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ABSTRACT 
 
Background: Metagenomic next generation sequencing (mNGS) has enabled the rapid, 
unbiased detection and identification of microbes without pathogen-specific reagents, culturing, 
or a priori knowledge of the microbial landscape. mNGS data analysis requires a series of 
computationally intensive processing steps to accurately determine the microbial composition of 
a sample. Existing mNGS data analysis tools typically require bioinformatics expertise and 
access to local server-class hardware resources. For many research laboratories, this presents 
an obstacle, especially in resource limited environments.  Findings: We present IDseq, an open 
source cloud-based metagenomics pipeline and service for global pathogen detection and 
monitoring (https://idseq.net). The IDseq Portal accepts raw mNGS data, performs host and 
quality filtration steps, then executes an assembly-based alignment pipeline which results in the 
assignment of reads and contigs to taxonomic categories. The taxonomic relative abundances 
are reported and visualized in an easy-to-use web application to facilitate data interpretation and 
hypothesis generation. Furthermore, IDseq supports environmental background model 
generation and automatic internal spike-in control recognition, providing statistics which are 
critical for data interpretation. IDseq was designed with the specific intent of detecting novel 
pathogens. Here, we benchmark novel virus detection capability using both synthetically 
evolved viral sequences, and real-world samples, including IDseq analysis of a nasopharyngeal 
swab sample acquired and processed locally in Cambodia from a tourist from Wuhan, China, 
infected with the recently emergent SARS-CoV-2.  Conclusion: The IDseq Portal reduces the 
barrier to entry for mNGS data analysis and enables bench scientists, clinicians, and 
bioinformaticians to gain insight from mNGS datasets for both known and novel pathogens. 
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BACKGROUND 
 

Infectious diseases remain a leading cause of morbidity and mortality worldwide. Despite 
significant advancement in our understanding of infectious disease biology, existing 
microbiological tests often fail to identify etiologic pathogens in cases of suspected infection. 
This can be due to a number of causes - failure to isolate an appropriate sample type, 
preemptive antibiotic exposure precluding growth in culture, lack of suspicion of a particular 
infection precluding the ordering of an appropriate test, or lack of available specific diagnostic 
tests due, in part, to limited knowledge of circulating pathogens. This is compounded further by 
the fact that novel, previously uncharacterized pathogens may also be present. This fact was 
illustrated vividly by the recent emergence of COVID-19 in Wuhan, China, in early December 
2019. Metagenomic next-generation sequencing (mNGS) of nucleic acid from biological 
samples offers the potential for a universal pathogen detection method, including the detection 
of novel species. mNGS has great potential as a broad spectrum surveillance or patient 
monitoring tool, especially in low and middle income countries where the infectious disease 
burden remains high [1]. While the expense of sequencing continues to drop, the challenge of 
mNGS data analysis, the lack of bioinformatics expertise, and the access to sufficient compute 
and storage remains a major obstacle.   

mNGS experiments result in millions of sequencing reads generated from the nucleic 
acid present within a biological sample, which may include complex microbial populations. A 
primary goal of mNGS data analysis is to determine what nucleic acid derives from the host (for 
example, a patient), and what cannot be attributed to the host or environmental contaminants. 
Further analysis of the non-host sequence may then attempt to determine the relative 
abundances of different taxa present in a particular sample, as this may provide insight into the 
presence and relevance of potentially pathogenic microbes. This is typically done via alignment 
of sequencing reads to a reference database. In the context of infectious diseases, identification 
of pathogens via this approach obviates the need for pathogen-specific reagents or the ability to 
culture the microbe. This is especially important for microbes that are difficult, or impossible to 
culture, including many viruses, fungal species, eukaryotic parasites, and bacteria [2]. Additional 
downstream analysis may then be employed to understand trends in the abundances and 
relatedness of organisms across samples.  

There are several tools available for estimating relative abundance of microbial 
populations from mNGS data [3–20]. However, running these tools requires bioinformatics 
expertise and fluency with command-line tools. Additionally, pathogen detection in the context of 
a host organism presents unique informatics challenges beyond microbial abundance 
estimation. As noted, a substantial fraction of the sample may consist of host sequences that 
are secondary to the goal of pathogen detection [21]. Existing tools do not perform sensitive 
removal of host sequences or quality control (QC) steps, thus requiring the use of separate QC 
and alignment tools, and therefore additional computational experience in pipelining. A number 
of tools exist to incorporate multiple pipeline steps alongside reporting capabilities, including 
OneCodex [22], Sunbeam [23], and SURPI [24]. However, these tools require paid subscription 
or significant computational resources to build the underlying databases and run the analyses. 
Consequently, existing tools are not sufficient to support new applications of mNGS in poorly 
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resourced settings where the detection of infectious agents could make a major impact on 
population health. 

Here, we describe IDseq - an open source cloud-based service for pathogen detection 
and monitoring. IDseq is a continuously evolving service that enables robust and reproducible 
analysis of mNGS data for microbial identification, regardless of sample type or host 
species. We first describe the technical aspects of the IDseq pipeline implementation, including 
host filtration and QC, assembly-based alignment, and downstream reporting and visualization 
tools. We then evaluate the performance of the IDseq pipeline, first on a set of standard mNGS 
benchmark samples as compared to other tools aimed at providing taxonomic abundance 
estimates from mNGS data, and secondly on a simulated dataset to evaluate the ability to 
detect divergent viruses. Finally, we provide two case studies to demonstrate the application of 
IDseq. First, in a subset of samples from a previously published report which sought to 
investigate unknown etiologies of pediatric meningitis [1]. Secondly, we describe the 
performance of IDseq in the context of a real-world nasopharyngeal swab, processed and 
uploaded to IDseq from Phnom Penh, Cambodia, with respect to an emerging viral pathogen, 
SARS-CoV-2.  By combining an intuitive web application, a cloud-based pipeline, and 
downstream visualization tools, IDseq enables investigation of mNGS data for pathogen 
detection and monitoring, especially suited for researchers with limited computational resources. 
Importantly, IDseq also enables facile collaboration and data sharing, while enhancing data 
analysis reproducibility across organizations and countries. 
 
IMPLEMENTATION 
 
IDseq Bioinformatics Pipeline 

The IDseq Portal https://idseq.net is a cloud-based, open-source bioinformatics platform 
that enables detection of microbial pathogens from raw next-generation sequencing (NGS) 
reads. The IDseq pipeline is conceptually based on previously implemented pipelines [1,25], but 
is optimized for scalable Amazon Web Services (AWS) cloud deployment (Figure 1). Here, we 
describe v3.13 of the IDseq pipeline. Up-to-date pipeline documentation can be found at 
https://help.idseq.net.  

The IDseq pipeline ingests raw, short-read sequencing data (either RNA- or DNA-seq 
from any sample type), which can be uploaded from local sources via the web interface or the 
command line interface (CLI) or directly from Illumina’s BaseSpace platform. Sequence analysis 
proceeds through three main phases: 1) Host filtering and QC, 2) Assembly-based alignment, 3) 
Reporting and visualization (Figure 1A).  

 
Host Filtering and QC 

The first phase of the pipeline begins with validation of input files (single- or paired-end 
.fastq or .fasta files). Currently, raw read files are arbitrarily capped at 150 million reads, a 
threshold that is, according to our experience, larger than most single metagenomic samples. 
Most mNGS samples processed for pathogen detection are sampled from a potentially infected 
host organism and thus the majority of sequencing reads derive from the host organism itself 
[21]. IDseq performs a priori subtraction of host sequences via STAR (Spliced Transcripts 
Alignment to a Reference) alignment of raw reads to a host-specific database [26]. IDseq is 
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host-agnostic and allows researchers to select from several available hosts including human, 
mouse, pig, ticks, and mosquito, among others. For example, human host samples are aligned 
to the HG38 reference database (GCA_000001405.15), while mosquito samples are aligned to 
a combined collection of reference genomes from Culex and Aedes species as well as other 
diptera. Reads that align to the selected host genome are removed from the analysis. For hosts 
with well-annotated genomes, individual gene counts may be saved for offline transcriptome 
analysis, provided appropriate consent in the case of human subject research. Such host-based 
analyses have been shown to complement metagenomic analysis for pathogen detection [27]. 
For all host organisms, sequences for optional spike-in RNA controls developed by the External 
RNA Controls Consortium (ERCCs) are automatically recognized for downstream steps. 

