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Abstract 

Learning and experience are critical for making successful decisions in the face of inherently 

ambiguous and noisy information. Yet, the human brain computations that mediate this 

perceptual learning skill remain highly debated, as fMRI at standard resolution does not allow us 

to discern whether learning alters sensory encoding or top-down influences. Here, we capitalize 

on the sub-millimetre resolution of ultra-high field imaging to interrogate the finer-scale 

computations that mediate perceptual learning in the human brain. Combining 7T laminar 

imaging with orientation discrimination training, we demonstrate learning-dependent changes in 

superficial V1 layers, suggesting that training alters read-out rather than input signals in the 

visual cortex. Further, training enhances feedforward connectivity between superficial V1 layers 

and middle layers of posterior parietal cortex. Our findings propose that the brain learns to 

translate sensory information to perceptual decisions via recurrent processing within visual 

cortex and enhanced connectivity from sensory to decision-related areas. 
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Introduction 

Our ability to translate sensory information to decisions is challenged by inherently ambiguous 

signals in natural environments. For example, lighting and shadows make it harder to 

discriminate predators from prey or tumours in X-rays. The ability to judge whether similar 

features belong to the same or different objects is key for visual recognition and our interactions 

in complex environments. Practice in these tasks is known to make us better: training and 

experience improve our visual recognition skills and shape critical functions of the adult brain 

(i.e. perception, decision-making)1,2. Yet, the brain computations that mediate this perceptual 

learning ability remain highly debated2–4. 

Previous behavioural studies have argued for an early neural locus (i.e. primary visual 

cortex) of perceptual learning based on the specificity of learning to the trained stimulus features 

(e.g. 5,6). Further support for the hypothesis that learning alters early stages of visual encoding 

comes from neurophysiological7,8 and human brain imaging studies9–11 that have shown training-

induced changes in primary visual cortex. In contrast, other work has shown stronger learning-

dependent effects in higher visual areas12,13 and regions involved in decision-making3,14. This 

work suggests that perceptual learning is associated with changes in the read-out and re-

weighting of sensory information by higher-level decision-making areas4, with activity in early 

visual stages likely to reflect feedback processing15. 

Here, we capitalize on recent advances in brain imaging technology (i.e. Ultra-High Field: 

UHF imaging) that provide a unique approach to interrogating brain computations at a finer scale 

than that afforded by standard fMRI techniques16. UHF imaging affords the sub-millimetre 

resolution necessary to examine fMRI signals across cortical laminar layers and discern 

competing hypotheses about the brain computations (feedforward, recurrent, feedback) that 
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mediate perceptual learning (Figure 1). In particular, sensory inputs are known to enter the cortex 

from the thalamus at the level of the middle layer (layer 4) and output information is fed forward 

from the superficial layers (layer 2/3). Further, horizontal connections across V1 columns are 

known to predominantly terminate in superficial layers and support recurrent processing within 

visual cortex17,18, while feedback information is exchanged primarily between deeper (layer 5/6) 

and superficial layers19–22. 

Figure 1 

 

Combining 7T laminar fMRI (i.e. before and after training) with training on an orientation 

discrimination task, we test whether perceptual learning modifies: a) encoding of sensory input 

in middle V1 layers, b) recurrent processing via horizontal connections in superficial layers that 

alters the sensory read-out, or c) feedback processing in deeper and superficial V1 layers from 

higher decision-related regions (i.e. intra-parietal cortex, IPS). Using multi-voxel pattern 

classification analysis (MVPA), we demonstrate learning-dependent changes in visual 

representations that are specific to superficial rather than middle or deeper V1 layers, suggesting 

that learning modifies read-out rather than input signals in visual cortex. Further, we show 

enhanced connectivity between superficial layers in visual cortex and middle layers of posterior 

parietal cortex. Our findings propose that perceptual learning supports improved perceptual 

decisions by altering recurrent computations within visual cortex and enhancing connectivity 

between sensory and decision-related areas.  
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Results 

Behavior: Learning-dependent changes 

We trained participants on an orientation discrimination task7,10 for five consecutive days and 

tested their performance on the same task during fMRI scanning before and after training (Figure 

2A&B). Participants’ discrimination performance improved during training (Figure 2C), as 

indicated by a significant decrease in threshold (~79.4%) performance (paired t-test, mean 

threshold on day 1 vs. day 5: t(12) = 8.108, p < 0.001).  

To determine the specificity of this learning, we measured participants’ discrimination 

threshold for two different orientations (i.e., trained vs. untrained) at two different locations (i.e., 

trained vs. untrained location) before and after training. Our results showed that behavioral 

improvement due to training was stronger for the trained orientation and location (Figure 2D, 

Figure S1), consistent with previous studies6 showing specificity to the trained stimulus features. 

In particular, we observed a significant orientation × location × session interaction (repeated 

measures ANOVA, F(1,12) = 11.858, p = 0.005) and a significant orientation × session 

interaction (F(1,12) = 21.551, p = 0.001) at the trained, but not the untrained (F(1,12) = 3.093, p 

= 0.104) location. As suggested by recent work5, it is likely that this learning specificity is due to 

prolonged training near threshold (i.e. employing a single staircase23), in contrast to supra-

threshold training that has been suggested to enhance transfer and higher-level learning24. 

Figure 2 

 

fMRI: Learning-dependent changes across cortical depth in visual cortex 

To test whether learning alters orientation representations across cortical depth in the visual 

cortex, we segmented the visual areas and assigned voxels in three layers (superficial, middle, 
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deeper) using an equi-volume approach (see Methods, Anatomical data analyses for details; 

Figure 3A-D). We used MVPA to discern orientation-specific fMRI signals and test for 

differences in these signals before vs. after training across layers. In particular, we tested whether 

linear classifiers that were trained on fMRI signals from multi-voxel patterns in different V1 

layers (superficial, middle, deeper) discriminated between: a) trained vs. control orientations, b) 

untrained vs. control orientations. Classifying the trained or untrained orientation from the 

control orientation allowed us to test orientation-specific changes in fMRI signals due to training 

(i.e. learning-dependent changes to the trained and untrained orientation separately). We 

hypothesized that higher MVPA accuracy after training for the trained vs. control orientation 

classification than the untrained vs. control orientation classification would indicate orientation-

specific learning-dependent plasticity. Note that, as both the trained and untrained orientation 

differed equally from the control orientation (~55°), accuracy differences between these 

classification tasks could not be attributed to stimulus differences. 

