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Abstract

In neuroimaging, voxel-wise encoding models are a popular tool to

predict brain activity elicited by a stimulus. To evaluate the accuracy of

these predictions across multiple voxels, one can choose between multiple

quality metrics. However, each quality metric requires specifying auxil-

liary parameters such as the number and selection criteria of voxels, whose

in�uence on model validation is unknown. In this study, we systemati-

cally vary these parameters and observe their e�ects on three common

quality metrics of voxel-wise encoding models in two open datasets of 3-

and 7-Tesla BOLD fMRI activity elicited by musical stimuli. We show

that such auxilliary parameters not only exert substantial in�uence on

model validation, but also di�er in how they a�ect each quality metric.

Finally, we give several recommendations for validating voxel-wise encod-

ing models that may limit variability due to di�erent numbers of voxels,

voxel selection criteria, and magnetic �eld strengths.
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Introduction

In functional magnetic resonance imaging (fMRI) research, voxel-wise encoding
models are an increasingly popular tool to characterize the relationship between
a real world stimulus and BOLD activity patterns [Thirion et al., 2006, Kay
et al., 2008, Naselaris et al., 2011, Huth et al., 2012, Holdgraf et al., 2016].
However, researchers face many degrees of freedom in constructing voxel-wise
encoding models, such as how to represent the stimulus or how to estimate an
accurate model. To evaluate the �delity of these choices and the resulting voxel-
wise encoding models, multiple quality metrics exist that assess how well these
models approximate spatial patterns of brain activity across multiple voxels.
Mitchell et al. [2008] �rst introduced binary retrieval accuracy � a measure
that assesses whether an encoding model's predicted spatial activation patterns
can, on average, identify the correct stimulus against a decoy � to evaluate the
predicted fMRI images for the meaning of nouns. Kay et al. [2008] used stimulus
identi�cation accuracy, and Naselaris et al. [2009] used stimulus reconstruction
quality as a metric for encoding performance. In auditory neuroscience, only
binary retrieval accuracy [Casey et al., 2012, Hoe�e et al., 2018] and stimulus
identi�cation [Santoro et al., 2014, Allen et al., 2018] have been used. However,
while providing novel insights into the cortical processing of sensory stimuli, it
is unknown how additional parameters of the data analysis that are unrelated to
the encoding models themselves a�ect these quality metrics. Hence, it remains
di�cult to compare the quality of voxel-wise encoding models when they di�er
in such auxilliary parameters. In this study, we aim to tackle this problem by
documenting the e�ect of two common auxilliary parameters in the validation
of voxel-wise encoding models � the number of voxels used and how they were
selected � on di�erent quality metrics for low and high �eld strength (3 and
7-Tesla fMRI). To this end, we utilize a 3T fMRI study on the perception
of musical genres [Casey et al., 2012] which has recently been replicated in
7T [Hanke et al., 2015]. Using these datasets, we apply three approaches to
encoding model validation, � binary retrieval accuracy [Mitchell et al., 2008],
stimulus identi�cation [Kay et al., 2008, Santoro et al., 2014] and decoding
accuracy of the stimulus [Naselaris et al., 2009] �, and compare them in a
3T and 7T dataset with identical stimuli and comparable design, for di�erent
choices in data analysis parameters.

Methods

Stimuli

Stimuli were �ve natural, stereo, high-quality music stimuli (6 s duration; 44.1 kHz
sampling rate) for each of �ve di�erent musical genres: 1) Ambient, 2) Roots
Country 3) Heavy Metal, 4) 50s Rock'n'Roll, and 5) Symphonic. Previously, all
25 stimuli have been made publicly available [Hanke et al., 2015].

fMRI data

The analyses presented here were performed on two independently recorded,
and previously published datasets [Casey et al., 2012, Hanke et al., 2015]. While
these datasets have been acquired using identical stimuli, with the same number
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of acquisition runs and number of stimulation trials, they nevertheless di�er in
their precise stimulation timing, stimulation setup and equipment, as well as
other acquisition details. A brief description of both datasets is provided below.
For more information the reader is referred to the respective publications.

3Tesla Participants were scanned in a Philips Intera Achieva scanner with 32
channel SENSE head coil at the Center for Cognitive Neuroscience at Dartmouth
College. Functional scans were acquired with an echo planar imaging sequence
(2 s TR; 35ms TR, 90 ° �ip angle) with 3mm isotropic voxels. Each participant
participated in eight functional runs. Stimuli were presented in an event-related
design with a variable trial duration. Each run consisted of a total of 29 trials
corresponding to 25 music clips and 4 catch trials presented randomly during
each run. Each trial started with a 6 s music clip followed by 4-8 s of �xation. For
catch trials, a question appeared after the audio presentation asking whether an
acoustic feature is present in the music clip such as vocals, guitar, etc. Subjects
responded �Yes� or �No� with a button box. Catch trials were supposed to
help keep the participants' attention to the music and were discarded from the
analyses. Each run had 4 s of �xation at the beginning and 10 s of �xation at
the end. For further details, see Casey et al. [2012]