Next, IDseq performs a series of Quality Control (QC) steps, as outlined in Figure 1. 
First, Trimmomatic [28] trims Illumina adapters. Low-quality reads, duplicates, and low-
complexity reads are then removed using the Paired-Read Iterative Contig Extension (PRICE) 
computational package [29], the CD-HIT-DUP tool (v 4.6.8) [30], and a filter based on the 
Lempel-Ziv-Welch (LZW) compression score, respectively. Regardless of the host genome, the 
data is scoured to remove all remaining  human sequences using Bowtie2 against the HG38 
reference database [31] and gmap-gsnap against a more stringent database including 
sequences combining both HG38 and Chimpanzees (Pan troglodytes) [32]. This step is 
especially important in the case of vector research, where blood meals may contain human 
sequences. At each step, the total number of reads remaining in the analysis is computed and 
these basic QC metrics (including total non-host reads, % passing QC, and duplicate 
compression ratio) are provided both in the user interface, as well as via download.  

While the host filtering and QC steps performed by the IDseq pipeline serve primarily to 
reduce the computational burden and noise in downstream alignment steps, these metrics can 
also provide a resource for evaluating and troubleshooting sample preparation steps. The 
proportion of reads lost at each step may provide insight into possible sample degradation, 
fragment size, sequencing quality, or library complexity. IDseq’s automatic estimation of ERCC 
abundances enables back-calculation of the total input nucleic acid content, estimation of the 
lower limit of detection, and increases the ability to distinguish contaminants [34]. ERCC spike-
ins are increasingly recognized as a best-practice for addressing the challenges associated with 
distinguishing background contamination from true microbial populations (Methods) [33]. 

Assembly-based Alignment 
 To assign taxonomic identities to each read, an assembly-based alignment procedure is 
used. First, filtered short-read sequences are aligned to the NCBI nucleotide (nt) and non-
redundant protein (nr) databases (ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/) using GSNAPL 
[32] and RAPsearch2 [35], respectively (Figure 1A). GSNAPL is a specialized instance of the 
gmap-gsnap package written by Tom Wu, intended for very large genome databases. 
 The NCBI database indices are updated biannually, or as needed, via direct pull from 
NCBI. The index version is tracked for each pipeline run providing for versioned results. Putative 
accessions are assigned to each read using the NCBI accession2taxid database [36] and a 
BLAST+ (v 2.6.0) [37] database is constructed on-the-fly from the set of putative accessions 
(one database for each, nt and nr). In parallel, short reads are de novo assembled into contigs 
using SPADES [38].   Raw reads are mapped back to the resulting contigs using Bowtie2, in 
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order to identify the contig to which each raw read belongs. Finally, each contig is aligned to the 
set of possible accessions represented by the BLAST database generated in the previous step, 
thereby improving the specificity of alignments to all the underlying reads, especially for 
homologous regions where short reads may align equally well to multiple different accessions. 
 
AWS Cloud Infrastructure 

IDseq is optimized for scalable Amazon Web Services (AWS) cloud deployment (Figure 
1B). Bioinformatics data processing jobs are orchestrated by the IDseq pipeline directed acyclic 
graph (DAG,  https://github.com/chanzuckerberg/idseq-dag) and carried out on demand as 
Docker containers using AWS Batch. Alignments to the National Center for Biotechnology 
Information (NCBI) database are executed on dedicated auto scaling groups (ASG) of Amazon 
Elastic Compute Cloud (EC2) instances, with the number of server instances varied with job 
load. Fast downloads of the NCBI database from the Amazon Simple Storage Service to each 
new server instance are enabled by the open-source tool s3mi 
(https://github.com/chanzuckerberg/s3mi).   
 
Reporting and Visualization 

Where alignments exist, taxonomic identifiers (taxID) for each of nt and nr, are assigned 
to each read. If there exist alignments with equivalent scores to multiple species taxIDs, then a 
single taxID is selected at random. If a read was incorporated into a contig, it is assigned the 
taxID belonging to the NCBI accession to whom its parent contig was assigned, as described 
above. If the read does not assemble into a contig, it is assigned the taxID of the NCBI nt and nr 
accessions it mapped to in the initial short-read alignment phase. The results are then 
aggregated to produce NT and NR counts for each taxID at both the species and genus level. 
Reads matching GenBank records in the superphylum Deuterostomia are removed, given the 
high likelihood that such residual reads are of host origin. 

The IDseq Portal provides a number of different methods for interpretation of the pipeline 
results (Figure 2). First, relevant QC metrics and pipeline run information, including the number 
of reads remaining at each step of the host and quality filtering steps as well as estimates of 
internal control abundances are provided for each sample (Figure 2AB, Methods). The single-
sample report tables provide key metrics for each taxon identified in the sample, including the 
total number of reads aligning to the taxon (in both NT and NR) as well as contig stats from the 
assembly-based alignment step (Figure 2C). The tree view enables rapid assessment of 
taxonomic relatedness of microbes identified in the sample (Figure 2D). For all views of the 
data, a wide range of user-selectable compound query and filtering tools are made available, 
enabling facile investigation of the data. For each taxonomic category, IDseq also provides one-
click downloads of the corresponding underlying reads and contigs. Furthermore, coverage 
plots for contigs relative to all corresponding accessions to which they map are automatically 
generated (Figure 2F). To assist with distinguishing microbial signal from reagent and 
environmental contamination, IDseq supports background model generation, which allows 
researchers to evaluate the significance (reported in z-scores) of relative abundance estimates 
for taxons in samples of interest as compared to water-only or other environmental control 
sample collections. Altogether, the single sample report and associated filtering functionality 
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enables evaluation of taxonomic hits. More documentation on specific metrics can be found at 
https://help.idseq.net. 

To facilitate visualization and hypothesis generation across multiple samples, the IDseq 
portal provides user customizable taxon heatmaps (Figure 2E). For advanced users, the 
pipeline visualization tool clearly documents the input parameters at each step of the analysis 
pipeline and provides download access to the input and output files at each step so data can be 
made available for offline analysis (Figure S1), such as phylogenetics.  
 
Versioning and Development 

IDseq is an open source software tool under continued development across two GitHub 
repositories – one which hosts the web interface (https://github.com/chanzuckerberg/idseq-
web), and one which hosts the pipeline code (https://github.com/chanzuckerberg/idseq-dag). 
Modifications to the web interface, which are deployed twice-weekly, do not affect the analysis 
results. To provide a record of features and how to use them, full documentation is provided at 
https://help.idseq.net.  

Updates to the pipeline code may impact analysis results. Therefore, IDseq has adopted 
a semantic versioning system. Changes implemented to each version are listed in the README 
file. For each pipeline run, the pipeline and NCBI database versions are also tracked. Major 
changes to the pipeline outputs result in a major version number update (2.x to 3.x) and are 
communicated broadly to researchers via email updates. The change from IDseq v 2.x to v. 3.x 
involved the incorporation of the current assembly steps to refine alignment results, which 
improved the ability to resolve taxonomic identities in potentially homologous regions. Small 
changes to the pipeline that may still affect downstream results are indicated by an increased 
minor version number. For example, addition of a minimum alignment length filter to improve 
specificity of NT alignments caused a version change from 3.9.4 to 3.10.0. Changes to the 
pipeline which do not affect the results are indicated by incremental minor version (i.e. 3.13.1 to 
3.13.2).  

Continued development on IDseq aims to 1) improve the computational efficiency and 
accuracy of the results; 2) expand the integration with other tools to enable researchers’ 
flexibility in the downstream analysis of their processed results; 3) support the expanding 
number of mNGS sequencing platforms that will be used by researchers for pathogen detection 
globally. A suite of benchmarking samples are used for analysis of additional pipeline updates 
as discussed below. 

 
Software and Data Availability Additional documentation and guides for getting started with 
IDseq can be found at https://help.idseq.net. The code is open source and available in the 
GitHub repositories listed in Table S1. 
 
 
RESULTS 
 
Evaluation of IDseq on External Benchmark Datasets 
IDseq Analysis of Unambiguously Mapped Datasets 
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A recent study evaluated the performance of 20 taxonomic classifiers for mNGS data on 
ten reference datasets that are commonly used for benchmarking, containing computationally 
simulated reads from between 12 and 525 bacterial species [39]. It evaluated performance 
using two metrics - the area under the precision recall curve (AUPR) and the L2 distance. The 
AUPR evaluates the ability to detect the presence of microbes (binary presence/absence) 
above a relative abundance threshold, taking into consideration the precision and recall rates as 
said threshold is adjusted. A species-level AUPR of 1.0 indicates that there is a threshold 
(proportion of reads) above which all true positive species can be identified with no false 
positive species. The L2 distance provides a complementary metric that considers the similarity 
in relative abundances between the results and the ground truth. 

