACGGGGTGGG CCCGCCGGGGG 1975
CCACCTGCCTGTAAGGCGGG CCTGCTAAGGG 1536
CCACCC-CTCACAAGTTGGG CCC-TCAAGTG 1125
CCGTCCTCTCACAAGTTGGG CTCTTCAAGTG 1031
CCACCCTCCCACAAGGTGGG CCCTCCAAGGG 1000
CCACCTGCCCACAAGGCGGG CCTGCCAAGGG 956
CCACCTGCTCACAAGGCGGG CCTGTCAAGGG 709
TCACTCGTCCACRGGGTAAC CCCGCCRGGGA 550
CCACCCTCTCACAAGTTGGG CCCTTCAAGTG 547
CCGTCC-CTCACAAGTTGGG CTC-TCAAGTG 442
TCACTCGTCCACDGGGTGGG CCCGCCDGGGG 334
TCACTCTTCCACAGGGTAAC CCCTCCAGGGA 184
TCACTCGTCCAYAGGGTAAC CCCGCYAGGGA 183
TTACTCTTCCACAGTGTGGG TCCTCCAGTGG 171
TCACTCTTCCACAGGGTGGG CCCTCCAGGGG 120
-TACTCGTCCACAGTGTGGG TCCGCCAGTGG 118
TCRCTCGTCCACAGGGTAAC CCCGCCAGGGA 112
-CACTCGTCCACAGGGTGGG CCCGCCAGGGG 109
CCACCCGCCCACAAGTTGGG CCCGCCAAGTG 109
TCACTC-TCCACAGGGTAAC CCC-CCAGGGA 108

Table 3 shows the mapping between the original 20-NT ISM and 11-NT compressed ISM for ISMs 423

associated with more than 100 sequences in the database. From the table we can see that most of the 424

abundant 20-NT ISMs are assigned to unique 11-NT compressed ISMs. However, there are three 11-NT 425

compressed ISMs that correspond to multiple 20-NT ISMs. For example, 20-NT ISM 426

TCACTCGTCCACAGGGTAAC (10,565 sequences) and TCRCTCGTCCACAGGGTAAC (112 sequences) are merged to 427

CCCGCCAGGGA after compression. These two subtypes are differentiated by position 3 in the long ISM (A/R). 428

As such, defining subtypes based on compressed ISM will result in the inflation of a few principal subtypes 429

by an amount of around 1%. Compressed ISM subtypes, therefore, conserve the distribution of major ISM 430

subtypes. A more compact and easy-to-use subtype nomenclature may thus be utilized to quantitatively 431

assess the relative subtype abundance at the population level. 432

Geographic distribution of SARS-CoV-2 subtypes 433

To demonstrate that ISM subtypes can be used to analyze and visualize the spread of the SARS-CoV-2 434

pandemic, we describe the geographic distribution of the relative abundance of subtypes in different 435
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countries/regions worldwide, as well as in different states within the United States. Not only does this 436

provide an illustration of the method’s capabilities, but it also permits comparison of the subtyping analysis 437

with theories regarding viral spread between regions. Figure 5 shows the distribution of ISMs, each 438

indicating a different subtype, in the regions with the relatively larger amount of available sequenced 439

genomes. As shown therein, the ISMs are able to successfully identify and label viral subtypes that produce 440

distinct patterns of distribution in different countries/regions. Beginning with Mainland China, the source of 441

SARS-CoV-2 reference genome [13,59] (NCBI Accession number: NC 045512.2), we observe two dominant 442

subtypes, as indicated by relative abundance of the ISM among available sequences: CCCGCCAAGGG (as 443

indicated on the plot, first seen on December 24, 2019, in sequences from Mainland China in the dataset), 444

CCTGCCAAGGG (first seen on January 5, 2020 in sequences from Mainland China in the dataset).7 445

Another subtype, CCCTCCAAGGG, is the most abundant, i.e., dominant subtype in other Asian countries 446

like Japan and Singapore (first detected on January 18, 2020, in sequences from Mainland China in the 447

dataset). These subtypes are found in other countries/regions, but in distinct patterns, which may likely 448

correspond to different patterns of transmission of the virus. Subtype CCCGCCAGGGA (first detected in 449

