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Abstract

The communicability distance between pairs of regions in human brain is
used as a quantitative proxy for studying Alzheimer disease. Using this distance
we obtain the shortest communicability path lengths between different regions
of brain networks from Alzheimer diseased (AD) patients and healthy cohorts
(HC). We show that the shortest communicability path length is significantly
better than the shortest topological path length in distinguishing AD patients
from HC. Based on this approach we identify 399 pairs of brain regions for
which there are very significant changes in the shortest communicability path
length after AD appears. We find that 42% of these regions interconnect both
brain hemispheres, 28% connect regions inside the left hemisphere only and 20%
affects vermis connection with brain hemispheres. These findings clearly agree
with the disconnection syndrome hypothesis of Alzheimer disease. Finally, we
show that in 76.9% damaged brain regions the shortest communicability path
length drops in AD in relation to HC. This counterintuitive finding indicates
that AD transforms the brain network into a more efficient system from the
perspective of the transmission of the disease, because it drops the circulability
of the disease factor around the brain regions in relation to its transmissibility
to other regions.
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1 Introduction

The human brain is arguably the most complex of all complex systems. At the
most basic structural level of interest for neurosciences, the human brain consists
of 10! neurons and 10'? glial cells, which communicate through neural projections
[1]. These cells are then packed into local circuits [2] or large gyri, which define
anatomical and functional regions in the brain. The human brain is considered to
be outstanding among mammalian brains, it is the largest-than-expected from body
size, and it has an overdeveloped cerebral cortex representing over 80% of brain mass
[1, 3]. Most of the complexity of these different size-scales of the human brain comes
not only from the number of its components, but mainly from the intricate webs of
connections linking these components. The emerging field of network neuroscience
studies the structural and dynamical properties of these webs observed at different
size-scales from a variety of noninvasive neuroimaging techniques [4].

The term pathoconnectomics has been coined by Rubinov and Bullmore [5] to de-
scribe the use of network neuroscience techniques on the analysis of abnormal brain
networks (see also [6]). The goals of pathoconnectomics are not only of practical rel-
evance as in the early diagnosis of psychiatric and developmental disorders, stroke,
severe brain injury and neurodegenerative diseases, but also in the understanding of
their causal mechanisms as pointed out by Raj and Powell [7]. Due to its societal
challenge, Alzheimer’s disease (AD) has become a major focus of pathoconnectomic
research agenda. AD is the most common neurodegenerative disorder and it rep-
resents a major growing health problem for elderly population [8, 9, 10, 11]. It is
characterized by a continuous degradation of the patient, which starts with a preclin-
ical stage, a phase of mild cognitive impairment (MCI), and finishing with dementia.
The molecular basis of these different stages appear to be linked to the presence of
p-amyloid (Af) in senile plaques and cerebral amyloid angiopathy, as well as tau pro-
teins (tau) in neurofibrillary tangles [12, 13, 14|. For instance, the cognitive decline
in AD correlates with tauopathy [15, 16, 17|, while the aggregation of A3 appears to
be critical in the early stages that trigger events conducting to tauopathy, neuronal
dysfunction, and dementia [18]. Then, it is plausible that these proteins, A5 and
tau, originate in a particular region of the brain and then propagate through neural
fibers in a prion-like manner [19, 20, 21, 22, 23].

The hypothesis of the self-propagation of AD in combination with network neu-
rosciences has triggered the use of epidemiological models on networks to simulate
the propagation of a disease factor as AD progresses. In particular, Peraza et al. [24]
have proposed the use of the Susceptible-Infected (SI) model on networks (see for
instance [25, 26, 27]), in which nodes are in two possible states, infected (I) or suscep-
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tible (S). The first correspond to brain regions wherein the disease factor is present
with high probability, while the second are those free of the disease factor but that
can be infected from any infected nearest neighbor. Similar principles have guided
Iturria-Medina et al. [28] in modeling the progression of AD under the Network
Diffusion Model of disease progression in dementia [29].

Here we start by adopting the SI-model for the propagation of a disease factor in
AD. However, we use this model to connect with the theory of network communica-
bility, which has been widely used in network neurosciences (for some applications of
communicability in pathoconnectomics see [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]).
That is, we will provide a theoretical connection between the network communicabil-
ity and the probability of a disease factor of propagating from one node to another
in a network. Using this connection we will consider a measure that account for the
difference between the circulability of this disease factor around a given pair of nodes
and its transmissibility from one region to the other. This measure is a Euclidean
distance metric-communicability distance—for the corresponding pair of nodes in the
network. We then find the length or the shortest communicability paths between
every pair of regions in human brains for cohorts of healthy (HC) and Alzheimer dis-
eased (AD) individuals after appropriate normalization. We report in this work that:
(i) the shortest communicability path length is orders of magnitude more significant
in distinguishing AD from HC than the shortest topological path length; (ii) there is
a set of 399 pairs of regions for which there are very significant changes in the shortest
communicability path length after AD, (iii) 42% of these significant pairs of brain re-
gions interconnect both brain hemispheres, while 28% connect regions inside the left
hemisphere only, in agreement with findings related to the disconnection syndrome.
Additionally, 20% of these pairs of affected regions are connecting the vermis with
any of the two brain hemispheres, in agreement with recent results; (iv) for 76.9% of
these pairs of damaged brain regions there is an increase in the average cliquishness
of the intermediate regions which connect them, which implies a significantly higher
energy consumption for communication between these regions in AD than in HC.

