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ABSTRACT 32 
Alzheimer’s disease (AD) is characterized by the selective vulnerability of specific neuronal 33 
populations, the molecular signatures of which are largely unknown. To identify and characterize 34 
selectively vulnerable neuronal populations, we used single-nucleus RNA sequencing to profile 35 
the caudal entorhinal cortex and the superior frontal gyrus – brain regions where neurofibrillary 36 
inclusions and neuronal loss occur early and late in AD, respectively – from postmortem brains 37 
spanning the progression of AD-type tau neurofibrillary pathology. We identified RORB as a 38 
marker of selectively vulnerable excitatory neurons in the entorhinal cortex, and subsequently 39 
validated their depletion and selective susceptibility to neurofibrillary inclusions during disease 40 
progression using quantitative neuropathological methods. We also discovered an astrocyte 41 
subpopulation, likely representing reactive astrocytes, characterized by decreased expression of 42 
genes involved in homeostatic functions. Our characterization of selectively vulnerable neurons 43 
in AD paves the way for future mechanistic studies of selective vulnerability and potential 44 
therapeutic strategies for enhancing neuronal resilience.  45 
 46 
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MAIN TEXT 47 
 48 
Selective vulnerability is a fundamental feature of neurodegenerative diseases, in which different 49 
neuronal populations show a gradient of susceptibility to degeneration1, 2. Selective vulnerability 50 
at the network level has been extensively explored in Alzheimer’s disease (AD)3-5, currently the 51 
leading cause of dementia and lacking in effective therapies. However, little is known about the 52 
mechanisms underlying selective vulnerability at the cellular level in AD, which could provide 53 
insight into disease mechanisms and lead to therapeutic strategies.  54 
 55 
The entorhinal cortex (EC), an allocortex, is one of the first cortical brain regions to exhibit 56 
neuronal loss in AD6.  Neurons in the external EC layers, especially in layer II, accumulate tau-57 
positive neurofibrillary inclusions and die early in the course of AD7-12. However, these 58 
selectively vulnerable neurons have yet to be characterized extensively at the molecular level. 59 
Furthermore, it is unknown whether there are differences in vulnerability among subpopulations 60 
of these neurons. Although rodent models of AD have offered important insights13-15, the 61 
available models fail to capture some critical disease processes simultaneously, such as the 62 
accumulation of neurofibrillary inclusions and neuronal loss16, limiting the extrapolation of 63 
findings from rodent models to address selective vulnerability. 64 
 65 
Previous studies have combined laser capture microdissection with microarray analysis of gene 66 
expression17, 18 to characterize EC neurons in AD, but focused on disease-related changes in gene 67 
expression, rather than selective vulnerability. More recently, single-nucleus RNA-sequencing 68 
(snRNA-seq) has enabled large-scale characterization of transcriptomic profiles of individual 69 
cells from post-mortem human brain tissue19, 20. However, snRNA-seq studies of AD published 70 
to date have focused on cell-type specific differential gene expression between AD cases and 71 
healthy controls21, 22, without explicitly addressing selective vulnerability. 72 
 73 
Here, we performed snRNA-seq on post-mortem brain tissue from a cohort of cases spanning the 74 
progression of AD-type tau neurofibrillary pathology to characterize changes in the relative 75 
abundance of cell types and cell type subpopulations. Importantly, we discovered a selectively 76 
vulnerable subpopulation of excitatory neurons in the entorhinal cortex and validated the 77 
selective depletion of this subpopulation during AD progression with quantitative 78 
histopathology, using multiplex immunofluorescence in EC regions delineated by rigorous 79 
cytoarchitectonic criteria. In addition, we examined subpopulations of inhibitory neurons, which 80 
did not show differences in vulnerability, and also subpopulations of microglia, 81 
oligodendrocytes, and astrocytes. We uncovered an astrocyte subpopulation likely corresponding 82 
to reactive astrocytes that showed downregulation of genes involved in homeostatic function.  83 
 84 
                                                                                                                                85 
RESULTS  86 
 87 
Cohort selection and cross-sample alignment 88 
 89 
We performed snRNA-seq on cell nuclei extracted from postmortem brain tissue (see Methods) 90 
from the entorhinal cortex (EC) at the level of the mid-uncus and from the superior frontal gyrus 91 
(SFG) at the level of the anterior commissure (Brodmann area 8), from 10 male APOE ε3/ε3 92 
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individuals representing the cortical-free, early and late stages of AD-type tau neurofibrillary 93 
pathology (Braak stages3 0, 2 and 6; Fig. 1a, Table 1). 94 
 95 
The neuropathological hallmarks of AD are amyloid plaques, which are measured by the 96 
CERAD scores23 and Thal phases24, and neurofibrillary inclusions consisting of 97 
hyperphosphorylated tau protein (phospho-tau) aggregates, which are measured by the Braak 98 
staging system3. The Braak staging system is based on the stereotypical topographical 99 
progression of neurofibrillary inclusions to different brain regions. Neurofibrillary inclusions are 100 
first found in specific subcortical structures in the brainstem (Braak stages a-c, also hereon 101 
referred to collectively as Braak stage 0). Subsequently, the transentorhinal and entorhinal 102 
cortices, followed by the hippocampal formation, are the first areas of the cerebral cortex to 103 
accumulate tau pathology (Braak stages 1-2). The limbic areas and temporal neocortex then 104 
follow (Braak stages 3-4), and finally, other neocortical association areas (such as the SFG) and 105 
primary neocortical areas are involved (Braak stages 5-6)3, 25. Since the accumulation of 106 
neurofibrillary inclusions is the best correlate of clinical cognitive decline, after neuronal loss26, 107 
we reasoned that profiling matched EC and SFG samples across different Braak stages would 108 
allow us to isolate the effect of disease progression on cell types and cell type subpopulations. 109 
 110 
A challenge in characterizing the impact of disease progression on different cell type 111 
subpopulations is that these subpopulations need to be defined in a way that is independent from 112 
the effect of disease progression. Typically, cell type subpopulations are defined by sub-grouping 113 
cells of the same cell type through cluster analysis (i.e. clustering), followed by examination of 114 
marker gene expression in the resulting clusters. To remove the effect of disease progression on 115 
clustering, we performed, prior to clustering, cross-sample alignment27-29 of the data from each 116 
brain region using scAlign (see Methods), which learns a low-dimensional manifold (i.e. the 117 
alignment space) in which cells tend to cluster in a manner consistent with their biological 118 
function independent of technical and experimental factors29. Importantly, after identifying 119 
clusters in the alignment space, we used the original data for subsequent analyses involving 120 
examination of gene expression, such as identifying differentially expressed genes between 121 
clusters.  122 
 123 
 124 
Changes in broad cell type composition with neuropathological AD progression 125 
 126 
After quality control (see Methods), we recovered 42,528 cells from the EC and 63,608 cells 127 
from the SFG. Examination of the average number of genes and unique molecular identifiers 128 
(UMIs) detected per cell showed similar or superior transcript coverage compared to previously 129 
published AD snRNA-seq datasets21, 22 (Extended Data Fig. 1a,b).  130 
 131 
After cross-sample alignment, we performed clustering and recovered 13 clusters in the EC and 132 
18 clusters in the SFG. In both brain regions, clusters demonstrated spatial grouping in t-133 
stochastic neighborhood embedding (tSNE) that was largely uncorrelated with the individual of 134 
origin (Fig. 1b,c). Furthermore, clusters showed specific expression of cell type markers and 135 
grouped in a manner consistent with their expression of cell type markers in hierarchical 136 
clustering (Fig. 1d,e, see Methods). For comparison, we also performed clustering without cross-137 
sample alignment, which resulted in many clusters that were defined by individual of origin in 138 
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addition to cell type (Extended Data Fig. 1c-f). Having confirmed the effectiveness of cross-139 
sample alignment in removing the effect of technical and experimental factors on clustering, we 140 
then assigned clusters to broad cell types (i.e. excitatory neurons, inhibitory neurons, astrocytes, 141 
oligodendrocytes, oligodendrocyte precursor cells, microglia, and endothelial cells) based on 142 
their expression of cell type markers (Fig. 1d,e, see Methods).  143 
 144 
Next, to assess whether the proportions of broad cell types in the EC and SFG change with 145 
disease progression, we aggregated clusters assigned to the same cell type for each individual 146 
and then computed the relative abundance of each cell type in each individual. We tested the 147 
statistical significance of changes in relative abundance using beta regression30 (see Methods), 148 
which is suitable for variables ranged from 0 to 1. After correcting for multiple testing (Holm’s 149 
method, threshold for significant adjusted P-values set at 0.05; see Methods), we found 150 
statistically significant increases in the relative abundance of endothelial cells in the EC (Fig. 1f) 151 
in Braak stages 2 and 6 compared to Braak stage 0, although the magnitude of the changes were 152 
small. We also found a trend towards increased relative abundance of microglia in the EC in 153 
Braak stage 6 (Padjusted = 0.08), suggestive of microgliosis. In the SFG, however, we did not 154 
observe an upward trend in the relative abundance of microglia with disease progression (Fig. 155 
1g). As for other broad cell types, we did not detect changes in relative abundance that were 156 
statistically significant after correction for multiple hypothesis testing. However, we observed a 157 
downward trend in the relative abundance of EC excitatory neurons in Braak stages 2 (Punadjusted 158 
= 0.18) and 6 (Punadjusted = 0.02), and of SFG excitatory neurons only in Braak stage 6 (Punadjusted = 159 
0.05), consistent with early involvement of the EC and sparing of the SFG until late Braak 160 
stages, and the previously described greater vulnerability of excitatory neurons relative to 161 
inhibitory neurons in AD15, 31. 162 
 163 
 164 
Selective vulnerability of excitatory neuron subpopulations  165 
 166 
Previous single-cell transcriptomic studies of human and mouse cortex have shown that unbiased 167 
clustering of excitatory neurons largely recapitulates the laminar organization of the cortex19, 20. 168 
In the context of AD, tau neurofibrillary inclusions are known to preferentially accumulate in 169 
neocortical layers III and V3, 32, 33, most likely reflecting the selective vulnerability of specific 170 
neuronal subpopulations. Therefore, we asked whether specific excitatory neuron subpopulations 171 
show a decline in their relative abundance with disease progression, by performing subclustering 172 
of excitatory neurons in the EC and SFG after cross-sample alignment (see Methods).  173 
 174 
In the EC, we discerned nine excitatory neuron subpopulations (Fig. 2a-d). These subpopulations 175 
exhibited distinct expression of EC layer-specific genes identified in the mouse medial EC34, 176 
which phylogenetically resembles the human caudal EC35, 36. Notably, subpopulation EC:Exc.s2 177 
showed a striking ~50% decrease in its relative abundance in Braak stage 2 compared to Braak 178 
stage 0, with no further decrease in Braak stage 6 (Fig. 2c), suggesting depletion early in disease. 179 
EC:Exc.s1 and EC:Exc.s4 similarly exhibited a ~50-60%  reduction in their relative abundance 180 
in Braak stage 2. EC:Exc.s1, EC:Exc.s2, and EC:Exc.s4 expressed genes associated with mouse 181 
EC layer II (Fig. 2c), consistent with the fact that tau neurofibrillary inclusions are known to 182 
accumulate preferentially in human EC layer II early in AD7-10. However, not all subpopulations 183 
expressing genes associated with mouse EC layer II showed similar levels of early vulnerability. 184 
For example, EC:Exc.s6 and EC:Exc.s8 did not demonstrate statistically significant changes in 185 
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their relative abundance across disease progression. Outside of EC layer II, we failed to find 186 
evidence of selective vulnerability in neuronal subpopulations expressing genes associated with 187 
mouse EC layer III (EC:Exc.s0) or V/VI (EC:Exc.7, EC:Exc.s5, EC:Exc.s3). In fact, EC:Exc.s5 188 
exhibited a statistically significant increase in its relative abundance in Braak stage 2. Since 189 
neurons are post-mitotic, this increase is likely due to the selective earlier depletion of more 190 
vulnerable excitatory neuron subpopulations, followed by later depletion of EC:Exc.s5.  191 
 192 
To identify molecular markers of selectively vulnerable excitatory neuron subpopulations in the 193 
EC (EC:Exc.s2, EC:Exc.s4, EC:Exc.s1), we inspected transcript levels of genes differentially 194 
expressed between pairs of subpopulations and curated a set of genes which were specifically 195 
expressed by no more than four subpopulations (Extended Data Fig. 2a), which we decided was 196 
a reasonable threshold for a positive marker to be useful. We found that EC:Exc.s2 and 197 
EC:Exc.s4 specifically expressed RORB, CTC-340A15.2 and CTC-535M15.2 (Fig. 2c). RORB 198 
(RAR-related Orphan Receptor B) encodes a transcription factor known as a marker and 199 
developmental driver of layer IV neurons in the neocortex37-39, but is also expressed by neurons 200 
in other layers20. Little is known about the non-coding transcripts CTC-340A15.2 and CTC-201 