February 16, 2020, in sequences from United Kingdom in the dataset) is found abundant in many European 450

countries and then detected in Japan and Singapore later. This subtype has also been found in Canada and 451

Brazil, suggesting a geographical commonality between cases in these diverse countries with the progression 452

of the virus in Europe. Another prevalent subtype is TCCGCCAGTGG which is first detected in France in 453

February 21, 2020. This subtype then becomes the dominant subtype in Denmark, USA, and one of the 454

major subtypes in Canada and Germany. Both subtypes, CCCGCCAGGGA and TCCGCCAGTGG, have an A23403G 455

mutation (corresponding to position 14 in the ISM) which has been discussed in recent studies [19,47]. 456

The data further indicate that the United States has a distinct pattern of dominant subtypes. In 457

particular, the subtype with the highest relative abundance among U.S. sequences is CCTGCTAAGGG, first seen 458

on February 20, 2020. This subtype has also emerged as one of the major subtypes in Canada, with the first 459

sequence being found on March 5, 2020. 460

We also found that some states within the United States have substantially different subtype distributions. 461

Figure 6 shows the predominant subtype distributions in the states with the most available sequences. The 462

colors shown on the charts are also keyed to the colors used in Figure 5, which allows for the visualization of 463

commonalities between the subregional subtypes in the United States and the subtypes distributed in other 464

7As discussed in the Results section, there are a few covarying positions that can be removed for a shorter ISM while still
preserving the most of information. Therefore, for simplicity, we present SARS-CoV-2 subtypes in their short forms throughout
this paper. In comparison with other methods, we include both the original ISM form and compressed ISM in the discussion.
The visualizations of the original ISMs (including pie charts and time series charts) are available in Supplementary file 5 —
Visualizations of original ISMs
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Figure 5. Major subtypes in countries/regions with the most sequences (in the legend next to each
country/region, we show the date when a major subtype was first sequenced in that country/region).
Subtypes with less than 5% abundance are plotted as “OTHER”. The raw counts for all ISMs in each
country/region, as well as the date each ISM was first found in a sequence in that country/region, are
provided in Supplementary file 6 — ISM abundance table of 20 countries/regions.
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Figure 6. Viral subtype distribution in the United States, showing the 25 states with the most sequence
submissions. Subtypes with less than 5% abundance are plotted as “OTHER”. The raw counts for all ISMs
in each state, as well as the date each ISM was first found in a sequence in that state, are provided in
Supplementary file 7 — ISM abundance table of 25 U.S. states
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regions. It is obvious that east coast states and west coast states demonstrate different ISM distributions. 465

Most prominently, New York is dominated by a subtype, TCCGCCAGTGG, which is also highly abundant 466

among sequences from European countries, including France, Denmark, Germany, and Iceland. California, on 467

the other hand, includes as a major subtype, CCCGCCAAGGG, which is also a major subtype in Mainland 468

China, as shown in Figure 5. The most abundant subtype in Washington, CCTGCTAAGGG, is also a major 469

subtype in other states in United States. This CCTGCTAAGGG subtype is also found in substantial abundance 470

in Canada as well. This is consistent with the hypothesis that this subtype is endogenous to the US. 471

Regions with similar genetic variant patterns are identifiable in Figure 5, but only at a qualitative level. 472

As described in the Methods section, the ISM abundance table can be used to provide a quantitative analysis 473

of the similarity between the genetic variation patterns of countries and regions. Figure 7 shows a 474

visualization of the difference in genetic subtype patterns between different countries and regions using 475

Principle Components Analysis (PCA) as described in the Methods, projecting onto the first two principle 476

components. We can see that a few European countries form small clusters of similar ISM abundance, i.e., a 477

similar subtype distribution. This implies that similar SARS-CoV-2 subtypes are shared by these countries, 478

e.g., Austria, Netherlands, Germany, and Sweden. Most Asian countries are projected to the upper right part 479

of the PCA plot, in contrast to North American countries and a few European countries clustered towards 480

the bottom. This indicates the difference between the dominant genetic subtypes of ISM and patterns of 481

genetic variation between these regions of the world. In particular, the separation in this ISM subtype space 482

futher supports the hypothesis that the outbreak in New York is linked to some travel cases from European 483

countries, such as France. To further validate the utility of ISMs for subtyping, we show an analysis of the 484

geographical distribution of the dominant subtypes in Italy in Supplementary file 8 — Geographical 485

distribution of the dominant subtypes in Italy. 486

Temporal dynamics of SARS-CoV-2 subtypes 487

The present-time geographical distributions shown in Figure 5, 6, and 7 suggest that ISM subtyping may 488

identify the temporal trends underlying the expansion of SARS-CoV-2 virus and the COVID-19 pandemic. 489