We evaluated the performance of the IDseq pipeline on these same datasets (Methods, 
Table S2). Samples took an average of 3 hours (min = 1.6 hours, max = 10 hours) to process 
on IDseq pipeline version 3.13, with the NCBI database version from September 2019. 
Performance metrics (AUPR and L2 distance) were computed separately for the NCBI nt and nr 
results and compared to those published recently by Ye et al. (idseq_nt and idseq_nr, Figure 3) 
[39]. IDseq provides an automated pipeline, but at the cost of inability to easily swap in new 
databases. Therefore, we compared our results against those reported by Ye et al. for the 
“default database” of other tools. The performance metrics may inherit biases due to differences 
in the reference database contents as well as recency of input sequences.  
Deep Dive of Unambiguously Mapped Datasets Results 

The IDseq pipeline demonstrated comparable performance to the other mNGS tools 
tested (Figure 3). The unambiguously mapped datasets demonstrated limited resolution for 
distinguishing the tools when evaluated by AUPR and L2, as most tools show relatively high 
performance (with AUPR scores above 0.8 at the species level, Figure 3A). Consistent with Ye 
et al, we observed that the greatest differences between tools was in the reduced precision at 
high recall. IDseq protein alignments (NR) demonstrated greater AUPR than IDseq nucleotide 
(NT) across most datasets, but consistently identified more taxa at low abundance (less than 
1%), therefore resulting in reduced precision (Figure 3C). Meanwhile, IDseq NT exhibited 
increased specificity. IDseq NT and NR had a mean AUPR across all the datasets of 0.9627 
and 0.9633, respectively. The top mean AUPR of any single tool was achieved by metaothello 
(0.9661), followed by Kraken2 (0.9635). Given Kraken2’s performance on the unambiguous 
benchmark datasets and its wide adoption for relative microbial abundance estimation, 
additional analyses focused on comparison against Kraken2 (Figure 3BC). Another 
distinguishing factor between the tools was in the number of reads that were “unclassified” 
across multiple datasets. mmseq2, metaothello, kaiju, and bracken consistently left > 10% of 
reads “unclassified”. IDseq (NT and NR) removed an average of 10% of the reads during host 
filtering and QC steps, but of the remaining sequences, an average of less than 1% of reads 
were unmapped across the ten datasets. This can be attributed in part to IDseq always 
assigning reads to a species when an alignment exists (increasing sensitivity at the expense of 
specificity) and secondly to the use of assembled contigs to refine alignments where short reads 
may have been unmapped. 

To further investigate differences between the tools, we evaluated the results for each 
dataset independently (Figure 3B). IDseq NR demonstrated lower precision across all datasets 
than many other tools, including IDseq NT and Kraken2 (Figure 3C, Figure S2). The ATCC 
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Staggered dataset, which includes several microbes present at very low abundance, yields the 
lowest AUPR of all samples tested via IDseq NR, consistent with findings in Ye et al. that 
protein- based classifiers consistently struggled to identify the low-abundance taxa amongst 
other low-abundance false positives. Meanwhile, IDseq NT demonstrated reduced performance 
on the NYCSM dataset (Supplemental Text). IDseq’s usage of the full NCBI nt and nr databases 
resulted in relatively high performance for the Buccal dataset. Ye et al. discuss that the Buccal 
dataset was a low-performing outlier for most evaluated classifiers due to inclusion of reads 
from a species with only contig-quality reference, which is not included in most default 
databases.  

The IDseq web portal is designed to provide researchers with the choice of utilizing 
either NT or NR results, or both in conjunction with each other. For example, the impact of 
spurious NR alignments can be mitigated by requiring a corresponding alignment with IDseq 
NT. Using this strategy, the performance of IDseq was evaluated, considering the NT relative 
abundances reported for taxa with both NT r > 0 and NR r > 0 (idseq_ntnr, Figure 3, Figure 
S2). We observed that requiring concordance resulted in the greatest mean AUPR across all 
other tested tools (0.9673) and increased the precision of IDseq above that of either NT or NR 
alone.  

Altogether, these results highlight some key trade-offs with respect to relative 
abundance estimation of bacterial species. IDseq is capable of identifying organisms with 
respect to the latest versions of NCBI and demonstrates relatively high recall (Figure 3D). But 
use of the full NCBI database may result in false-positive alignments at low abundance which 
can reduce precision (Figure 3C). In the context of pathogen-identification, it has been 
observed that infecting agents may comprise the majority of sequencing reads in certain 
circumstances [27]. For such data sets, the reduced precision for abundance estimation at low 
levels is less impactful. Meanwhile, researchers interested in evaluating highly complex 
microbiome composition at the species- and strain-level may need to bring in other tools to 
supplement their analyses [40–42] or rely on genus-level estimates provided by IDseq. 

Evaluation of IDseq on Internal Benchmark Datasets 
To address the gaps between the existing benchmark datasets and the IDseq pipeline’s 

primary use-case for pathogen detection, we tested IDseq’s performance on three additional 
datasets specifically designed to evaluate detection of divergent viruses (Methods) and 
common clinical microbes (Supplemental Text). For each dataset, we evaluated the 
performance of IDseq (NT and NR), as compared to Kraken2 [15], using per-species recall. 

Detection of Divergent and Novel Viruses 
Viruses are known to evolve rapidly and therefore their sequences may diverge from 

sequences in the known NCBI database over relatively short timescales [43]. Maintaining the 
ability to detect divergent viruses is of paramount concern, given their role in numerous recent 
outbreaks, including the recent emergence of SARS-CoV-2, the coronavirus responsible for the 
COVID-19 outbreak [44–47]. The idseq-bench tool was used to generate 17 simulated NGS 
samples from Rhinovirus C genomes at varying levels of divergence (after in-silico forward 
evolution from a reference sequence obtained from the NCBI database), ranging from 100% 
identical to the reference sequence to 25% similar (at the nucleotide level) (Methods, Figure 
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4A, Table S3).  The resulting samples were uploaded to IDseq (Project HRhinoC Simulation). 
Meanwhile, the same raw .fastq files (prior to host filtering), were analyzed using Kraken2 
(Methods). 

Both IDseq NT and Kraken2 identified reads aligning to Rhinovirus C down to 75% 
sequence divergence (Figure 4B). Meanwhile, IDseq NR recalled Rhinovirus C alignments 
down to 70% sequence divergence, demonstrating a greater sensitivity for divergent virus 
detection. We note that IDseq NR experienced a rapid drop in total recall (8,558 reads correctly 
mapping to Rhinovirus C, of 10,000 total and 8,558 passing QC steps at 70% sequence 
similarity vs. 0 reads detected at 65% sequence similarity).  This highlights an artifact of the 
computational cost-saving mechanisms employed by IDseq - whereby a BLAST database is 
constructed from only the subset of accessions identified in the initial short-read GSNAP and 
Rapsearch2 alignments to the NCBI database. In cases where the highly divergent short-read 
sequences don’t match to NT or NR in the initial alignment, the BLAST database will be empty 
and none of the reads or contigs will map. However, IDseq does provide the ability to download 
all assembled contigs, enabling offline interrogation of this divergent “dark matter”. Manual 
BLASTx of contigs assembled by SPADES in IDseq to the full NCBI database, was able to 
recover the Rhinovirus C identity down to 55% sequence identity. Future iterations of the IDseq 
pipeline may aim to automate the manual follow-up steps for divergent viral contigs as well as 
incorporating other tools for dark matter investigation to probe for pathogen motifs. 

Further comparison of the IDseq (NT and NR) results to Kraken2 shows that Kraken2 
initially recovered more of the simulated reads than IDseq (9,964 of 10,000 vs. 8,582 for both 
IDseq NT and NR). This is explained by the QC steps in the IDseq pipeline, which removed 
~15% of reads at the PriceSeq filtering step due to low quality - an expected outcome given that 
the simulated reads mimic error models of Illumina sequencers (Methods). Of the reads 
remaining after host filtering, IDseq identified 100% as aligning to Rhinovirus C. This pattern 
persists down to 95% sequence similarity, at which point Kraken2 begins to identify fewer reads. 
While some Rhinovirus C reads are identified down to 75% sequence similarity (same as IDseq 
NT), IDseq NT identified a significantly greater number of reads mapping to Rhinovirus C at 
increasing levels of divergence. Specifically, at 80% divergence, 8,544 reads mapped by IDseq 
NT while only 1,042 reads mapped by Kraken2. Altogether, these benchmark results are 
consistent with existing reports of the utility of IDseq NR in detecting divergent viruses [48] and 
are within the ranges of nucleotide divergence associated with emerging human pathogens 
(Supplemental Text). 

