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Context: The trend to delay pregnancy in the United States has resulted in the number of 27 

advanced maternal age (AMA) pregnancies to also increase. In humans, AMA is associ-28 

ated with a variety of pregnancy-related pathologies such as preeclampsia (PE). While 29 

AMA is known to be a factor which contributes to the development of pregnancy-induced 30 

diseases, the molecular and cellular mechanisms giving rise to this phenomenon are still 31 

very limited. This is due in part to lack of a pre-clinical model which has physiologic rele-32 

vance to human pregnancy while also allowing control of environmental and genetic var-33 

iability inherent in human studies.  34 

 35 

Objective: To determine potential physiologic relevance of the vervet/African green mon-36 

key (Chlorocebus aethiops sabaeus) as a pre-clinical model to study the effects of AMA 37 

on adaptations to pregnancy. 38 

 39 

Design: Thirteen age-diverse pregnant vervet monkeys (3-16 y.o.) were utilized to meas-40 

ure third trimester blood pressure (BP), complete blood count, iron measurements and 41 

hormone levels.  42 

 43 

Results: Significant associations were observed between third trimester diastolic BP and 44 

maternal age. Furthermore, the presence of leukocytosis with enhanced circulating neu-45 

trophils was observed in AMA mothers compared to younger mothers. Moreover, we ob-46 

served a negative relationship between maternal age and estradiol, progesterone and 47 

cortisol levels. Finally, offspring born to AMA mothers displayed a postnatal growth retar-48 

dation phenotype.  49 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2020. ; https://doi.org/10.1101/2020.04.06.027771doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.06.027771
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

3 

 50 

Conclusions: These studies demonstrate physiologic impairment in the adaptation to 51 

pregnancy in AMA vervet/African green monkeys.  Our data indicate the vervet/African 52 

green monkey may serve as a useful pre-clinical model and tool for deciphering patho-53 

logical mediators of maternal disease in AMA pregnancy. 54 

 55 

 56 
 57 

 58 

 59 

 60 

 61 
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 70 

 71 

Introduction: 72 
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Health quality and outcomes for pregnant mothers in the United States are not 73 

improving, even with the advancement of modern medicine. In fact, US pregnancy-related 74 

maternal mortalities rose 26.6%  between 2000 and 20141. Moreover, while the US infant 75 

mortality rate is not increasing, it is significantly higher than that of other developed coun-76 

tries2. This data highlights a pressing need to understand maternal adaptations to preg-77 

nancy in an effort to improve health outcomes for both the mother and child.  78 

Over the last several decades, women and their partners more frequently choose 79 

to delay childbirth. The reasons for this change are multi-factorial, but include educational 80 

pursuit, access to reliable contraception, and economic uncertainty3. While the overall 81 

national fertility rate has steadily declined to the lowest numbers recorded in 32 years, 82 

the rate of advanced maternal age (AMA) pregnancies, defined as 35 years and older, 83 

has risen dramatically4. From 2000 to 2014, birth rates for women under 20 declined 42% 84 

while the number of women having their first child at age 35 or older rose 23%5. The 85 

emerging trend of AMA pregnancies is paramount to understand as AMA has been as-86 

sociated with increased risk of several adverse maternal and fetal outcomes6-9. For ex-87 

ample, AMA is associated with increased risk of gestational diabetes mellitus, placenta 88 

previa, and postpartum hemorrhage7. In addition, several adverse cardiovascular phe-89 

nomena have been associated with AMA, including higher risk of developing hypertension 90 

and arrhythmias during pregnancy10. These conditions are clinically significant consider-91 

ing that 26% of pregnancy-related deaths between 2006 and 2013 had cardiovascular 92 

etiologies10, 11. Hypertension during pregnancy can also be used to predict future changes 93 

for both mother and fetus; women diagnosed with pregnancy-related hypertension expe-94 
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rience a 2-8 fold increase in risk for future hypertension,12-17while babies born to hyper-95 

tensive mothers are more likely to develop cardiovascular disease themselves18-21. These 96 

human data reinforce the need to understand the biological underpinnings of AMA in an 97 

effort to improve health outcomes for both mother and child.  98 

 Despite the known connection between AMA and pregnancy-related diseases, a 99 

gap in knowledge still exists in the pathogenic drivers of this phenomenon in humans. 100 