To demonstrate the feasibility of modeling the temporal dynamics of the virus, we first analyzed the 490

temporal progression of different ISMs on a country-by-country basis. This allows examination of the 491

complex behavior of subtypes as infections expand in each country and the potential influence on regional 492

outbreaks by subtypes imported from other regions. 493

As described in the Methods section, we graph how viral subtypes are emerging and growing over time, 494
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Figure 7. Country/region-specific patterns of viral genetic variation visualized by the first two principle
components of the Bray-Curtis dissimilarity matrix. The regions are color coded by continents. Each point
represents the SARS-CoV-2 genetic variation pattern of the labeled country/region based on the abundance
of different ISMs in the country/region.
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Figure 8. Relative abundance (%) of ISMs in DNA sequences from USA as sampled over time.
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Figure 9. Relative abundance (%) of ISMs in DNA sequences from the United Kingdom as sampled over
time.
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by plotting the relative abundance of viral subtypes in a country/region (via the most frequently occurring 495

ISMs over time) in Figure 8 and Figure 9. As discussed above, through the pipeline we have developed, these 496

plots use a consistent set of colors to indicate different ISMs (and are also consistent with the coloring 497

scheme in Figure 5). 498

In the United States, we can observe a few waves of different subtypes. For example, in the early stage 499

(late January and early February), the predominant subtype is the same as that of Mainland China. In 500

contrast, the most abundantly found subtype in late February and March, CCTGCTAAGGG, is not abundant in 501

either Asia or Europe. However, this subtype has been found in a substantial number of sequences in both 502

Canada and Australia. It is plausible, therefore, that the CCTGCTAAGGG subtype has become abundant as the 503

result of community transmission in the United States, and has been exported from the United States to 504

these other countries. Interestingly, while the CCTGCTAAGGG subtype has been found across the United States, 505

as shown in Figure 6, it has not been found to be substantially abundant in New York. Over time, however, 506

within the United States the dominant subtype has become TCCGCCAGTGG, which is the predominant subtype 507

in New York state (and linked to the dominant subtype in many European countries). 508

As shown in Figure 9 and additional temporal plots for the Netherlands and Spain contained in the 509

Supplementary Material, the subtype distribution in sequences within European countries differs significantly 510

from that of North America and Australia. In particular, as detailed above, the European dynamics of 511

SARS-CoV-2 appear to reflect the theory that in many European countries, initial cases may have been due 512

to travel exposure from Italy, rather than directly from China. For instance, we observe that the United 513

Kingdom data shows the same early subtypes as those of Mainland China which were also observed in 514

Australia and Canada, i.e., CCTGCCAAGGG and CCCGCCAAGGG. The CCCGCCAAGGG subtype emerged as a highly 515

abundant subtype in United Kingdom data in early February. This subtype was also been found with great 516

frequency in the Netherlands and Australia, but not in Spain, suggesting additional viral genetic diversity 517

within Europe for further study. 518

All inferences drawn from observed temporal trends in subtypes based on the genome sequence 519

dataset—whether based on ISM or phylogeny-based methods–will be limited by important caveats, including: 520

1) The collection date of the viral sequence is usually later than the date that the individual was actually 521

infected by the virus. Many of those individuals will be tested after they develop symptoms, which may only 522

begin to arise several days or even two weeks after infection according to current estimates [60]. 2) The 523

depth of sequencing within different regions is highly variable. As an extreme case, Iceland, which has a 524

small population, has 1.3% of all sequences in the complete data set. Italy, on the other hand, had a large 525

and early outbreak but has disproportionately less sequencing coverage (133 sequences). 526
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Evaluating the ability of ISM-defined subtypes to track significant genetic 527

changes during the SARS-CoV-2 pandemic 528

In our results section, we identified a few widespread ISM subtypes, e.g., TCCGCCAGTGG that dominates New 529