535M15.2 in the context of neuronal identity and function. We also found that EC:Exc.s1 was 202 
marked by high expression of CDH9 (Fig. 2c), a cadherin with neuron-specific expression. 203 
However, CDH9 was also expressed by other excitatory neuron subpopulations in the EC, and 204 
we could not find markers that were specifically expressed only in EC:Exc.s1. Therefore, we 205 
chose to focus our analysis on EC:Exc.s2 and EC:Exc.s4.  206 
 207 
In addition to identifying molecular markers of the selectively vulnerable EC:Exc.s2 and 208 
EC:Exc.s4 neurons, we also enumerated genes that were differentially expressed in EC:Exc.s2 209 
and EC:Exc.s4 compared to all other excitatory neurons in the EC, controlling for differences 210 
across individuals (see Methods). We found that genes with higher expression in EC:Exc.s2 and 211 
EC:Exc.s4 were enriched for axon-localized proteins and voltage-gated potassium channels, 212 
whereas genes with lower expression in EC:Exc.s2 and EC:Exc.s4 were enriched for synapse- 213 
and dendrite-localized proteins and pathways involving G-protein mediated signaling, ion 214 
transport, and neurotransmitter receptor signaling (Extended Data Fig. 2b-e, Supplementary 215 
Table 1).  216 
 217 
We also performed differential gene expression analysis across Braak stages for EC excitatory 218 
neuron subpopulations (see Methods), choosing to focus on comparing Braak stage 6 vs. 0, 219 
which yielded the largest number of differentially expressed genes. We found a broad decrease 220 
in expression of genes encoding pre- and post-synaptic proteins in Braak stage 6 vs. 0 for many 221 
EC excitatory neuron subpopulations (Extended Data Fig. 3b,d,f). Furthermore, we observed that 222 
EC:Exc.s2, which demonstrated a statistically significant decline in relative abundance in Braak 223 
stage 6 vs. 0, also had the largest number of downwardly differentially expressed genes and the 224 
strongest enrichments for pre- and post-synaptic proteins in these genes (Extended Data Fig. 225 
3b,d). Overall, the downregulation of synapse-related genes we have observed mirrors the 226 
findings from a recent preprint by Marinaro et al.40, which examined the frontal cortex in 227 
familial monogenic AD using snRNA-seq, and is consistent with a previous study of gene 228 
expression changes in AD in the entorhinal cortex and other brain regions employing laser 229 
capture microdissection of neurons followed by DNA microarray analysis17.  230 
 231 
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Having identified and characterized selectively vulnerable excitatory neuron subpopulations in 232 
the EC, we next examined excitatory neuron subpopulations in the SFG. Similar to previous 233 
studies19, 20, we found that excitatory neuron subpopulations in the SFG (11 in total) expressed 234 
distinct sets of neocortical layer-specific genes (Fig. 2b,d), recapitulating the laminar 235 
organization of the neocortex. Interestingly, SFG:Exc.s4 and SFG:Exc.s2, which were marked by 236 
RORB, CTC-340A15.2 and CTC-535M15.2,  trended towards decreased relative abundance only 237 
in Braak stage 6 (Fig. 2d; SFG:Exc.s4 Punadjusted =  0.06, SFG:Exc.s2 Punadjusted = 0.36), consistent 238 
with the late appearance of neurofibrillary inclusions in the SFG starting at Braak stage 5. On the 239 
other hand, SFG:Exc.s7, which was also marked by RORB, CTC-340A15.2 and CTC-535M15.2, 240 
exhibited a statistically significant but small decrease in relative abundance in Braak stage 2; 241 
however, we did not interpret this as a sign of tau pathology-associated selective vulnerability 242 
given that neurofibrillary inclusions should not be present in the SFG in Braak stage 2.  243 
 244 
Given that SFG:Exc.s4 and SFG:Exc.s2 expressed similar markers as EC:Exc.s4 and EC:Exc.s2, 245 
we wondered if SFG:Exc.s4 and SFG:Exc.s2 may resemble EC:Exc.s4 and EC:Exc.s2 more 246 
broadly at the transcriptome level. To test this, we calculated the Pearson correlation coefficient 247 
between the expression profiles of SFG and EC subpopulations and found that SFG:Exc.s4 and 248 
SFG:Exc.s2 were indeed most similar to EC:Exc.s4 and EC:Exc.s2 (Fig. 2e). This finding is 249 
consistent with the reported similarity between deep layer neocortical excitatory neurons and EC 250 
excitatory neurons in general41. Furthermore, this correspondence was preserved when we 251 
mapped subpopulations in the EC to those in the SFG by performing cross-sample alignment for 252 
both brain regions jointly (Extended Data Fig. 4). The similarity in transcriptomes of vulnerable 253 
excitatory neurons in different brain regions is intriguing and suggests similar mechanisms of 254 
selective vulnerability in different brain regions. 255 
 256 
Although the decrease in the relative abundance of SFG:Exc.s2 and SFG:Exc.s4 in Braak stage 6 257 
was not statistically significant after correction for multiple testing, we asked if we could detect 258 
signs of selective vulnerability in neocortical RORB-expressing excitatory neurons in an 259 
independent dataset with a larger sample size. To this end, we reanalyzed data from Mathys et 260 
al.21, which profiled the prefrontal cortex from 24 AD cases and 24 healthy controls, with our 261 
cross-sample alignment pipeline and performed subclustering of excitatory neurons. In the 262 
Mathys et al. dataset21, we discerned 10 excitatory neuron subpopulations, each of which 263 
expressed distinct sets of neocortical layer-specific genes (Extended Data Fig. 5a,b) similar to 264 
Lake et al.19 and our dataset. Of these 10 subpopulations, Mathys:Exc.s4, Mathys:Exc.s5, and 265 
Mathys:Exc.s1 expressed RORB at high levels (CTC-340A15.2 and CTC-535M15.2 were not 266 
available in the pre-processed Mathys et al.21 data). Importantly, we observed a statistically 267 
significant decrease in the relative abundance of Mathys:Exc.s4 in male AD cases vs. controls 268 
(Extended Data Fig. 5b), recapitulating the selective vulnerability observed in our dataset, which 269 
consists only of male individuals. Furthermore, gene expression correlation analysis showed that 270 
Mathys:Exc.s4 was the most similar to EC:Exc.s2 and EC:Exc.s4 (Extended Data Fig. 5c), again 271 
demonstrating similarity between selectively vulnerable excitatory neurons in the neocortex and 272 
those in the EC.  273 
 274 
Although we did not detect any statistically significant changes in the relative abundance of 275 
RORB-expressing subpopulations in female individuals in Mathys et al.21, Mathys.Exc.s1 276 
trended towards decreased relative abundance in female AD cases (Punadjusted = 0.17) and mapped 277 
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to EC:Exc.s2 by gene expression correlation (Extended Data Fig. 5b,c). Furthermore, Marinaro 278 
et al.40 included both male and female cases of monogenic AD and also reported the selective 279 
vulnerability of two out of four RORB-expressing excitatory neuron subpopulations in the 280 
prefrontal cortex (ExcB1 and ExcB4)40, providing further evidence that subsets of RORB-281 
expressing excitatory neurons in the neocortex are selectively vulnerable.  282 
 283 
Considering the Mathys et al.21 and the Marinaro et al.40 datasets together with our dataset, it 284 
appears that while not all RORB-expressing excitatory neuron subpopulations in the neocortex 285 
showed signs of selective vulnerability, those that did were the most similar to RORB-expressing 286 
excitatory neurons in the EC, all of which showed signs of selective vulnerability.  287 
 288 
 289 
Validation of the selective vulnerability of RORB-expressing excitatory neurons 290 
 291 
To validate our finding from snRNA-seq that RORB-expressing excitatory neurons in the EC 292 
were highly vulnerable in AD, we performed multiplex immunofluorescence on post-mortem 293 
samples from a larger cohort of individuals (Table 1). Specifically, we quantified the proportion 294 
of excitatory neurons and RORB-positive excitatory neurons in the EC superficial layers (i.e. 295 
above layer IV, which we also refer to as dissecans-142 in Fig. 3b) in postmortem tissue from 26 296 
individuals spanning Braak stage 0 to 6, who were devoid of non-AD neuropathological changes 297 
(Table 1). Given the heterogeneity of the EC , the areas selected for analysis in the caudal EC 298 
were delimited using rigorous cytoarchitectonic parameters to minimize the odds of artifactual 299 
results (Fig. 3a-c, Extended Data Fig. 6, see Methods). We used multiplex immunofluorescence43 300 
to label cells (DAPI), excitatory neurons (TBR1), RORB+ neurons, and phospho-tau neuronal 301 
inclusions (CP-13, Ser 202).  We failed to find statistically significant changes in the proportion 302 
of excitatory neurons overall (TBR1+ cells among all cells) across disease progression (Fig. 3d). 303 
However, we observed a substantial reduction in the proportion of RORB+ neurons among 304 
excitatory neurons in Braak stages 2-4 and 5-6 compared to Braak stages 0-1 (Fig. 3e). 305 
Furthermore, by analyzing a subset of cases, we detected phospho-tau (CP-13) preferentially in 306 
RORB+ compared to RORB- excitatory neurons (Fig. 3f-g). Thus, the above results substantiate 307 
that RORB-expressing excitatory neurons are highly vulnerable in AD and that their depletion 308 
parallels the accumulation of tau neurofibrillary inclusions.  309 
 310 
Given that large multipolar neurons of “stellate” morphology in EC layer II have been known to 311 
be particularly vulnerable in AD7-10, we next examined RORB+ excitatory neurons more closely 312 
in terms of morphology by overlaying immunofluorescence with Nissl staining. We found that 313 
RORB+ excitatory neurons adopted various shapes, including both pyramidal and multipolar 314 
morphologies (Fig. 3h). Conversely, some large multipolar neurons are RORB-negative (Fig. 315 
3h). Thus, our results are consistent with the known vulnerability of large multipolar EC layer II 316 
neurons, but also demonstrate that a molecular characterization of vulnerable neurons refines the 317 
results of morphological studies.  318 
 319 
 320 
Lack of differences in vulnerability of inhibitory neuron subpopulations  321 
 322 
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Having validated the selective vulnerability of a subpopulation of excitatory neurons, we 323 
proceeded to examine inhibitory neurons. It has previously been reported that inhibitory neurons 324 
are more resistant to tau pathology compared to excitatory neurons in AD15, 31. To investigate 325 
whether there are differences among inhibitory neuron subtypes in resilience, we performed 326 
subclustering of inhibitory neurons in our dataset, discerning 11 subpopulations in the EC and 10 327 
subpopulations in the SFG (Fig. 4a-d). In both brain regions, inhibitory neuron subpopulations 328 
expressed distinct sets of inhibitory neuron subtype markers (Fig. 4a-d), consistent with previous 329 
studies19, 20. We did not any detect statistically significant changes in the relative abundance of 330 
inhibitory neurons subpopulations in the EC or SFG (Fig. 4c-d), or in the prefrontal cortex in 331 
Mathys et al.21 (Extended Data Fig. 7). Although Marinaro  et al. reported broad depletion of 332 
inhibitory neuron subpopulations in familial monogenic AD,  there was no strong evidence of 333 
selective vulnerability in particular inhibitory neuron subpopulations relative to other inhibitory 334 
neuron subpopulations in Marinaro et al.  335 
 336 
 337 
Analysis of glial subpopulations  338 
 339 
Glial cells have emerged as important players in AD. We found a trend towards increased 340 
relative abundance of microglia in the EC in with AD progression (Fig. 1f), consistent with 341 
microgliosis. Next, we asked whether a specific transcriptional state of microglia is associated 342 
with AD in our dataset. Recent single-cell profiling of microglia from mouse models of AD 343 
identified disease-associated microglia44 (DAM), the transcriptional signature of which overlap 344 
only partially with that of human microglia found in AD45. Considering the possibility that 345 
DAMs may cluster separately from homeostatic microglia after cross-sample alignment, we 346 
performed subclustering of microglia in our dataset, discerning 4 subpopulations in the EC and 5 347 
subpopulations in the SFG (Extended Data Fig. 8a-b). However, similar to Thrupp et al.46, we 348 
were unable to detect the expression of the majority of homeostatic microglia markers and DAM 349 
markers in our dataset or in Mathys et al.21 (Extended Data Fig. 8d-f), which may be due to the 350 
relatively low number of genes captured in microglia compared to other cell types (Fig. 1h-i) and 351 
the depletion of many DAM markers in nuclei compared to whole cells46.  352 
 353 
We next examined oligodendrocytes, which have been shown by Mathys et al.21 to exhibit a 354 
strong transcriptional response in AD. Subclustering of oligodendrocytes in the EC and SFG 355 
revealed subpopulations (EC:Oligo.s0 and EC:Oligo.s4, SFG:Oligo.s1 and SFG:Oligo.s2) which 356 
exhibited higher expression of AD-associated oligodendrocyte genes from Mathys et al.21, i.e. 357 
genes with higher expression in the AD-associated subpopulation Oli0 in Mathys et al.21 358 
(Extended Data Fig. 9d-e). Although the function of these genes in the context of AD is largely 359 
unknown, a spatial transcriptomics study of AD47 has recently implicated a subset of these genes 360 
in the response of oligodendrocytes to amyloid plaques (e.g. CRYAB, QDPR).  361 
 362 
Lastly we turned our attention to astrocytes. While reactive astrocytes are ubiquitously 363 
associated with AD pathology48, 49, only few studies to date have directly profiled reactive 364 
astrocytes due to the difficulty of specifically isolating reactive astrocytes50, 51. Similarly to our 365 
interrogation of microglia, we asked if reactive astrocytes would cluster separately from non-366 
reactive astrocytes after cross-sample alignment. After subclustering of astrocytes in our dataset, 367 
we discerned 4 subpopulations in the EC and 6 subpopulations in the SFG (Fig. 5a-d). In each 368 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.04.04.025825doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.04.025825