 
APPLICATION I. IDseq for Pathogen Discovery in Cases of Pediatric Meningitis  

The IDseq pipeline is sample-type agnostic, allowing researchers interested in a broad 
range of scientific questions across a diverse array of host organisms (humans, mice, 
mosquitos, ticks, plants, environmental, etc.) to obtain relevant microbial information from any 
sample type (blood, CSF, respiratory fluids, tissue, etc.) [1,49–51]. There are many challenges 
for data interpretation that are common across mNGS applications, such as impact of PCR 
amplification on samples with low amounts of input RNA, background contamination, and 
genomic similarity between short regions of related organisms. Here, through a re-analysis of 
the IDseq results for three cerebrospinal fluid (CSF) samples from a recent study investigating 
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etiologies of pediatric meningitis in Bangladesh [1], we highlight specific IDseq features to 
address these challenges. The original study, conducted by Saha et al. included 91 CSF 
samples (36 positive, 30 negative, and 25 idiopathic) and 6 water controls, processed on IDseq 
v3.1. We focus on one known infection (Streptococcus pneumoniae, CHRF_0002), one 
idiopathic sample that was later confirmed to have chikungunya virus (CHRF_0094), and one 
water control (CHRF_0000) (Figure 2). These samples, for demonstrative purposes, were re-
run on IDseq v3.13 and are available in IDseq project CHRF RR007 Example. Key pipeline run 
metrics for these three samples are provided in Table 1. 
 
Sample 0094: A case of neuroinvasive chikungunya virus 

CHRF_0094 was a pediatric encephalitis case of unknown etiology that was later 
determined to be a case of neuroinvasive chikungunya virus. Figure 2A shows the number of 
reads removed by each host filtration and QC step. One challenge for mNGS-based pathogen 
detection is that host sequences dominate the mNGS library. Notably, in CHRF_0094, 
chikungunya virus reads in sample CHRF_0094 represented less than 1% of the total 
sequencing reads. However, after IDseq’s host filtering and QC steps, it represented 63% of the 
remaining non-host reads. A second, widely acknowledged challenge for mNGS data 
interpretation is the presence of environmental contaminants. Best-practices suggest including 
at least one water control with every sequencing experiment [34,52]. To assist with 
interpretation of results with respect to control samples, IDseq implements a z-score approach 
(Methods) first described in Wilson et al. [53]. Z-score statistics computed by IDseq indicate the 
significance of relative abundance estimates in a sample as compared to the user-selected 
background controls - which may include water controls or healthy control samples. Z-score 
thresholds can be imposed to remove taxa that are prevalent in the water or healthy controls. In 
sample CHRF_0094, 8 rows (4 species from 4 genera) were reported with NT reads per million 
(rPM) greater than 10, NR rPM > 10, and z-score > 1 (a relatively stringent threshold employed 
to remove many of the low-abundance taxa for first-pass evaluation). 7,876.2 rPM were 
associated with chikungunya virus, of which many were associated with the 4 contigs aligning to 
chikungunya virus. By using the IDseq portal coverage visualization, which displays reads and 
contigs in association with their top matched GenBank accession, we observe that the longest 
contig, approximately 11kb, represented full-genome coverage of the nearest GenBank 
accession (Figure 2F). 

 
Sample 0002: A case of known Streptococcus pneumoniae meningitis  

In sample CHRF_0002, IDseq associated 1,927,505 reads by NT with the independently 
verified pathogen, Streptococcus pneumoniae, of which 98.1% were assembled into 143 contigs 
(Table 1). The average alignment length across all contigs and reads was 75,289.8 bp - driven 
largely by alignment of long contigs. Despite the large number of contigs and long alignment 
lengths, the GenBank accession with the greatest coverage (1.8mb LR216026.1 Streptococcus 
pneumoniae strain 2245STDY5775485 genome assembly, chromosome: 1) had 87.3% 
coverage breadth. This exemplifies a frequently observed pattern (which is even more 
pronounced in lower-coverage samples) - whereby coverage of larger bacterial genomes is 
lower than virtual genomes even for samples with a high proportion of mNGS reads associated 
with a particular microbe. For many cases, low coverage from mNGS data can preclude 
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confident strain identification in bacterial species that may be useful in a clinical context. 
Furthermore, low coverage of the transcriptome (via RNA mNGS) may produce a large 
proportion of alignments in conserved rRNA regions which may be challenging to disambiguate. 
 
Sample 0000: A water control 

In sample CHRF_0000, the duplicate compression ratio (DCR) of 4.67 indicates the 
possibility of over-amplification of low biomass nucleic acid input (Table 1). This is common for 
water samples where low input nucleic acid is expected. The use of ERCC controls in the library 
preparation of these samples enabled back-calculation of the total input RNA concentration. 
This sample was determined to have 3.7 pg of total input RNA, while the two infected samples 
(CHRF_0094 and CHRF_0002) had 29.6pg and 213.6 pg, respectively. Thus, while the relative 
abundance values appear comparable to those in the infected sample, they represent 
significantly smaller quantities of raw nucleic acid (Figure 2E). In the original study all water and 
non-infectious controls (which had low white cell counts and therefore little host or pathogen 
nucleic acid) had input RNA quantities < 4 pg, enabling the use of an input nucleic acid 
threshold for inclusion in downstream analyses.  Additionally, the top four organisms (by NT 
rPM) include Providencia, Cutibacterium, Streptococcus, and Escherichia - many of which are 
known environmental contaminants [33,54,55]. The 36 total rows (with NT rPM > 10, NR rPM > 
10, and NT z-score > 1) are all present at relatively similar and low abundance levels, 
characteristic of background contaminants [33,34]. 
 
APPLICATION II. Real-time Detection of Novel Coronavirus 

IDseq is a globally accessible pipeline for mNGS analysis that has been shown through 
simulation and practice to be effective in identifying novel and divergent viruses. As an 
additional real-world example of this utility, we provide a vignette from the recent SARS-CoV-2 
coronavirus outbreak. On January 30, 2020, a team of researchers from the CNM-NIAID 
(National Center for Parasitology, Entomology, and Malaria Control - National Institute of Allergy 
and Infectious Disease) collaboration in Cambodia obtained a nasopharyngeal swab sample 
from a patient with PCR-confirmed SARS-CoV-2 infection. The library preparation and 
sequencing were completed in-country by February 1, 2020 [56]. Analysis of the sample (4.5 
million single reads) using IDseq against an NCBI database version from 2019-09-17, which did 
not contain the known sequences for SARS-CoV-2 that have since been deposited on NCBI, 
identified 571 reads aligned to the genus Betacoronvirus, with an average amino acid percent 
identity of 92.3% (by NR). The sample took 14 minutes to analyze end-to-end and the most 
abundant species was severe acute respiratory syndrome-related coronavirus, with 542 NT 
reads (22 contigs) and 571 NR reads (24 contigs), representing ~33% genome coverage. To 
quantify the IDseq pipeline’s recall for SARS-CoV-2 sequences, we built a BLAST database 
from the 54 sequences associated with SARS-CoV-2, which had been deposited in NCBI 
between January and February 2, 2020 as a result of widespread efforts by the global science 
community. By BLASTing all non-host reads from the sample against the known SARS-CoV-2 
sequence database, we identified 584 reads mapping to SARS-CoV-2. As compared to this 
ground-truth value, IDseq demonstrated 97.8% read-level recall. This indicates that for an 
emerging threat, IDseq was able to successfully provide information on the presence of a 
pathogen prior to the existence of full reference genomes associated with the organism. This 
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identification was of paramount public health importance given unclear diagnostic accuracy in 
the beginning pre-pandemic state. 
 
DISCUSSION 

We have introduced IDseq, an open source cloud-based pipeline and analysis service 
for metagenomic pathogen detection and monitoring. We described the pipeline analysis steps 
and demonstrated that the IDseq pipeline achieves comparable performance for taxonomic 
identification and relative abundance estimation as other tools in the field. We showed that 
IDseq is uniquely suited for detection of divergent viruses and has high sensitivity for detecting 
human pathogens. Finally, we have shown through two case-studies, how the IDseq portal 
enables researchers to rapidly generate insights into their samples’ quality, microbial content, 
and cohort trends. We further highlighted its real-time utility by describing how IDseq was used 
to analyze sequences associated with the emerging coronavirus SARS-Cov-2 prior to 
deposition of SARS-CoV-2 sequences into public data repositories. The IDseq web portal 
provides an easy-to-use access point for computationally intensive analysis of mNGS data. Its 
sample-type agnostic implementation enables its application for a broad range of research 
questions related to understanding distribution of microbes in a sample. The IDseq pipeline has 
been a key component in recent studies to understand undiagnosed causes of infection and 
survey the landscape of circulating pathogens, both in humans and animals [57,58].  