York and some ISM subtypes that are unique to a region, e.g., CCTGCTAAGGG that is mostly found in North 530

America. In this section, we show related literature and how their results relate to ours. We primarily use 531

the original 20-nt ISM identifiers in this section, rather than the compressed ISM, in order to discuss all the 532

positions identified by our entropy analysis and relate them to the literature. 533

Subtype prevalent in New York and some European countries TTACTCGTCCACAGTGTGGG 534

(TCCGCCAGTGG in compessed form) 535

This subtype has been dominating the US since mid-March, as shown in Figure 8. In Figure 6, we can see 536

that this subtype dominates many states including New York (first seen early March in New York). 537

Additionally, as shown in Figure 5, this same subtype has been dominant in European countries, first 538

observed in sequencing data in late February. The first detection dates in New York (later) and Europe 539

(earlier) align with the hypothesis of European travel exposure being the major contributor to the New York 540

outbreak of SARS-CoV-2. Various studies have demonstrated the SNV C14408T in ORF1b to be associated 541

with a virus subtype found abundantly in New York as well as multiple European countries [16,61,62], which 542

is designated as an ISM hotspot site 8 in Table 1. These studies also identified a SNV of A23403G in the S 543

spike protein to be heavily associated with the dominant subtype of both Europe and New York, correlating 544

to ISM hotspot site 14 from our analysis. Our temporal entropy plot in Figure 4 further indicates that these 545

two sites are covarying. Lastly, the studies also reported a SNV of G26144T, which corresponds to ISM site 546

16 and has been observed in the predominant subtypes found in Europe and New York. 547

Subtype potentially endogenous to the United States CCACCTGCCTGTAAGGCGGG (CCTGCTAAGGG in 548

short form) 549

This is the prevalent subtype characteristic within Washington state through the lastest update of the 550

sequencing database analyzed in this paper (June 2020). It has been linked to the endogenous spread of the 551

virus across the United States [18,63]. According to our ISM analysis, this subtype is separated by a 552

hamming distance of 3 from one of the major subtype of the outbreak in China, CCACCTGCCCACAAGGCGGG 553

(the differences are at ISM positions 10, 11 and 12). Viral spread is suspected to be due to primary exposure 554

of an individual from China to Washington state, designating this case as “WA1” [17,61]. “WA1” lineage is 555
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noted to have three characteristic SNVs, namely, C17747T, A17858G, and C18060T which correspond 556

matches with our ISM positions of 10, 11 and 12 respectively [16–18,61,62]. While “WA1” is suspected as 557

the primary subtype for viral spread in Washington state, there are cases that have shown additional SNVs, 558

which suggest mutational variation from the “WA1” strain. These SNVs include C8782T and 559

T28144C [16,17, 61] and correspond to hotspot sites 6 and 17 respectively. The same major subtypes seen in 560

Washington state were also identified in positive cases in Connecticut (also detected by Figure 6 using our 561

ISM). It is highly probable that there was trans-coastal exposure due to domestic travel from Washington 562

state into Connecticut, due to the various high-volume airports that are present in and around this state [18]. 563

Subtypes including the A23403G/D614G spike protein variant 564

The SNV A23403G (resulting in D614G variant in spike protein) is a major viral mutation that has been 565

observed in the major European countries of Italy, Spain, France, as well as Middle Eastern regions of Turkey 566

and Israel [16,64–66]. Some studies suggest that this D614G variant of the S spike protein provides greater 567

survival and transmission ability to the virus, however there need to be additional studies conducted to 568

confirm these claims [64]. This position corresponds to ISM position 14. Based on our ISM table, we can 569

quickly navigate to this position and plot the abundance of different variants at this position over time. 570