7Tesla The procedures for the 7Tesla acquisition were highly similar and only
criticial di�erences are reported here. Echo-planar BOLD images (gradient-
echo, 2 s repetition time (TR), 22ms echo time, 0.78ms echo spacing, GRAPPA
acceleration factor 3) were acquired using a whole-body 7Tesla Siemens MAG-
NETOM magnetic resonance scanner equipped with a 32 channel brain receive
coil. 36 axial slices (thickness 1.4mm, 1.4 × 1.4mm in-plane resolution) with
a 10% inter-slice gap were recorded in ascending order. Slices were oriented
to include the ventral portions of frontal and occipital cortex while minimizing
intersection with the eyeballs. The �eld-of-view was centred on the approximate
location of Heschl's gyrus along the rostral-caudal axis.

Instead of dedicated catch trials, similar catch questions as for the 3T ac-
quisition were presented 4 s after the end of the stimulus in trials with an 8 s
inter-stimulus delay. Consequently, each run consisted of 25 trials, and no trials
were discarded from the analysis. There was no additional �xation at the start
of a run. For further details, see Hanke et al. [2015], and Hanke et al. [2014] for
details on MRI acquisition methods.

Preprocessing

Approximate temporal lobe masks for each participant were extracted from
Montreal Neurological Institute coordinate space using FSL [Smith et al., 2004,
Jenkinson et al., 2012], and projected into the subject-speci�c coordinate sys-
tem. Each voxel inside the temporal lobe mask was run-wise Z-scored and
linearly de-trended using PyMVPA [Hanke et al., 2009]. After preprocessing,
3T fMRI data consisted of 16999 voxels and 7T fMRI data of 115439 voxels.

Encoding model

To build an encoding model with high predictive power, one needs to �nd an
appropriate feature representation of the music stimuli [Holdgraf et al., 2017].
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Figure 1: A schematic overview of the encoding process. The spectrogram
for each stimulus is transformed into its low-quefrency mel-frequency spectrum
(LQ-MFS). Then, the encoding features are extracted by a sliding window from
the LQ-MFS. Using these features, encoding model is trained on all runs in the
training set, and used to predict the BOLD activity of the left-out run. These
predictions are subsequently used for validation.
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Casey et al. [2012] compared di�erent feature representations of the same stimuli
in the 3T dataset. They found features corresponding to the timbre of the
stimulus o�er the best discriminative power. We chose a similar feature set,
related to timbre, that was made available by Hanke et al. [2015], the low-
quefrency mel-frequency spectrum (LQ-MFS) of the stimulus. This stimulus
representation consists of 48 LQ-MFS coe�cients for each 100 ms segment of a
stimulus, thus each stimulus overall comprises 2880 LQ-MFS coe�cients.

For each fMRI sample yvt (where t = 1, 2, , . . . , T denotes the time-points, T
the number of samples in each run, and v = 1, 2, . . . , V denotes the voxels) the

LQ-MFS features xt [1× M̃ ] (where M̃ is the number of LQ-MFS coe�cients)
of the corresponding two second part of the stimulus � immediately prior to the
acquision time point � were computed. In case there was no stimulus presented
at time-point t, a zero vector [1× M̃ ] was used.

As the BOLD response is delayed, the most recent feature vector was re-
moved for each fMRI sample (this corresponds to an assumed 2 s stimulus-
response delay), and the new feature vector at time-point t was created by con-
catenating the prior feature vectors xt−1,xt−2 and xt−3 (see Figure 1). From
now on, we denote this stacked feature vector as xt. Feature vectors (and the
corresponding fMRI sample) were removed from the analysis, if two-thirds or
more of the concatenated feature vectors were zero-vectors.

The BOLD activity time-series, as well as the feature time-series, were verti-
cally stacked, resulting in a matrix of featuresX [N×M ] (whereN is the number

of fMRI samples, andM is number of LQ-MFS coe�cients, withM = 3M̃) and
a matrix of BOLD activity Y [N × V ] (where V is the number of voxels and N
as above). This lagging of the stimulus allows us to train the encoding model to
predict the fMRI time-series without explicitly modelling the BOLD response.
The encoding model could then be expressed as the probability to observe the
BOLD activity at time-point t and voxel v:

p(yvt|xt) = N(yvt;xtβv, σ) (1)

where N(y;µ, σ) denotes the probability density at y for a Gaussian with mean
µ and standard deviation σ, and βv is a [M × 1] vector of regression coe�cients
speci�c to voxel v. The corresponding matrix vector equation for all voxels is