 

9 

brain region, there was at least one subpopulation (EC:Astro.3, SFG:Astro.s4 and SFG:Astro.s5) 369 
that expressed dramatically higher levels of GFAP, which we will refer to as GFAPhigh astrocytes 370 
(Fig. 5c,d). In the EC, GFAPhigh astrocytes also expressed CD44 and HSPB1, markers of pan-371 
reactive astrocytes52; TNC, which is upregulated in stab-wound reactive astrocytes53, 54; and 372 
HSP90AA1, which is upregulated in reactive astrocytes associated with middle cerebral artery 373 
occlusion55 (Fig. 5c,d). Interestingly, in the SFG, GFAPhigh astrocytes consisted of two 374 
subpopulations, one marked by higher expression of CD44 and TNC, both of which are involved 375 
in interactions with the extracellular matrix, and the other marked by higher expression of 376 
HSPB1 and HSP90AA1, both of which are chaperones involved in proteostasis. In terms of 377 
downregulated genes, GFAPhigh astrocytes consistently expressed lower levels of genes 378 
associated with glutamate/GABA homeostasis (SLC1A2, SLC1A3, GLUL, SLC6A11; see 379 
Methods for references) and synaptic adhesion/maintenance (NRXN1, CADM2, PTN, GPC5; see 380 
Methods for references), suggesting a loss of homeostatic function.  381 
 382 
Examination of all differentially expressed genes in GFAPhigh astrocytes compared to other 383 
astrocyte subpopulations showed significant overlap with differentially expressed genes from 384 
reactive astrocytes in a mouse model of spinal cord injury56  (Fig. 5e). Overlapping 385 
downregulated genes included the previously noted genes associated with glutamate homeostasis 386 
and synaptic adhesion/maintenance and also genes related to lipid metabolism, cytoskeleton and 387 
extracellular matrix, and transporters (Fig. 5f-g).  388 
 389 
Finally, to confirm the presence of GFAPhigh astrocytes in an independent dataset, we performed 390 
subclustering of astrocytes from Mathys et al.21 after cross-sample alignment, which yielded 3 391 
subpopulations (Extended Data Fig. 10a,b). Indeed, we found that Mathys:Astro.s2 behaved 392 
identically compared to GFAPhigh astrocytes from the EC and SFG in terms of upregulating 393 
reactive astrocyte markers and downregulating genes associated with glutamate/GABA 394 
homeostasis and synaptic adhesion (Extended Data Fig. 10b). Furthermore, the differentially 395 
expressed genes in Mathys:Astro.s3 overlapped highly with those in GFAPhigh astrocytes from 396 
the EC and SFG (Extended Data Fig. 10c).  397 
 398 
 399 
DISCUSSION 400 
 401 
Selective vulnerability is recognized as a fundamental feature of neurodegenerative diseases, 402 
including AD. Past studies have characterized the most vulnerable neurons in AD based on 403 
topography and morphology. For instance, EC layer II neurons have been found to be more 404 
vulnerable than EC layer III pyramidal neurons10-12. However, the molecular signature of 405 
selectively vulnerable neurons in AD is largely unknown. In this study, we performed snRNA-406 
seq of well-characterized postmortem brain tissue from individuals spanning the progression of 407 
AD-type tau neurofibrillary pathology, followed by cross-sample data alignment to identify and 408 
characterize selectively vulnerable neuronal populations in the caudal EC and the SFG 409 
(Brodmann area 8), representing areas that develop tau neurofibrillary inclusions early and late in 410 
the course of AD, respectively. We then validated the snRNA-seq results using quantitative 411 
neuropathological methods in a larger cohort spanning all Braak stages of neurofibrillary 412 
pathology. 413 
 414 
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The transentorhinal region and the EC, hubs for integrating information from hippocampal, 415 
cortical and subcortical regions35, are the first cortical fields to accumulate tau-positive 416 
neurofibrillary inclusions followed by neuronal loss in AD3. The transentorinal region is first 417 
affected in Braak stage 1, followed by the EC in Braak stage 2. The EC is a relatively 418 
phylogenetically conserved brain structure in mammals35, 57. The rodent EC can be subdivided 419 
into medial and lateral portions based on cytoarchitectonics and projections. In primates, the EC 420 
has been subdivided into up to 16 regions that show differential abundances of several neuronal 421 
markers, distinct projections, and variation of laminar features11, 42, 57. During evolution, the 422 
position of the EC changed, and the mouse medial EC (the source of our layer-specific marker 423 
genes) is generally regarded as the equivalent of the caudal EC in humans (our sampling 424 
location)36. Irrespective of the parcellation scheme adopted, the EC is a heterogeneous structure 425 
and cytoarchitectonic considerations matter when analyzing and sampling this region to avoid 426 
biased observations42. 427 
 428 
Neurons in EC layer II are particularly vulnerable in AD7, 9, 10, 58. EC layer II features a mixture 429 
of neuronal subpopulations defined by morphology. Large multipolar neurons (“stellate cells”), 430 
which are deemed to be excitatory, are abundant59. Other neurons assume smaller multipolar 431 
morphology and variably sized pyramidal, bipolar, spindle-shaped, and triangular morphologies. 432 
Large multipolar neurons are prone to develop AD-tau inclusions and degenerate in very early 433 
AD stages6, 60. However, variation in the size, shape, and density of these large multipolar 434 
neurons along mediolateral and rostrocaudal gradients42, 60 has hampered rigorous quantitative 435 
characterization of their depletion in AD.  436 
 437 
Here, we discovered that in the caudal EC, specific excitatory neuron subpopulations defined by 438 
snRNA-seq were selectively vulnerable in AD, exhibiting a ~50% decline in their relative 439 
abundance already in early AD stages. These neurons expressed genes associated with layer II of 440 
the mouse medial EC, consistent with the known vulnerability of neurons in the superficial 441 
layers of the human EC in AD7-10.  442 
 443 
Importantly, we identified RORB as a marker of these selectively vulnerable excitatory neuron 444 
subpopulations, and subsequently validated the selective depletion of RORB+ excitatory neurons 445 
in the EC along AD progression by counting these neurons in a larger cohort of individuals using 446 
multiplex immunofluorescence. We found that the selectively vulnerable RORB+ excitatory 447 
neurons included both large multipolar neurons and pyramidal neurons. Although this finding is 448 
consistent with the known vulnerability of large multipolar EC layer II neurons, it also 449 
demonstrates that morphology alone is insufficient to determine gradients of selective 450 
vulnerability.  451 
 452 
We then showed that tau neuronal inclusions, a chief AD neuropathological hallmark, 453 
preferentially accumulated in RORB+ excitatory neurons in the EC. To uncover potential cell 454 
biological mechanisms underlying the vulnerability of EC RORB+ excitatory neurons, we 455 
compared the gene expression profiles of EC RORB-expressing excitatory neurons against all 456 
other EC excitatory neurons, which revealed differences in the expression of genes encoding 457 
synapse- vs. axon-localized proteins, potassium channel subunits, G-protein signaling molecules, 458 
and neurotransmitter receptor signaling molecules. Future studies utilizing in vitro and animal 459 
models of AD together with techniques for manipulating gene expression such as CRISPR 460 
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inhibition and activation61-63 will make it possible to address these potential mechanistic 461 
connections among RORB-expression, phospho-tau accumulation, and vulnerability.  462 
 463 
In neocortical areas, layers III and V are the first to accumulate tau neurofibrillary inclusions in 464 
AD3, 32, 33. We found that in the SFG, a subset of RORB-expressing excitatory neuron 465 
subpopulations showed signs of selective vulnerability only late in AD, in line with the late 466 
appearance of neurofibrillary inclusions in the SFG, although the decrease in their relative 467 
abundance did not pass our threshold for statistical significance after correction for multiple 468 
testing. Interestingly, we found through correlation analysis of gene expression and also EC-SFG 469 
cross-sample alignment that RORB-expressing excitatory neuron subpopulations in the SFG 470 
showing signs of selective vulnerability were similar to those in the EC in terms of their 471 
transcriptomic profile. To verify the reproducibility of our findings, we re-analyzed the data from 472 
Mathys et al.21 using our cross-sample alignment approach. Although Mathys et al.21 probed a 473 
different neocortical region (the prefrontal cortex), we found that one of their RORB-expressing 474 
excitatory neuron subpopulations also exhibited selective vulnerability and mapped to our 475 
RORB-expressing excitatory neuron subpopulations in the EC. In addition, Marinaro et al.40, 476 
which examined familial monogenic AD, also reported the selective depletion of two out four 477 
RORB-expressing excitatory neuron subpopulations in their dataset. Considering our dataset 478 
jointly with the Mathys et al.21 and Marinaro et al.40 datasets, it appears that in the neocortex, 479 
while not all RORB-expressing excitatory neuron subpopulations are selectively vulnerable, 480 
those that are vulnerable have a similar transcriptional profile as selectively vulnerable neurons 481 
in the EC. Given that RORB is known to function as a developmental driver of neuronal subtype 482 
identity in the neocortex37-39, we hypothesize that the vulnerability of RORB-expressing 483 
excitatory neuron subpopulations in different brain regions is caused by the activity of RORB 484 
and potentially other subtype-determining transcription factors, which drive gene expression 485 
programs that confer an intrinsic vulnerability of these neurons that is realized in the presence of 486 
AD-tau pathology. Further mechanistic studies involving the perturbation of RORB expression in 487 
animal models of AD are necessary to test this hypothesis.   488 
 489 
A previous study suggested changes in the number of neurons expressing calbindin and 490 
parvalbumin, which tend to mark inhibitory neurons, in EC layer II in AD58. Here, we found no 491 
evidence of selective vulnerability in inhibitory neurons subpopulations in EC layer II or any 492 
other layer. Inhibitory neurons in the EC superficial layers show a gradient of abundance in the 493 
various EC regions35, which could confound the results. But, given that we used strict 494 
cytoarchitectonic criteria to sample the EC, it is unlikely that our results reflect comparisons of 495 
different EC areas across the cases. Also, evidence suggest that these inhibitory neurons undergo 496 
changes in morphology and function, rather than loss in sporadic AD58. Thus, our results do not 497 