Figure 3 

 

Our results showed learning-dependent changes (i.e. increased classification accuracy) for 

the trained orientation in superficial rather than middle or deeper layers in V1 (Figure 4, Figure 

5A). In particular, a three-way repeated measures ANOVA on the classification accuracy 

(orientation × session × layer) showed a significant three-way interaction (F(2,24) = 4.244, p = 

0.026). Two-way repeated measures ANOVAs (orientation × session) showed a significant 

interaction in superficial V1 layers (F(1,12) = 12.223, p = 0.004), but not in middle (F(1,12) = 

0.012, p = 0.913), nor deeper (F(1,12) = 0.446, p = 0.517) layers. Further, we observed enhanced 

discriminability (i.e. classification accuracy) for the trained orientation in superficial (t(12) = -
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2.665, p = 0.021), but not middle (t(12) = -0.783, p = 0.449), nor deeper (t(12) = -0.489, p = 

0.633) layers. In contrast, we did not observe any significant learning-dependent changes for 

orientations presented in the untrained location. In particular, there was no significant three-way 

interaction (orientation × session × layer, F(2,24) = 0.603, p = 0.555) nor any significant 

orientation × session interactions across V1 layers (superficial layers: F(1,12) = 0.053, p = 0.821; 

middle layers: F(1,12) = 0.538, p = 0.478; deeper layers: F(1,12) = 2.211, p = 0.163). Taken 

together, our results showed that learning-dependent changes in orientation representations in 

superficial V1 layers were specific to the trained orientation and location. It is unlikely that these 

learning-dependent changes in visual representations were due to differences in attention related 

to task difficulty before vs. after training, as participant performance was matched across 

scanning sessions.  

Figure 4 

 

Complementary and control analyses 

To further validate our results and control for potential confounds we conducted the following 

additional analyses. 

First, it has been shown that the overall BOLD signal as measured by GE-EPI is higher at 

the cortical surface due to vascular contributions25 resulting in loss of spatial specificity26. Here, 

we combined several approaches to reduce this superficial bias by removing voxels with low 

temporal signal to noise ratio and high t-statistic for stimulation contrast (see Methods, 

correcting for vascular effects for details). We then z-scored each voxel’s time course to account 

for possible differences in signal strength and variance due to thermal or physiological noise 

across layers while preserving differences between conditions27. These corrections resulted in 
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similar BOLD magnitude and multi-voxel pattern classification accuracy before training across 

layers (Figure 3E), suggesting that our approach for correcting vasculature-related effects 

controlled substantially for the superficial bias. In particular, consistent with previous studies28 

showing reduced superficial bias for MVPA classification measures, we did not observe any 

significant differences in MVPA accuracy between trained and untrained orientations before 

training  (e.g. orientation × location × layer interaction: F(2,24) = 0.891, p = 0.423; main effect 

of layer: F(2,24) = 0.287, p = 0.753). Thus, it is unlikely that our MVPA results after vasculature 

correction were significantly confounded by the superficial bias.  

Second, we applied a spatial regression approach29,30 to control for signal contribution from 

draining veins. In particular, intra-cortical veins running perpendicular to the cortical surface are 

known to drain blood from deeper layers of the cortex to larger pial veins situated along the grey 

matter surface, resulting in loss of spatial specificity and intra-layer BOLD signal contamination. 

To unmix the signal from adjacent layers, we regressed out the time course of voxels assigned to 

middle layers and adjacent to the superficial layers from the time course of voxels assigned to 

superficial layers. Following this correction, we observed a significant interaction between 

orientation and session (F(1,12) = 14.357, p = 0.003, Figure S2A), consistent with learning-

dependent changes in superficial layers. Further, we observed enhanced discriminability in 

superficial layers after correction for the trained orientation (t(12) = -2.292, p = 0.041), but not 

the untrained orientation (t(12) = 0.246, p = 0.810). Learning-dependent changes in superficial 

V1 layers remained significant after these corrections, suggesting that our results are unlikely to 

be significantly confounded by vasculature-related artifacts. 

Third, comparing mean normalized fMRI responses (Figure S3) across orientations and 

sessions did not show any significant results (three way interaction (orientation × session × 
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layer): F(4,48) = 1.259, p = 0.299, two way interaction (orientation × session) of the superficial 

layers: F(2,24) = 0.814, p = 0.455, middle layers: F(2,24) = 0.934, p = 0.407 and deeper layers: 

F(2,24) = 0.389, p = 0.682), suggesting that the learning-dependent effects we observed reflect 

changes in orientation-specific representations across voxel patterns rather than mean univariate 

fMRI responses. 

Fourth, we corroborated our results using a correlation based pattern analysis31 that showed 

learning-dependent changes in superficial V1 layers for the trained compared to the untrained 

orientation (Figure S2B). Specifically, Fisher z comparisons showed a significant orientation × 

session interaction in superficial V1 layers (F(1,12) = 6.069, p = 0.030), but not in middle 

(F(1,12) = 2.382, p = 0.149) nor deeper layers (F(1,12) = 1.227, p = 0.290).  

Taken together, these results demonstrate enhanced orientation-specific representations in 

superficial rather than middle or deeper V1 layers after training, suggesting that learning alters 

read-out rather than input processing in V1. Similar learning-dependent effects with stronger 

learning-dependent changes in superficial layers were observed across visual areas (V1, V2, V3, 

V4, Figure S4). In particular, a repeated measures ANOVA showed no significant ROI x 

orientation x session x layer interaction (F(2,24) = 1.459, p = 0.252), but a significant orientation 

x session x layer interaction (F(2,24) = 5.305, p = 0.012), suggesting similar orientation-specific 

learning effects in superficial layers across visual areas.  

 

fMRI: Learning-dependent changes independent of task-context in visual cortex 

To test whether learning altered orientation-specific representations in the visual cortex 

independent of task context, we tested a subset of participants (n = 8) in a second post-training 

fMRI session while performing a control task (i.e. contrast change detection task) on identical 
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stimuli as those presented to the participants during the post-training fMRI session. Before this 

additional scanning session, we tested performance on the orientation discrimination task to 

ensure that behavioral improvement was maintained. We observed that threshold performance 

(Mean = 1.78°, SD = 0.43°) did not differ significantly from the mean threshold of training day 5 

(Mean = 1.69°, SD = 0.37°, paired t-test, t(7) = -1.553, p = 0.164). Further, we matched task 

difficulty in the contrast change detection task (~79.4%) to performance in the orientation 

discrimination task during the post-training fMRI session to ensure that the two post-training 

scanning sessions did not differ in task difficulty.  