Y = Xβ (2)

where Y and X are de�ned as above and β is a [M × V ] matrix of regression
coe�cients per voxel. To reduce over-�tting, the regression-coe�cients were
estimated using ridge regression [Hoerl and Kennard, 1970]. Independently for
each voxel, the regularization parameter λ with the lowest mean squared error
in a generalized leave-one-out cross-validation [Golub et al., 1979] was chosen
from a set of candidate values. This set was chosen so that the highest and
lowest values of λ were only rarely selected in cross-validation. While this reg-
ularization parameter can exert a large in�uence on regression coe�cients, and
hence interpretation, we do not scrutinize its role here, since we are interested in
choosing the amount of regularization that maximizes prediction accuracy. All
analyses were implemented using custom code that heavily utilizes the SciPy
ecosystem [Jones et al., 2014], Scikit-Learn [Pedregosa et al., 2011], Nilearn
[Abraham et al., 2014], and PyMVPA [Hanke et al., 2009].
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Quality metrics

Binary retrieval accuracy and the matching score quantify encoding model per-
formance based on the di�erence between predicted and observed spatial pat-
terns that stretch across multiple voxels. They assume that each stimulus is
associated with one spatial patterns, and thus do not incorporate stimulus time-
courses with multiple BOLD samples. Since our stimuli encompass three BOLD
samples each, we treat each BOLD sample as as an individual stimulus in both
the binary retrieval accuracy and the matching score. However, we need to
avoid misclassi�cations in the case in which predicted BOLD activity for one
sample of the stimulus is closest to another sample in the same stimulus � and
thus "misclassi�es" the time point, but correctly classi�es the stimulus. To deal
with this issue, when testing each predicted BOLD sample we temporarily re-
move all other samples of the same stimulus from the validation set. Hence, for
each BOLD sample of a stimulus we test against N = 25 × 3− 2 other stimuli
per run (25 stimuli with 3 BOLD samples each). Since all quality metrics are
computed on the validation set in a leave-one-run-out cross-validation scheme,
this leads to di�erent number of samples used for the binary retrieval accuracy
and machting score (number of samples N = 3 samples × 25 stimuli × 8 runs =
600), and decoding accuracy (N = 25 stimuli × 8 runs = 200 or N = 5 genres
× 8 runs = 40).

Binary retrieval accuracy

Binary retrieval accuracy [Mitchell et al., 2008] tests if an encoding model's
predictions can, on average, di�erentiate a stimulus' observed BOLD activity
from the BOLD activity of a decoy stimulus. Speci�cally, a stimulus pair is
counted as succesfully classi�ed, if the cosine similarity between predicted and
observed fMRI responses is greater for the correctly matched predictions and
observations than for the incorrectly matched ones (i.e. the similarity of the
observed response of stimulus A with the predictions for stimulus B and vice
versa). In our case, the binary retrieval measure for one predicted BOLD sample
of a stimulus was computed by counting the correct matches for all (exhaustive)
pair-wise combinations of all BOLD samples of all stimuli, independent of genre,
while excluding other samples of the same stimulus, and then dividing by the
number of combinations. This quantity was averaged across all samples of all
stimuli.

Matching score

An alternative measure of encoding performance is the correlation rank score
or matching score [Santoro et al., 2014]. For each BOLD sample of a given
stimulus ln in the validation set, its predicted BOLD activity ỹn is correlated
with the observed BOLD activity of every stimulus, yn. These correlations are
then ordered, and the matching score m(ln) is

m(ln) = 1− rank(ln)− 1

N − 1

Where rank(ln) is the rank of the correlation between predicted ỹn and observed
yn BOLD activity of ln, and N = 25 stimuli × 3 samples - 2 = 73 is the number
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of BOLD samples in the validation set excluding the two other BOLD samples
from the same stimulus. Finally, the matching scores for all stimuli in the
validation set are averaged.

Decoding

Instead of testing the encoding performance, we can also test the performance
of a decoder based on the individual encoding models [Naselaris et al., 2011]
(Figure 2). Our goal is to obtain the probability of which music stimulus was
presented from the predicted spatial activation pattern across voxels. To go from
the probability of a voxel activation given stimulus features p(yvt|xt) to prob-
ability of stimulus features given voxel activation p(xt|yt) we follow Naselaris
et al. [2009] and separate our decoding scheme into two parts.

Single- to Multi-Voxel Encoding First we condense the large number of
voxel-speci�c encoding models into one multi-voxel encoding model. To do this
we project the predicted and observed fMRI data onto the �rst k principal
components of the [N ×V ] matrix of predicted BOLD activity. We choose k via
cross-validation to estimate the number of principal components that maximize
the decoding accuracy on the training set for each participant. As in Naselaris
et al. [2009] we construct the k-dimensional multivariate normal probability
density function p(yt|xt) to obtain a likelihood function across voxels.