preclude the possibility that inhibitory neuron subpopulations may be differentially affected by 498 
AD progression at the morphological and likely functional level, even if neuronal loss is not 499 
apparent.  500 
 501 
Until recently, AD research was mostly neuron-centric, but accumulating evidence is 502 
highlighting the importance of glial changes in the pathogenesis of AD. Although we could not 503 
detect the disease-associated microglia signature44, 45 in our study, likely due the low number of 504 
transcripts recovered in microglia, we discovered an astrocyte subpopulation expressing high 505 
levels of GFAP, which we termed GFAPhigh astrocytes, in both the EC and SFG, as well as in the 506 
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prefrontal cortex from Mathys et al.21 We found that GFAPhigh astrocytes also expressed higher 507 
levels of other genes associated with reactive astrocytes, while expressing lower levels of genes 508 
involved in glutamate homeostasis and synaptic adhesion/maintenance, which suggests loss of 509 
normal astrocyte homeostatic functions. Furthermore, we found a high degree of overlap 510 
between genes differentially expressed in GFAPhigh astrocytes and genes differentially expressed 511 
in reactive astrocytes from a mouse model of spinal injury56. Thus, we believe that GFAPhigh 512 
astrocytes correspond to reactive astrocytes in AD, which may have compromised homeostatic 513 
function.  514 
 515 
Our study has several methodological strengths. First, the postmortem cohort used for snRNA-516 
seq and histopathological validation consists of well-characterized cases, devoid of non-AD 517 
pathology. To minimize confounders in the snRNA-seq results, we selected only male cases with 518 
an APOE ε3/ε3 genotype. Second, we sequenced a very large number of nuclei from each case 519 
(~10,000 nuclei per case, compared to ~1,700 nuclei per case in Mathys et al.21) from two brain 520 
regions per individual (~4,000 nuclei from the EC and ~6,000 nuclei from the SFG). Third, the 521 
human cortex displays a complex parcellation scheme based on cytoarchitectonic characteristics 522 
that reflect differences in the abundance of various cell subpopulations, with implications for 523 
function, projections, and differential vulnerability in AD. Many RNA-seq studies of AD used 524 
broad descriptions to define the sampled brain areas, making it challenging to understand if they 525 
were sampled from the same subfields. We used strict cytoarchitectonic criteria to sample brain 526 
regions for snRNA-seq and histopathological validation. Fourth, our focus was on defining cell 527 
type subpopulations that showed changes in relative abundance between disease stages, which 528 
can reflect important disease processes such as neuronal loss, and to define the genes 529 
characteristic of these subpopulations. The way we defined cell type subpopulations 530 
independently of disease progression allowed us to compare gene expression between different 531 
cell type subpopulations within individuals while controlling for differences among individuals; 532 
this is more robust than comparing gene expression in a given subpopulation across groups of 533 
individuals, which can be influenced by differences in confounding factors between the groups. 534 
Lastly, by validating our findings using a novel multiplex immunofluorescence approach that 535 
enables probing a higher number of antibodies simultaneously43, we could quantify the relative 536 
abundance of excitatory neurons and RORB+ neurons and also demonstrate that RORB+ 537 
excitatory neurons were preferentially affected by neurofibrillary inclusions. 538 
 539 
A limitation of our study is that we only included male APOE ε3/ε3 individuals in the snRNA-540 
seq analysis. We included females and individuals carrying the APOE ε4 allele associated with 541 
AD risk in our histopathological validation, but caution should be taken before generalizing our 542 
results to these groups. Future studies will provide a systematic analysis of the impact of sex and 543 
APOE status on selective vulnerability in AD. 544 
 545 
In conclusion, our study contributes, to the best of our knowledge, a pioneering characterization 546 
of selectively vulnerable neuronal populations in AD using snRNA-seq profiling of paired brain 547 
regions from the same individuals, which were all carefully curated AD cases and controls. 548 
These results will inform future studies of the mechanistic basis of selective vulnerability in both 549 
animal and in vitro models, such as human iPSC-derived neurons, in which the deployment of 550 
CRISPR inhibition and activation technology enables elucidation of the functional consequences 551 
of transcriptomic changes61, 64. 552 
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ONLINE METHODS 556 
 557 
Post-mortem cohort  558 
This study was approved by and University of Sao Paulo institutional review board and deemed 559 
non-human subject research by the University of California, San Francisco (UCSF). De-560 
identified human postmortem brain tissue was supplied by the Neurodegenerative Disease Brain 561 
Bank (NDBB) at UCSF, and the Brazilian BioBank for Aging Studies (BBAS) from the 562 
University of Sao Paulo65. The NDBB receives brain donations from patients enrolled in the 563 
UCSF Memory and Aging Center research programs. The BBAS is population�based and 564 
houses a high percentage of pathologically and clinically normal control subjects who are not 565 
available in the NDBB. Neuropathological assessments were performed using standardized 566 
protocols and followed internationally accepted criteria for neurodegenerative diseases66-68. The 567 
brain samples used in this study contained a broad burden of AD-type pathology and were 568 
selected to be free from non-AD pathology including Lewy body disease, TDP-43 569 
proteinopathies, primary tauopathies, and cerebrovascular changes. Argyrophilic grain disease 570 
(AGD) was not an exclusion criterion based on its high prevalence and lack of correlation with 571 
significant clinical symptoms69-71. In total, the cohort included 10 cases who underwent snRNA-572 
seq, representing Braak stages 0, 2 and 6, all ApoE 3/3, and 26 cases who underwent 573 
neuroanatomical analysis,  representing Braak stages 0-63, 25, ranging from 2-5 individuals per 574 
Braak stage. Table 1 depicts the characteristics of the 31 cases.  575 
 576 
Isolation of nuclei from frozen post-mortem human brain tissue  577 
Isolation of nuclei was performed similarly as previously described72. Briefly, frozen brain tissue 578 
was dounce homogenized in 5 ml of lysis buffer (0.25 M sucrose, 25 mM KCl, 5 mM MgCl2, 20 579 
mM Tricine-KOH, pH 7.8, 1 mM DTT, 0.15mM spermine, 0.5 mM spermidine, 1X protease 580 
inhibitor (Sigma, 4693159001), and RNAse Inhibitor (Promega, N2615)). Following initial 581 
dounce homogenization, IGEPAL-630 was added to a final concentration of 0.3% and the 582 
sample was homogenized with 5 more strokes. The solution was then filtered through a 40 um 583 
cell filter and mixed with Optiprep (Sigma, D1556-250ML) to create a 25% Optiprep solution. 584 
This solution was then layered onto a 30%/40% Optiprep gradient and centrifuged at 10,000g for 585 
18 minutes using the SW41-Ti rotor. The nuclei were collected at the 30%/40% Optiprep 586 
interface. 587 
 588 
Droplet-based single-nucleus RNA-sequencing   589 
Droplet-based single-nucleus RNA-sequencing (snRNA-seq) was performed using the 590 
Chromium Single Cell 3′ Reagent Kits v2 from 10X Genomics. Nuclei were resuspended to a 591 
concentration of 1000 nuclei/uL in 30% Optiprep solution before loading according to 592 
manufacturer’s protocol, with 10,000 nuclei recovered per sample as the target. cDNA fragment 593 
analysis was performed using the Agilent 4200 TapeStation System. Sequencing parameters and 594 
quality control were performed as described by The Tabula Muris Consortium73.  595 
 596 
Pre-processing of snRNA-seq data  597 
Sequencing data generated from snRNA-seq libraries were demultiplexed using Cellranger 598 
(version 2.1.0) cellranger mkfastq. To align reads, we first generated our own pre-mRNA 599 
GRCh38 reference genome using cellranger mkref in order to account for introns that may be 600 
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eliminated using the default GRCh38 reference genome. Alignment and gene expression 601 
quantification was then performed using cellranger count with default settings.  602 
 603 
Exploratory analysis of EC and SFG data  604 
For each sample, the raw gene-barcode matrix outputted by Cellranger (version 2.1.0) was 605 
converted into a SingleCellExperiment (SCE) object using the read10xCounts function from the 606 
DropletUtils package74 (version 1.2.2). Droplets containing nuclei were then distinguished from 607 
empty droplets using DropletUtils::emptyDrops with the parameter FDR = 0.01, and then nuclei 608 
(hereon also referred to as “cells”) with less than 200 UMIs were discarded. Afterwards, SCE 609 
objects corresponding to each sample were merged into a single SCE object for downstream 610 
processing and analyses.  611 
 612 
For normalization of raw counts, to avoid artifacts caused by data sparsity, the approach of Lun 613 
et al.75 was adopted: For each sample, cells were first clustered using a graph-based method 614 
followed by pooling counts across cells in each cluster to obtain pool-based size factors, which 615 
were then deconvoluted to yield cell-based size factors. Clustering was performed using the 616 
quickCluster function from the scran package76 (version 1.10.2) with the parameters method = 617 
‘igraph’, min.mean = 0.1, irlba.args = list(maxit = 1000), and the block parameter set to a 618 
character vector containing the sample identity of each cell. Size factors were computed using 619 
scran::computeSumFactors with the parameter min.mean = 0.1 and the cluster parameter set to a 620 
character vector containing the cluster identity of each cell; cells with negative size factors were 621 
removed. Normalization followed by log-transformation was then performed using the normalize 622 
function from the scater package77 (version 1.10.1).  623 
 624 
Prior to dimensionality reduction, highly variable genes were identified for each sample 625 
separately using the approach of Lun et al.76: Each gene’s variance was decomposed into a 626 
technical and biological component. Technical variance was assumed as Poisson and modeled 627 
using scran::makeTechTrend. The mean-variance trend across genes was fitted using 628 
scran::trendVar with parameters use.spikes = FALSE and loess.args = list(span = 0.05); and the 629 
trend slot of the resulting fit object was then set to the output of scran::makeTechTrend. 630 
Biological variance was extracted from the total variance using scran::decomposeVar with the 631 
above fit object as the input. Finally, highly variable genes that were preserved across samples 632 