This can somewhat be explained by lack of control over environmental conditions in hu-101 

man studies, along with genetic heterogeneity in human populations. Furthermore, rodent 102 

models can lack physiological relevance to reproductive biology in humans. Therefore, a 103 

preclinical model with physiological relevance to human pregnancy as well as the ability 104 

to control environmental settings is needed to better define underlying mechanisms.    105 

 Previous non-human primate (NHP) models have noted similarities between hu-106 

mans and NHPs in hormone physiology during pregnancy and in reproductive biology, 107 

which demonstrates their potential as appropriate human pregnancy models7. To address 108 

this pre-clinical need, we posit and describe herein the use of the vervet/African green 109 

monkey (Chlorocebus aethiops sabaeus) to model the effects of AMA on maternal adap-110 

tation to pregnancy. We demonstrate this model as a pre-clinical platform to garner mech-111 

anistic insight, in a tightly controlled environmental setting, into the effects of AMA on 112 

pregnancy-induced pathologies, with strong potential for human translational relevance.  113 

Our findings demonstrate dysregulated hormonal, cardiovascular, and immunological re-114 

sponses to pregnancy in AMA vervets, all modeling known maladaptive responses to 115 

pregnancy in humans. Collectively, our results show that vervets are a clinically relevant 116 
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model to study the effects of AMA in both maternal and fetal aspects and allow us to 117 

compensate for the shortcomings of existing human and animal studies. 118 

 119 

 120 
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Materials and Methods: 140 

Cohort Selection  141 

A cohort of 13 vervet/African green monkeys (Chlorocebus aethiops sabaeus) was se-142 

lected from the Vervet Research Colony at Wake Forest University School of Medicine. 143 

All animals were colony-born, mother-reared, of known-age and were housed in species-144 

typical, matrilineal social groups. Pregnancy status and estimated gestational age was 145 

determined via ultrasound as previously described22. Modal age of first birth is 4 years 146 

old in this colony. Monkeys 3-9 years old were considered optimal maternal age, while 147 

monkeys 10 and older were considered to be AMA. In addition, the cohort included pri-148 

miparous (n=6) and multiparous (n=7) mothers. None of the selected animals exhibited 149 

any other comorbidities such as diabetes or heart disease. Other elimination criteria for 150 

this study included active participation in other studies. All studies were conducted under 151 

the approval of the Institutional Animal Care and Use Committee (IACUC) at Wake Forest 152 

School of Medicine. 153 

 154 

Diet  155 

All animals were maintained on a standard chow diet (Monkey Diet Jumbo 5037, LabDiet, 156 

St. Louis, MO). Animals were fed ad libitum except for fasting on the day of sedated pro-157 

cedures. 158 

 159 

Sedation Protocol 160 
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Animals were sedated via intramuscular injections of ketamine (10mg/kg) and midazolam 161 

(0.1mg/kg). When necessary, a booster dose (50% of induction dose) was administered 162 

to maintain sedation.  163 

 164 

Blood pressure  165 

Systolic and diastolic blood pressure (BP) were measured via high definition oscillometry 166 

(S+B medVET, Babenhausen, Germany) as previously desribed23, 24.  Three high quality 167 

measurements were recorded and then averaged to ensure accuracy.  168 

 169 

Complete Blood Counts  170 

Blood was collected via femoral venipuncture into EDTA vacutainers (BD Biosciences; 171 

Warwick, RI) approximately two weeks prior to parturition and again 2-5 days postpartum; 172 

500 µL of whole blood were isolated and sent to IDEXX laboratories (Westrbrook, ME) 173 

for analysis including a complete blood count (CBC). The remaining blood was centri-174 

fuged, and the resulting plasma was collected and stored at -80°C for further analysis.  175 