2 Theoretical approach

Here we will use indistinguishably the terms graph and network and follow the classi-
cal notation in network theory (see for instance [41]). A graph G = (V, E) is defined
by a set of n nodes (vertices) V' and a set of m edges E = {(u,v)|u,v € V} be-
tween the nodes. The degree of a vertex is the number of edges incident to it. A
walk of length k in G is a set of nodes 71,9, ..., %, 21 such that for all 1 <[ < k,
(i1, 0141) € E. A closed walk is a walk for which i1 = i;1. A path is a walk with
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no repeated nodes. The length of a path is the number of edges in that path. The
shortest of all paths connecting the same pair of vertices is known as the shortest
topological path. A graph is connected if there is a path connecting every pair of
nodes. Here we will only consider connected graphs.

Let A be the adjacency matrix of the graph, which for simple finite graphs is
symmetric, and thus its eigenvalues are real. We label the eigenvalues of A in non-
increasing order: A\; > Ay > ... > A,. Since A is a real-valued, symmetric matrix,
we can decompose A into A U AU T where A is a diagonal matrix containing the
eigenvalues of A and U = [77/1 Ly-evs w ,] is orthogonal, where 1, is an eigenvector
associated with \;. Because the graphs considered here are connected, A is irreducible
and from the Perron Frobenius theorem we can deduce that Ay > Ay and that the
leading eigenvector w 1, which will be sometimes referred to as the Perron vector,

can be chosen such that its components 1 ,(u) are positive for all u € V.

2.1 Susceptible-infected model

We start by considering a susceptible-infected model of propagation of a disease
factor as AD progresses. In this case the brain regions, represented as nodes of
the graph, can be in two possible states, infected or susceptible. Susceptible brain
regions are those which are free of the disease factor but which are susceptible to get
infected from other regions. The infected ones are those in which the probability of
disease factor is greater than zero. Let i be a node of the graph G = (V| F) and let
x; (t) be the probability that node i get infected at time ¢ from any infected nearest
neighbor. If the infection rate is given by v we have [25, 26, 27|,

o =a () =71 - ZAZ]SE] .t >t (1)

It can be seen that the linearized SI model, namely @ (t) = vA Z(t) represents an
upper bound for the exact SI model, i.e.,

() = A1 — 24(t ZAM <72Aijxj(t) (2)

which in matrix-vector for is given by
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with initial condition #(0) = @g, Vi and V¢. The solution of the linearized SI model
* (t) = vAZ* (t) is given by:

T (t) = AT, (4)

However, the solution of the linearized SI model has two important problems.
The first is that the semigroup (etA)t>0 is unbounded, i.e., lim; o HetAH = 00,
which poses a major problem for the use of this linearized model as a model of the SI
propagation scheme. The reason is that z(t) is a probability and as such it has to be
bounded as 0 < z(t) < 1. The second is that the solution (4) is a good approximation
to the solution of the SI model only for #*(¢) ~ 0, which makes this solution useless
for following the propagation of the AD.

To sort out this problem we will follow here Lee et al. [42]|, who proposed the
following change of variable to avoid the aforementioned problems with the solution
of the linearized SI model:

yi (t) = —log (1 — a7 (1)), (5)
which is an increasing convex function. Then, as 1 — 2} is the probability that node
i is not infected at a given time, the new variable y; (¢) can be interpreted as the
information content of the node ¢ or surprise of not being infected (see, e.g., [43]).
Let us then suppose that at ¢t = 0 the probability that every region of the brain gets
infected is the same, i.e., at the beginning every node has the same probability 3 to
be infected and to be the one from which the disease propagates. That is,

x&zﬁz%, Vi=1....n (6)

In this case, the solution of the upper bound of the SI model is:

7(t) = (l . 1) eMAT (loga 41z O‘) i (7)

«

where = 1 — (3 is a constant. Also, if we fix v and ¢ we have that this solution can
be written as

y(t) =m (eCA) 1—0l, (8)

for constants m,( and b. Here the constant ( groups the previous parameters v, «
at a given time t. We will call &; (t) = 1 — e7¥(®) the approximate solution of the SI
model, which is always bounded between zero and one as needed.
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Figure 1: Simulation of the progression of a disease with the SI model (broken blue
line) in an Erdés-Rényi random network with n = 100 and connection probability p =
0.1. The lineralized solution is represented by dotted black line and the approximate
solution using the change of variables is represented as a solid red line. The panels
correspond to infectivity rates 5 = 0.001 (a) and 5 = 0.002 (b).

In order to see the differences between the exact solution of the SI model z; (¢),
the linearized ones z7 (t) and the approximate solution after the change of variable
Z; (t), we plot the progression of the number of infected nodes in an Erdgs-Rényi
random network with n = 100 and connection probability p = 0.1. We simulate the
progression of the disease starting the infection with a fraction of 0.01 infected nodes
in the network. The results are illustrated in Figure 1 for infectivity rates 5 = 0.001
(a) and 5 = 0.002 (b). As can be seen the lineralized model (dotted black line) is
a bad approximation to the exact solution (broken blue line) as it quickly diverges.
However, the approximate solution obtained by the change of variable (solid red line)
is a tight upper bound for the exact solution, and it will be used here for further
analysis.