MVPA analysis across cortical layers in V1 showed that the learning-dependent changes we 

observed in orientation-specific representations in superficial layers were maintained when 

participants performed the control task. In particular, a two-way repeated measures ANOVA 

(orientation × task) on the classification accuracy showed a significant main effect of orientation 

(F(1,7) = 19.140, p = 0.003) in superficial V1 layers (Figure 5B). Neither the main effect of task 

(F(1,7) = 2.608, p = 0.150) nor the interaction effect (F(1,7) = 0.082, p = 0.783) were significant. 

We did not find any significant main or interaction effects in the deeper or middle layers of V1 

(p > 0.05). These results suggest that learning-dependent changes in orientation-specific 

representations in superficial V1 layers are independent of task context, consistent with previous 

neurophysiology results7 showing learning-dependent changes in neural tuning in primary visual 

cortex during a fixation task.  

Figure 5 
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fMRI: Learning-dependent changes in intraparietal cortex 

Extending beyond visual cortex, we tested for learning-dependent changes across cortical depth 

in decision-making related areas3,32. In particular, we focused on IPS1 and IPS2 that have been 

implicated in perceptual decision making32. Figure 6 shows learning-dependent changes specific 

to the trained compared to the untrained orientation (i.e. increased classification accuracy for the 

trained orientation in the trained location) in middle rather than superficial or deeper layers. In 

particular, we observed a significant orientation × session interaction in middle layers of IPS 

(F(1,12) = 6.324, p = 0.027), but not in superficial (F(1,12) = 0.502, p = 0.492), nor deeper 

(F(1,12) = 2.452, p = 0.143) layers. Further, we observed significantly increased classification 

accuracy after training for the trained orientation in the middle (t(12) = -3.432, p = 0.005), but 

not superficial (t(12) = 0.392, p = 0.702), nor deeper (t(12) = -1.137, p = 0.278) layers, 

suggesting enhanced discriminability for the trained orientation in middle layers. In contrast, we 

did not observe any significant learning-dependent changes for the untrained location. In 

particular, there was no significant orientation × session interactions across IPS layers 

(superficial layers: F(1,12) = 0.136, p = 0.718; middle layers: F(1,12) = 1.053, p = 0.325; deeper 

layers: F(1,12) = 1.628, p = 0.226). Comparing learning-dependent changes in visual and 

posterior parietal cortex showed dissociable results. That is, we observed learning-dependent 

changes in superficial layers of visual cortex, while middle layers of posterior parietal cortex, as 

indicated by a significant ROI (V1, IPS) x session x layer interaction for the trained orientation 

(repeated measures ANOVA, F(2,24) = 5.872, p = 0.008), but not the untrained orientation 

(repeated measures ANOVA, F(2,24) = 1.933, p = 0.167).  

Figure 6 
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Informational connectivity analysis 

Our results so far showed learning-dependent changes in orientation-specific representations in 

the superficial layers of V1 and middle layers of IPS, suggesting that learning modifies read-out 

rather than input signals in visual cortex, while input signals in posterior parietal cortex. Based 

on these results, we asked whether perceptual learning enhances functional connectivity between 

visual and posterior parietal cortex. To test this hypothesis, we employed an informational 

connectivity analysis30 and tested whether V1 and IPS shared synchronous discriminability of 

multi-voxel patterns that changed with training. Consistent with previous studies19,20,33, we 

contrasted two possible functional connectivity mechanisms: a) feedforward learning, as 

indicated by changes in connectivity between superficial V1 layers and middle IPS layers, b) 

feedback learning, as indicated by changes in connectivity between V1 deeper layers and IPS 

deeper layers. We did not test functional connectivity between V1 superficial layers and deeper 

layers of higher areas, as it is known to relate to both feedback and feedforward processing 

(Figure 1).  

Following previous studies employing an informational connectivity analysis30, we 

interrogated the MVPA classifiers and extracted the distance from the hyperplane for the mean 

pattern signal per block. For each layer per ROI we generated a time course of distance values 

across blocks, regressed out the distance from other layers within the ROI and calculated the 

partial spearman correlation between V1 and IPS layers across blocks (Figure 7A). Our results 

showed enhanced feedforward compared to feedback connectivity between V1 and IPS after 

training. A repeated measures ANOVA (Fisher’s z) showed a significant pathway (feedforward, 

feedback) x orientation (trained vs. untrained) x session (pre-test, post-test) interaction (F(1,12) = 

8.912, p = 0.011, Figure 7B).  
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In particular, we observed enhanced feedforward connectivity between superficial V1 layers 

and middle IPS layers after training. A repeated measures ANOVA (Fisher’s z) showed a 

significant orientation × session interaction (F(1,12) = 5.771, p = 0.033), but no significant main 

effect of orientation (F(1,12) = 1.218, p = 0.291) nor session (F(1,12) = 2.326, p = 0.153). Post-

hoc comparisons showed enhanced connectivity for the trained orientation (t(12) = -2.599, p = 

0.023), but not the untrained orientation (t(12) = 1.560, p = 0.145). In contrast, we did not 

observe any significant learning-dependent changes in feedback connectivity between deeper V1 

and deeper IPS layers (orientation × session interaction: F(1,12) = 0.587, p = 0.458, main effect 

of session: F(1,12) = 0.299, p = 0.595, main effect of orientation: F(1,12) = 1.223, p = 0.290).  

This enhanced connectivity between superficial layers of V1 and middle layers of IPS after 

training suggests that training alters feedforward information processing from sensory to 

decision-related areas to support learning-dependent improvement in the fine orientation 

discrimination task. 

Figure 7 
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Discussion 

Uncovering the fine scale circuit that mediates perceptual learning in the human brain has 

remained a challenge, due to the limited spatial resolution of standard fMRI techniques16. Here, 

we capitalize on the sub-millimeter resolution of 7T laminar fMRI to discern competing 

hypotheses about the brain computations that underlie perceptual learning. Our results advance 

our understanding of the brain plasticity mechanisms for perceptual learning in the following 

main respects. We demonstrate learning-dependent changes in neural representations in 

superficial rather than middle V1 layers, suggesting that learning modifies read-out signals in 

visual cortex rather than the encoding of sensory input. Consistent with our behavioral results, 

these learning-dependent changes were specific to the trained features (i.e. orientation, location) 

and independent of task context. Extending beyond the visual cortex, we show learning-

dependent changes in middle layers of posterior parietal cortex and enhanced feedforward 

connectivity between the superficial layers of V1 and middle layers of posterior parietal cortex. 

Taken together, our results provide evidence that the brain learns to translate sensory information 

to improved perceptual decisions by altering recurrent processing of read-out signals in visual 

cortex and enhancing occipito-parietal connectivity.  