 176 

Ultrasound  177 

Under sedation, ultrasound (Sonosite M-Turbo; Bothell, WA) was used to measure the 178 

biparietal diameter of the fetus in utero as previously described22. Three measurements 179 

were recorded to calculate an average diameter to ensure accuracy.  180 

 181 

Iron Assays 182 
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Plasma was analyzed with the BioVision (Milpitas, CA) Total Iron-Binding Capacity (TIBC) 183 

and Serum Iron Assay Kit (Colorimetric) according to manufacturer’s instructions. Analy-184 

sis determined the unbound iron, TIBC + unbound iron, free iron and free iron + transferrin 185 

bound iron. These values were used to calculate the TIBC, plasma iron and percent trans-186 

ferrin saturation.  187 

 188 

Hormone Measurements 189 

Plasma was used to determine hormone levels via commercially available enzyme-linked 190 

immunosorbent assays for estradiol using the Estradiol Parameter Assay Kit (R&D Sys-191 

tems; Minneapolis, MN, USA) according to manufacturer’s instructions. Progesterone 192 

was measured with the Progesterone Human ELISA kit per manufacturer’s protocol (IBL-193 

International; Hamburg, Germany). Finally, cortisol levels were detected utilizing a com-194 

mercially available kit following manufacturer’s instructions (R&D Systems).   195 

 196 

Statistical Analysis 197 

When comparing two groups an unpaired student’s T-test was used to determine signifi-198 

cance. Associations were determined with linear regression analysis. Significance was 199 

determined if p<0.05.  200 

 201 

 202 

 203 

 204 

 205 
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Results: 206 

Maternal Age and Blood Pressure  207 

Given the increased risk for the development of preeclampsia with AMA in humans25, 26, 208 

we measured BP near the end of the third trimester (approximately two weeks before 209 

parturition) in a cohort of age diverse vervets (n=13). Comparing systolic BP with maternal 210 

age revealed no significant relationship (R2=0.113; p=0.2614) (Fig. 1A). On the other 211 

hand, maternal age had a significant positive association with diastolic BP (R2=0.3212; 212 

p=0.0434) (Fig. 1B).  In women, the incidence of preeclampsia decreases substantially in 213 

mothers from their first child to their second child25, 27, 28. Therefore, we wanted to deter-214 

mine if multiparity might mask the presence of clinical preeclampsia in our AMA cohort. 215 

There was a significant positive association between maternal age and number of off-216 

spring (R2=0.9295; p<0.0001) (Supplemental Figure 1). Given the strong association be-217 

tween maternal age and number of offspring we wanted to determine if the protective 218 

effects of previous pregnancies are equivalent in young and AMA vervets. This revealed 219 

a trend for lower systolic and diastolic BP in young mothers with increasing number of 220 

pregnancies (p=0.0554 & p=0.3237 respectively) (Fig. 1C&D). Strikingly, we found in 221 

AMA a significant and strong relationship between number of offspring and both diastolic 222 

and systolic BP (p=0.0404 & p=0.0014 respectively) (Fig. 1C&D).  223 

 224 

Leukocytosis in AMA Mothers 225 

Activation of the maternal immune system is a well appreciated contributor to the devel-226 

opment of preeclampsia29-31. Given the association between maternal age and increasing 227 

diastolic BP we sought to determine if maternal age altered third trimester immune cell 228 
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composition. Complete blood cell counts indicated a significant positive relationship be-229 

tween circulating white blood cell (WBC) number and maternal age (Fig. 2A). Stratifying 230 

monkeys between young and AMA revealed significantly higher circulating WBCs in AMA 231 

mothers compared to their younger counterparts (Fig. 2B). Our initial screen to determine 232 

the cellular components contributing to leukocytosis in AMA mothers revealed no signifi-233 

cant alterations in total circulating lymphocyte counts (R2=0.02977; p=0.5730) (Supple-234 

mental Figure 2).  235 

 236 

Stress Leukogram in AMA Mothers 237 

Growing evidence indicates a role for adaptive immune cell activation in the context of 238 

preeclampsia32. We therefore assessed circulating components of the adaptive immune 239 