2.2 The communicability connection

It is clear from Eq. (8) that the solution y(t) of the upper bound of the SI model
depends linearly of (eCA) 1. This term is the sum of the corresponding rows of the
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exponential of the adjacency matrix. For an individual node ¢ it is known as the
total communicability of the corresponding node [44| and it can be written as

(€)T) = (), + 3 (), =6+ Y 7 )
J# J#i

where the first term in the right-hand side is the subgraph centrality [45] of the node
and the second one is the sum of the communicability functions [46] from the node i
to the rest of the nodes of the network (see also [47]). In terms of the propagation of a
disease factor, %; represents the circulability of the disease factor around the node 1.
The second term represents the transmissibility from/to the node i to/from the rest
of the nodes of the network. If we concentrate on the effect of the node i on another
node j, then % represents the capacity of the node i of increasing the probability of
infesting itself and .7;; is the capacity of ¢ of infestating j. Thus, because node j is
doing the same, the term

§ij (C) = (GCA)“‘ + (GCA)jj =2 <6CA)

represents the difference between the capacities of both nodes of increasing the prob-
ability of infesting themself to that of infesting each other. A large value of &;; (¢)
indicates that the disease factor gets trapped circulating at the nodes ¢ and 7, which
form two islands with little transmissibility among them. A small value, however,
indicates that such transmissibility is relatively large in relation to the internal cir-
culability at the nodes, i.e., the nodes have a bridge between them. We consider that
this measure is important for the study of Alzheimer disease because it should allow
us to investigate whether the disease produces a patchy environment of brain regions
which form islands with little transmissibility among them. The function &;; (¢) can
be written as &; (¢) = ||7; — fj|]2, where #; = e*23; with @, = (V10 a4, Y]
where 1)y, ;,is the ith entry of the kth eigenvector associated with the eigenvalue Ay
of A. Consequently, &; (¢) is a Euclidean distance between the nodes 7 and j in the
network. We call it the communicability distance between the two nodes [48, 49|.
The vector 7; is the position vector of the node i in a Euclidean hypersphere of
dimension n [50, 51].

(10)

i’

2.3 Shortest communicability paths

The communicability distance &;; (¢) can be calculated for any pair of nodes (con-

nected or not) in the graph. Thus, we can obtain a communicability distance matrix
48]


https://doi.org/10.1101/2020.04.07.029249

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.07.029249; this version posted April 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

o ol/2
X = <§I’T + 157 — 2exp (CA)) , (11)

where & = [(e¢4),, (),
diagonal entries of the corresponding matrix function, I is an all-ones vector and o
indicates an entrywise operation. However, we assume here that in a network “infor-
mation” flows through the edges of the graph, such that it uses certain paths connect-
ing the corresponding pair of nodes. In order to find the shortest communicability
paths between two nodes we proceed as follows. We construct the communicability-
weighted adjacency matrix of the network [52]:

- (eCA)mJ is a vector whose entries are the main

W=A0X =XoA. (12)

Then, the shortest communicability path between two nodes is the shortest
weighted path in W. That is, the shortest communicability path between two nodes
1 and j for a given ¢ > 0 is the path that minimizes the communicability distance
between every pair of nodes in the corresponding path. We have proved analytically
that when ¢ — 0 the shortest communicability path between any pair of nodes 7 and
j is identical to the shortest (topological) path between the two nodes [53]. That is,
the shortest (topological) path is a special case of the shortest communicability path
in a network. In this work we will consider the case ( = 1 which we will call “shortest
communicability path” and the case ¢ — 0 which we will call “shortest topological
path”. Notice that the length of the shortest communicability path is the sum of the
weights (communicability distances) for the edges in that path. For an example see
Fig. 2. Here we will keep ( = 1 due to the lack of any experimental value that can
guide us for selecting a more appropriate value. Also, we should have in mind that
decreasing the values of this parameter close to zero will make the shortest commu-
nicability paths to look very similar to shortest paths, while increasing it over unity
will make these paths very long indeed. Thus, we left for a further work the analysis
of the influence of this parameter in the study of AD.

3 Dataset and image processing

The data set used consists of DWI scans and anatomical T1 scans of 88 subjects, 48
Healthy Controls (HC) and 40 Alzheimer’s Disease (AD) patients from the publicly
available ADNI database. After preprocessing the images, a tractography pipeline
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Figure 2: Illustration of the shortest communicability path (blue thick lines) and
the shortest topological path (red thick lines) between a pair of nodes in a random
geometric network. The nodes in both shortest paths are highlighted with blue
color and with sizes proportional to their degrees. The rest of the nodes are in
gray color and with a fixed size. The shortest topological path goes through nodes
averaging node degree equal to 14. The shortest communicability path goes through
nodes averaging degree 8.3. Additionally the average subgraph centrality of the
nodes in both paths are 18837.3 (shortest topological path) and 4636.6 (shortest
communicability path), respectively.
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was implemented by using the MRtrix software library. The main steps of the whole
processing, which are well-established in the literature, are shown in Fig. 3.

First, a denoising step was performed in order to enhance the signal-to-noise
ratio of the diffusion weighted MR signals in order for reducing the thermal noise
due to the stochastic thermal motion of the water molecules and their interaction
with the surrounding micro-structure [54]. Head motion and eddy current distortions
were corrected by aligning the DWI images of each subject to the average by image.
The brain extraction tool (BET) was then used for the skull-stripping of the brain
[55]. The bias-field correction was used for correcting all DWI volumes. The T1
weighted scans were preprocessed by performing the standard steps: reorientation to
the standard image MNI152, automatic cropping, bias-field correction, registration
to the linear and non-linear standard space, brain extraction. The following step was
the inter-modal registration of the diffusion weighted and T1 weighted image.