Figure 10 shows how the abundances of the variants at position 23403 change over time. We can quickly 571

make this plot by indexing all the ISMs at position 14 and grouping them temporally. Indeed, Figure 10 572

illustrates how, in late February, A23403G started to take off in abundance and has quickly overwhelmed the 573

initially more prevalent subtype. 574

Comparison of ISM-defined subtypes to clades identified using phylogenetic 575

trees 576

As discussed in the foregoing, subtypes defined by ISM are differentiated based on single nucleotide variants, 577

which may eventually be found to represent functionally significant mutations in the viral genome. The ISM, 578

however, does not include phylogenetic information, which sharply limits the utility of the ISM to infer 579

patterns of viral evolution. Nevertheless, ISM-defined subtypes do correspond well with clusters of sequences 580

based on phylogenic reconstruction. To identify whether the ISM may still be an effective identifier of genetic 581

subtypes within the context of viral evolution, we compare subtype identification using the ISM and the 582

phylogenetic tree structure. In particular by comparing the ISM-defined groups of sequences identified by our 583

pipeline with the phylogenetic tree-based clusters (i.e., clades) identified by the Nextstrain group [1]. We do 584
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Figure 10. The relative abundance of variants of the D614G spike protein mutation (position 14 in our ISM
and position 23403 in the reference genome).

so by placing an ISM of interest at the lowest common ancestor (LCA) node of sequences containing that 585

ISM on the phylogenetic tree produced by Nextstrain. Then, we compare the branch length between the root 586

and LCA, which is considered as the evolutionary distance between a node and the reference sequence, and 587

the Hamming distance between a given ISM and the reference ISM, CCACCCGCCCACAAGGTGGG (CCCGCCAAGGG 588

in short form), which represents the degree of difference (by number of SNVs) between ISMs. 589

Figure 11 shows that Hamming distance (dark-colored) has a high correlation with the LCA branch 590

length (gray-colored). This means that the Hamming distances between ISMs are able to consistently reflect 591

evolutionary distance at a high level. There are a few outliers though; for example, CCACCTGCTCACAAGGCGGG 592

(CCTGTCAAGGG in short form) has higher LCA branch length but lower ISM Hamming distance. This 593

indicates that some evolutionary signals will be missed by grouping sequences by ISM, likely because the 594

signals are contained in lower-entropy genomic regions which are unrepresented in the ISM. Conversely, we 595

observe that the phylogenetic clades identified by Nextstrain are imperfect with respect to their preservation 596

of SNV information. Nextstrain identifies the clades based on whether they contain at least two prevalent 597

SNVs. But, presumably because the clades are identified by whole genome sequence clustering, not every 598

sequence within a clade will necessarily include those SNVs. 599

Moreover, not only can the ISM pipeline effectively define meaningful viral subtypes, but it can also do so 600

with greater computational efficiency than tree reconstruction methods. Fasttree [67], on its fastest setting, 601
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is reportedly the fastest tree reconstruction method (orders of magnitude faster than most machine learning 602

methods). Fasttree theoretically executes at OpN1.25 ˆ logpNq ˆ Lˆ aq time, where N is the number of 603

unique sequences, L is the width of the alignment, and a is the size of the alphabet. For Shannon’s entropy, 604

the basis of ISM definition used in our work, the computation is OpLˆN ˆ aq where L is the number of loci 605

and N is the number of sequences, and a is the size of the alphabet. Accordingly, the computational time 606

required to enumerate subtypes using the ISM is substantially reduced, i.e., a function of the thresholded loci 607

reduced and number of sequences instead. One caveat is that the ISM method requires multiple sequence 608

alignment to identify high entropy sites, which can be a computationally intensive process. However, 609

phylogenetic tree methods based on whole genome sequences require that as well. And, ISM identification 610

may be done on new sequences using previous positions between multiple sequence alignment updates. 611

In sum, ISM can provide a compact and effective representation of a sequence as it includes the essential 612

genetic variation information, while also including a substantial amount of molecular evolution information. 613
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Figure 11. Demonstrating ISM distance is representative of the phylogenetic distance. Shown is the
correlation between the branch length from LCA of sequences with an ISM of interest to the root and the
Hamming distance between the ISM and the reference ISM, CCACCTGCTCACAAGGCGGG

We further assess how ISMs defined at different entropy thresholds relate to the clades identified by 614