Empirical evidence on visual brain plasticity remains controversial with some studies 

suggesting that learning modifies early sensory processing, while others proposing top-down 

influences to visual cortex plasticity via feedback4,34,35. Here, we address these competing 

hypotheses by employing 7T laminar fMRI that allows us to test whether training alters 

processing across cortical depths that are thought to be associated with dissociable brain 

computations. In particular, input processing is known to involve the middle layers (i.e. layer 4) 

while output information is fed forward through the superficial layers (layers 2/3). In contrast, 
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feedback information is thought to be exchanged mainly between deeper (layer 5/6) but also 

superficial layers20,21. Further, horizontal connections across V1 columns are known to 

predominantly terminate in superficial layers. Neurophysiological studies have shown that this 

micro-circuit is involved in a range of visual recognition33 and attention36 tasks. Further, recent 

laminar fMRI studies provide evidence for the involvement of this circuit in the context of 

sensory processing37 and visual attention27.  

Combining 7T laminar fMRI with MVPA we demonstrate enhanced decoding of 

orientation-specific representations in superficial layers of V1, suggesting that learning modifies 

read-out signals in visual cortex33. Previous fMRI studies using multi-voxel pattern classification 

approaches have shown that learning fine feature discriminations increases the discriminability 

of neural representations10,38. Other brain imaging studies9,11,39,40 have shown learning-dependent 

changes in overall BOLD signal in V1. These fMRI results have been interpreted broadly in 

support of an early neural locus of perceptual learning. However, we still lack a mechanistic 

account of perceptual learning in the human brain, as fMRI at standard resolution does not allow 

us to discern encoding from read-out processes. Our layer-specific fMRI results propose 

recurrent plasticity mechanisms for visual perceptual learning; that is, learning alters the 

processing of read-out signals in superficial V1 layers rather than stimulus encoding in middle 

layers. It is unlikely that this learning-dependent plasticity in superficial layers relates to stronger 

orientation selectivity in superficial V1 layers, as recent quantitative measurements have shown a 

more uniform distribution of orientation selectivity across V1 layers than reported in early 

physiological studies41. Further, we found that the classification accuracy did not differ 

significantly across layers before training, suggesting that learning-dependent changes in 

superficial V1 layers could not be due to differences in orientation selectivity across V1 layers.  
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A possible mechanism underlying learning-dependent changes in superficial layers is iso-

orientation inhibition42; that is, suppression of neurons that are selective for the same orientation 

across columns. Iso-orientation inhibition is shown to be more pronounced in superficial layers 

and support orientation tuning via horizontal connections between V1 columns that 

predominantly terminate in superficial layers17–19. These horizontal connections have been 

previously suggested to support recurrent visual processing in the context of figure-ground 

segmentation33. It is possible that iso-orientation suppression supports enhanced neural tuning to 

the trained orientation in superficial V1 layers, suggesting a recurrent learning-dependent 

plasticity mechanism that alters orientation-specific representations within visual cortex. These 

results are consistent with computational models proposing that training sharpens neural tuning 

by reducing recurrent cortical excitation near the trained orientation43 and neurophysiological 

studies showing changes in orientation tuning due to training in visual cortex7,8.  

An alternative explanation is that layer-specific BOLD effects in superficial layers reflect 

top-down influences via feedback44,45. This is less likely, as we did not observe learning-

dependent changes in deeper V1 layers that are known to receive long-range feedback. However, 

it is possible that feedback signals are carried by neurons that have dendrites projecting to the 

superficial layers and their cell bodies in deeper layers resulting in learning-dependent changes 

in BOLD signals in superficial layers20,21. Further, consistent with previous physiological study7, 

we show that these learning-dependent changes in orientation-specific representations in V1 are 

maintained independent of task context, as they were evident when participants performed a 

contrast detection task (i.e. control experiment) that does not involve task-related feedback on 

the trained stimulus dimension (i.e. orientation). 
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It is important to note that despite the advances afforded by laminar fMRI, GE-EPI is 

limited by vasculature contribution to BOLD signals at the cortical surface resulting in loss of 

spatial specificity26. Here, we demonstrate layer-specific learning-dependent changes following 

several control analyses for these potential confounds, suggesting that our results are unlikely to 

be confounded by vasculature-related artefacts. Our results are consistent with previous laminar 

imaging studies showing BOLD effects in superficial layers in a range of tasks27,37,44,45 and could 

not be simply attributed to differences in attention due to task difficulty, as participant 

performance was matched across sessions (pre vs. post-training). Future work could exploit 

recent advances in CBV imaging using vascular space occupancy (VASO)46 to enhance the 

spatial specificity of laminar imaging in the human brain. 

Extending beyond the visual cortex, we demonstrate learning-dependent changes in 

posterior parietal cortex regions (IPS) that have been suggested to play a key role in perceptual 

decision making3. In particular, we observed learning-dependent changes in fMRI activation 

patterns in middle layers of IPS regions, suggesting that training alters input signals to posterior 

parietal cortex. These results are consistent with previous neurophysiological3 and human brain 

imaging studies32 that show learning-dependent changes in intraparietal cortex for perceptual 

decision-making. Our findings provide new insights in understanding the finer scale circuit that 

mediates learning-dependent plasticity across human brain systems, involving both sensory and 

decision-related areas47,48. 

Further, we interrogated learning-dependent changes in functional connectivity, motivated 

by previous fMRI studies showing that training enhances connectivity between visual cortex and 

higher decision-related areas32,49. We tested whether training alters the functional connectivity 

within this circuit at the finer scale of layer-to-layer interactions. Computational approaches have 
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proposed that training strengthens the connections between the most informative neurons in 

sensory areas and decision-related areas via Hebbian learning, resulting in re-weighting of 

sensory signals in visual cortex4.  In contrast, the reverse hierarchy theory proposes that learning 

is implemented by top-down influences to visual processing via long-range feedback from 

downstream areas15. To test these hypotheses, we interrogated the layer-to-layer functional 

connectivity between visual and posterior parietal cortex that allows us to compare feedforward 

vs. feedback processing based on known anatomical connectivity models19,20,50. We demonstrate 

that learning strengthens feedforward connectivity between superficial V1 layers and middle 

layers of IPS, consistent with previous studies showing that ascending projections of V1 

originate predominantly from the superficial layers and ascending projections to IPS mainly 

terminate in middle layers19,20,33. In contrast, we did not find any significant changes in feedback 

connectivity between deeper V1 and deeper IPS layers, consistent with the lack of significant 

learning-dependent changes in deeper V1 layers. Taken together, these results suggest that 

learning fine feature differences is implemented by re-weighting mechanisms of visual plasticity 

rather than long-range feedback from decision-related to visual areas. Corroborating evidence 

comes from the results of our control experiment showing that learning-dependent changes in 

superficial V1 layers are maintained when observers perform a contrast change detection task 

that does not involve orientation judgments and therefore does not engage decision-related 

feedback on the trained stimulus dimension.  