Multi-Voxel Encoding to Decoding We now express this likelihood in
terms of the label of the music stimulus, instead of its LQ-MFS features. We use
the simplifying assumption that the BOLD activity is in�uenced by the music
stimuli only through their LQ-MFS coe�cients x, and � given that each music
stimulus was associated with only three (lagged) LQ-MFS representations � the
likelihood to observe a given triple of consecutive y for a speci�c music stimulus
ln is p(y|ln) ∝ p(yt−1|x1)p(yt|x2)p(yt+1|x3) where t is the sample 6 seconds
after the start of the music stimulus, x are the three LQ-MFS feature vectors
of this stimulus, and n = 1..25 denotes the stimulus. For a given triple of
consecutive BOLD activity y from the same stimulus, we can now estimate
the probability distribution over music stimuli p(ln|y) by using Bayes' rule:
p(ln|y) ∝ p(y|ln)p(ln). Since each stimulus was presented exactly once, it has
an uniform prior distribution with p(ln) =

1
25 . The mode of this distribution is

the most probable presented stimulus given the data. Additionally we decode
the musical genre of the presented stimulus given the observed BOLD activity
as the mode of p(cn|y) =

∑
l∈stim(cn)

p(l|y) where stim(cn) are the labels of the
stimuli belonging to the genre cn.

Voxel selection

We varied the number of voxels used in the analysis, both for 3T and 7T fMRI
data, and selected which voxels to keep by two di�erent criteria. Both criteria
were based on voxel characteristics in the training set only.

Selection by stability Mitchell et al. [2008] selected the 500 most stable
voxels for their analysis. For a single voxel, each run can be represented as
a vector of BOLD activity, where each entry is associated with one stimulus.
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Figure 2: A schematic overview of the decoding of stimulus identity and stim-
ulus music category. The predicted fMRI time series of the validation run is
reduced in dimensionality by principal component analysis, and a multivariate-
normal likelihood function p(yt|xt) is constructed. From there, the probability
distribution over music stimuli and subsequently musical categories is estimated.
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Figure 3: Voxel-wise r2 between predicted and observed BOLD activity for each
left-out run, averaged across participants and runs with 95% con�dence interval.
Shown here are the 10000 voxels with highest r2 for 3T and 7T.

A voxel's "stability score" is then the average (pair-wise) correlation between
the vectors of the eight runs for all combinations of runs. Hence, this criterion
selects voxels with consistent activation for each stimulus across runs.

Selection by r2 As we are interested in encoding performance, we can use
the quality of predictions of each voxel's encoding model as a selection criterion.
We compute the coe�cient of determination r2 for each voxel-speci�c encoding
model in the training set. Using this criterion selects voxels whose activity can
be explained best by an LQ-MFS-based encoding model.

Results

We trained voxel-wise encoding models to predict voxel activity using a LQ-MFS
representation of music stimuli in 3T and 7T fMRI data. First, we evaluate each
voxel's encoding model individually. Figure 3 shows r2 values from an eight fold
leave-one-run-out cross-validation of the 10000 voxels with highest r2 averaged
across participants. While voxel-wise encoding models show higher peak r2 in
3T than in 7T in the best performing models (left side of the �gure), voxel-wise
encoding models show higher r2 in 7T than in 3T for all other voxels.

Next, we evaluate sets of voxel-wise encoding models for 3T and 7T using
several quality metrics. We varied the number of voxels used in the analysis
and how they were selected, both for 3T and 7T fMRI data, and compared the
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A

B

Figure 4: AMean binary retrieval accuracy as a function of the included number
of voxels for 3T and 7T, for stability- and r2-based voxel selection. Error bars
denote the bootstrapped 95% con�dence interval of the mean. The mean is taken
over binary retrieval accuracies of eight runs for each of the 19 participants.
B Mean binary retrieval accuracy as a function of the overall volume of the
included voxels for 3T and 7T, for stability- and r2-based voxel selection.

resulting di�erences in three quality metrics of encoding models. To di�erentiate
between e�ects of voxel number and overall volume of the voxels, which di�ers
in 3T and 7T, we show the results as a function of the number of voxels, as
well as overall volume of these voxels. To illustrate the extent of 10000 selected
voxels for di�erent �eld strengths and selection criteria, we show for each voxel
the proportion of validation sets across all participants in which it was selected
in Figure S1. In both 3T and 7T the voxels that are most often selected are
situated in primary and secondary auditory areas.

Binary retrieval accuracy

Figure 4 shows di�erences in binary retrieval accuracy for di�erent numbers of
voxels, selection strategies, and �eld strength. For both 3T and 7T data, and
both selection strategies, the maximum binary retrieval accuracy is achieved
with relatively low number of voxels (3T and r2: 250 voxels, 6.75 cm3 volume,
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A

B

Figure 5: A Mean matching rank score as a function of the included number
of voxels for 3T and 7T, for stability- and r2-based voxel selection. Error bars
denote the bootstrapped 95% con�dence interval of the mean. The mean is taken
over binary retrieval accuracies of eight runs for each of the 19 participants. B
Mean matching rank score as a function of the overall volume of the included
voxels for 3T and 7T, for stability- and r2-based voxel selection.