were identified by combining the variance decompositions with scran::combineVar, using 633 
Stouffer’s z-score method for meta-analysis (method = ‘z’), which assigns more weight to 634 
samples with more cells.  635 
 636 
For initial data exploration, genes with combined biological variance greater than 0 were used as 637 
the feature set for dimensionality reduction by principal component analysis using 638 
scran::parallelPCA, which uses Horn’s parallel analysis to decide how many principal 639 
components to retain, with parameter approx = TRUE. Clustering was then performed on the 640 
retained principal components using the FindClusters function from the Seurat package78 641 
(version 2.3.4) with parameter resolution = 0.8, which required conversion of SCE objects to 642 
Seurat objects using Seurat::Convert. To visualize the clusters, t-stochastic neighborhood 643 
embedding (tSNE) was performed on the retained principal components using scater::runTSNE 644 
with parameters perplexity = 30 and rand_seed = 100.  645 
 646 
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Cross-sample alignment of SFG and EC data 647 
Initial data exploration revealed that clustering was driven by individual of origin in addition to 648 
cell type identity, which makes it difficult to analyze changes in the relative abundance or gene 649 
expression of a given cell type across disease progression or brain regions. To recover clusters 650 
defined by mainly by cell type identity, data was aligned across samples from each brain region 651 
using with scAlign29 (version 1.0.0), which leverages a neural network to learn a low-652 
dimensional alignment space in which cells from different datasets group by biological function 653 
independent of technical and experimental factors. As noted by Johansen & Quon29, scAlign 654 
converges faster with little loss of performance when the input data is represented by principal 655 
components or canonical correlation vectors. Therefore, prior to running scAlign, the top 2000 656 
genes with the highest combined biological variance were used as the feature set for canonical 657 
correlation analysis (CCA), which was implemented using Seurat::RunMultiCCA with parameter 658 
num.cc = 15. The number of canonical coordinates to use for scAlign was determined by the 659 
elbow method using Seurat::MetageneBicorPlot. scAlign was then run on the cell loadings along 660 
the top 10 canonical correlation vectors with the parameters options = scAlignOptions(steps = 661 
10000, log.every = 5000, architecture = ‘large’, num.dim = 64), encoder.data = ‘cca’, 662 
supervised = ‘none’, run.encoder = TRUE, run.decoder = FALSE, log.results = TRUE, and 663 
device = ‘CPU’. Clustering was then performed on the full dimensionality of the ouptut from 664 
scAlign using Seurat::FindClusters with parameter resolution = 0.8 for the SFG and resolution 665 
= 0.6 for the EC. Clusters were visualized with tSNE using Seurat::RunTSNE on the full 666 
dimensinality of the output from scAlign with parameter do.fast = TRUE. Alignment using 667 
scAlign followed by clustering was also performed for all samples from both brain regions 668 
jointly.  669 
 670 
To assign clusters identified in the aligned subspace generated by scAlign to major brain cell 671 
types, the following marker genes were used: SLC17A7 and CAMK2A for excitatory neurons, 672 
GAD1 and GAD2 for inhibitory neurons, SLC1A2 and AQP4 for astrocytes, MBP and MOG for 673 
oligodendrocytes, PDGFRA and SOX10 for oligodendrocyte precursor cells (OPCs), CD74 and 674 
CX3CR1 for microglia/myeloid cells, and CLDN5 and FLT1 for endothelial cells. Clusters 675 
expressing markers for more than one cell type, most likely reflecting doublets, were removed 676 
from downstream analyses.  677 
 678 
Cell type-specific subclustering (subpopulation) analysis  679 
To identify cell type subpopulations, cells from all samples belonging to a given major cell type 680 
were extracted for sample-level re-computation of size factors and highly variable genes. CCA 681 
was then performed using the top 1000 genes with the highest combined biological variance as 682 
the feature set, followed by alignment of the first 10 to 12 canoical coordinates with scAlign, 683 
with steps = 2500. The full dimensionality of the output from scAlign was used for subclustering 684 
(using resolution = 0.4) and tSNE. Analyzing cells from each brain region separately, marker 685 
genes for subpopulations were identified using scran::findMarkers with parameters direction = 686 
‘up’, pval.type = ‘any’, lfc = 0.58, and the block parameter set to a character vector 687 
corresponding to each cell’s sample identity. Subpopulations that expressed markers for more 688 
than one cell type were removed from downstream analyses.  689 
 690 
Identification of differentially expressed genes in cell type subpopulations  691 
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To identify genes differentially expressed by a cell type subpopulation compared to all other 692 
subpopulations in a way that accounts for true biological replication (i.e. at the level of 693 
individuals), UMI counts of cells from the same individual belonging to the subpopulation of 694 
interest or all other subpopulations were summed to obtain “pseudo-bulk” samples, which were 695 
then analyzed using edgeR79 (version 3.24.3) following the approach recommended by 696 
Amezquita et al.80 A false-discovery rate cutoff of 0.1 was used.  697 
 698 
Heatmap visualization of relative gene expression across cell types or cell type 699 
subpopulations  700 
For heatmaps of relative gene expression across cell types or cell type subpopulations shown in 701 
the figures, log-scaled normalized counts of each gene were z-score transformed across all cells 702 
and then averaged across cells in each cluster to enhance visualization of differences among 703 
clusters. Thus genes with “high” relative expression have above-average expression (positive z-704 
scores) and genes with “low” relative expression have below-average expression (negative z-705 
scores).  706 
 707 
Functional association network analysis and pathway enrichment analysis of differentially 708 
expressed genes 709 
Differentially expressed genes were visualized as a functional association network using String-710 
db81 (v11), a protein-protein association network based on known physical interactions, 711 
functional associations, coexpression, and other metrics, and Cytoscape82 (version 3.7.2), a 712 
network visualization software.  When generating the networks, the String-db association 713 
confidence score cutoff set to 0.5, and the network layout was optimized for visualization using 714 
the yFiles Organic Layout. For pathway enrichment analysis, enrichments for Gene Ontology 715 
terms and Reactome Pathways were also obtained through String-db, using a false-discovery rate 716 
cutoff of 0.05.  717 
 718 
Beta regression 719 
For each brain region, to determine the statistical significance of changes in the relative 720 
abundance of a given cluster or cell type across disease progression, the relative abundance was 721 
computed for each sample and treated as an independent measurement and beta regression30 was 722 
performed using the betareg package83 (version 3.1-1), using the formula relative.abundance ~ 723 
braak.stage for both the mean and precision models, and the bias-corrected maximum likelihood 724 
estimator (type = ‘BC’). The statistical significance of changes in the proportion of TBR1+ cells 725 
and RORB+ cells among TBR1+ cells obtained from immunofluorescence validation were 726 
assessed similarly as above using beta regression. To correct for multiple hypothesis testing for 727 
each family of tests (e.g. testing all cell type subpopulations for a brain region), Holm’s method 728 
was used to adjust P values obtained from beta regression to control the family-wise type I error 729 
rate at 0.05.  730 
 731 
Entorhinal cortex layer-specific genes  732 
Due to the lack of published data on layer-specific genes for the human EC, layer-specific genes 733 
in the mouse medial entorhinal cortex (MEC) were obtained from Ramsden et al.34. (The MEC is 734 
the most phylogenetically similar to the human caudal EC35, 36 used in this study.) Specifically, 735 
genes with expression specific for layer II, III, and V/VI of the mouse MEC according to the S4 736 
Dataset excel spreadsheet in the supplemental information of Ramsden et al.34 were mapped to 737 
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human genes, and cross-referenced against genes differentially expressed across EC excitatory 738 
neuron subclusters (obtained using scran::findMarkers without setting direction = ‘up’).  739 
 740 
Re-analysis of the Mathys et al. dataset 741 
To re-analyze the data from Mathys et al.21 using our cross-sample alignment approach, the 742 
filtered matrix of UMI counts (“filtered_count_matrix.mtx”) and associated row and column 743 
metadata were downloaded from The AMP-AD Knowledge Portal (Synapse ID: syn18485175). 744 
Since clinical metadata was not provided in the column metadata, the individual ID (“projid” 745 
column in the column metadata) was cross-referenced with the official ROS-MAP clinical 746 
metadata (“ROSMAP_Clinical_2019-05_v3.csv”, synapse ID: syn3191087), which was then 747 
cross-referenced with the additional metadata provided in Supplementary Table 1 and 3 from 748 
Mathys et al.21 The filtered UMI counts matrix and the associated row and column metadata 749 
were then converted to a SingleCellExperiment object for analysis. The cell type assignments 750 
from Mathys et al.21 provided in the column metadata were used for subclustering.  751 
 752 
Functional annotation of differentially expressed genes in GFAPhigh astrocytes 753 
We obtained the functional annotation for differentially expressed genes from the GeneCards 754 
website84 and verified the primary literature references for glutamate/GABA-related genes85-90 755 
and synaptic adhesion/maintenance-related genes91-94. 756 
 757 
Quantitative histopathological assessment using multiplex immunofluorescence 758 
 759 
Delineation of the caudal EC. We used archival paraffin blocks from the UCSF/NBDD and 760 
BBAS (Table 1). First, we collected blocks sampling the hippocampal formation anterior to the 761 
lateral genicular body from the 10 cases used for the snRNAseq and another 30 cases spanning 762 
all Braak stages3. To determine if the caudal EC region was present, 8µm thick sections of each 763 
block underwent hematoxylin and eosin staining (Extended Data Fig. 8A). We took digital 764 
images of the stained sections and aligned each one the most approximate section from a large 765 
collection of 400 µm thick serial coronal sections of whole-brain hemispheres stained for 766 
gallocyanin provided by co-author Heinsen42, 95 (Extended Fig Data 8B). We eliminated blocks 767 