Benchmarking of mNGS tools is a well-recognized challenge within the field [39,59,60]. 
The choices of tools, parameters, databases, and datasets may all influence the conclusions. 
Our aim in this study was simply to test performance relative to other tools. We compare 
IDseq’s default database (NCBI nt and nr) against the default databases for all other tools 
included by Ye et. al. Though it is possible that other tools’ performance would improve given a 
comparably large database, configuring these details requires computational expertise that 
directly opposes the readily usable nature of IDseq. IDseq continues to use the full NCBI nt and 
nr database given their advantages for detecting divergent viruses and incorporating data on 
novel bacterial pathogens. However, the large database size results in longer run-times and the 
lack of curation induces the potential for noise in alignment results due to errant sequence 
assignment errors upon upload to the NCBI databases. There is ongoing work by many 
researchers to evaluate curated databases for mNGS analyses, but for now IDseq continues to 
update its database biannually. To support continued benchmarking of IDseq and empower 
researchers to test IDseq’s performance for their particular applications, we have released the 
open-source idseq-bench tool, which was used to generate the divergent virus dataset and for 
evaluating the per-read recall results. 

Beyond the informatics nuances between tools, IDseq provides clear advantages for 
researchers new to mNGS and computational data analysis. First, IDseq is designed and 
maintained by a team of engineers and managed as a software-as-a-service product, where 
user support is a key component. User support enables researchers to have confidence that 
they will obtain results in a timely fashion. Secondly, the tool’s user interface provides a series 
of advantages for users with limited computational expertise by reducing the challenges 
associated with installation and configuration as well as providing meaningful metrics for quality 
control and interpretation. It maintains transparency on individual pipeline steps through 
documentation (https://help.idseq.net), the pipeline visualization tool (Figure S2), and 
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availability of downloads from intermediate files. Together, these resources help researchers 
new to mNGS get started quickly, while also providing tools to enhance skills in computational 
biology. Thirdly, the pipeline provides assurance of computational reproducibility, which is an 
increasingly appreciated priority within the scientific community as dataset sizes and analytical 
complexity increase. Lastly, the web-based user interface provides an access point for 
collaboration and networking – enabling researchers to collaborate seamlessly across countries 
and institutions, thereby building global networks of expertise that can be accessed by those in 
resource-scarce settings. 

Finally, we highlight that IDseq is not a clinical tool and intended for research-only 
purposes. IDseq aims to be a valuable resource for researchers in the infectious diseases field 
but does not intend to become clinically validated. While IDseq can yield insights that inform 
public health policies, laboratory testing priorities, and real-time decisions for confirmatory 
clinical testing, clinical validation of the pipeline requires locking of the system for adherence to 
strict guidelines. IDseq will remain under continued development in order to 1) improve the 
computational efficiency and accuracy of the results; 2) expand the integration with other tools 
to enable researchers’ flexibility in the downstream analysis of their processed results; and 3) 
support the expanding number of mNGS sequencing platforms that will be used by researchers 
for pathogen detection globally. Some possible future directions for improvements to the IDseq 
pipeline have been discussed throughout. Notably, IDseq’s current assembly-based alignment 
steps results in failure to automatically identify divergent viruses beyond 70% divergent, while 
BLASTx of IDseq-generated contigs can enable detection down to 55% divergent. Automating 
full NCBI BLASTx of putative viral contigs would simplify offline analyses. Similarly, we showed 
that IDseq NR had reduced precision, which made relative abundance estimation of low-
abundance taxa challenging. Allowing for non-species-specific mappings or propagating 
estimates of species-level ambiguity to increase species-level resolution for low-abundance taxa 
may provide another avenue for continued development. Finally, continued integration with 
other analysis tools and sequencing technologies will further enhance the usability of IDseq for 
mNGS data analysis.  

IDseq reduces the need for much of the computational expertise and access to large-
scale computing resources that have traditionally been barriers for conducting mNGS data 
analysis. The IDseq portal provides an easy-to-use interface that enables researchers around 
the world to upload samples and generate hypotheses with relevant implications for global 
health and infectious disease tracking as diseases emerge. 

 
METHODS 
 
Raw Pipeline Commands 

The IDseq pipeline uses several publicly available academic bioinformatics tools. The 
raw commands and parameters used for each step in the pipeline are available for each 
pipeline version in the pipeline visualization (Figure S1), which can be viewed for any sample in 
IDseq. Technical documentation is available here: https://github.com/chanzuckerberg/idseq-
dag/wiki.  

Automatic ERCC Quantification 
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The External RNA Controls Consortium (ERCC) developed a common set of external 
RNA controls that can be used to control for a variety of sources of variation on RNA expression 
attributed to experimental factors (including the quality of the starting material, the level of 
cellularity and RNA yield, the sequencing platform, and the person performing the experiment). 
In the context of pathogen detection, mNGS libraries often contain extremely low quantities of 
RNA input. It has been shown that during library preparation, samples with low input experience 
amplification background contaminants [34]. ERCC controls can be used to mitigate the effect of 
low input libraries and to quantify the total input. To enable researchers to rapidly assess the 
quality of their libraries and the limit of detection, IDseq provides ERCC counts for each sample. 
During the host filtering steps, the raw sequencing reads are aligned to the ERCC reference 
sequences and counts are generated by STAR –genecounts option [26]. These values are then 
available for download, as well as visualized in the user interface (Figure 2B). 
 
IDseq Z-score and Aggregate Score Metrics 

Given the sensitivity of mNGS, it is common to identify contaminating microbial 
sequences derived from laboratory contaminants, reagents, collection tubes, etc. There exist 
numerous approaches to assist in distinguishing background contaminants from true microbes 
[34,53,61]. IDseq implements a previously described z-score method for background correction 
[53]. Researchers can create a background model by selecting control samples sequenced via 
their standard laboratory protocols or select from a default set of publicly available water 
controls. From the selected set of samples, the distribution of reads for each taxon is computed. 
The z-score field of the IDseq sample report is calculated as the z-score for each taxonomic ID 
based on its prevalence in the selected background model. If a particular taxonomic ID is not 
found in the set of control samples, then the z-score will be set to 100. If the taxonomic ID is not 
found in the sample, the z-score will be set to -100. The z-score metric also feeds into the 
“aggregate score”, which combines information from NT rPM, NR rPM, NT z-score, and NR z-
score to provide an estimate of “microbial importance” for a particular sample based on the 
relative abundance both with the sample as well as in the background. This experimental metric 
aims to rank rare organisms that may be implicated in an infection higher, even if they are 
present only at low abundance. 

External Benchmarks - Datasets and Metrics 
Datasets evaluated by Ye et al. in their benchmark analysis of 20 mNGS tools were 

downloaded from <gs://metax-bakeoff-2019>. The raw .fastq files were uploaded to IDseq 
(Table S2). The truth files for each of the datasets were obtained from 
https://github.com/yesimon/metax_bakeoff_2019 and are available in the Notes field of the 
IDseq metadata. The code developed by Ye et al. was downloaded from the GitHub repository. 
IDseq sample reports were downloaded upon completion and processed to produce species-
level relative abundance estimates for each sample – specifically, the proportion of total reads 
(by NT and NR) was computed and used as input to the script. The IDseq results were 
processed in parallel with the data analyzed for the Ye et al. paper. The scripts used to run this 
analysis are available here https://github.com/katrinakalantar/idseq-benchmark-manuscript. 
Modifications to the original script are annotated as “##IDseq EDIT”. The computed metrics 
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(AUPR, L2 distance, precision, recall, and f1-score) were then output as .csv files and plotted 
(Figure 3, Figure S3). 

idseq-bench: IDseq Benchmarking Tool 
The idseq-bench tool (https://github.com/chanzuckerberg/idseq-bench) was developed 

as a resource to enable the IDseq team to benchmark datasets internally [62]. The tool is open 
source and available for external users to generate benchmarks appropriate for their particular 
use case. Full documentation can be found on GitHub. Briefly, the tool enables users to 
simulate NGS sequencing data from known microbes. By indicating the GenBank reference 
accession, idseq-bench uses the InSilicoSeq simulation tool [63] to generate reads in 
accordance with known sequencing error models. The true organism from which each read was 
simulated contains a tag indicating the known accession and species-, genus-, and family-level 
taxonomic IDs. The idseq-bench tool then uses this information to characterize performance of 
the IDseq pipeline results. The tool provides metrics for read-level-recall at the species-, genus-, 
and family- level, as well as sample-level AUPR, L2, precision, recall, etc. For samples that 
were not simulated internally, the tool enables users to supply a gold standard file (comparable 
to those obtained for the Cell Benchmarks Datasets) and compute sample-level metrics against 
that file. 
 