7T and r2: 500 voxels, 0.68 cm3 volume, 3T and stability selection: 500 voxels,
13.5 cm3 volume, 7T and stability selection: 1000 voxels, 2.7 cm3 volume) and
decreases the more voxels are included. For both stability selection criteria, 3T
outperforms or is equal to 7T across all numbers of voxels. With regard to the
voxel selection strategies, selection by r2 outperforms or is equal to selection by
stability across all numbers of voxels (Figure S2).

Matching score

Figure 5 shows di�erences in matching score for di�erent numbers of voxels,
selection strategies, and �eld strength. Matching scores in both 3T and 7T data
peak at high numbers of voxels (3T and r2: 1000 voxels, 27 cm3 volume, 7T and
r2: 5000 voxels, 13.5 cm3 volume, 3T and stability selection: 500 voxels, 13.5 cm3

volume, 7T and stability selection: 5000 voxels, 13.5 cm3 volume). Indexing by
the overall volumes these voxels encompass reveals that the matching score peaks
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A

B

Figure 6: A Mean decoding accuracy of individual music stimuli as a function
of the included number of voxels for 3T and 7T, for stability- and r2-based voxel
selection. Error bars denote the bootstrapped 95% con�dence interval of the
mean. The mean is taken over decoding accuracies of eight runs for each of the
19 participants. Chance level is 0.04. B Mean decoding accuracy of individual
music stimuli as a function of the overall volume of the included voxels for 3T
and 7T, for stability- and r2-based voxel selection. Chance level is 0.04.

for 3T and 7T at (for stability selection) or close to (for selection by r2) the
same volume. For both stability selection and selection by r2, 3T outperforms
7T for the same number of voxels, except for the largest two numbers of voxels,
and � in terms of the volume the voxels take � 7T outperforms 3T for volumes
up to 2.7 cm3 and 3T outperforms 7T for volumes beyond 27 cm3. Furthermore,
for 3T data, selection by stability and selection by r2 perform similarly, while
selection by r2 outperforms selection by stability consistently in 7T data (Figure
S3).

Decoding accuracy

Figure 6 shows the accuracy of decoding each individual stimulus (chance level
0.04) for di�erent numbers of voxels, selection strategies, and �eld strength. 3T
consistently outperforms 7T in decoding individual stimuli: if voxels are selected
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A

B

Figure 7: A Mean decoding accuracy of music category as a function of the
included number of voxels for 3T and 7T, for stability- and r2-based voxel
selection. Error bars denote the bootstrapped 95% con�dence interval of the
mean. The mean is taken over decoding accuracies of eight runs for each of
the 19 participants. Chance level is 0.2. B Mean decoding accuracy of music
category as a function of the overall volume of the included voxels for 3T and
7T, for stability- and r2-based voxel selection. Chance level is 0.2.
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3T

7T

r2 stability

Figure 8: Confusion matrices for genre decoding, separated by �eld-strength
and voxel selection. Each confusion matrix is averaged across the di�erent
number of voxels, participants and runs.
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by stability, 3T outperforms 7T for all numbers of voxels, if voxels are selected
by r2, 3T outperforms 7T for all but the two highest numbers of voxels. For
7T data, the number of voxels matters little, however, for 3T data, optimal
decoding accuracy is reached at a relatively low number of voxels (250 voxels for
selection by r2 and selection by stability, 6.75 cm3 volume), and subsequently
decreases if more voxels are included.

Instead of decoding individual stimuli, we can also decode the musical genre
of each individual stimulus. Figure 7 shows the accuracy of decoding music
genre (chance level 0.20) for di�erent numbers of voxels, selection strategies,
and �eld strength. Here a di�erent pattern emerges: decoding accuracy is
higher for 7T data than for 3T data, across all numbers of voxels and selection
criteria. Potentially, this suggests that 7T BOLD activity contains di�erent
information than 3T. For both selection strategies, 7T shows higher maximum
genre decoding accuracy for high numbers of voxels, while 3T shows higher
maximum genre decoding accuracy for lower numbers of voxels.

Next, we want to answer the question which musical genres can be best
predicted, and if those di�er between 3T and 7T data. For this we compute
the confusion matrix from the out-of-sample predictions of all classi�ers: Rows
denote the stimulus' true genre, columns denote the predicted genre. Each
cell contains the count � or proportion � of occurences of this combination of
true and predicted genres. Maximum classi�cation accuracy leads to a diagonal
confusion matrix.