After the preprocessing and co-registration steps, the structural connectome gen-
eration was performed. First, we generated a tissue-segmented image tailored to
the anatomically constrained tractography [56]. Then, we performed an unsuper-
vised estimation of WM, gray matter and cerebro-spinal fluid. In the next step,
the fiber orientation distributions for spherical deconvolution was estimated [57].
Then a probabilistic tractography [58] was performed by using dynamic seeding [59]
and anatomically-constrained tractography [60], which improves the tractography
reconstruction by using anatomical information by means of a dynamic thresholding
strategy. We applied the spherical-deconvolution informed filtering of tractograms
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Figure 3: Main steps of the image processing pipeline. DWI and T1 weighted scans
are preprocessed and co-registered. Then, after the fiber orientation distribution esti-
mation, probabilistic tractography is performed resulting in a weighted connectivity
matrix.
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(SIFT2) methodology [59], providing more biologically meaningful estimates of the
structural connection density and a more efficient solution to the streamlines con-
nectivity quantification problem. The obtained streamlines were mapped through
a T1 parcellation scheme by using the AAL2 atlas [61], which is a revised version
of the automated anatomical atlas (AAL) including 120 regions. Finally, a robust
structural connectome construction was performed for generating the connectivity
matrices [62]. The pipeline here described has been used in recent structural connec-
tivity studies, for example [63, 64, 65, 66]. The output was a weighted connectivity
matrix for each subject. Out of these 120 nodes, 24 were removed from all networks,
in order to obtain only graphs without isolated nodes. Finally, a 96 x 96 matrix M
for each subject was obtained.

All matrices were binarized by considering only the edges with m;; > 0 and
the adjacency matrix A was obtained. The communicability distance matrix was
calculated for each binary matrix and it was multiplied by the adjacency matrix A
obtaining a weighted matrix W. A shortest path algorithm was performed on this
matrix thus obtaining a matrix whose entries represent the shortest communicability
paths between node pairs in the network. Starting from the adjacency matrix A,
the shortest path length matrix, whose entries represent the shortest paths between
node pairs, was also calculated. A group-wise statistical analysis was performed in
order to find brain region pairs with statistically significant difference between HC
and AD in shortest path length and shortest communicability path length. In order
to make the statistical analysis more robust, permutation tests were performed by
randomly assigning subjects to the two comparison groups 1,000 times. Differences
were considered significant if they did not belong to 95% of the null distribution
derived from the permutation tests (corrected p-value < 0.05). The False Discovery
Rate (FDR) was used for multiple comparison correction. The same study could also
be done by considering the weighted matrix but we follow here the more traditional
approach on binary matrix. The weighted case could be addressed in future work.

4 Statistical analysis

4.1 Sensitivity analysis

Our first task here is to analyze the sensitivity of the shortest communicability and
the shortest topological path lengths to detect significant changes in the brain con-
nectivity after Alzheimer disease. For that purpose we proceed as follow. For each
connectivity matrix we calculate both the shortest communicability path length and
the shortest topological path length matrices. In this case we use permutation tests
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as the statistical significance analysis. For instance, let us consider the nodes v;
and v;. We then calculate the length of the communicability shortest path between
these nodes for each of the healthy (g, (v;,v;) and diseased individuals Ip, (v;,v;)
and then obtain the respective average values, Iy (v;,v;) and Ip (v;,v;). Using these
values we obtain Al (v, v;) = |l (vi,v;) — Ip (vs,v;)|. Now we proceed to a random-
ization of each individual into the two classes, i.e., healthy and diseased, obtaining
1,000 subsets of random HC and 1,000 subsets of random AD. We then calculate
Alyand (Viy V) = Ut gna (Vi3 0)) = 1Dy (i 05)], where Ly, (vi,v;) and Ip,,,, (vi,v;)
are computed as before but using the random sets of healthy and diseased individ-
uals, respectively. Finally, we compare the null distribution of Al.qnq (v;,v;) with
the true value Al (v;,v;). Therefore we conclude that Al (v;,v;) is significant if it
does not belong to 95% of the null distribution, which is carried out by calculating
the p-value of the permutation test. Here we consider significant the nodes with
corrected p-value < 0.05. We use both False Discovery Rate (FDR) and Bonferroni
correction for the multiple comparisons correction. We do these calculations for the
shortest communicability path as well as for the shortest topological path.

4.2 Effects of threshold selection and normalization

Here we first consider the effects of the thresholding process on the significance of
the results obtained by using the current approach. The brain networks used in this
work, as usually in many brain network studies, are constructed by using proba-
bilistic tractography. For this reason weak connections can introduce noisy effects.
Therefore, the first thing that we need to investigate is how different thresholds to
transform these weighted matrices into binary (adjacency) matrices affect the re-
sults. The second important question is related to the comparison of networks with
very different topological characteristics to avoid the extraction of trivial facts. That
is, it is very plausible that the brain networks of AD patients differ significantly in
a few “trivial” topological aspects from those of healthy individuals. For instance,
the edge density can change dramatically between HC and AD networks. This may
produce the false impression that AD mainly produces a sparsification of the brain
network which hides important structural factors produced by the disease. To avoid
these problems we will provide a normalization of the communicability geometric
parameters used in this study as described below.

First, we will proceed to change the threshold at which the adjacency matrices
are generated. We start as usual by calculating the mean matrix for the HC subjects,
which results in a weighted matrix whose entries range from 0 to 1. Each entry repre-
sents the frequency at which the corresponding edges occur among the HC matrices.
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Figure 4: Fraction of node pairs with statistically significant different values of short-
est communicability path length (blue squares) in HC and AD compared to the num-
ber of node pairs with statistically significant different values of shortest path length
(red squares), at different threshold values for FDR (a) and Bonferroni correction

(b).