from five cases used for snRNA-seq and four of the extra cases for lack of caudal EC. Next, 768 
again with the aid of the paired gallocyanin sections, we delineated the borders of the caudal EC 769 
in each case (Extended Data Fig. 8A). 770 
 771 
The EC is considered a peri- or allocortex, depending on the author11. EC parcellation and 772 
cytoarchitectonic definitions have been a matter of debate, and here, we are adopting the 773 
cytoarchitectonic definitions proposed by Heinsen and colleagues42, which is based on the 774 
examination of thick histological preparations and considered the definitions proposed by 775 
Insausti and Amaral (6 layers)96 and Braak and Braak (3 layers)11. In thick histological sections, 776 
the caudal entorhinal region features well-delineated clusters of stellate or principal cells in layer 777 
II (pre-alpha clusters) and three lamina dissecans42. The external dissecans (dissecans-ext) 778 
divides layers II and III is particularly prominent in the caudal EC. Dissecans-1 (diss-1) 779 
corresponds to layer IV of Insausti57 and the lamina dissecans of Braak and Braak11 and Rose97. 780 
The most internal dissecans (dissecans-2, or diss-2) is hardly appreciated in thin sections but 781 
easy to visualize in thick sections. It roughly corresponds to layer Vc of the caudal subregions of 782 
Insausti57. 783 
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  784 
Multiplex immunofluorescence. Next, for each case, an 8µm thick, formalin-fixed and paraffin-785 
embedded coronal section underwent immunofluorescence against TBR1, RORB and phospho-786 
tau(CP-13) as described below. TBR1, or T-box, brain, 1 is a transcription factor protein that has 787 
a role in differentiation of glutamatergic neurons and is a marker for excitatory neurons, 788 
including EC excitatory neurons14, 98.  In summary, sections were deparaffinized and incubated in 789 
3.0% hydrogen peroxide (Fisher, H325-500) in methanol to inactivate endogenous peroxidase. 790 
Antigen retrieval was performed in 1X Tris-EDTA HIER solution (TES500) PBS with 0.05% 791 
Tween 20 (PBS-T) at pH9 in an autoclave at 121�°C for five�minutes. To reduce nonspecific 792 
background staining, sections were blocked with 5% Milk/PBS-T. To avoid cross-reactions 793 
between primary antibodies that were raised against the same species, an antibody stripping step 794 
using 0.80% β-mercaptoethanol/10% sodium dodecyl sulfate in 12.5% Tris-HCL was performed 795 
after the tyramide-signal amplification (TSA) development for RORB. 796 
 797 
Sections were first incubated overnight in primary antibody against RORB (1:400, rabbit, 798 
HPA008393, Millipore Sigma), which was later developed in goat anti-rabbit HRP (1:400, R-799 
05072-500, Advansta) with Alexa Fluor 488 TSA (1:100, B40953, Thermo Fisher). Next, 800 
sections were stripped of RORB primary antibody and then were incubated overnight in a 801 
cocktail of primary antibodies against TBR1 (1:100, Rabbit, ab31940, Abcam) and CP13 (1:800, 802 
mouse, phospho-tau serine 202, gift of Peter Davies, NY), all of which were later developed with 803 
secondary antibodies and fluorophores: for TBR1, Alexa Fluor 546 conjugated anti-rabbit 804 
secondary (1:200, A-11010, Thermo Fisher) was used, and for CP13, biotinylated anti-mouse 805 
(1:400, BA-2000, Vector Laboratory) with streptavidin Alexa Fluor 790 (1:250, S11378, Thermo 806 
Fisher) was used. Sections were then counterstained with DAPI diluted in PBS (1:5000, D1306, 807 
Invitrogen). Finally, sections were then incubated in Sudan Black B (199664-25g, Sigma) to 808 
reduce autofluorescence and coverslipped using Prolong antifade mounting media (P36980, 809 
Invitrogen). A quality control slide was used to verify the efficacy of the antibody stripping 810 
process. A detailed description of the method is provided in Ehrenberg et al.43 Sections were 811 
scanned using a Zeiss AxioScan Slide Scanner.  812 
 813 
For generating the images shown in Fig. 3h, a section from case #6 (Braak stage 2, see Table 1) 814 
was stained with gallocyanin-chrome alum following standard methods42. The section was 815 
placed on a cover slip and scanned using a Zeiss AxioScan Slide Scanner. Next, the section was 816 
removed from the cover slip and underwent immunofluorescence for RORB and CP13 as 817 
described above. Then, the section was placed on a cover slip and scanned once more.     818 
 819 
 820 
Neuronal quantification. The caudal EC delineations carried out in the hematoxylin and eosin-821 
stained slides were then transferred to the immunostained images. Within these borders, we 822 
randomly placed four 500x500 µm regions of interest (ROI) overlaying the EC external layers (I 823 
to III), which we identified as being external to dissecans-1. We then extracted the ROIs for 824 
quantification in ImageJ (Fig. 3). The number of excitatory neurons was quantified by 825 
segmenting the TBR1 signal, using a threshold to create a mask and the segmentation editor 826 
plugin to manually remove all non-neuronal artifacts and vessels. The number of RORB+ 827 
excitatory neurons was then counted using the mask of excitatory (TBR1+) neurons in the 828 
segmentation editor and manually removing all neurons not expressing RORB. All 829 
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segmentations were manually verified for quality control. Quantification was done blinded to the 830 
neuropathological diagnosis.We quantified phospho-tau (CP-13) staining in two ROIs in a subset 831 
of the cases, using the same FIJI protocol. 832 
 833 
 834 
DATA AVAILABILITY  835 
The raw snRNA-seq sequencing data and unfiltered UMI count matrices are available on the 836 
Gene Expression Omnibus (GEO) under the accession GSE147528. Single-cell data after quality 837 
control is available for download in synapse.org at under the Synapse ID syn21788402. Post 838 
quality-control data can also be explored interactively through the CellXGene platform at 839 
https://kampmannlab.ucsf.edu/ad-brain.  840 
 841 
CODE AVAILABILITY  842 
We provide the full bioinformatics pipeline for the analysis of snRNA-seq data in this paper at 843 
https://kampmannlab.ucsf.edu/ad-brain-analysis. 844 
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 1118 
Fig. 1 | AD progression differentially affects the cell-type composition of the EC and SFG. a,1119 
Schematic of experimental design and sample processing. Darker shades of red in brain cartoons 1120 
reflect more severe AD-tau neurofibrillary pathology. b-c, tSNE projection of cells from the EC 1121 
(b) and SFG (c) in their respective alignment spaces, colored by individual of origin (center) or 1122 
cluster assignment (outer). d-e, Heatmap and hierarchical clustering of clusters and cluster 1123 
marker expression (top subpanel); “High” and “Low” relative expression reflect above- and 1124 
below-average expression, respectively (see Methods). Expression of cell type markers in each 1125 
cluster (second subpanel). The average number of cells and average number of genes detected 1126 
per cell in each cluster (third and fourth subpanels). f-g, Relative abundance of major cell types 1127 
across Braak stages. Cell type abbreviations: Exc – excitatory neurons, Oligo – 1128 
oligodendrocytes, Astro – astrocytes, Inh – inhibitory neurons, OPC – oligodendrocyte precursor 1129 
cells, Micro – microglia, Endo – endothelial cells.  1130 
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 1132 
Fig. 2 | RORB-expressing excitatory neuron subpopulations in the EC are selectively 1133 
vulnerable. a-b, tSNE projection of excitatory neurons from the EC (a) and SFG (b) in their 1134 
respective alignment spaces, colored by individual of origin (center) or subpopulation identity 1135 
(outer). c-d, Heatmap and hierarchical clustering of subpopulations and subpopulation marker 1136 
expression (top subpanel); “High” and “Low” relative expression reflect above- and below-1137 
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average expression, respectively (see Methods). Relative abundance of subpopulations across 1138 
Braak stages (second subpanel). Expression heatmap of EC layer-specific genes identified from 1139 
Ramsden et al.34 (c, third subpanel). Expression heatmap of neocortical layer-specific genes from 1140 
Lake et al.19 (d, third subpanel). Expression of selectively vulnerable subpopulation markers 1141 
identified in the EC (bottom subpanel). e, Heatmap of Pearson correlation between the gene 1142 
expression profiles of EC and SFG subpopulations.  1143 
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Fig. 3 | Immunofluorescence of the EC validates selective vulnerability of RORB-expressing 1146 
excitatory neurons. a, The method for extracting regions of interest (ROI) is illustrated using a 1147 
representative brain slice used for immunofluorescence with the EC delineated in red. Four ROIs 1148 
(drawn in red squares) were randomly distributed along the superficial layers of the EC and 1149 
extracted for quantification after masking neurons (see Methods). A representative ROI image 1150 
with DAPI, NeuN, TBR1, and RORB staining is shown. The anatomical orientation of the slice 1151 
is provided in the top left corner (D – dorsal, V – ventral, M – medial, L – lateral). b, 1152 
Representative RORB staining in a Braak stage 1 sample (left) vs. a Braak stage 5 sample (right), 1153 
shown with (top) and without (bottom) excitatory neurons marked by TBR1 staining. The EC 1154 
layers captured in the image are demarcated in the bottom subpanels (see Methods and Extended 1155 
Data Fig. 6). c, Representative CP13 staining in a Braak stage 6 sample, shown together with 1156 
TBR1 and RORB staining (left) or only with RORB staining (right). d-e, Proportion of TBR1+ 1157 
cells among all cells (d) or proportion of RORB+ cells among TBR1+ cells (e) averaged across 1158 
ROIs for each individual across groups of Braak stages. f, Proportion of CP13+ cells in RORB- 1159 
or RORB+ excitatory neurons (i.e. TBR1+ cells) averaged across ROIs for each individual 1160 
across groups of Braak stages. g, Contingency tables of raw counts of TBR1+ cells based on 1161 
their RORB or CP13 staining status summed across ROIs and individuals for each group of 1162 
Braak stages; the Fisher’s Exact Test p-value is shown below each table. h, Representative image 1163 
of EC layer II neurons stained with gallocyanin (top subpanel) with the corresponding RORB 1164 
and CP13 immunofluorescence signal shown in selected fields (Field 1 – middle subpanels, Field 1165 
2 – bottom subpanels). RORB+ neurons include both large multipolar neurons (m1, m3, m4, m5) 1166 
and pyramidal neurons (p1). One large multipolar neuron (m2) is RORB-. The neuronal somas 1167 
are outlined manually in white in the RORB immunofluorescence images to aid interpretation. 1168 
Scale bars shown in a-c correspond to 100 microns; scale bars shown in h correspond to 15 1169 
microns.  1170 
  1171 
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 1172 