system including monocytes, basophils, neutrophils and eosinophils. While no alterations 240 

were observed in total monocyte (R2=0.02997; p=0.6211) and basophil numbers 241 

(R2=0.01578; p=0.6826) in the circulation related to maternal age (Fig. 3A&B), we ob-242 

served trends for increased neutrophils with AMA (R2=0.2835; p=0.061) (Fig. 3C) and a 243 

significant negative association between maternal age and eosinophil numbers 244 

(R2=0.4016; p=0.02) (Fig. 3D). The presence of neutrophilia and eosinopenia is charac-245 

teristic of a stress leukogram response33.  246 

 247 

Maternal Body Weight and AMA 248 

To gain insight into mechanisms underlying altered immune and cardiovascular re-249 

sponses we assessed maternal body weight as a risk factor. We observed no significant 250 

association between maternal age and maternal pre-pregnancy body weight (Fig. 4).  251 
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 252 

AMA does not elicit Anemia 253 

We next determined if AMA promotes the development of gestational anemia. We evalu-254 

ated several parameters associated with anemia in our cohort including red blood cell 255 

count, hematocrit and hemoglobin levels. AMA did not alter any biomarker associated 256 

with anemia (Fig. 5A-5C). Furthermore, normal serum iron levels (Fig. 5D), total iron bind-257 

ing capacity (Fig. 5E) and % transferrin saturation (Fig. 5F) confirmed the absence of 258 

altered iron homeostasis in older mothers.  259 

 260 

Altered Hormonal Responses in AMA Mothers 261 

AMA is associated with low peak gestational estradiol levels34-36 and estrogen deficiency 262 

has been shown to promote diastolic dysfunction37. Therefore, we measured third tri-263 

mester estradiol levels in our cohort of young and AMA vervets. Enzyme-linked immuno-264 

sorbent assay (ELISA) revealed AMA mothers had significantly lower third trimester es-265 

tradiol levels (~60% reduction; R2=0.4462; p=0.0176) (Fig. 6A). Further, we found a trend 266 

for a negative association between maternal age and circulating third trimester proges-267 

terone levels (R2=0.2765; p=0.0791) (Fig. 6B). Finally, given the presence of a stress 268 

leukogram signature in our AMA mothers, we also measured cortisol levels, revealing a 269 

significant negative relationship (R2=0.5832; p=0.0038)) between maternal age and third 270 

trimester cortisol levels (Fig. 6C). 271 

   272 

Postnatal Growth Retardation in Offspring from AMA Mothers 273 
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We measured fetal biparietal diameter approximately two weeks prior to delivery via ul-274 

trasound. No appreciable differences were observed in fetal biparietal diameter within our 275 

cohort (Fig. 7A). Accordingly, we also did not observe significant differences in infant body 276 

weights between young and AMA age mothers at birth (Fig. 7B). However, following ar-277 

chival growth trajectories over approximately the first year of life in a separate cohort of 278 

animals (n=28 young and n=14 aged) revealed significant growth retardation in infants 279 

born to AMA mothers (Fig. 7B).  280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 
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Discussion 297 

 AMA in humans is an established risk factor for the development of an array of 298 

pregnancy-induced pathologies6, 8, 26, 38, 39. While the relationship between maternal age 299 

and the incidence of pregnancy-related pathologies exists, pre-clinical models with similar 300 

reproductive physiology to that of humans are severely lacking.  The current study clearly 301 

shows that AMA is associated with disruptions in physiological adaptations to pregnancy 302 

in vervet/African green monkeys. In particular, we found the cardiovascular system, im-303 

mune system and endocrine system all display deficits in responses to pregnancy, sug-304 

gesting the presence of maternal pathologies in older vervet monkeys. Additionally, first 305 

year growth trajectories were impaired in infants born to AMA mothers. These data col-306 

lectively indicate the vervet monkey as a physiologically relevant pre-clinical model to 307 

study the effects of AMA on both maternal and offspring outcomes.   308 

 Human studies have revealed a selective increase in third trimester diastolic blood 309 

pressure and a decrease in systolic BP with increased maternal age40. Consistent with 310 