Figure 8 shows the confusion matrices averaged across numbers of voxels for
di�erent �eld strength and selection criteria. The occurences are normalized per
row, and their mean proportion across numbers of voxels are indicated in each
cell. All confusion matrices show a higher misclassi�cation between genres that
contain speech (country, rock'n'roll and heavy metal) and between instrumental
genres (ambient and symphonic), while very few genres that contain speech
are incorrectly classi�ed as instrumental or vice versa. The increased genre
decoding accuracy in 7T is thus due to a better discrimination between the two
instrumental genres � ambient and symphonic � and between the three vocal
genres � country, rock'n'roll, and heavy metal.

Discussion

Our results show that all three quality metrics vary with the number of voxels
and voxel selection strategies in both low and high �eld strengths. We demon-
strate that the patterns of this variation di�er between quality metrics and
that �eld strength, voxel selection, and voxel number all a�ect these metrics
di�erently.

We believe these results emphasize the signi�cance of an often under- appre-
ciated aspect of computational models in neuroimaging: near arbitrary choices
in the data analysis � like the number of voxels used or how they are selected �
have a considerable impact on the performance evaluation of voxel-wise encoding
models. Furthermore, the impact of these choices is inconsistent across the con-
sidered validation strategies. The e�ects of these parameters are rarely known
a-priori, and each choice of a speci�c value can often be easily justi�ed, yet
this undisclosed �exibility leads to considerable researcher degrees-of-freedom
[Simmons et al., 2011, Hong et al., 2019] that will bias the comparison between
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di�erent voxel-wise encoding models and hinder generalization of �ndings across
individual studies.

In light of the substantial e�ects individual parameters exert on validation
strategies, it does not surprise that one of our results � a higher matching score
in 7T than in 3T BOLD fMRI data � constrasts a previous study [Santoro et al.,
2014], which found higher matching scores for encoding natural sounds in 7T
than in 3T, although using a di�erent number of stimuli in the two conditions.

However, in spite of these variabilities, we can abstract several recommen-
dations for applying and validating voxel-wise encoding models.

First, it is likely that selecting voxels by the quality of its encoding model,
such as the r2 score, will outperform a selection of voxels based on their sta-
ble response to the stimulus � however, this di�erence diminishes for large
numbers of voxels. One reason that this e�ect is especially prominent when
only few voxels are included could be the quickly diminishing returns for higher
number of voxels: voxels in which an encoding model performs well are already
included, and each additional voxel decreases the joint encoding performance.
Interestingly, this pattern di�ers in the matching score, where performance in
7T is worse for the smallest number of voxels and increases when more voxels
are included. In fact, this holds true for selection by both r2 and a stability
criterion, and thus di�erentiates the matching score from both binary retrieval
accuracy, as well as decoding accuracy. This contrasts especially with binary
retrieval accuracy, results from a previous study indicate that low numbers of
voxels lead to high binary retrieval accuracy [Hoe�e et al., 2018]. Our results
seem to corroborate this �nding, suggesting that binary retrieval accuracy, in
contrast to the matching score, is sensitive to the inclusion of worse performing
voxels.

Second, the number of voxels used has a large e�ect on all quality metrics,
and to compare two sets of voxel-wise encoding models even on the same stimuli,
one has to control for them. For most quality metrics, this control is most
easily exercised by �xing the number of voxels directly, however, in case of the
matching score, it can be more meaningful to �x the overall volume the two sets
of encoding models encompass.

Third, while higher �eld strength might lead to better individual encoding
models, it might not improve their decoding accuracy. We show that voxel-wise
encoding models in 3T fMRI data outperform voxel-wise encoding models in 7T
fMRI data in all but one quality metric. This indicates that high �eld strength
does not provide more information per se, since stimuli can't be di�erentiated
better in general, in spite of the higher r2 in most voxels in 7T. However, our
key insight is, that higher �eld strength can decrease the decoding accuracy
for some labels of the stimulus, i.e. the decoding of individual stimuli, yet
increase the decoding accuracy for other labels, i.e the decoding of the musical
genre of individual stimuli. Thus, one has to exercise caution, when choosing
which label to decode from a set of encoding models. One reason for this,
could be that training encoding models on stimulus features can make stimulus
labels somewhat arbitrary. Two similar stimuli can lead to similar and accurate
predictions of BOLD activity, and hence a higher r2, yet this similarity could
decrease a quality measure that is based on the correct discrimination between
individual stimuli.

While we believe that these three recommendations can guide neuroimaging
researchers, to conclusively assess if these recommendations generalize, more
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data are needed, since the results in this study are based on only two fMRI
datasets encompassing the same auditory stimuli recorded in 3- and 7T. This
facilitates a comparison between di�erent �eld strengths, yet, further work is
needed to show that these conclusions hold beyond this set of stimuli, our chosen
stimulus representation, and even beyond the auditory domain.

Author contributions

MB performed the analysis and wrote the manuscript. JSG contributed to
the manuscript. JWR contributed to the manuscript. MH contributed to the
manuscript.

Competing Interests

No competing interests were disclosed.