In sum, combining ultra-high field 7T imaging and multi-voxel pattern analysis, we provide 

evidence that perceptual leaning is implemented by recurrent plasticity mechanisms within visual 

cortex and increased occipito-parietal connectivity. This circuit supports re-weighting of input 

signals in the visual cortex that are read-out by parietal cortex to inform improved perceptual 
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decisions due to training. Future work combining laminar imaging with electrophysiological 

recordings has the potential to reveal the dynamics of learning-dependent plasticity in this 

circuit33,36. Interrogating the circuit dynamics involved in early compared to later phases of 

learning will shed more light to the fine-scale mechanisms of learning-dependent plasticity in the 

human brain. 
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Figures  

Figure 1. Laminar brain circuits.  

Schematic representation of the hypotheses for intercortical feedforward (blue arrows) and feedback 

(green arrows) connections between V1 and higher areas (i.e., V2, V3, V4, IPS) based on known 

anatomical circuits.  

 

Figure 2. Experimental design, task and behavioral results.  

(A) Experimental design. Participants were trained on an orientation discrimination task with feedback for 

five consecutive days. Before and after training, we measured participant’s performance on the same task 

without feedback in the lab and during scanning. (B) Orientation discrimination task. For each trial, 

participants were asked to report whether the second grating was tilted clockwise or counterclockwise 

relative to the first grating. (C) Mean performance across participants at 79.4% threshold for the training 

(filled circles) and the control (open circle) sessions. (D) Mean improvement index (MPI = (pre-test 

threshold – post-test threshold) / pre-test threshold × 100%) showed learning specificity for the trained 

compared to the untrained orientation presented at the trained vs. untrained location. A two-way repeated 

measures ANOVA on MPI (orientation × location) showed a significant interaction (F(1,12) = 14.847, p 

= 0.002). Post-hoc comparisons showed significantly higher improvement for the trained than the 

untrained (t(12) = 5.564, p < 0.001) orientation at the trained location. In contrast, no significant 

differences were observed between the trained and the untrained (t(12) = -1.608, p = 0.134) orientations at 

the untrained location. Error bars indicate standard error of the mean across participants. 

 

Figure 3. fMRI layer definition and vascular correction.  

(A) Coronal view of the anatomical image of a sample participant. Red insert indicates region of interest 

in visual cortex (B) Layers definition map overlaid on an anatomical image (blue: deeper layers, green: 

middle layers, and red: superficial layers). (C) Voxels confounded by vasculature-related effects 

(highlighted by arrows and in red) overlaid on functional images. (D) BOLD activation map (stimulus vs. 
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fixation) overlaid on the anatomical (left panel) and functional data (right panel). (E) Mean normalized 

BOLD in V1 before and after correction for vasculature-related effects, showing reduced superficial bias 

after correction. Error bars indicate standard error of the mean across participants. We observed 

significant interactions (pre-test session: F(2,24) = 50.961, p < 0.001, post-test session: F(2,24) = 36.887, 

p < 0.001) between layer (superficial, middle, deeper) and BOLD signal (before vs. after correction). The 

stronger BOLD decrease in upper (i.e. superficial, middle) than deeper layers after correction suggests 

that our approach for correcting vasculature-related effects controlled substantially for the superficial bias. 

 

Figure 4. MVPA results before and after training across V1 layers.  

MVPA accuracy across V1 layers for the trained and untrained orientations presented at the trained 

location. To further validate our classification results, we trained the classifier after shuffling the labels of 

the training data set for 5000 times. This analysis returned classification accuracies that did not differ 

significantly from chance (p > 0.05) and did not show any significant differences between orientations 

nor sessions (p > 0.05), suggesting that our MVPA analysis extracted reliable voxel pattern information 

from the ROIs tested. Error bars indicate standard error of the mean across participants.  

 

Figure 5. Learning-dependent changes in V1.  

(A) Mean improvement index (MPI: (post-test accuracy – pre-test accuracy) / pre-test accuracy × 100%) 

for the trained and untrained orientations across V1 layers. The left panel shows significantly higher MPI 

for the trained than the untrained orientation at the trained location in superficial V1 layers, as indicated 

by significantly higher MPI for the trained than untrained orientation in the superficial layers (t(12) = 

3.218, p = 0.007). The right panel shows no significant differences in MPI across layers for orientations 

presented at the untrained location. In particular, there was no significant differences in MPI for trained vs. 

untrained orientations in the superficial layers (t(12) = 0.396, p = 0.699). (B) MVPA accuracy for the 

trained and untrained orientation at the trained location after training (post-test) compared to the control 

experiment in superficial layers of V1. Error bars indicate standard error of the mean across participants. 
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Figure 6. Learning-dependent changes in IPS.  

Mean improvement index across IPS layers for the trained and untrained orientations presented at the 

trained location. The results showed significantly higher MPI for the trained than the untrained orientation 

at the trained location in the middle IPS layers (t(12) = 2.861, p = 0.014), but not in superficial (t(12) = -

0.695, p = 0.500), nor deeper (t(12) = 1.382, p = 0.192) layers. Error bars indicate standard error of the 

mean across participants. 

 

Figure 7. Informational connectivity analysis.  

(A) Schematic illustration of the procedure followed for the MVPA-based functional connectivity 

analysis. For each ROI and block, the distance to the hyperplane was used as an index of pattern 

discriminability (left panel). Spearman correlation was used to calculate covariance between two ROIs 

(right panel). (B) Learning-dependent changes (Fisher’s z post- minus pre-test) in functional connectivity 

between superficial V1 layers and middle IPS layers (feedforward connectivity) and between deeper V1 

and IPS layers (feedback connectivity) for the trained and untrained orientations. Error bars indicate 

standard error of the mean across participants. 
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Supplementary Material 

 

Figures 

Figure S1.  Behavioral results.  

Mean performance across participants before and after training (pre-, post-test) at ~79.4% threshold for 

the trained and untrained orientations presented at the trained and untrained locations. Error bars indicate 

standard error of the mean across participants. We observed learning specificity for the trained orientation 

at the trained location, as indicated by a significant orientation × location × session interaction (repeated 

measures ANOVA, F(1,12) = 11.858, p = 0.005) and a significant orientation × session interaction 

(F(1,12) = 21.551, p = 0.001) at the trained, but not the untrained (F(1,12) = 3.093, p = 0.104) location. 