Nextstrain. We compute homogeneity and completeness scores between ISM labels and Nextstrain clades as 615

a function of entropy threshold. Homogeneity measures the extent to which ISMs each identify only 616

sequences in one clade. Completeness measures the extent to which sequences that are members of a given 617

clade are identified by a common ISM. Figure 12 shows the homogeneity and completeness as a function of 618

the entropy threshold used to define ISMs. As shown therein, sequences with a common ISM are generally 619
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assigned to a common clade, and sequences from a given clades also often identified by a set of few ISMs. As 620

the entropy threshold increases, ISMs correspondingly moving “upwards” through the phylogenetic tree to 621

better represent a clade, increasing completeness while maintaining high homogeneity. Conversely, as the 622

entropy threshold lowers, ISMs increase in their resolution, corresponding to an increase to almost perfect 623

homogeneity but with low completeness. 624
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Figure 12. The effect of the entropy threshold on ISM membership to Nextstrain clade representation.
At a low entropy threshold, each ISM contains sequences that nearly all belong to the same clade (high
homogeneity) but the clade contains multiple ISMs (low completeness). As the entropy threshold rises, ISMs
gain more sequences (some of which belong to other clades) and the clades contain fewer distinct ISMs. Thus,
there is a trade-off with the entropy threshold, but the sweet spot is around 70-80% on both metrics, showing
that ISMs capture some aspect of phylogenetics but have their own characteristics.

Conclusions 625

In this paper, we present a pipeline for subtyping SARS-CoV-2 viral genomes based on short sets of highly 626

informative nucleotide sites (ISMs). Our results demonstrate the following key features of ISM-based 627

subtyping. First, the ISM of a sequence preserves important nucleotide positions that can help to resolve 628

different SARS-CoV-2 subtypes. ISMs provide a quick and easy way to track key sets of SNVs which are 629

covarying as the SARS-CoV-2 pandemic spreads throughout the world. The SNVs which consistently covary 630

with the spike protein variant has rapidly become prevalent throughout the world and may be a potential 631

link to increased viral transmission [4, 19,47]. Second, ISM-based subtypes are able to capture the majority 632

of phylogenetic relationships between viral genomes that are represented in Nextstrain tree clades. ISM 633
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analysis shows promise as a complement to phylogenetic classification, particularly given the limits of 634

phylogenetics at early stages in the pandemic (e.g., due to uncertainty regarding key assumptions, such as 635

the rate of the molecular clock and confidence in branches) – while also being more computationally efficient. 636

Third, ISM subtyping can provide robust and informative insight regarding the geographic and temporal 637

spread of the SARS-CoV-2 sequences, as well potentially be a way to identify phenotypic variants of the 638

virus. For example, in this paper, we show that the distribution of ISMs is an indicator of the geographical 639

distribution of the virus as predicted by the flow of the virus from China, the initial European outbreak in 640

Italy, and subsequent development of local subtypes within individual European countries as well as 641

interregional differences in viral outbreaks in the United States. 642

An important caveat of all viral analyses, including subtyping, is that they are limited by the number of 643

viral sequences available. Small and/or non-uniform sampling of sequences within and across populations 644

may not accurately reflect the true diversity and distribution of viral subtypes. However, the ISM-based 645

approach has the advantage of being scalable as sequence information grows, and with more information, it 646

will become both more accurate and precise for different geographic regions and within subpopulations. 647

Using ISM subtyping pipeline on continuously updated sequencing data, we are capable of updating 648

subtypes as new sequences are identified and uploaded to global databases. We have made the pipeline and 649

updated analyses available on Github at https://github.com/EESI/ISM and an interactive website at 650

https://covid19-ism.coe.drexel.edu/. In the future, as more data becomes available, ISM-based 651

subtyping can be employed on subpopulations within geographical regions, demographic groups, and groups 652

of patients with different clinical outcomes. Efficient subtyping of the massive amount of SARS-CoV-2 653

sequence data will therefore enable quantitative modeling and machine learning methods to develop 654

improved containment and potential therapeutic strategies against SARS-CoV-2. Moreover, the ISM-based 655

subtyping scheme and associated downstream analyses for SARS-CoV-2 are directly applicable to other 656

viruses, enabling efficient subtyping and real-time tracking of potential future viral pandemics. 657
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Supplementary Files

Supplementary file 1 — Masked entropy threshold analysis

This figure shows the histogram of entropy and the frequency of N and - (Left: Histogram of masked entropy

values of sites calculated without considering ambiguous bases or gaps (N’s and -’s). The red line

demonstrates the high-entropy threshold used to define ISM sites (ą 0.23); Right: Many genome positions in

the alignments had nearly all ambiguous bases and/or gaps (the peak at around 1.0). On the other hand, the

peak at around 0 represents high quality positions with a fewer number of N and - present. Sites with large

number of N’s and - should be filtered out because a large number of N’s and -’s at a position is typically due

to sequencing error or alignment artifact which provides less information about the real nucleotide

distribution at this position. We set the percentage of N and - threshold to ă 0.25 (indicated by the red

vertical line in this plot) to keep the most informative group of sites in the genome).