This matrix is then thresholded by varying the threshold 7 as 0 < 7 < 0.9 obtaining
a binary matrix to be used as a mask. The adjacency matrices of all subjects are then
projected onto this mask. This procedure resulted in ten sets of adjacency matrices,
one set for each threshold value. We use the same thresholding procedure described
in [30], which is also similar to the procedure used for example in [67]. In Fig. 4 we
illustrate the results of the statistical significance of the different thresholds studied
here for both FDR (a) and Bonferroni correction (b). The first shocking result is
the extremely low significance of the shortest topological paths according to both
multiple comparisons correction methods for all values of the threshold. According
to FDR for almost all values of thresholds the ratio of significant node pairs is more
than 35 times higher than that for the shortest topological paths, while according to
the most restrictive Bonferroni correction the ratio of significant node pairs is quite
dependent on the threshold value and the highest ratio of significant node pairs is
obtained for 7 between 0.5 and 0.9.

Then, for each value of the threshold we calculate the communicability distance
matrix X (F;) of subject i. We then proceed to normalize such matrix as follow. Let
us call S (P;) the shortest communicability path length matrix of the subject P;, let
m (P;) be the number of edges of subject i, and let A (P;) the adjacency matrix of
subject 7 . The average communicability distance of the edges of the network is then
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Figure 5: Illustration of a simple graph used to explain the normalized shortest
communicability path length. In red we illustrate the shortest path between the
nodes 1 and 6 and in blue the shortest communicability path between the same
nodes. The normalized communicability shortest path length for the path marked
in blue is Sy (G) ~ 1.939, while for that in red is Sy ¢ (G) ~ 2.049.

calculated for each subject:

Ez,qzl Epg (Pr) X Apq (F)

¢ (P) = 1
from which we obtain the normalized shortest communicability path length matrix
S (P;) as:

. P,
sy =321, (14)
¢(F)

For instance, for the network G in Fig. 5 the value of £ (G) ~ 2.4797, then
the normalized shortest communicability path length for the pair labeled as 1,6 is
Sl,G (G) ~ 1.939, which corresponds to the path 1 —9 — 8 — 7 — 6. In contrast, the
normalized length of the communicability path 1 —2 — 4 — 6 is 2.049, which clearly
indicates that this is a longer path in term of the communicability distance than the
path path 1 —9 -8 —7—6. Notice that 1 —2 —4 — 6 is the shortest topological path
between the nodes 1 and 6.

We then analyze the significance for the normalized communicability distance
matrices, for each threshold studied here in the two cases of the False Discovery
Rate (FDR) and the Bonferroni. In Fig. 6 (a) we illustrate the ratio of significant
node pairs vs. the threshold for FDR and in (b) the same for the Bonferroni correc-
tion. We also provide the same results for the shortest topological paths. The first
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Figure 6: Fraction of node pairs with statistically significant different values of nor-
malized shortest communicability path length (blue squares) in HC and AD com-
pared to the number of node pairs with statistically significant different values of
shortest path length (red squares), at different threshold values for FDR (a) and
Bonferroni correction (b).

interesting result is the dramatic difference between the ratios of significant node
pairs obtained from the shortest communicability paths and from the topological
ones. While for the shortest communicability paths we have very significant ratios
for both statistical parameters for certain values of the threshold, for the shortest
paths we always observe very low ratio of significant node pairs both for FDR and
Bonferroni correction. The second very interesting feature of this analysis is the
fact that for both statistical criteria the normalized shortest communicability paths
makes a great differentiation of both groups for a threshold of 7 = 0.5. Notice the
nonmonotonic behavior of both statistical criteria versus the threshold, which peak
at the before mentioned value.

Now we focus only on the results obtained after the normalization of the commu-
nicability distance matrix and for the threshold found as providing the best results.
In Fig. 7 we illustrate these results using Manhattan plots for the significance of node
pairs according to FDR (panels a and b) as well as for Bonferroni correction (panels
(c and d). Notice that the horizontal red line corresponds to the significance, i.e.,
—1n (0.05) for FDR and — In (0.05/k), where & is the number of comparisons, for Bon-
ferroni. All the points over the red line represent significant node pairs. According
to the FDR correction there are 1551 significant node pairs for the normalized com-
municability distance against 120 ones according to the shortest topological paths.
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According to the Bonferroni correction there are 399 significant node pairs for the
normalized communicability shortest paths against 71 for the topological ones. We
should remark that FDR controls the expected proportion of false positives, while
Bonferroni controls the overall probability of making at least one false discovery.
Then, because the Bonferroni correction is a more restrictive measure we will con-
sider only the 399 significant node pairs identified by this measure. Notice that even
with such restrictive criterion the shortest communicability path identifies more than
7 times the number of significant node pairs identified by the topological shortest
paths.

In closing, we observe a huge difference in the sensitivity of the communicability
shortest paths respect to the shortest topological ones to the change in the brain
connectivity produced by Alzheimer disease. In other words, while the length of the
shortest topological paths appear almost unaltered after the appearance of AD, the
length of the communicability ones is affected in almost all the pairs of brain regions.

Before closing this section we would like to remark the huge differences produced
by the normalization procedure used in the current work as a way to restrict our
analysis to those highly nontrivial structural features relevant to Alzheimer disease.
When there is no normalization in FDR case the shortest communicability path
identifies 4,524 node pairs significantly different in the two diagnostic groups, out of
the 4,560 possible total node pairs. That is, 99.21% of the node-pairs are affected.
Conversely, for the topological shortest path length only identifies 124 node pairs,
which represents only 2.72% of node-pairs affected. Without normalization we can
also study the influence of the threshold under the ratio of significant node pairs in
Bonferroni case. In this case, the best results are obtained for 7 = 0.8. Then, there
are 4,300 node pairs significantly different in the two diagnostic groups according to
the shortest communicability path, and 95 according to the shortest topological ones.
These values represent 95.61% and 2.08% node-pairs affected, respectively. These
results show the extraordinary value of the normalization criterion used in reducing
the number of significant node pairs to a handful set of highly significant ones.