Post-hoc comparisons at the trained location showed significantly lower threshold for the trained than the 

untrained orientation after (t(12) = -5.208, p < 0.001), but not before (t(12) = 1.264, p = 0.230) training. 

In contrast, no significant differences between the trained and the untrained orientations were observed at 

the untrained location (pre-test session: t(12) = -1.203, p = 0.252, post-test session: t(12) = 1.066, p = 

0.308). 

   

Figure S2. Control analyses in V1. 

(A) MVPA accuracy before and after training for the trained and untrained orientations presented at the 

trained location in superficial V1 layers after regressing out the signal from the adjacent voxels in middle 

layers. (B) Correlation-based pattern analysis. Correlation differences (correlation of mean normalized 

BOLD across voxels for the same orientation minus normalized BOLD for different orientations) for the 

trained and untrained orientations presented at the trained location in superficial V1 layers. Error bars 

indicate standard error of the mean across participants. 

 

Figure S3. Univariate fMRI analysis in V1.  
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Mean normalized BOLD before and after training for the trained, untrained and control orientations 

presented at the trained location across V1 layers. Error bars indicate standard error of the mean across 

participants.  

 

Figure S4. MVPA before and after training across visual areas.  

MVPA accuracy before and after training for different voxel patterns (from 100-500 voxels) for the 

trained orientation presented at the trained location across layers of V1, V2, V3, V4. We observed similar 

learning-dependent changes in superficial layers across visual areas. Two-way repeated measures 

ANOVAs (ROI × session) showed a significant main effect of session for pattern size of 200 (F(1,12) = 

7.159, p = 0.020), 300 (F(1,12) = 7.751, p = 0.017), 400 (F(1,12) = 6.006, p = 0.031) voxels, and a trend 

for pattern size of 100 (F(1,12) = 3.743, p = 0.077) and 500 (F(1,12) = 4.587, p = 0.053) voxels. We did 

not observe any significant ROI × session interaction (all p > 0.05). Further, we did not observe any 

significant differences in MVPA accuracy before vs. after training in middle nor deeper layers (all p > 

0.05). Error bars indicate standard error of the mean across participants. 
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Materials and Methods 

Participants 

Fifteen participants (7 females; mean age: 27.87 years and SD: 3.83 years) took part in this study. 

Data from two participants were excluded from further analysis due to excessive head movement 

(See MRI data analysis) and technical problems during acquisition. All participants had normal 

or corrected-to-normal vision, and were right-handed. Participants were naïve to the aim of the 

study, gave written informed consent and received payment for their participation. The study was 

approved by the University of Cambridge Ethics committee. 

Stimuli and Apparatus 

Stimuli comprised oriented sinusoidal gratings that were presented at an eccentricity of 5°, in the 

left or the right visual field against a uniform gray background. Gratings of random phase had a 

fixed diameter of 6°, contrast of 0.8, spatial frequency of 1 cycle/degree. The contrast decreased 

to zero over the outer 0.5° radius of the gratings. 

Experiments were controlled using MATLAB and Psychophysics toolbox 3.01,2. For the 

behavioral sessions, stimuli were presented on a 21-inch CRT monitor (1600 × 1200 pixel 

resolution, 85 Hz frame rate) at a distance of 110 cm. Gamma correction was applied to the 

monitor. For the fMRI scans, stimuli were presented using a projector and a mirror setup (1920 × 

1080 pixel resolution, 100 Hz frame rate) at a viewing distance of 110 cm. Angular stimulus size 

was the same across behavioral and fMRI sessions. 

Experimental design 

The study comprised a pre-test (2 sessions, 1 behavioral test, 1 fMRI test), a training (5 sessions), 

a post-test (2 sessions, 1 behavioral test, 1 fMRI test) and a control (2 sessions: 1 training, 1 
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fMRI test) phase (Figure 2A). All training and post-test sessions were conducted on consecutive 

days. 

We employed a two-interval forced choice (2IFC) orientation discrimination task (Figure 

2B). Each trial began with a fixation cross for 200 ms followed by the sample and test gratings 

that were presented sequentially for 200 ms each and separated by a 600 ms inter-stimulus 

interval (ISI). Participants were asked to fixate and report (by key press) within 1270 ms after the 

onset of the test grating whether it was tilted clockwise or counter-clockwise relative to the 

sample stimulus.  

Participants’ performance in the task was measured using a 3-down-1-up staircase with 15 

reversals converging at 79.4% performance. The reference orientation for the trained and 

untrained stimuli was 55° or 125°. We added a uniformly distributed random jitter within ±5° to 

the reference orientation across trials to ensure that participants compared the two gratings in 

each trial, rather than the test grating to a fixed reference orientation. The training reference 

orientation (55° vs. 125°) was counterbalanced across participants. Participants were tested with 

a control orientation (0°, vertical) that differed equally from the trained and untrained orientation 

(55° or 125°). This allowed us to test orientation-specific pattern changes in fMRI signals due to 

training (i.e. learning-dependent changes to the trained vs. untrained orientation), by comparing 

separately the trained vs. the untrained orientations to the control orientation.  

Behavioral Tests. To familiarize participants with the task before testing, each participant 

performed a 30-trial practice run (5 trials per condition, i.e. three different reference orientations 

at two different locations) using a fixed above-threshold angle difference (8°). For both the pre-

and post-training test, participants performed the orientation discrimination task for 12 test 

staircase runs (2 runs per condition in random order). For each condition, the starting angle 
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difference between sample and test stimulus for the first run was 5°. For the second run, the 

starting angle difference was determined by the threshold in the preceding run. The 

discrimination threshold for each condition was the mean threshold across two runs. No feedback 

was provided to the participants during the test phase. 

Behavioral Training (5 sessions). We trained participants on the orientation discrimination task 

(16 staircases per session, ~1 h) with gratings presented at the same orientation and location 

throughout training. The starting angle difference between sample and test stimuli for the first 

staircase of the first training session was 5°. For the remaining staircases, the starting angle 

difference was determined by the threshold of the preceding staircase. Training location (i.e., left 

vs. right visual field) and reference orientation (i.e., 55° vs. 125°) were counterbalanced across 

participants. Participants were given auditory error feedback per trial.  

fMRI sessions. Before and after training in the lab, participants completed 8-10 runs of the 

orientation discrimination task during scanning. For each participant, we also collected data from 

an anatomical scan and a retinotopic mapping scan.  