Internal Benchmarks - Divergent Virus Simulation and Analysis 

A reference genome for Rhinovirus C (RefSeq NC_009996.1) was identified and the 
associated coding sequence .fasta file was downloaded from RefSeq. VIRAPOPS forward viral 
simulation [64] was used to simulate 5000 generations of viral evolution using default 
parameters. From the simulated data, sequences were selected at intervals of 5% nucleotide 
sequence identity to the original reference and compiled into a fasta file. This was then used as 
input to the idseq-bench simulation tool for benchmark simulation, which used InSilicoSeq [63] 
to simulate 10,000 sequencing reads of length 126 for each divergent virus genome according 
to a HiSeq error model. This resulted in 195.8x coverage of each divergent viral genome, 
consistent with the relatively high coverage of viral genomes seen by IDseq analysis of samples 
with high viral load. The simulated fastq files were then uploaded to IDseq project HRhinoC 
Simulation (Samples HRC_100, HRC_99, HRC_95, … HRC_025, Table S3). 
To evaluate the limit of detection for divergent viruses, the total recall of Rhinovirus C reads was 
evaluated at each level of simulated divergence, for each tool. Additionally, the number of reads 
aligning to false-positive species was tracked. Offline analysis was done using the contigs 
generated by IDseq for samples where IDseq failed to identify Rhinovirus C. For simulated 
samples HRC_070 through HRC_025, the “unmapped contigs” were downloaded and aligned 
via BLASTx in the NCBI BLAST web interface using default parameters [37]. Samples for which 
the BLASTx result returned Rhinovirus C were marked as “potentially possible” and the greatest 
level of divergence was recorded. 

Internal Benchmarks - Running Kraken2  

To compare internal benchmark samples against Kraken2 [15], a Kraken2 database was 
generated from the NCBI NT sequence database [65]. The following command line parameters 
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were used to download and build the reference database. Finally, simulated sequencing files 
were run via the following commands.  

Download the NCBI Database: 
kraken2-build --download-library nt --db db_ncbi_nt 
 
Build the Kraken2 NCBI Database: 
kraken2-build --build --db db_ncbi_nt --threads 8 
 
Run Kraken2 on benchmark datasets: 
# classify: running kraken changes slightly based on the sample being 
compressed/decompressed or single/double pair 
BENCHMARK=<benchmark_name_minus-R#> FORMAT=fastq bash -c '/usr/local/sbin/kraken2 
--db databases/kraken2/ncbi_nt --threads 8 --gzip-compressed --classified-out 
results/kraken2/$BENCHMARK.classified_seqs#.fq --unclassified-out 
results/kraken2/$BENCHMARK.unclassified_seqs#.fq --output 
results/kraken2/$BENCHMARK.kraken2.out --paired 
benchmarks/${BENCHMARK}_R1.$FORMAT.gz 
benchmarks/${BENCHMARK}_R2.$FORMAT.gz &>  

 
Application I - Data Processing 

In collaboration with Saha et al. [1], three samples were identified (CHRF_0000, 
CHRF_0094, CHRF_0002, from the original NCBI Sequence Read Archive dataset under 
BioProject PRJNA516582) and re-run on pipeline version 3.13. The pipeline results were filtered 
using a conservative set of filters, which required NT_rPM > 10 and NT_zscore > 1. The z-score 
was computed with respect to the public background model CHRF_RNA_Negative, which was 
used in the original manuscript. The background model was generated based on RNA-seq data 
from water samples and negative controls. Metrics were compiled into Table 1 and a heatmap 
was generated using IDseq, with the same filters (Figure 2D).  
 
Application II - Data Processing 

In collaboration with Manning et al. [56], RNA was extracted from a sample obtained 
from a symptomatic patient meeting criteria for possible COVID-19 pneumonia. Libraries were 
prepared for sequencing as described in Manning et al and sequenced on an Illumina iSeq100. 
The raw .fastq files were uploaded to IDseq from the CNM-NIH lab in Phnom Penh, via Illumina 
BaseSpace, on January 31, 2020 using an NCBI index from September 2019. An NCBI 
database update was then done on February 2, 2020 by the IDseq team and the results were 
evaluated. These samples were run on IDseq pipeline version 3.18. The data was deposited in 
public repositories by the original authors and is available at GISAID accession 
EPI_ISL_411902. IDseq results for the associated samples are available at 
http://public.idseq.net/covid-
19?utm_source=bioarxiv&utm_medium=paper&utm_campaign=benchmark-paper.  
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Availability of supporting source code and requirements: 
Project name: IDseq Portal 
Project home page: https://idseq.net 
Operating system(s): Platform independent 
Programming language: Python, Ruby, JavaScript 
Other requirements: Web browser 
License: MIT License 
 
Availability of supporting data: 
Data referenced in this manuscript has been previously published. SRA accession IDs are 
included in the original manuscripts [1, 39, 56]. 
 
Supplemental Text  
Supplemental_Text.docx, contains supplemental methods and results associated with two 
benchmark datasets listed in the main text, as well as supplemental figures (Figure S1 – S3) 
and supplemental tables indicating IDseq data availability (Table S1 – S3). 
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SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus 2 
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FIGURE LEGENDS 
 
Figure 1: A) Overview of the IDseq pipeline steps and data analysis workflow. The IDseq 
pipeline for pathogen discovery is composed of several steps, including host filtering and QC, 
assembly-based alignment, and taxonomic aggregation and reporting. Each step is comprised 
of a number of existing bioinformatics tools. B) The IDseq pipeline is optimized for AWS cloud 
computational infrastructure. Each of the core pipeline steps (host filtering and qc, assembly-
based alignment, and taxonomic aggregation and reporting) is managed by EC2 Autoscaling 
Groups. 
 
Figure 2: The IDseq web application provides multiple easy-to-use visualizations to help the 
user assess the quality and content of their sample. Screenshots taken from the IDseq Portal 
correspond to the re-analysis of samples from a study of etiologies of pediatric meningitis 
originally published in Saha et al. 2019 (see section: Application I). CHRF_0002 and 
CHRF_0094 are CSF samples from pediatric patients with meningitis due to Streptococcus 
pneumonia and chikungunya virus, respectively. CHRF_0000 is a water control. A) Table of 
reads remaining during each step of the host filtration step (for CHRF_0094) - interpretation of 
the relative loss at each step in can provide insight into the quality of the library preparation and 
sequencing run. B) Automatic quantification of ERCC counts from sample CHRF_0094; ERCC 
quantification enables back-calculation of input RNA concentration. C) The results for a single 
sample (CHRF_0094) are presented as a table, with key metrics for interpreting taxon alignment 
quality. D) The tree view indicates the relative abundance of sequences and their taxonomic 
relationship within a particular sample, shown is the relative abundance of chikungunya virus 
reads in CHRF_0094. E) The results from multiple samples can be compared using the IDseq 
heatmap view, with associated metadata (purple = CSF, blue = water control).  The interactive 
heatmap visualization can be viewed at https://idseq.net/zlfl1. The heatmap is especially 
powerful when analyzing trends across a larger number of samples. F) Coverage of 
chikungunya virus in CHRF_0094; the coverage visualization enables rapid interrogation of 
genome coverage. 
 
Figure 3: Performance metrics calculated for IDseq (NT and NR), as compared to the values 
recently published by Ye et al. [39] A) Area under the precision recall curve (AUPR) and L2 
distance values for 22 tools, as evaluated against their default databases. B) The AUPR values 
for specific benchmark datasets evaluated for three tools (Kraken2, IDseq NT, and IDseq NR), 
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including metrics obtained when evaluating basic threshold filters integrating both IDseq NT and 
NR (idseq_ntnr). C) The precision and recall of the same three tools for detecting known taxa. 
 