5 Discovering structural patterns of Alzheimer dis-
ease

Considering this threshold value, the average shortest communicability path length
matrix was calculated for HC and for AD. Then, we have obtained the difference
between the average matrices for the HC minus that of AD (Fig 8 (a)). For the
sake of comparison we also obtained such differences for the shortest path lengths
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Figure 7: Results of the group-wise statistical analysis using FDR (a and b) and the
Bonferroni index (¢ and d) for the normalized communicability distance matrices
with threshold 7 = 0.5 (a and c) as well as for the shortest topological paths. The
node pairs above the red line have significantly different values in HC and AD.

17


https://doi.org/10.1101/2020.04.07.029249

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.07.029249; this version posted April 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

between every pair of nodes (Fig 8 (b)). We used a divergent colormap centred at
zero to represent these differences and the differences for the shortest topological
path length were set in the same scale of the differences of the normalized shortest
communicability path length. It is interesting to note how this representation allows
to visualize a different distribution of colours in the two heatmaps. In particular
if we consider the histogram of the values of one of the rows of the heatmaps (the
row corrisponding to node 35 is considered as an example), the histogram derived
from Fig 8 (a) is a bimodal distribution (Fig 8 (c)), while the one derived from Fig
8 (b) is a skewed distribution centered at zero (Fig 8 (d)). Moreover looking at
Fig 8 (a), two different behaviors of the distribution of values of a single row can
be observed. In particular for some rows the average difference, between HC and
AD, of normalized shortest communicability path length with the other nodes of the
network is mostly positive, while for other nodes it is mostly negative. Thus the
nodes seems to be clustered according to this different behavior. In order to show
how these two different groups are distributed in the brain, we have represented the
brain regions on a glass brain coloring the corresponding nodes according to the
median of the distribution of the values over row (Fig. 9). Also the dimension of
the nodes is descriptive of the median value. The cluster of nodes with the highest
median values includes Cerebellum, Vermis and Amygdala.

From these heatmaps we can observe that there are pairs of nodes for which
AD increases the shortest communicability and topological paths while for others it
decreases them. The difference between the distributions of S (HC') and S (AD), i.e.,
when P; is a healthy or Alzheimer diseased individual, respectively, is statistically
significant.

A group wise statistical analysis using permutation tests with multiple compari-
son correction (both False Discovery Rate and Bonferroni correction) was performed
in order to find which node pairs have a significantly different value of the normalized
shortest communicability path length in HC and AD. This can allow to restrict the
focus only on these node pairs, among all the possible node pairs. This procedure
was applied for all thresholds.

Let us call A;; = S (HC) — Sy (AD) the difference of the average normalized
shortest path communicability distance for the edge (i,7) in both the healthy and
the Alzheimer diseased cohorts. Let us then call At;; = St;; (HC) — St;; (AD) the
difference of the average shortest topological path length. Then, we can observe that
among the node pairs with statistically significant different values of the average
normalized shortest communicability path length, there are both node pairs with
A >0 and A < 0. Instead for the node pairs with statistically significant different
values of the average shortest topological path length it is always Ag; < 0. For
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Figure 8: (a) Heatmap of the difference between the averaged normalized shortest
communicability path length for HC and AD. (b) Heatmap of the difference between
the averaged shortest topological paths length for HC and AD, in the same scale of
(a). (c) Distribution of the values of one row (row 35 is considered as an example)
of heatmap (a). (d) Distribution of the values of one row (row 35 is considered as an
example) of heatmap (b).
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Figure 9: The glass brain shows for each node the median of the distribution of
the difference in HC and AD of the mean normalized shortest communicability path
length with all the other nodes of the network; the node colour and dimension are
descriptive of these values. The different views shows the lateral and medial sides of
each hemisphere, and the dorsal and ventral side.

example, Fig. 10 shows the histograms of A and Ag, (we generally call the difference
of an average shortest path measure) for the significant node pairs for the best
threshold value (7 = 0.5).

The values of A;; for the set of 399 node pairs with significantly different average
normalized shortest communicability path length for the best threshold (7 = 0.5)
which were selected according to the Bonferroni correction are illustrated in Figure
11.

A deeper analysis of these node pairs provide some illuminating information about
the structural influence of Alzheimer disease. Let us resume this information as
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Figure 10: Histogram of Ag, = S, (HC) — S, (AD) for the significant node pairs
for the best threshold value (7 = 0.5). Blue color refers to the difference of the
average normalized shortest path communicability distance while orange color refers
to difference of the average shortest topological path length.
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Figure 11: Glass brain visualization of the difference between the mean normalized
shortest communicability path length of the significant edges in HC and AD; the
edge colour is descriptive of these values. The different views shows the lateral and
medial sides of each hemisphere, and the dorsal and ventral side.

follow. From the 399 significant node pairs considered here:
1. 110 (27.6% of significant pairs) connect regions in the left hemisphere;
2. 41 (10.3% of significant pairs) connect regions in the right hemisphere;

3. 167 (41.8 of significant pairs) connect one region of the left with one region of
the right hemisphere;

4. 31 (7.8% of significant pairs) connect the Vermis to the right hemisphere;