The left hand side of the plot shows that there are over 100 positions with an entropy value around 1

(here we show the counts of entropy values greater than 0.1 because most of the positions in viral genomes

have no variation so far and thus leads to 0 entropy at those positions—the peak at 0 masked entropy is not

shown in full). However, most of those positions have high entropy because there are high percentage of N

and - at those positions across all sequences in our dataset. The right hand side of the plot shows that there

are a large amount of positions with high frequency of N and - (the peak at around 1.0). On the other hand,

the peak at around 0 represents high quality positions with a fewer number of N and - present. According to

this figure, we set the percentage of N and - threshold to 0.25 to keep the most informative group of sites in

the genome.
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Supplementary file 2 — Sequence notation [40]

Supplementary file 3 — ISM inflation by error correction

Supplementary file 4 — Pairwise Linkage disequilibrium between high linkage

sites

This table shows significantly linked pairs of sites and their the pairwise r2 value of Linkage

disequilibrium [45].

Supplementary file 5 — Visualizations of original ISMs

The figures in this document uses the same color codes for the original ISMs as the corresponding compressed

ISMs. We can see from the figures that major genetic patterns are preserved in compressed ISM system.

Supplementary file 6 — ISM abundance table of 20 countries/regions

The raw counts for all ISMs in each of 20 countries/regions, as well as the date each ISM was first found in a

sequence in that country/region.

Supplementary file 7 — ISM abundance table of 25 U.S. states

The raw counts for all ISMs in each of 25 U.S. states, as well as the date each ISM was first found in a

sequence in that location.

Supplementary file 8 — Geographical distribution of the dominant subtypes in

Italy

This figure shows the relative abundance in other countries of the most abundant subtype in Italy

CCCGCCAGGGA (left) and the second-most abundant subtype in Italy CCCGCCAGGGG (right).

Based on publicly available sequence data from Italy, we found that Italy had two particularly abundant

ISMs, CCCGCCAGGGA and CCCGCCAGGGG, as can be seen in the pie chart in Figure 5. The third-most abundant

subtype shown in the chart (CCCTCCAAGTG) corresponds to cases that were linked to original exposure from

China, which is consistent with the ISM being in common with one found in Hong Kong. This

supplementary figure shows the relative abundance (proportion of total sequences in that country/region) of

each of these two dominant subtypes of Italy in other countries/regions. As the plot shows, the outbreak in
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other European countries have generally involved the same viral subtypes as those which are most abundant

in Italy, as defined by ISM. Indeed, initial reports of cases in various other European countries in late

February 2020 were linked to travelers from Italy [68]. The subtypes which are predominant in Italy are

found, however, at lower yet notable abundance in countries including Japan, Canada and Australia.

Somewhat surprisingly, though the Italy subtypes were found in other U.S. states, only 88 out of the 1478

sequences from New York in the data set had the same ISM as the two dominant subtypes in Italy (see

Supplementary file 7 — ISM abundance table of 25 U.S. states). This suggests that the outbreak in New

York may not be linked to travel exposure directly from Italy, but rather from another location in Europe,

with the important caveat that some potential subtypes may not have been detected there (due to relatively

low number of sequences available from Italy). Indeed, the dominant subtype in New York (TCCGCCAGTGG)

was detected in 86 sequence from Iceland and only one of them linked to travel exposure in Italy. However, 30

out of 86 cases linked to exposure in Austria, 6 linked to UK, 2 linked to Denmark, and 1 linked to Germany.