For the orientation discrimination task, each run started with a fixation block (12.36 sec) 

followed by one block for each of the six conditions and a fixation block. This sequence of 

fixation and condition blocks was repeated four times in each run. Each condition block lasted 

12.36 sec and comprised gratings presented at the trained, untrained or control orientation at one 

of two locations (trained vs. untrained location). The order of orientations was randomized 

across the six condition blocks and the stimulus location alternated between blocks. For each 

block, participants completed five trials of the orientation discrimination task. The task 

parameters (i.e. sample and test duration) were the same as for the behavioral tests and no 

feedback was provided to the participants. The fixed angle difference between sample and test 
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stimuli for each condition was determined by the preceding behavioral session. This allowed us 

to match task difficulty (~79.4%) before and after training.  

Control experiment. To test the task specificity of the learning effect, eight participants 

completed an additional training and fMRI session on consecutive days to ensure that learning 

was maintained during a control task. The procedure for this control-task session was identical to 

that for the post-training scan, with the exception that participants performed a contrast change 

detection task. Participants were required to press a key within 1000 ms of detecting a contrast 

change on the stimuli. The magnitude of contrast change was estimated for each participant 

during the anatomical scan to ensure similar task difficulty (~79.4%) between the orientation 

discrimination task and the contrast detection task. The estimated magnitude was fixed and used 

throughout the control-task fMRI session. 

MRI data acquisition 

Imaging data were acquired at the Wolfson Brain Imaging Centre, University of Cambridge, on a 

Siemens 7T Terra scanner with a 32-channel phased-array head coil (Nova Medical, Inc., 

Wilmington, MA, USA). For each participant, anatomical images were acquired using 

MP2RAGE T1-weighted sequence (TR = 5000 ms, TE = 2.56 ms, FOV = 208 × 208 mm2, 

resolution 0.65 × 0.65 × 0.65 mm3, number of slices: 240, slice orientation: sagittal). Functional 

scans were acquired using a 2D Gradient Echo, Echo Planar Imaging (GE-EPI) sequence (TR = 

2060 ms, TE = 26.4 ms, Multi-Band factor = 2, FOV = 148 × 148 mm2, flip angle: 70°, 

resolution 0.8 × 0.8 × 0.8 mm3, number of slices: 56, partial Fourier = 6/8, GRAPPA factor = 3, 

Multi-Band factor = 2, bandwidth = 1034 Hz/Pixel, echo spacing = 1.09 ms). The field of view 

covered occipito-temporal and posterior parietal areas; manual shimming was performed prior to 

the acquisition of the functional scans.  
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Behavioral data analysis 

Performance was measured by the 3-down-1-up staircase with 15 reversals. The mean angle 

difference of the last 8 reversals was taken as the threshold of each staircase run. The measured 

orientation discrimination thresholds were used as the dependent factor. Using a within-subject 

factorial design, we manipulated three independent factors, the reference orientation (trained and 

untrained orientation), stimulus location (trained and untrained location) and test session (pre-test, 

post-test), to evaluate the learning effect and learning specificity. Further, we calculated the 

mean percent improvement index (MPI, (pre-test threshold – post-test threshold) / pre-test 

threshold × 100%)) for each condition. 

MRI data analysis 

Anatomical data analyses. T1-weighted anatomical data was used for coregistration and 3D 

cortex reconstruction. Grey and white matter segmentation was obtained on the MP2RAGE 

images using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) and manually improved for the 

regions of interest (i.e., V1, V2, V3, V4, and IPS) using ITK-SNAP (www.itksnap.org). The 

refined segmentation was used to obtain a measurement of cortical thickness. Following previous 

studies, we assigned voxels in three layers (superficial, middle, deeper) using the equi-volume 

approach3,4 as implemented in BrainVoyager (Brain Innovation, Maastricht, The Netherlands). 

This approach has been shown to reduce misclassification of voxels to layers, in particular for 

regions of interest presenting high curvature. Information from the cortical thickness map and 

gradient curvature was used to generate four grids at different cortical depths (ranging from 0: 

white matter, to 1: grey matter). Mapping of each voxel to a layer was obtained by computing the 

Euclidean distance of each grey matter voxel to the grids: the two closest grids represent the 

borders of the layer to which a voxel is assigned (Figure 3B). The anatomical image was aligned 
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to the functional data using the boundary-based registration. We assessed the alignment and 

manually corrected if necessary. 

Functional data analyses. The GE-EPI functional data were analysed using BrainVoyager 

(version 20.6, Brain Innovation, Maastricht, The Netherlands) and custom MATLAB (The 

MATHWORKS Inc., Natick, MA, USA) code. The first two volumes at the beginning of each 

run were discarded to ensure that the longitudinal magnetization reached steady state. The 

functional data were corrected for distortions due to non-zero off-resonance field (at the 

beginning of each functional run, five volumes with inverted phase encoding direction were 

acquired and used to estimate a voxel displacement map that was subsequently applied to the 

functional data using COPE (Correction based on Opposite Phase Encoding, BrainVoyager, 

Brain Innovation) plugin). The undistorted data underwent slice-timing correction, head motion 

correction (the single band image acquired at the beginning of the first run was used as the 

reference in the alignment), high-pass temporal filtering (using a GLM with Fourier basis set at 2 

cycles) and removal of linear trends. We then aligned the functional data across sessions. To 

validate the alignment, we calculated the mean EPI image of each functional run for each region 

of interest (ROI) and estimated the spatial correlation between these mean EPI images. We 

performed manual adjustment of the alignment if the spatial correlation was below 0.85 and 

excluded data from one participant for whom the alignment could not be improved manually. 

Regions of Interest definition. We used the data from the retinotopic mapping scan to identify 

visual areas based on standard phase-encoding methods. Participants viewed rotating wedges that 

created travelling waves of neural activity5,6. Due to limited coverage during acquisition, area V4 

was identified for 8 of the 13 participants included in the analysis. Thus, for further analyses we 

combined the data from V2, V3 and V4 for each individual participant. Further, we defined 
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regions in the intraparietal sulcus (IPS1, IPS2) given their functional relevance for perceptual 

learning7. Intraparietal regions (IPS1 and IPS2) were defined for each participant based on 

anatomical templates provided by Benson (https://hub.docker.com/r/nben/occipital_atlas/)8. This 

procedure uses the individual participant-based segmentation obtained with FreeSurfer and an 

anatomical probabilistic template, to estimate the best location for the region of interest (i.e. IPS). 

Each IPS subregion was subsequently inspected to ensure consistent definition across 

participants.  