Grant Information

This research was, in part, supported by the German Federal Ministry of Ed-
ucation and Research (BMBF) as part of a US-German collaboration in com-
putational neuroscience (CRCNS; awarded to James Haxby, Peter Ramadge,
and Michael Hanke), co-funded by the BMBF and the US National Science
Foundation (BMBF 01GQ1112; NSF 1129855). Work on the data-sharing tech-
nology employed for this research was supported by US-German CRCNS project
awarded to Yaroslav O. Halchenko and Michael Hanke, co-funded by the BMBF
and the US National Science Foundation (BMBF 01GQ1411; NSF 1429999).
Michael Hanke was supported by funds from the German federal state of Saxony-
Anhalt, Project: Center for Behavioral Brain Sciences. Moritz Boos and Jochem
W. Rieger were supported by funds from the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany's Excellence Strategy �
EXC 2177/1 - Project ID 390895286.

Acknowledgements

We are grateful to Michael Casey and the musicians. We are also thankful for
Cristiano Micheli's helpful feedback on an earlier version of this manuscript.

References

Bertrand Thirion, Edouard Duchesnay, Edward Hubbard, Jessica Dubois, Jean-
Baptiste Poline, Denis Lebihan, and Stanislas Dehaene. Inverse retinotopy:
inferring the visual content of images from brain activation patterns. Neu-

roimage, 33(4):1104�1116, 2006.

Kendrick N Kay, Thomas Naselaris, Ryan J Prenger, and Jack L Gallant. Iden-
tifying natural images from human brain activity. Nature, 452(7185):352�355,
2008.

17

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 8, 2020. ; https://doi.org/10.1101/2020.04.07.029397doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.029397
http://creativecommons.org/licenses/by-nd/4.0/


Thomas Naselaris, Kendrick N Kay, Shinji Nishimoto, and Jack L Gallant.
Encoding and decoding in fMRI. Neuroimage, 56(2):400�410, 2011.

Alexander G Huth, Shinji Nishimoto, An T Vu, and Jack L Gallant. A contin-
uous semantic space describes the representation of thousands of object and
action categories across the human brain. Neuron, 76(6):1210�1224, 2012.

Christopher R Holdgraf, Wendy De Heer, Brian Pasley, Jochem Rieger, Nathan
Crone, Jack J Lin, Robert T Knight, and Frédéric E Theunissen. Rapid
tuning shifts in human auditory cortex enhance speech intelligibility. Nature
communications, 7(1):1�15, 2016.

Christopher R Holdgraf, JochemWRieger, Cristiano Micheli, Stephanie Martin,
Robert T Knight, and Frederic E Theunissen. Encoding and decoding models
in cognitive electrophysiology. Frontiers in systems neuroscience, 11:61, 2017.

Tom M Mitchell, Svetlana V Shinkareva, Andrew Carlson, Kai-Min Chang,
Vicente L Malave, Robert A Mason, and Marcel Adam Just. Predicting
human brain activity associated with the meanings of nouns. Science, 320
(5880):1191�1195, 2008.

Thomas Naselaris, Ryan J Prenger, Kendrick N Kay, Michael Oliver, and Jack L
Gallant. Bayesian reconstruction of natural images from human brain activity.
Neuron, 63(6):902�915, 2009.

Michael Casey, Jessica Thompson, Olivia Kang, Rajeev Raizada, and Thalia
Wheatley. Population Codes Representing Musical Timbre for High-Level
fMRI Categorization of Music Genres. In Machine Learning and Interpre-

tation in Neuroimaging, pages 34�41. Springer Science and Business Media,
2012. doi: 10.1007/978-3-642-34713-9_5. URL http://dx.doi.org/10.1007/
978-3-642-34713-9_5.

Sebastian Hoe�e, Annerose Engel, Rodrigo Basilio, Vinoo Alluri, Petri Toivi-
ainen, Maurício Cagy, and Jorge Moll. Identifying musical pieces from fmri
data using encoding and decoding models. Scienti�c reports, 8(1):2266, 2018.

Roberta Santoro, Michelle Moerel, Federico De Martino, Rainer Goebel, Kamil
Ugurbil, Essa Yacoub, and Elia Formisano. Encoding of natural sounds at
multiple spectral and temporal resolutions in the human auditory cortex.
PLoS computational biology, 10(1), 2014.

Emily J Allen, Michelle Moerel, Agustín Lage-Castellanos, Federico De Mar-
tino, Elia Formisano, and Andrew J Oxenham. Encoding of natural timbre
dimensions in human auditory cortex. Neuroimage, 166:60�70, 2018.

Michael Hanke, Richard Dinga, Christian Häusler, J. Swaroop Guntupalli,
Michael Casey, Falko R. Kaule, and Jörg Stadler. High-resolution 7-Tesla
fMRI data on the perception of musical genres � an extension to the study-
forrest dataset. F1000Research, 4:174, 2015.