these findings, we observed maternal age to be significantly positively associated with 311 

diastolic BP in our vervet model. Contrary to the human studies however, we observed 312 

no relationship between age and third trimester systolic BP. These findings indicate that 313 

the vervet monkey recapitulates some, but not all aspects of altered BP regulation during 314 

pregnancy in older mothers. Gaillard et al. indicated that a woman’s maternal age per se 315 

was not consistently correlated with gestational hypertension, and that maternal body 316 

mass index might influence alterations in BP regulation during pregnancy38. In fact, ma-317 

ternal obesity has been shown to interact with maternal age to promote a variety of other 318 

pregnancy-induced pathologies38. We observed no association between maternal body 319 
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weight and maternal age (Figure 4), which may explain differences observed between 320 

our study in vervet monkeys and human studies in the regulation of third trimester systolic 321 

BP.  322 

 Beyond elevated BP, a significant immunological component to preeclampsia ex-323 

ists30-32, 41-43. While leukocytosis occurs during normal pregnancy44, exaggerated leuko-324 

cytosis occurs in preeclamptic patients45. Our observation in the vervet monkey that AMA 325 

mothers have significantly elevated white blood cell counts coupled to the presence of 326 

diastolic hypertension are consistent with hallmarks of human preeclampsia. Intriguingly, 327 

leukocytosis present in humans with preeclampsia is due to an increase in circulating 328 

neutrophils counts45. Similar to our other data supporting physiological relevance of ver-329 

vet monkeys to humans for studying the effects of AMA, the older mothers exhibited a 330 

higher degree of neutrophilia present in their third trimester compared to young mothers, 331 

potentially exacerbating a state of mild preeclampsia.  332 

 We did observe a significant positive association in our cohort between maternal 333 

age and parity. The elevated parity in our AMA could actually be providing a protective 334 

mechanism against the development of more severe preeclampsia, as this disease is 335 

more prevalent amongst primiparous mothers25, 27, 28. We observed an uncoupling of num-336 

ber of previous offspring and blood pressures between young and AMA mothers. Our 337 

data suggest that previous pregnancies are associated with lowered blood pressures in 338 

younger mothers; however, in AMA mothers the number of pregnancies was positively 339 

associated with both diastolic and systolic BP. These data suggest that either AMA dis-340 

rupts the protective mechanisms afforded by previous pregnancies, or, that after a certain 341 

threshold of previous pregnancies the protective mechanism of parity is lost. Parity has 342 
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also been associated with immunological tolerance to certain infections during pregnancy 343 

such as malaria46-48 and multiparity has been demonstrated to confer immunotolerance 344 

in rodent models of stroke49, indicating a protective role to maternal health in multiparous 345 

mothers. While not tested in the current study, further investigation into AMA primiparous 346 

third trimester physiology is warranted to determine if multiparity is protective against the 347 

development of clinical preeclampsia.  348 

 Another known risk factor for the development of preeclampsia in humans is the 349 

presence of pregnancy-induced anemia50-52. Furthermore, maternal age and parity have 350 

been shown to be associated with the presence of anemia in humans53, 54. However, we 351 

did not observe such associations between anemia and maternal age and multiparity in 352 

our study. One explanation for the lack of association between maternal age and anemia 353 

in our study is due to diet; while maternal age is associated with the development of ane-354 

mia in humans, this is largely due to insufficient iron intake during pregnancy55-57. Our 355 

vervet diet has high levels of iron (230 ppm), which could potentially compensate for AMA 356 

as a risk factor.  357 

Estradiol is a well-known cardioprotective hormone. In the non-pregnant state, low 358 

estradiol levels, such as those observed during menopause, promote the development of 359 

cardiovascular disease58, 59. Specifically, postmenopausal women are the primary clinical 360 

population diagnosed with heart failure with preserved ejection fraction (HfpEF)60-62. The 361 

cardioprotective effects of estradiol in preventing HfpEF in estrogen deficient females has 362 

been extended to nonhuman primates such as cynomolgus macaques37. In the pregnant 363 