5. 50 (12.5% of significant pairs) connect the Vermis to the left hemisphere.
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These results indicate that almost one half of all the pairs of nodes for which there is
a significant difference in the shortest communicability paths after Alzheimer disease
connect both brain hemispheres. This result supports the disconnection hypothesis
of this disease in which the damage produced by AD can be attributed not only to
specific cerebral dysfunctions but also to disconnection processes between different
cerebral areas [68, 69]. In particular, the disconnection between inter-hemispheric
regions have been widely discussed in the literature and reviewed by Delbeuck et al.
[70]. They compiled evidences about the hypothesis of the AD as a disconnection
syndrome from neuropathological data, the electrophysiological and neuroimaging
data as well as from neuropsychological data. Some of the earliest evidence sup-
porting this hypothesis point out to the fact that there is a disorganized functional
activity between the two hemispheres in the early stages of AD and a loss of positive
correlations between the hemispheres, which suggest a breakdown of the interhemi-
spheric functional association. Other evidences reviewed by Delbeuck et al. [70]
are a decrease of associative white matter fibers in the corpus callosum splenium of
AD patients, the existence of a modification in the functional interactions between
the hemispheres, and the existence of lower coherence between the hemispheres in
mild to moderate AD patients compared to controls, suggesting a disturbance of
the interhemispheric functional connectivity in AD. More recently, Wang et al. |71]
obtained experimental results which demonstrate that there are “specific patterns
of interhemispheric functional connectivity changes in the AD and MCI, which can
be significantly correlated with the integrity changes in the midline white matter
structures”. And Qiu et al. [72| reported homotopic inter-hemispheric functional
connectivity disruption in AD but not MCI.

Another third of these significant edges are located inside the left hemisphere.
These results parallels those supporting the hypothesis that AD evolve first, faster,
and more severely in the left hemisphere than in the right 73, 74]. As shown by
Thompson et al. [73], the spreading wave of gray matter loss were asymmetric
in both hemispheres, with the left one having significantly larger deficits and with
faster local gray matter loss rates than the right one. Their finding also correlated
with progressively declining cognitive status. Finally, we have found 81 pairs which
connect the vermis either with the right or the left hemisphere. Recently the role
of cerebellar gray matter atrophy in Alzheimer’s disease has been studied |75, 76].
Jacobs et al. [75] have found that in the early stages of AD the vermis and posterior
lobe of the cerebellum are affected, also confirming previous results by Mavroudis
et al. [76] who reported severe damage in the Purkinje cells from the vermis of the
cerebellum in 5 AD patients.
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5.1 Transmissibility and circulability of Alzheimer disease fac-
tor

As explained before, among the pairs of nodes which have significant differences
between healthy and Alzheimer diseased cohorts, there are pairs with positive as
well as with negative values of A;;. Pairs of nodes for which A;; > 0 corresponds to
brain regions which have decreased their normalized shortest communicability path
length when Alzheimer disease is present. Those for which A;; < 0 corresponds
to brain regions which have increased their normalized shortest communicability
path length. A resume of our results for the pairs that increase and decrease the
normalized shortest communicability path lengths is given below:

1. Left hemisphere: 31 pairs increased S (P;) and 79 pairs decreased it;

2. Right hemisphere: 6 pairs increased S (P;) and 35 pairs decreased it;

3. Left-Right hemispheres: 55 pairs increased S (P;) and 112 pairs decreased it;
4. Vermis-Left hemisphere: 0 pairs increased S (P;) and 31 pairs decreased it;

5. Vermis-Right hemisphere: 0 pairs increased S (P;) and 50 pairs decreased it.

These results indicate that in total 76.9% of all node pairs which display significant
change after Alzheimer disease have decreased the length of the shortest communi-
cability paths connecting them. This is a highly counterintuitive finding because it
literally means that the nodes “are closer” to each other in terms of their communi-
cability distance after the Alzheimer disease has appeared. In order to disentangle
the meaning of this finding we will consider the example provided in Fig. 5.

We will consider the removal of edges which do not disconnect the graph, which
are known as cyclic edges (in the graph in Fig. 5 all edges are cyclic). First we will
prove the following result.

Let I' be a graph and let I' — e be the same graph without the cyclic edge
e ={a,b}. Then, if G,, (I') = (e”A(F))pq we have that G, (I') > G, (I" — €), where
G, is the average among all pairs of nodes. The proof is given by the fact that
if e = {a,b} is removed, the length of all walks between a and b will increase,
and no other walk will decrease its length. Consequently, the removal of an edge
in a graph will drop both the average transmissibility .7 (I') = G, (I') and the
average circulability € (I') = G, (I') of a disease factor. However, because the
communicability distance &, is the difference between the circulability around the

nodes p and ¢, and the transmissibility between the two nodes, we have the following
situations. Let A, =& (I') =&, (T' — e), and AGpy = Gpq (I') =Gy (I' — ). Then,

rq
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Aé}fq = [(Gpp (T') = Gpp (I' =€) + (G (I') — Gyq (I' = €))] = 2[Gpg (I') — Gy (' — €)]
= A%, + A€, —2A7,,.
(15)

Consequently, when AE> < 0 we have that Gy, (I) S Gpp (I' — €) and G, (T') R
Ggq (T —e), while Gy (T') > Gy (I' — ). When, AE2, > 0 we have that G, (T') >
Gpp (I' =€) and Gy (I') > Gy (T' — €), while G,y (I') & Gy, (T' —€).