For each of the visual cortex ROIs, we modelled BOLD signals using a GLM with two 

regressors (i.e., left vs. right visual field) and included the estimated head motion parameters as 

nuisance regressors. The resulting t-statistical map was thresholded (t = 2.58, p = 0.01) to select 

voxels within each ROI that responded strongly to the lateralized stimulus presentation, 

consistent with location specificity in visual cortex. For IPS, we selected voxels that responded 

to the task irrespective of stimulus location (i.e. task vs. fixation, t = 1.64, p = 0.10).  

Correcting for vasculature-related effects: Voxel selection within each ROI was further refined 

by excluding voxels that were confounded by vasculature effects that are known to contribute to 

a superficial bias in the measured BOLD signal; that is, increased BOLD with increasing 

distance from white matter. In particular, it has been shown that the BOLD signal measured 

using GE-EPI, T2* weighted sequences is confounded by macro- and micro-vasculature signals9–

11. The macro-vasculature contribution is due to veins penetrating the grey matter and running 

through its thickness, as well as large pial veins situated along the surface of the grey matter12. 

This results in increased sensitivity (i.e., strong BOLD effect) but decreased spatial specificity of 

the measured signal. The latter can be understood by the mechanics of the draining veins 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2020. ; https://doi.org/10.1101/2020.04.07.030510doi: bioRxiv preprint 

https://hub.docker.com/r/nben/occipital_atlas/
https://doi.org/10.1101/2020.04.07.030510
http://creativecommons.org/licenses/by-nc-nd/4.0/


carrying deoxygenated haemoglobin downstream from the true neuronal site of neural activation, 

leading to a response spatially biased towards the pial surface, an effect known as superficial bias. 

Here, we took the following approach to reduce superficial bias due to vasculature 

contributions. First, following previous work13, we computed the temporal signal to noise ratio 

(tSNR) for each voxel in each ROI (V1 V2, V3, V4 and IPS respectively). We used tSNR to 

identify voxels near large veins that are expected to have large variance and low intensity signal 

due to the local concentration of deoxygenated haemoglobin resulting in a short T2* decay time 

(i.e., dark intensity in a T2* weighted image). We identified voxels with low tSNR, checked their 

correspondence with voxels of lower intensities on the T2* weighted images. Second, it has been 

shown that high t-values on a fMRI statistical map are likely to arise from large pial veins14,15. 

Therefore, voxels with low tSNR values or t-score values above the 90th percentile of the t-score 

distribution obtained by the GLM described above were removed from further analysis. We used 

these two approaches to correct the BOLD signal from confounding vasculature effects.  

Univariate analysis. For each participant, test session, run and condition, we extracted the z-

scored fMRI responses between the 4th and 8th TR (i.e. 6.18 – 14.42 s) after block onset. This 

time window captured the peak of the hemodynamic responses to the visual stimuli. The 

normalized fMRI responses were averaged across time points, blocks and runs for each condition 

and each session. Repeated-measures ANOVA was used to test the univariate difference across 

conditions.  

Multivariate pattern analysis. We used multivariate pattern analysis (MVPA) to decode: a) 

trained vs. control orientation, b) untrained vs. control orientation. For each ROI and participant, 

we calculated per voxel a t-score statistic by comparing activity for stimuli that were presented 

left vs. right of the fixation (V1) or activity for task vs. fixation (IPS). We used this statistic to 
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rank the voxels within each ROI and selected voxels (500 for visual areas; 200 voxels for IPS) 

with the higher t-score to include in the MVPA, as classification accuracy saturated across all 

participants for these voxel pattern sizes in the corresponding regions (Figure S4). We used the 

same number of voxels (i.e. 200 voxels) when comparing data between V1 and IPS and for the 

informational connectivity analysis. This voxel selection procedure ensured that comparisons of 

classification accuracy could not be confounded by varying number of voxels across participants. 

We then extracted mean normalized fMRI responses between 4th to 8th TR (i.e. 6.18 – 14.42 s) 

after block onset for this pattern of voxels per ROI, participant and test session. We trained a 

linear classifier using LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) implemented in 

MATLAB to discriminate: a) the trained from the control orientation, b) the untrained from the 

control orientation. As both the trained and untrained orientation differed equally from the 

control orientation (~55°), we hypothesized that differences in the accuracy between these two 

classification tasks would be due to training rather than stimulus differences. We computed 

classification accuracy using a leave-one-run-out cross-validation. That is, we divided the data 

set into training and test data with maximum 72 training patterns (for n = 7 participants with 8 

runs) and 8 patterns for the test run. We averaged the classification accuracy across folds, 

separately for each test session. We used repeated-measures ANOVAs to assess differences in 

classification accuracy across conditions (orientation × session). Similar to the MPI for 

behavioral data, we defined the MPI for decoding accuracy as (post-test accuracy – pre-test 

accuracy) / pre-test accuracy × 100%). 

Further, we performed a correlation-based pattern analysis16 to consolidate our MVPA 

results. In the correlation-based pattern analysis, the data and voxels used were identical to those 

used in the MVPA analysis. We divided the data set into training and test data and performed a 
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leave one run out cross validation. For each dataset, we calculated the mean response of each 

orientation for each voxel. We then calculated the spearman correlation across voxels and 

transformed the correlation coefficients using Fisher’s z-transform. We hypothesized that the 

correlation coefficient would be higher for data from the training and test set that related to the 

same orientation (i.e. trained-trained orientation) than different orientations (i.e. trained-control 

orientation). We used the difference between the same and different orientations to index the 

information contained in each ROI. We used repeated-measures ANOVAs to examine 

differences across conditions (orientation × session). 

Informational Connectivity analysis. We used Informational Connectivity (IC) to identify layers 

that share synchronized discriminability of activity related to stimulus-specific multi-voxel 

pattern information17–19. We examined intercortical IC based on shared changes (fluctuations) in 

pattern discriminability over time, as this approach has been shown to be more sensitive than 

univariate functional connectivity. To track the flow of multivariate information across time (i.e. 

across blocks), we measured the fluctuations (covariance) in MVPA discriminability by 

calculating distance information from the classification hyperplane (Figure 7A). In particular, we 

selected 200 voxels with the higher t-score and used the same multivoxel training vs. test 

patterns as in the MVPA analysis. For each ROI and layer, we extracted distance information for 

the test data per block from the trained classifiers. We calculated layer-specific connectivity by 

partial Spearman correlation between the fold-wise distance of different layers; that is, for a 

given layer, we regressed out the distance information from other layers within each ROI. We 

transformed the correlation coefficients using Fisher’s z-transform and conducted repeated 

measures ANOVA to compare across conditions.  
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