state, low estrogen levels have been associated with preeclampsia in humans63-67. We 364 
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found AMA is associated with third trimester estrogen deficiency in vervet monkeys, con-365 

sistent with human data indicating maternal age is negatively correlated with low peak 366 

estradiol levels 34-36. At the molecular level, estrogens have been shown to antagonize 367 

the effect of stress hormones68-71. We have demonstrated previously that the antagonistic 368 

nature of estrogen on stress hormones is essential for appropriate adaptations to preg-369 

nancy and proper fetal development in rodents68. Our data indicate AMA disrupts the 370 

cortisol/estradiol axis through impaired estradiol production. Furthermore, the presence 371 

of a stress leukogram in AMA vervets is suggestive of aberrant stress hormone signaling 372 

in aged pregnant vervets33.   373 

Maternal stress in humans, like AMA, underlies long-term predisposition of off-374 

spring to disease into adulthood. This concept is known as the developmental origin of 375 

disease72.  A commonality between maternal stress and AMA is they are both risk factors 376 

for the development of intrauterine growth restriction in humans and small gestational age 377 

infants6, 8, 38, 39, 73, 74. Our ultrasound data of fetal biparietal diameter revealed no associ-378 

ation between maternal age and head size. Furthermore, infant weight at four days post-379 

delivery was comparable between young and AMA mothers. In humans, one driver of the 380 

small gestational phenotype is pre-term delivery75-78. This may be a possible explanation 381 

for why we did not observe low birth weights in vervets, since AMA did not elicit pre-term 382 

delivery in our cohort. Beyond low birth weights, prenatal maternal stress in humans dra-383 

matically alters postnatal growth rates of offspring. Intriguingly, the offspring growth rate 384 

phenotype is dictated by timing of maternal stress, with early stress typically leading to 385 

increased growth rates and late stress promoting decreased growth rates in offspring 386 

across 21 different mammalian species79. Our results of normal infant weight but blunted 387 
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postnatal growth is suggestive that AMA in vervets corroborates human data resultant of 388 

a maternal stress response late during gestation. An additional factor within the paradigm 389 

of maternal stress is maternal investment during lactation79. We did not cross foster or 390 

perform behavioral analyses in our young and AMA vervets post-delivery, therefore we 391 

cannot determine if AMA alters maternal investment during the nursing period. 392 

 Human studies limit the ability to establish disease causality. Rodent studies on 393 

the other hand allow for experimental manipulation to test mechanisms underlying dis-394 

ease, but their reproductive physiology is dramatically different than that of humans. Uti-395 

lizing an experimental model with direct physiological relevance would allow circumven-396 

tion of these hurdles. Establishing the vervet monkey as a physiologically relevant pre-397 

clinical model allows for the ability to tightly regulate environmental conditions and to col-398 

lect longitudinal measurements, tissues and cells currently not feasible in human studies. 399 

This model will allow for the mechanistic dissection of how maternal age promotes preg-400 

nancy-induced pathologies with high likelihood for clinical translation and the ability to 401 

impact human health.  402 

 One primary strength of our study is the establishment of a pre-clinical model with 403 

reproductive physiologic relevance to humans for studying the effects of aging on mater-404 

nal health outcomes. Furthermore, the utilization of clinically relevant assays to charac-405 

terize the impact of maternal age on adaptations to pregnancy is another primary strength 406 

of our study. One weakness with our study is that we focused only on third trimester 407 

physiology. It is of the utmost importance to further delineate the effects of AMA during 408 

gestation. Moreover, our studies are observational and descriptive in nature. Future stud-409 

ies assessing the effects of estrogen supplementation in AMA vervets on amelioration of 410 
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cardiac and immunological responses to pregnancy are much needed. Finally, the study 411 

may not be powered for certain comparisons, leading to a Type II error such as maternal 412 

body weight and anemia related factors.  413 

 Our data demonstrate that AMA in vervets summarizes several maladaptive re-414 

sponses observed in humans, particularly dysregulation of hormonal, cardiovascular and 415 

immunological responses to pregnancy, and establishes this model for further elucidation 416 