1. Aggq < 0 implies that the drop in the transmissibility of the disease factor is
bigger than the drop in the circulability around the nodes. That is, in I' — e
dominates the circulability to the transmissibility compared to I

2. Afgq > 0 implies that the drop in the circulability of the disease factor is
bigger than the drop in the transmissibility around the nodes. That is, in ['—e
dominates the transmissibility over the circulability compared to I'.

In Table 1 we report the results that illustrate the previous reasoning for the graph
in Fig. 5. First, we report the change in the average shortest path length AL after
the removal of the corresponding edges according to the node labelling in Fig. 5.
The removal of the edges {1,2}, {1,9} and {8, 9} produce significant increase of the
communicability shortest path lengths, i.e., AS? < 0. The edge removals {2,5} and
{2, 4} decrease the communicability shortest paths, i.e., _A{gq > 0. As can be seen for
those graphs in which Aﬁgq < 0 the relative drop of AG,,, averaged for all edges in
the shortest paths, is significantly bigger than that of AG,,, averaged for all nodes.
In the case when A&2 > 0, the change in AG,, is of the same order than AG,,. It
is reasonably to think that edge removal increases the time needed by the disease
factor to infect 100% of the nodes in the network. If we designate this time change
by At;,s and calculate it as the minimum time at which all the nodes are infected in
the graph using the approximate solution of the SI model (upper bound), we obtain
the results given in Table 1. As can be seen when Agf)q < 0 the increase in the
infection time is dramatic, ranging from 17 to 30%. In remarkable contrast when
Afgq > 0 the increase in ty,r is only 3.8%. In closing, when Aff,q > (0 the orifinal
network has been transformed into a more efficient one, from the perspective of the
transmission of the disease, because in I' — e the circulability around the nodes of
the disease factor is sacrified to the transmissibility to other nodes.

It is now important to analyze what are the consequences of the decrease in the
lengths of the communicability shortest paths that we have observed for Alzheimer
diseased brains.The main implication of this observation is that AD produces some
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Cedge | AL (%) | AGyp (%) | Ay (%) | Mong (%) |

(1,2} | —254 10.0 19.2 30.5
{1,9y | —232 15.7 26.5 25.7
{8,9y | —21.5 17.7 29.6 16.9
{3,5} | —0.04 14.9 15.6 38
{2,5} | +0.89 15.9 15.0 38
2,4y | +1.42 18.4 18.7 38

Table 1: Values of different structural and dynamical parameters for the graph il-
lustrated in Fig. 5 to which edges have been removed. The edges correspond to the
labelling of the nodes in the mentioned figure. AL (%) is the percentage of change
respect to the original graph in the average communicability shortest path length.
AG,, (%) and AG,, (%) are the percentage of change respect to the original graph
for the values of G, and G}, averaged for the nodes and edges in the shortest com-
municability paths. Aty (%) is the time needed by a disease factor to infect all the
nodes of the corresponding graph in an SI simulation using the approximate solution
described below with 8 = 0.005 and initial condition z; (0) = 1/9.

damage to the brain, not necessarily only edge removals, which somehow improves
the “efficiency” of the resulting networks to propagate the disease in relation to
other possible damage scenarios. If we constraint ourselves to the edge-removal
scenario and use the previous graph as an example we can conclude that AD has
removed those edges which “prioritize” the transmissibility over the circulability of
the disease factor, by affecting as least as possible the global rate of contagion in
the resulting networks. This is an inference based on the analysis of data produced
on AD patients and comparing them with HC. In no case it corresponds to a direct
observation of this effect and we call the attention of experimenters to try to falsify
this hypothesis. We should remark that in 2013, Tomasi et al. [77| found, using
MRI that “a higher degree of connectivity was associated with nonlinear increases in
metabolism”. Recent works in network neurosciences have proposed ways to navigate
the brain evoiding the “hubs” due to their high energy consumption |78, 79]. Thus,
according to our findings, AD produces damages in the connectivity of the brain
which drop more significantly the cliquishness—the degree is a first order approach
to it—over the transmissibility. Thus, it is also plaussible that propagating the AD
through the different regions of an already-damaged brain is less energetic than in
the non-damaged one. All-in-all, the damages produced by initial stages of AD seems
to improve the capacity of the disease factor to propagate through the network than
in the undamaged one.
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6 Conclusions

There are two main conclusions in the current work. From a theoretical perspective
for network neurosciences we have shown that the communicability function—widely
used in this field—can be mathematically connected to the solution of a Susceptible-
Infected model of disease factor propagation in a brain network. In particular, we
have shown that the communicability distance accounts for the difference between the
circulability of this disease factor around a brain region (node) and its transmissibility
to another region of the brain.

From an application point of view we have provided solid evidences that the short-
est communicability path length is significantly better than the shortest topological
path length in distinguishing Alzheimer diseased patients from healthy individuals.
We have identified a set of 399 pairs of regions for which there are very significant
changes in the shortest communicability path length after Alzheimer disease ap-
pears, 42% of which interconnect both brain hemispheres and 28% connect regions
inside the left hemisphere only. These findings clearly agree with the disconnection
syndrome hypothesis of Alzheimer disease. We have also identified 20% of affected
regions which connect the vermis with any of the two brain hemispheres. The most
significant result is that in 76.9% of these pairs of damaged brain regions there is
an increase in the average cliquishness of the intermediate regions which connect
them. This results implies that there is a significant increase in energy consumption
for communication between these regions in Alzheimer patients in comparison with
healthy individuals.

In closing we hope that the current work helps to shed light into important
mechanistic aspects of Alzheimer disease as well as in a better understanding of the
use of communicability functions for network neuroscience studies.
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