 1173 
 1174 
Fig. 4 | Inhibitory neuron subpopulations do not consistently show differences in resilience 1175 
or vulnerability to AD progression. a-b, tSNE projection of inhibitory neurons from the EC (a) 1176 
and SFG (b) in their respective alignment spaces, colored by individual of origin (center) or 1177 
subpopulation identity (outer). c-d, Heatmap and hierarchical clustering of subpopulations and 1178 
subpopulation marker expression (top subpanel); “High” and “Low” relative expression reflect 1179 
above- and below-average expression, respectively (see Methods). Relative abundance of 1180 
subpopulations across Braak stages (middle subpanel). Expression heatmap of inhibitory neuron 1181 
molecular subtype markers from Lake et al.19 (bottom subpanel).  1182 
  1183 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.04.04.025825doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.04.025825


 

36

1184 
Fig. 5 | GFAPhigh astrocytes show signs of dysfunction in glutamate homeostasis and 1185 
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synaptic support. a-b, tSNE projection of astrocytes from the EC (a) and SFG (b) in their 1186 
respective alignment spaces, colored by individual of origin (center) or subpopulation identity 1187 
(outer). c-d, Heatmap and hierarchical clustering of subpopulations and subpopulation marker 1188 
expression (top subpanel); “High” and “Low” relative expression reflect above- and below-1189 
average expression, respectively (see Methods). Relative abundance of subpopulations across 1190 
Braak stages (middle subpanel). Expression of genes associated with reactive astrocytes, with 1191 
median expression level marked by line (bottom subpanel). e, Enrichment analysis of overlap 1192 
between differentially expressed genes in GFAPhigh astrocytes vs. differentially expressed genes 1193 
in reactive astrocytes from Anderson et al.56 The number of genes in each gene set and the 1194 
number of overlapping genes are shown in parentheses, and the hypergeometric test p-values 1195 
(corrected for multiple testing using the Benjamini-Hochberg procedure) are shown without 1196 
parentheses. f, Enrichment of Reactome pathways in downregulated genes in GFAPhigh 1197 
astrocytes, with selected terms highlighted in color. g, Functional association network (see 1198 
Methods) of downregulated genes shared between EC and SFG GFAPhigh astrocytes that overlap 1199 
with those in Anderson et al.56 Genes with stronger associations are connected by thicker lines. 1200 
Genes that belong to selected gene sets in k are highlighted in color.  1201 
  1202 
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 1203 
 1204 
TABLE 1 1205 
 1206 

Cases used for snRNA-seq 

Case 
# 

Braak 
stage 

Sex Age at 
death 

(years) 

Post-
mortem 
interval 
(hours) 

ADNC 
score 

CDR 
before 
death 

APOE 
genotype 

Source 

1 0 M 50 13 A0,B0,C0 0 E3/E3 BBAS 
2 0 M 60 12 A0,B0,C0 0.5 E3/E3 BBAS 
3 0 M 71 12 A1,B0,C0 0 E3/E3 BBAS 
4 2 M 72 15 A1,B1,C0 0 E3/E3 BBAS 

5* 2 M 77 4.9 A2,B1,C1 0.5 E3/E3 UCSF 
6* 2 M 87 30 A2,B1,C2 2 E3/E3 UCSF 
7* 2 M 91 50 A1,B1,C1 0 E3/E3 UCSF 
8* 6 M 72 6.9 A3,B3,C3 3 E3/E3 UCSF 
9* 6 M 82 6.7 A3,B3,C3 3 E3/E3 UCSF 
10 6 M 82 9 A3,B3,C3 3 E3/E3 UCSF 

Cases used for immunofluorescence validation 

Case 
# 

Braak 
stage 

Sex Age at 
death 

Post-
mortem 
interval 
(hours) 

ADNC 
score 

CDR 
before 
death 

APOE 
genotype 

Source 

5* 2 M 77 4.9 A2,B1,C1 0.5 E3/E3 UCSF 
6* 2 M 87 30 A2,B1,C2 2 E3/E3 UCSF 
7* 2 M 91 50 A1,B1,C1 0 E3/E3 UCSF 
8* 6 M 72 6.9 A3,B3,C3 3 E3/E3 UCSF 
9* 6 M 82 6.7 A3,B3,C3 3 E3/E3 UCSF 
11 0 F 62 10.1 A1,B0,C0 0 NA BBAS 
12 0 M 64 12 A0,B0,C0 0 E3/E3 BBAS 
13 1 M 60 19 A0,B1,C0 0 NA BBAS 
14 1 F 64 13 A1,B1,C0 0 E3/E3 BBAS 
15 1 M 70 11 A1,B1,C0 0 E3/E3 BBAS 
16 1 F 82 9.6 A1,B1,C0 0 NA BBAS 
17 2 F 79 18 A1,B1,C1 0 E3/E3 BBAS 
18 2 F 81 30.3 A1,B1,C0 NA E3/E3 UCSF 
19 3 M 81 8.3 A2,B2,C3 1 NA UCSF 
20 3 M 84 28 A3,B2,C2 1 NA UCSF 
21 3 F 88 9.8 A3,B2,C2 0.5 E3/E3 UCSF 
22 3 M 89 9.1 A3,B2,C2 1 E3/E3 UCSF 
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23 4 F 87 9.5 A1,B2,C3 2 E3/E3 UCSF 
24 4 M 91 11.2 A3,B2,C2 0.5 E3/E3 UCSF 
25 4 M 103 7.8 A1,B2,C2 NA E3/E3 UCSF 
26 5 M 77 8.4 A3,B3,C3 0.5 E4/E4 UCSF 
27 5 M 85 11.2 A3,B3,C3 1 E3/E3 UCSF 
28 5 M 86 8.6 A3,B3,C3 2 E3/E4 UCSF 
29 5 F 87 17 A3,B3,C2 3 E3/E3 BBAS 
30 6 F 64 7.3 A3,B3,C3 3 E3/E4 UCSF 
31 6 F 67 9.7 A3,B3,C3 3 E4/E4 UCSF 

 1207 
Table 1 | Description of post-mortem cohort.  1208 
Asterisks denote cases used both for snRNA-seq and immunofluorescence validation. The AD 1209 
neuropathological change (ADNC) score incorporates assessment of amyloid-beta deposits 1210 
(“A”), staging of neurofibrillary tangles (“B”), and scoring of neuritic plaques (“C”)100. The 1211 
Clinical Dementia Rating (CDR) reflects the degree of cognitive impairment101.  1212 
 1213 
 1214 
  1215 
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EXTENDED DATA 1216 
 1217 