Figure 4: A) Graphic representation of genomic similarity for simulated divergent Rhinovirus C 
genomes, at 95%, 75%, and 50% similarity to reference sequence NC_009996.1. Mutations are 
shown in dark blue. B) Performance of IDseq (NT and NR) as compared to Kraken2 for 
recovery of reads from simulated divergent Rhinovirus C genomes at varying levels of 
divergence. The dotted yellow line indicates the theoretical limit for detection of Rhinovirus C 
achieved by manual BLASTx of IDseq-produced contigs.  
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TABLES 
 
Table 1: IDseq provides key metrics enabling The Host filtering and QC stage of the IDseq 
pipeline is composed of several individual steps. The proportion of reads lost at each step can 
provide insight into sample quality and library preparation. Interpretation of these metrics may 
be valuable for labs evaluating new sample storage techniques, library preparation protocols, 
etc. These three samples, provided as an example, can be investigated in the IDseq portal in 
Project CHRF RR007 Example. CSF: Cerebral Spinal Fluid, DCR: duplicate compression ratio, 
“number of rows”: total number of species and genus-level rows in the IDseq sample report, NT: 
results based on NCBI nucleotide (nt) database, NR: results based on NCBI non-redundant 
protein (nr) database, rPM: reads per million, L: average alignment length across all reads and 
contigs mapping to that taxon. 
 
Sample ID CHRF_0094 CHRF_0002 CHRF_0000 

Description Chikungunya viral 
meningitis 

Streptococcus 
pneumonia meningitis Water Control 

Sample Type CSF CSF H2O 
Collection Location Bangladesh Bangladesh Bangladesh 
Total Reads 61,336,096 141,979,356 135,087,088 
ERCC Reads 28,094,424 14,875,054 130,150,782 
STAR 5,227,984 26,802,224 4,675,916 
Trimmomatic 3,341,680 23,770,970 3,440,016 
PRICE 2,528,178 20,752,710 1,964,846 
DCR 2.89 1.39 4.67 
RNA input concentration 
(Back-calculated from ERCCs) 

29.6 pg 213.6 pg 3.7 pg 

Number of rows 
(NT rpm > 10, NR rpm > 10, NT Z > 1) 8 2 36 

NT rpM 7,876.2 22,034.0 NA 
NR rpM 7,871.5 19,743.9 NA 
Number of Contigs 4 143 NA 
Alignment L (nt) 11,831.4 75,065.3 NA 
Average % Identity 99.9 99.2 NA 
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SUPPLEMENTAL TEXT 
 
Supplemental Methods 
 

Internal Benchmark Datasets and Analysis 
Many closely related bacterial species have different relative pathogenicity in humans or 

other host organisms [1]. The unambiguous benchmark datasets, evaluated in the main text, do 
not emphasize performance at distinguishing common clinically relevant pathogens and closely 
related bacterial species. Here, we provide the results of an analysis of two simulated datasets 
containing common clinical microbes. For each dataset, we evaluated the performance of IDseq 
(NT and NR), as compared to Kraken2 [2], using per-species recall. 

 
Internal Benchmarks - Common Clinical Microbes (CCM) Benchmark Dataset 
Several microbes commonly identified in samples from humans and vector samples 

were identified in collaboration with researchers and incorporated into the CCM benchmark 
dataset. The selected species represent a range of bacterial, viral, fungal, and parasitic 
pathogens. The idseq-bench simulation tool was used to pull reference genomes from 35 
specified accessions across 13 species (Species name, taxonomic ID; Klebsiella pneumoniae, 
573; Aspergillus fumigatus Af293, 746128; Plasmodium falciparum, 5833; Rubella virus, 11041; 
Human immunodeficiency virus 1, 11676; Rhinovirus C, 463676; Chikungunya virus, 37124; 
Staphylococcus aureus, 1280; Balamuthia mandrillaris, 66527; Elizabethkingia anophelis, 
1117645; Neisseria meningitidis, 487; Torque teno midi virus, 2065052; Hubei mosquito virus 2, 
1922926 ) and simulate reads using the InSilicoSeq [3] sequence simulator with uniform 
coverage and sequencing error models derived from HiSeq data. The simulated sample is 
available on IDseq (Table S3, https://idseq.net/ak8qu). This simulated dataset is utilized by the 
IDseq team to evaluate the consistency of IDseq results over time and ensure the reliability of 
the pipeline results. 

For IDseq NT and NR results, the idseq-bench score function was used to evaluate the 
per-read, species-level recall across each ground truth organism. Then, to characterize false 
positives, the total number of species identified was determined, along with the percentage of 
reads mapping to incorrect taxa. For Kraken2, the read-level recall was determined at the 
species level and reads mapping to higher taxonomic levels were not considered as positive 
matches for the species-level recall. Again, the total number of unique species was determined 
and the proportion of reads mapping incorrectly at the species level was determined. 

 
Internal Benchmarks - Closely Related Bacteria (CRB) Benchmark Dataset 
Many bacterial pathogens are closely related, therefore resulting in possible genomic 

overlap and ambiguity in aligning short read sequences that may map to multiple species. 
However, distinction of pathogens at the species-level has implications for treatment and 
outcomes. 10 bacterial species from 6 genera within the Enterobacteriaciae family were 
identified and the idseq-bench simulation tool was used to pull reference genomes (Species 
name, taxonomic ID; Salmonella enterica, 28901; Citrobacter koseri, 545; Citrobacter freundii, 
546; Klebsiella aerogenes, 548; Enterobacter cloacae, 550; Escherichia coli, 562; Klebsiella 
oxytoca, 571; Klebsiella pneumoniae, 573; Shigella boydii, 621; Shigella flexneri, 623) and 
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simulate reads using the InSilicoSeq [3] sequence simulator with uniform coverage and 
sequencing error models derived from HiSeq data. The simulated sample is available on IDseq 
(Table S3, https://idseq.net/71wns). Analysis of the CRB benchmark dataset replicated that 
which was done for the CCM dataset (above). 

 
Supplemental Results 

External Benchmarks - NYCSM Outlier Dataset and IDseq NT 
The NYCSM dataset had the lowest AUPR of all datasets tested by IDseq NT. Overall, 

we note that due to the relative comparable performance of tools on these particular datasets, 
distinctions in AUPR may be the result of just one or two missed taxa. In this case, IDseq NT 
failed to identify Enterobacter asburiae (taxID = 61645) and identified only a small number (< 
10) of reads aligning to Pseudoalteromonas haloplanktis (taxID = 228). Meanwhile, IDseq NR 
identified successfully recovered reads from E. asburiae and produced a comparably low 
number of reads mapping to P. haloplanktis. IDseq NT did identify many reads mapping to 
Enterobacter soli, which has been noted to have high genomic similarity to E. asburiae and E. 
aerogenes (p-distance: 1.06 and 1.19%, respectively [4]), both of which were included in the 
simulated dataset. This highlights the challenge with disambiguating short reads from taxa with 
a high degree of genomic similarity. We emphasize the practical importance of orthogonal 
validation of hits via assays (ie PCR) targeting unique regions of the genome. However, it is 
possible that the expansion of reference databases has improved specificity beyond the original 
dataset simulation. The particular GenBank accession to which all E. soli reads map 
(CP003026.1 Enterobacter soli strain LF7a, complete genome), was added to the database in 
April 2019, while reads were simulated in 2016 [5]. The same trend is observed for P. 
haloplanktis. IDseq NT and NR both identified significantly more reads mapping to P. arctica, a 
member of the P. haloplanktis-like group [6]. The associated GenBank accession to which the 
majority of reads map (CP011025.1 - Pseudoalteromonas arctica A 37-1-2 chromosome I, 
complete sequence) was added in September of 2017. The IDseq coverage visualization makes 
interrogation of microbial hits simple by linking to the NCBI taxonomy database and GenBank 
accessions. 

 
Viral Divergence in Recent Human Disease 
The ability to detect divergent viruses is a function of genomic similarity to other 

organisms in the database as well as genomic coverage, which influences assembled contig 
lengths. Many recent, emerging, diseases affecting humans do have some sequence similarity 
to organisms in the NCBI databases. For example, since the emergence of enterovirus EV-D68, 
numerous outbreaks caused by divergent sub-clades have been reported with nt similarity to 
other strains ~96% [7]. Similarly, recent outbreaks of Dengue virus have been reported to be the 
result of introduction of novel DENV lineages, which are defined based on nucleotide 
divergence of 6-8% within each DENV serotype[8,9]. The set of nine known West Nile Virus 
lineages (which genomic analysis indicated diverged in the early 17th century) have an average 
pairwise percent identity of 77.6% (nucleotide) and 90.1% (amino acid) [10]. These are well 
within the range for detection by IDseq. Meanwhile, Zika virus, the viral species which caused 
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the recent 2015 epidemic, was discovered in 1940 and shares, on average, 55.6% amino acid 
sequence identity with dengue virus and 57.0% with West Nile virus [11]. Had the sequence of 
the first Zika isolate not been in the database, IDseq would not have been able to flag the 
presence of this virus and researchers would be required to evaluate assembled, unmapped, 
contigs offline [12]. 