of the mechanisms involved in the stress responses involved in maternal adaptation to 417 

pregnancy and postnatal growth retardation in humans.  418 

 419 
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Figure Legends: 679 

Figure 1: Maternal age is positively associated with third trimester diastolic but not 680 

systolic BP. (A) Linear regression analysis between third trimester systolic BP and ma-681 

ternal age in vervet monkeys. R2=0.1148; p=0.2575. (B) Linear regression analysis be-682 

tween third trimester diastolic BP and maternal age in vervet monkeys. R2=0.3229; 683 

p=0.0428. (C) Linear regression analysis between systolic BP and # of offspring in young 684 

(black dots) versus AMA mothers (grey dots). (D) Linear regression analysis between 685 

diastolic BP and # of offspring in young (black dots) versus AMA mothers (grey dots).    686 

N=13 monkeys, 9 young mothers and 4 AMA mothers.  687 

 688 

Figure 2: Advanced maternal age promotes third trimester leukocytosis. (A) Linear 689 

regression of total circulating white blood cell count and maternal age. R2=0.4085; 690 

p=0.0187. N=13 monkeys. (B) Third trimester white blood cell count in young (under 10 691 

years of age) and advanced maternal age vervets. N=9 young mothers and 4 advanced 692 

maternal age mothers. p=0.038. 693 

 694 

Figure3: Advanced maternal age is associated with neutrophilia and eosinopenia. 695 

(A) Linear regression between total circulating monocyte count and maternal age. 696 

R2=0.02297; p=0.6211. (B) Linear regression between total circulating basophil count and 697 

maternal age. R2=0.01578; p=0.6826. (C) Linear regression between total circulating neu-698 

trophil count and maternal age. R2=0.2835; p=0.061. (D) Linear regression between total 699 

circulating eosinophil count and maternal age. R2=0.4016; p=0.02. N=13 monkeys. 700 

 701 
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Figure 4: Maternal parity but not body weight is associated with age. (A) Linear re-702 

gression between maternal body weight and maternal age. R2=0.05163; p=0.4553. N=13 703 

monkeys. 704 

 705 

Figure 5: Advanced maternal age does not promote anemia. (A) Linear regression 706 

between total circulating red blood cell count and maternal age. R2=0.1033; p=0.2843. 707 

(B) Linear regression between maternal hematocrit and maternal age. R2=0.09349; 708 

p=0.3097. (C) Linear regression between maternal hemoglobin and maternal age. 709 

R2=0.05393; p=0.4452 (D) Linear regression between maternal serum iron level and ma-710 

ternal age. R2=0.02; p=0.6610. (E) Linear regression between total iron binding capacity 711 

and maternal age. R2=0.000191; p=0.9892. (F) Linear regression between % transferrin 712 

saturation and maternal age. R2=0.1612; p=0.1958. N=13 monkeys. 713 

  714 

Figure 6: Advanced maternal age disrupts hormonal responses to pregnancy. (A) 715 

Linear regression between estradiol and maternal age. (B) Linear regression between 716 

progesterone and maternal age. (C) Linear regression between cortisol and maternal age. 717 

N=13 monkeys. 718 

 719 

Figure 7: Offspring from advanced maternal age vervets present postnatal growth 720 

retardation. (A) Linear regression between fetal biparietal diameter and maternal age. 721 

R2=0.03142; p=0.05624. N=13 monkeys. (B) Archival growth rates of offspring from a 722 

separate cohort of young and advanced maternal age mothers in an expanded cohort of 723 

Vervet monkeys. n=28 young and n=14 aged. * denotes p<0.05. 724 
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 725 

Supplemental Figure 1: Significant association between maternal age and number 726 

of offspring in studied cohort. Linear regression between parity and maternal age. 727 

R2=0.935; p<0.0001. N=13 monkeys. 728 

 729 

Supplemental Figure 2: Maternal age does not alter circulating lymphocyte counts. 730 

Linear regression between total lymphocyte count and maternal age. R2=0.02977; 731 

p=0.5730. N=13 monkeys.  732 

 733 

 734 
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