 1218 
Extended Data Fig. 1 | Data quality and initial clustering without cross-sample alignment. 1219 
a-b, Mean number of genes (a) or UMIs (b) detected per cell across individual samples for major 1220 
cell types identified in each dataset. Grubman et al.22 did not resolve excitatory neurons from 1221 
inhibitory neurons. Pericytes were identified only in Mathys et al.21 Cell type abbreviations: Exc 1222 
– excitatory neurons, Oligo – oligodendrocytes, Astro – astrocytes, Inh – inhibitory neurons, 1223 
OPC – oligodendrocyte precursor cells, Micro – microglia, Endo – endothelial cells, Per – 1224 
pericytes. c-d, tSNE projection of cells from the EC (c) and SFG (d) clustered without first 1225 
performing cross-sample alignment, colored by individual of origin (center) or cluster 1226 
assignment (outer). e-f, Heatmap and hierarchical clustering of clusters and cluster marker 1227 
expression (top subpanels); “High” and “Low” relative expression reflect above- and below-1228 
average expression, respectively (see Methods). Expression of cell type markers (bottom 1229 
subpanels).  1230 
  1231 
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Extended Data Fig. 2 | Expression of selected EC excitatory neuron subpopulation markers 1233 
and pathway enrichment analysis of differentially expressed genes in selectively vulnerable 1234 
EC excitatory neuron subpopulations. a, Expression heatmap of genes that are specifically 1235 
expressed by four or fewer EC excitatory neuron subpopulations; “High” and “Low” relative 1236 
expression reflect above- and below-average expression, respectively (see Methods). b-d, 1237 
Enrichment analysis against Gene Ontology Cellular Component terms or Reactome Pathways 1238 
(b,d) and functional association network analysis (c,e; see Methods) of genes with higher (b-c) 1239 
or lower expression (d-e) in RORB+ vulnerable EC excitatory neurons, with selected terms 1240 
highlighted by color. In panels c and e, genes with stronger associations are connected by thicker 1241 
lines, and genes without known associations are not shown.  1242 
  1243 
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 1244 
Extended Data Fig. 3 | Differential expression analysis across Braak stages for EC 1245 
excitatory neuron subpopulations. a-b, Number of differentially expressed genes in EC 1246 
excitatory neuron subpopulations with higher (a) or lower (b) expression in Braak stage 6 vs. 1247 
Braak stage 0. c-f, Enrichment analysis against Gene Ontology Cellular Component terms (c-d) 1248 
or Reactome Pathways (e-f) of differentially expressed genes in EC excitatory neuron 1249 
subpopulations with higher (c,e) or lower (d,f) expression in Braak stage 6 vs. Braak stage 0. 1250 
  1251 
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Extended Data Fig. 4 | Alignment of EC and SFG maps homologous excitatory neuron 1253 
subpopulations. a, tSNE projection of excitatory neurons from the EC and SFG in the joint 1254 
alignment space, colored by subpopulation identity (top), individual of origin (middle), or brain 1255 
region (bottom). b, Heatmap and hierarchical clustering of subpopulations and subpopulation 1256 
marker expression (top subpanel); “High” and “Low” relative expression reflect above- and 1257 
below-average expression, respectively (see Methods). Relative abundance of subpopulations 1258 
across Braak stages (second and third subpanels). Expression heatmap of EC layer-specific genes 1259 
identified from Ramsden et al.34 (fourth subpanel). Expression heatmap of neocortical layer-1260 
specific genes from Lake et al.19 (fifth subpanel). Expression of selectively vulnerable EC 1261 
excitatory neuron subpopulation markers by excitatory neurons in the EC (sixth subpanel) or 1262 
SFG (bottom subpanel). Significant beta regression P values (adjusted for multiple testing) are 1263 
shown in a table at the bottom of the panel. c, Sankey diagram connecting subpopulation identity 1264 
of excitatory neurons in the EC alignment space and the SFG alignment space to subpopulation 1265 
identity in the EC+SFG alignment space. The links connecting EC:Exc.s2 and EC:Exc.s4 to 1266 
SFG:Exc.s2 and SFG:Exc.s4, respectively, are highlighted.  1267 
  1268 
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 1269 
Extended Data Fig. 5 | Cross-sample alignment of excitatory neurons from Mathys et al. 1270 
recapitulates selective vulnerability in a RORB-expressing subpopulation. a, tSNE 1271 
projection of excitatory neurons from Mathys et al.21 in the alignment space, colored by 1272 
subpopulation identity (top) or individual of origin (bottom). b, Heatmap and hierarchical 1273 
clustering of subpopulations and subpopulation marker expression (top subpanel); “High” and 1274 
“Low” relative expression reflect above- and below-average expression, respectively (see 1275 
Methods). Relative abundance of subpopulations in in AD cases vs. controls, separated by sex 1276 
(second and third subpanels). Expression heatmap of neocortical layer-specific genes from Lake 1277 
et al.19 (fourth subpanel). Expression of selectively vulnerable EC excitatory neuron 1278 
subpopulation markers (bottom subpanel). c, Heatmap of Pearson correlation between the gene 1279 
expression profiles of excitatory neuron subpopulations from the EC vs. those from the 1280 
prefrontal cortex in Mathys et al.21  1281 
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Extended Data Fig. 6 | Delineation of the EC for each case used in immunofluorescence 1284 
validation. a, The borders of the caudal EC delineated on sections stained with hematoxylin and 1285 
eosin (H&E) for all 26 cases used in immunofluorescence validation (Table 1). b, Borders of the 1286 
EC were determined with the aid of 400 um thick serial coronal sections of whole-brain 1287 
hemispheres stained with gallocyanin (see Methods). Each H&E section (left) along with its 1288 
corresponding immunofluorescence image (middle) was aligned to the most approximate 1289 
gallocyanin section (right), in which the the dissecans layers (diss-1, diss-2, and diss-ext) 1290 
characteristic of the caudal EC were easier to visualize. This was then used to guide delineation 1291 
of the EC on the H&E and immunofluorescence sections. For more details on the 1292 
cytoarchitectonic definitions used to define the caudal EC, please consult Heinsen et al.42.  1293 
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 1295 
Extended Data Fig. 7 | Inhibitory neurons from Mathys et al. also do not show differences 1296 
in resilience or vulnerability to AD. a, tSNE projection of inhibitory neurons from Mathys et 1297 
al.21 in the alignment space, colored by subpopulation identity (top) or individual of origin 1298 
(bottom). b, Heatmap and hierarchical clustering of subpopulations and subpopulation markers 1299 
(top subpanel); “High” and “Low” relative expression reflect above- and below-average 1300 
expression, respectively (see Methods). Relative abundance of subpopulations in in AD cases vs. 1301 
controls, separated by sex (second and third subpanels). Expression heatmap of inhibitory neuron 1302 
subtype markers from Lake et al.19 (bottom subpanel).  1303 
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Extended Data Fig. 8 | Subclustering of microglia does not sufficiently resolve disease 1306 
associated microglia signature. a-c, tSNE projection of astrocytes from the EC (a), SFG (b), 1307 
and Mathys et al.21 (c) in their respective alignment spaces, colored by subpopulation identity 1308 
(left) or individual of origin (right). d-f, Heatmap and hierarchical clustering of subpopulations 1309 
and subpopulation marker expression (top subpanels); “High” and “Low” relative expression 1310 
reflect above- and below-average expression, respectively (see Methods). Relative abundance of 1311 
subpopulations across Braak stages in the EC and SFG or between AD cases vs. controls in 1312 
Mathys et al.21 (middle subpanels). Expression of disease associated microglia markers, with 1313 
median expression level marked by line (bottom subpanels).  1314 
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 1316 
Extended Data Fig. 9 | Subclustering of oligodendrocytes identifies subpopulations with 1317 
higher expression of AD-associated oligodendrocyte markers from Mathys et al. a-c, tSNE 1318 
projection of oligodendrocytes from the EC (a), SFG (b), and Mathys et al.21 (c) in their 1319 
respective alignment spaces, colored by subpopulation identity (left) or individual of origin 1320 
(right). d-f, Heatmap and hierarchical clustering of subpopulations and subpopulation marker 1321 
expression (top subpanels); “High” and “Low” relative expression reflect above- and below-1322 
average expression, respectively (see Methods). Relative abundance of subpopulations across 1323 
Braak stages in the EC and SFG or between AD cases vs. controls in Mathys et al.21 (middle 1324 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 23, 2020. ; https://doi.org/10.1101/2020.04.04.025825doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.04.025825


 

53

subpanels). Relative expression of AD-associated oligodendrocyte subpopulation markers from 1325 
Mathys et al.21 (bottom subpanels).  1326 
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 1328 
Extended Data Fig. 10 | Astrocyte subpopulations with high GFAP expression from Mathys 1329 
et al. are highly similar to those from the EC and SFG. a, tSNE projection of astrocytes from 1330 
Mathys et al.21 in the alignment subspace, colored by subpopulation identity (top) or individual 1331 
of origin (bottom). b, Heatmap and hierarchical clustering of subpopulations and subpopulation 1332 
marker expression (top subpanel); “High” and “Low” relative expression reflect above- and 1333 
below-average expression, respectively (see Methods). Relative abundance of subpopulations in 1334 
in AD cases vs. controls, separated by sex (middle subpanels). Expression of genes associated 1335 
with reactive astrocytes, with median expression level marked by line (bottom subpanel). c, 1336 
Enrichment analysis of overlap between differentially expressed genes in astrocytes with high 1337 
GFAP expression from Mathys et al.21 vs. differentially expressed genes in astrocytes with high 1338 
GFAP expression from the EC and SFG; the number of genes in each gene set and the number of 1339 
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overlapping genes are shown in parentheses, and the hypergeometric test p-values are shown 1340 
without parentheses.   1341 
  1342 
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SUPPLEMENTARY TABLE LEGEND 1343 
 1344 
Supplemental Table 1 | Genes differentially expressed by selectively vulnerable excitatory 1345 
neurons compared to all other excitatory neurons in the EC.  The column “gene” contains 1346 
official gene symbols of differentially expressed genes, “logFC” contains the associated log2 1347 
fold-change, “logCPM” contains the log2-transformed normalized counts of transcripts mapping 1348 
to the gene averaged across all conditions, “F” contains the value of the quasi-likelihood F-1349 
statistic (see edgeR documentation) used to determine differential expression, “Pvalue” contains 1350 
the raw P values associated with the quasi-likelihood F-test, “FDR” contains P values adjusted 1351 
for multiple testing using the Benjamini-Hochberg method.   1352 
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