Michael Hanke, Florian J. Baumgartner, Pierre Ibe, Falko R. Kaule, Stefan
Pollmann, Oliver Speck, Wolf Zinke, and Jörg Stadler. A high-resolution 7-
Tesla fMRI dataset from complex natural stimulation with an audio movie.
Scienti�c Data, 1, 2014. doi: 10.1038/sdata.2014.3. URL http://dx.doi.org/
10.1038/sdata.2014.3.

18

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 8, 2020. ; https://doi.org/10.1101/2020.04.07.029397doi: bioRxiv preprint 

http://dx.doi.org/10.1007/978-3-642-34713-9_5
http://dx.doi.org/10.1007/978-3-642-34713-9_5
http://dx.doi.org/10.1038/sdata.2014.3
http://dx.doi.org/10.1038/sdata.2014.3
https://doi.org/10.1101/2020.04.07.029397
http://creativecommons.org/licenses/by-nd/4.0/


Stephen M Smith, Mark Jenkinson, Mark W Woolrich, Christian F Beckmann,
Timothy EJ Behrens, Heidi Johansen-Berg, Peter R Bannister, Marilena
De Luca, Ivana Drobnjak, David E Flitney, et al. Advances in functional
and structural mr image analysis and implementation as fsl. Neuroimage, 23:
S208�S219, 2004.

Mark Jenkinson, Christian F Beckmann, Timothy EJ Behrens, Mark W Wool-
rich, and Stephen M Smith. Fsl. Neuroimage, 62(2):782�790, 2012.

M Hanke, YO Halchenko, PB Sederberg, E Olivetti, I Fründ, JW Rieger,
CS Herrmann, JV Haxby, SJ Hanson, and S Pollmann. PyMVPA: A Unifying
Approach to the Analysis of Neuroscienti�c Data. Frontier in Neuroinformat-

ics, 3:3, 2009.

Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation
for nonorthogonal problems. Technometrics, 12(1):55�67, 1970.

Gene H Golub, Michael Heath, and Grace Wahba. Generalized cross-validation
as a method for choosing a good ridge parameter. Technometrics, 21(2):
215�223, 1979.

Eric Jones, Travis Oliphant, and Pearu Peterson. {SciPy}: Open source scien-
ti�c tools for {Python}. 2014.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python.
Journal of Machine Learning Research, 12(Oct):2825�2830, 2011.

Alexandre Abraham, Fabian Pedregosa, Michael Eickenberg, Philippe Gervais,
Andreas Mueller, Jean Kossai�, Alexandre Gramfort, Bertrand Thirion, and
Gaël Varoquaux. Machine learning for neuroimaging with scikit-learn. Fron-
tiers in neuroinformatics, 8:14, 2014.

Joseph P Simmons, Leif D Nelson, and Uri Simonsohn. False-positive psychol-
ogy undisclosed �exibility in data collection and analysis allows presenting
anything as signi�cant. Psychological science, page 0956797611417632, 2011.

YongWook Hong, Yejong Yoo, Jihoon Han, Tor D Wager, and Choong-Wan
Woo. False-positive neuroimaging: Undisclosed �exibility in testing spatial
hypotheses allows presenting anything as a replicated �nding. bioRxiv, page
514521, 2019.

19

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 8, 2020. ; https://doi.org/10.1101/2020.04.07.029397doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.029397
http://creativecommons.org/licenses/by-nd/4.0/


Supplementary information

Figure S1: Glassbrains showing the proportion of how often a voxel was included
across all participants and all validation sets for di�erent �eld strengths and
voxel selection criteria.

Figure S2: A Mean binary retrieval accuracy as a function of the included
number of voxels for 3T and 7T, for stability- and r2-based voxel selection.
Error bars denote the bootstrapped 95% con�dence interval of the mean. The
mean is taken over binary retrieval accuracies of eight runs for each of the 19
participants.
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Figure S3: A Mean matching rank score as a function of the included number
of voxels for 3T and 7T, for stability- and r2-based voxel selection. Error bars
denote the bootstrapped 95% con�dence interval of the mean. The mean is taken
over binary retrieval accuracies of eight runs for each of the 19 participants.

Figure S4: A Mean decoding accuracy of individual music stimuli as a function
of the included number of voxels for 3T and 7T, for stability- and r2-based voxel
selection. Error bars denote the bootstrapped 95% con�dence interval of the
mean. The mean is taken over decoding accuracies of eight runs for each of the
19 participants. Chance level is 0.04.
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Figure S5: Mean decoding accuracy of music category as a function of the
included number of voxels for 3T and 7T, for stability- and r2-based voxel
selection. Error bars denote the bootstrapped 95% con�dence interval of the
mean. The mean is taken over decoding accuracies of eight runs for each of the
19 participants. Chance level is 0.2.
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