 
Internal Benchmark Datasets Results 
Two additional datasets were simulated to evaluate IDseq’s performance for detection of 

common clinical microbes (CCM) as well as for disambiguating closely related bacterial species 
(CRB) (Methods, Table S3). The CCM dataset contains reads simulated from 13 total species, 
including six viral, four bacterial, and three eukaryotic pathogens. The CRB dataset contains 
reads simulated from 10 species of bacteria, all from the Enterobacteriaceae family. Given that 
IDseq’s pipeline returns a species-level assignment for each mapped read and the web 
interface presents results at the species level, we evaluate each of these benchmarks only at 
the species level. The Kraken2 algorithm assigns reads with ambiguous mappings to higher 
taxonomic levels. Therefore, the results shown include only the species-specific alignment 
results. 

For the CCM dataset, IDseq filtered out 15.3% of reads during the host and QC filtering 
pipeline steps. Of the remaining 99,320 non-host reads, IDseq NT showed the greatest per-
species recall across the 13 species included (1.0, IQR = 0.99 – 1.0). IDseq NT per-species 
recall was significantly higher than that of both IDseq NR (0.87, IQR = 0.85 – 1.0, p = 0.02) and 
Kraken2 (0.89, IQR = 0.64 – 1.0, p = 0.005 Wilcoxon rank sum) (Figure S3A). All tools 
successfully identified the presence of all 13 microbial species. In addition to these species, 
IDseq NT, NR, and Kraken2 identified 63, 303, and 230 false positive species, respectively. 
Since the IDseq pipeline returns a species-level assignment for all mapped reads, even in cases 
where the species may align equally to two different species, it had a notably greater portion of 
the total (post-qc) reads mapping across those false positive organisms (3.0 % by nt, 10.0 % by 
NR) than Kraken2, which had only 0.56 % of reads mapping to the false positive species. 
Kraken2 avoids larger percentages of reads being associated with false-positive species calls 
by calling a significant portion of ambiguously mapped reads at higher levels of the taxonomic 
tree. 

Similar trends were observed for the CRB dataset. IDseq filtered out 15.6% of reads 
during the host and QC filtering pipeline steps, leaving 84,410 non-host reads for down-stream 
analysis. Notably, IDseq nt demonstrates the highest per-species recall (0.68, IQR = 0.43 – 
0.80), significantly different than NR (0.46, IQR = 0.15 – 0.61, p = 0.005, Wilcoxon rank sum) 
and Kraken2 (0.18, IQR = 0.11 – 0.35, p = 0.005, Wilcoxon rank sum) (Figure S3B). All tools 
successfully identified the presence of all 13 microbial species. In addition to these species, 
IDseq NT, NR, and Kraken2 identified 83, 371, and 167 false positive species, respectively. 
Again, IDseq NT and NR had greater proportions of total reads mapping to these false-positive 
species (31.7% and 49.7% for NT and NR, respectively) as compared to Kraken2, with only 0.6 
% of reads mapping to false-positive species and the majority of ambiguous reads mapping at 
higher levels of classification (70.9%). 

The impact of ambiguous reads is exaggerated in cases where we simulate reads from 
multiple closely related species with known genomic similarity. In many cases of an infection, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.07.030551doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.030551
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

with a single dominant organism, the importance of recall may outweigh the identification of 
lower-level false-positive species. Additionally, these simulations sample from across the 
genome. However, we know that ribosomal sequences can be used for typing of bacteria and 
studies have previously shown improved sensitivity with RNA-seq, where ribosomal RNA 
comprises the greatest portion of sequenced nucleic acid [13,14]. Thus, IDseq results must be 
interpreted by the researcher with respect to the sample type and sequencing prep. 

 
 
Supplemental Figures 
 
Figure S1: The IDseq pipeline visualization indicates each step in the underlying pipeline and 
includes a description of the raw command parameters as well as the ability to download 
intermediate files for offline analysis. 
 
Figure S2: Performance metrics evaluated across 20 mNGS taxonomic identification tools, A) 
Area under the precision recall curve (AUPR), ranges from 0 to 1 (best), B) Precision, ranges 
from 0 to 1 (best). C) Recall, ranges from 0 to 1 (best) D) F1-score, the harmonic mean of 
precision and recall values. E) L2 distance, ranges from 0 (best) to 1. 
 
Figure S3: Per-species recall values for two internal benchmark datasets, A) The common 
clinical microbes (CCM) dataset and B) the closely related bacteria (CRB) dataset.   
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Supplemental Tables 
 
Table S1: Github repositories containing open-source code for IDseq pipeline, web application, 
and benchmarking resources. 
Tool Code Location 

  
IDseq Pipeline https://github.com/chanzuckerberg/idseq-dag 
IDseq Web Application https://github.com/chanzuckerberg/idseq-web 
IDseq Benchmarking Tool https://github.com/chanzuckerberg/idseq-bench 
 
Table S2: External benchmark datasets and their corresponding IDseq links. 
Sample Name IDseq Link 

  
UnAmbiguouslyMapped_ds.7 https://idseq.net/itivl 
UnAmbiguouslyMapped_ds.buccal https://idseq.net/zczoz 
UnAmbiguouslyMapped_ds.cityparks https://idseq.net/rp9jd 
UnAmbiguouslyMapped_ds.gut https://idseq.net/358id 
UnAmbiguouslyMapped_ds.hous1 https://idseq.net/rjmux 
UnAmbiguouslyMapped_ds.hous2 https://idseq.net/gzznk 
UnAmbiguouslyMapped_ds.nycsm https://idseq.net/jagjg 
UnAmbiguouslyMapped_ds.soil https://idseq.net/pbs4k 
atcc_even https://idseq.net/bkwxo 
atcc_staggered https://idseq.net/profp 
 
Table S3: Internal benchmark datasets and their corresponding IDseq links. 

Sample Name Project Name Benchmark Description IDseq Link 
 

HRC_100 HRhinoC 
Simulation 

Divergent Rhinovirus C, 100% 
identity to reference https://idseq.net/lx7cf 

HRC_099 HRhinoC 
Simulation 

Divergent Rhinovirus C, 99% 
identity to reference https://idseq.net/1a3we 

HRC_095 HRhinoC 
Simulation 

Divergent Rhinovirus C, 95% 
identity to reference https://idseq.net/7a0he 

HRC_090 HRhinoC 
Simulation 

Divergent Rhinovirus C, 90% 
identity to reference https://idseq.net/8gmj7 

HRC_085 HRhinoC 
Simulation 

Divergent Rhinovirus C, 85% 
identity to reference https://idseq.net/q4wks 

HRC_080 HRhinoC 
Simulation 

Divergent Rhinovirus C, 80% 
identity to reference https://idseq.net/vf8hm 

HRC_075 HRhinoC 
Simulation 

Divergent Rhinovirus C, 75% 
identity to reference https://idseq.net/qje7h 
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HRC_070 HRhinoC 
Simulation 

Divergent Rhinovirus C, 70% 
identity to reference https://idseq.net/s299t 

HRC_065 HRhinoC 
Simulation 

Divergent Rhinovirus C, 65% 
identity to reference https://idseq.net/n6ndl 

HRC_060 HRhinoC 
Simulation 

Divergent Rhinovirus C, 60% 
identity to reference https://idseq.net/46kfh 

HRC_055 HRhinoC 
Simulation 

Divergent Rhinovirus C, 55% 
identity to reference https://idseq.net/hggw6 

HRC_050 HRhinoC 
Simulation 

Divergent Rhinovirus C, 50% 
identity to reference https://idseq.net/a8z8a 

HRC_045 HRhinoC 
Simulation 

Divergent Rhinovirus C, 45% 
identity to reference https://idseq.net/64ita 

HRC_040 HRhinoC 
Simulation 

Divergent Rhinovirus C, 40% 
identity to reference https://idseq.net/guat0 

HRC_035 HRhinoC 
Simulation 

Divergent Rhinovirus C, 35% 
identity to reference https://idseq.net/shygl 

HRC_030 HRhinoC 
Simulation 

Divergent Rhinovirus C, 30% 
identity to reference https://idseq.net/hdc6r 

HRC_025 HRhinoC 
Simulation 

Divergent Rhinovirus C, 25% 
identity to reference https://idseq.net/v84fc 

CCM Dataset Benchmark v1 Common clinical microbes, 
simulated with idseq-bench https://idseq.net/ak8qu 

CRB Dataset Benchmark v2 Closely related bacterial species, 
simulated with idseq-bench https://idseq.net/71wns 
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