This further suggests that it was unlikely that the incidence of the TCCGCCAGTGG subtype in New York is

connected to Italy but rather than elsewhere in Europe, but limited sequence coverage in Italy prevents more

definitive inference. However, one of the dominant subtypes in Italy, CCCGCCAGGGG, is not abundant in East

Asian regions such as Mainland China and Japan, as indicated in this supplementary figure.

Supplementary file 9 — Relative abundance (%) of ISMs in DNA sequences

from Australia as sampled over time

Australia shows growing subtype diversity as its cases increase over time. Initially, Australia’s sequences were

dominated by two subtypes that were also substantially abundant in Mainland China (CCCGCCAAGGG and

CCTGCCAAGGG). Later, another subtype (CCCTCCAAGGG) starts to emerge. This subtype was less relatively

abundant in Mainland China but more highly abundant in sequences from Hong Kong and Singapore (see

Figure 5). Then, starting with sequences obtained on February 27, 2020, and subsequently, more subtypes

are seen to emerge in Australia that were not found in other Asian countries but were found in Europe. This

pattern suggests a hypothesis that Australia may have had multiple independent viral transmissions from

Mainland China — or, as noted in the previous discussion, potentially through transmissions from Iran —

followed by potentially independent importation of the virus from Europe and North America.
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Supplementary file 10 — Relative abundance (%) of ISMs in DNA sequences

from Canada as sampled over time

This figure shows that the earliest viral sequences in Canada included mostly subtypes found in Mainland

China, with the same pattern in which there was a second, later subtype in common with Mainland China,

which was also found in travel exposure from Iran (CCCTCCAAGGG). And, like in Australia, in Canada these

few initial viral sequences were followed by a diversification of subtypes that including many in common in

Europe and the United States. In sum, Australia and Canada show patterns that might be expected for

smaller populations in countries with diverse and extensive travel connections.

Supplementary file 11 — Relative abundance (%) of ISMs in DNA sequences

from Mainland China as sampled over time

This figure reflects Mainland China’s containment of SARS-CoV-2, as seen in the initial growth in viral

genetic diversity, followed by a flattening as fewer new cases were found (and correspondingly fewer new viral

samples were sequenced).

Supplementary file 12 — Relative abundance (%) of ISMs in DNA sequences

from the Netherlands as sampled over time

Supplementary file 13 — Relative abundance (%) of ISMs in DNA sequences

from Spain as sampled over time

This figure shows, in Spain, the CCCGCCAAGGG subtype was also found in an early sequence data but not

thereafter. And, in Spain, a unique subtype has emerged that is not found in abundance in any other country.

Supplementary file 14 — Temporal dynamics of individual viral subtypes

across different regions

This figure shows that the reference genome subtype began to grow in abundance in Mainland China, before

leveling off, and then being detected in the United States and Europe, and subsequently leveling off in those

countries as well. In the case of Mainland China, that could be due to the substantial reduction in reported

numbers of new infections and thus additional sequences being sampled. However, the other countries have

continuing increases in reported infection as of the date of the data set, as well as substantially increasing
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numbers of sequences being sampled—making it less likely that the reference subtype (CCCGCCAAGGG) is

simply being missed. In those cases, it appears from Figure 8, 9, and Supplementary file 12 — Relative

abundance (%) of ISMs in DNA sequences from the Netherlands as sampled over time that in later times,

other subtypes have emerged over time and are becoming increasingly abundant. One potential explanation

is that the SARS-CoV-2 is an RNA virus and thus highly susceptible to mutation as transmissions occur [69].

Therefore, as transmissions have continued, the ISM associated with the reference sequence has been replaced

by different ISMs due to these mutations. Another plausible explanation for such leveling off in a region is

that the leveling off in relative abundance of the subtype represents containment of that subtype’s

transmission while other subtypes continue to expand in that country or region. The latter could plausibly

explain the pattern observed in the United States, where earlier subtypes connected to Asia did not increase

in abundance while a putative endogenous subtype, as well as the dominant New York subtype, have

significantly increased in abundance (see Figure 8 and accompanying discussion above). Further investigation

and modeling of subtype distributions, as well as additional data, will be necessary to help resolve these

questions — particularly in view of the caveats described below.

Supplementary file 15 — Acknowledgements of sequences this research is based

on

A list of sequences from GISAID’s EpiFlu Database on which this research is based and corresponding

authors and laboratories.
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