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Abstract 28	

Climate change is expected to alter the distribution and abundance of tree species, impacting 29	

ecosystem structure and function. Yet, anticipating where this will occur is often hampered by a 30	

lack of understanding of how demographic rates, most notably recruitment, vary in response to 31	

climate and competition across a species range. Using large-scale monitoring data on two dry 32	

woodland tree species (Pinus edulis and Juniperus osteosperma), we develop an approach to 33	

infer recruitment, survival, and growth of both species across their range. In doing so, we 34	

account for ecological and statistical dependencies inherent in large-scale monitoring data. We 35	

find that warming and drying conditions generally lead to declines in recruitment and survival, 36	

but there were some idiosyncrasy in the strength of responses across species. Climate conditions 37	

lead to vulnerable regions, such as Pinus edulis in N. Arizona, where both survival and 38	

recruitment are low. Our approach provides a path forward for leveraging emerging large-scale 39	

monitoring and remotely sensed data to anticipate the impacts of global change on species 40	

distributions. 41	

Keywords: climate, competition, demography, Pinus edulis, Juniperus osteosperma  42	

Introduction  43	

Changing climate, disturbance regimes, and human activity are expected to reshape the 44	

distribution of forest and woodland species across the globe, potentially transforming the 45	

structure of these ecosystems (Allen et al. 2010, McDowell et al. 2018). Although, mortality of 46	

overstory plants are often the most obvious indicators of declining forest and woodland health 47	

(e.g. Millar and Stephenson 2015), the resilience and long-term viability of tree species in the 48	

face of environmental change will be determined by not only the survival of existing individuals, 49	

but also the recruitment and growth of new individuals that drive population recovery and 50	
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spread, i.e. resilience (Jackson et al. 2009). Evidence of declining forest health and resilience due 51	

to declining recruitment is increasingly common (Petrie et al. 2017, Stevens-Rumann et al. 52	

2018).  Yet anticipating where forest and woodland species may be most vulnerable to 53	

environmental change is often hampered by a lack of understanding of how rates of survival, 54	

growth, and, most notably, recruitment vary across a species range and the environmental 55	

conditions driving them.  56	

Demographic processes are increasingly recognized to be critical to understanding 57	

species range shifts and ecosystem state changes in response to climate change (Briscoe et al. 58	

2019). But, efforts to estimate how plant recruitment, survival, and growth vary across large 59	

spatial scales are limited, in part because many traditional demographic inference approaches 60	

(e.g. Easterling et al. 2000) do not typically accommodate diverse data structures and the 61	

ecological/statistical dependences inherent to large spatial data. Instead, plant demographic 62	

analyses have typically placed the onus on researchers to mark and return to individuals and 63	

independently measure each demographic transition in the field, making it logistically 64	

challenging to scale data collection to larger areas. At the same time, there has been an explosion 65	

of diverse datasets from large-scale field monitoring and remote sensing (e.g. Forest Inventory 66	

and Analysis Database, lidar) with the potential to revolutionize our understanding of spatio-67	

temporal plant demographic processes and their population consequences. Yet, these data 68	

sources rarely provide data on both survival and recruitment at the individual-scale resolution 69	

required for traditional demographic modeling approaches. Harnessing the power of these 70	

datasets will require flexible modeling approaches that can link detailed, individual demographic 71	

data with additional data sources that describe how demographic processes drive changes in 72	
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abundance and population structure across large landscapes and over decades (Shriver et al. 73	

2019).  74	

Here, we develop an approach to infer the range-wide recruitment, survival, and growth 75	

rates of two widespread dry woodland species using large-scale Forest Inventory and Analysis 76	

(FIA) data. Because FIA plots encompass nearly the entire range of many tree species, they 77	

present a unique opportunity to understand how demographic rates vary across a species’ range 78	

and identify where populations may be most vulnerable to changing climate and disturbance. 79	

But, FIA data also present a number of challenges (see Methods for full explanation), most 80	

notably accounting for ecological dependencies in quantifying recruitment. Specifically, 81	

seedlings are not tagged but simply counted, thus the fate (growth/survival) of existing seedlings 82	

are not independently quantified from new recruits. We overcome this challenge by developing 83	

an integrated population modeling approach that accounts for ecological dependencies while also 84	

accounting for spatial autocorrelation and sharing information across sites in a rigorous way.  85	

Methods 86	

FIA Data 87	

We developed our demographic models using the publicly available FIA database 88	

(http://www.fia.fs.fed.us/). FIA is a systematic and standardized survey of forested regions in the 89	

entire United States, including both public and private lands. Full details on the sampling design 90	

can be found in Bechtold and Patterson (2005). 91	

We focus our analyses on two widespread dry woodland species in the Colorado Plateau 92	

and Great Basin regions: Pinus edulis (hereafter PiEd) and Juniperus osteosperma (hereafter 93	

JuOs). Nearly the entire ranges of both species are within the United States, thus FIA data 94	

provide a near complete survey of their range-wide dynamics. Because our primary focus was 95	
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quantifying demographic rates of each species and linking these to climate across their range, we 96	

excluded all plots in which fire mortality or tree harvesting occurred. This resulted in 2,013 plots 97	

with 16,951 tagged PiEd individuals, and 2,380 JuOs plots with 25,105 tagged JuOs individuals. 98	

All PiEd and JuOs individuals greater than 15.24 cm (6 in.) in height are surveyed. Within each 99	

plot, all adult trees greater than 12.7 cm (5 in.) diameter are assigned unique tags and tracked 100	

within 4, 7.32 m (24 ft.) radius subplots. All saplings <12.7 cm  &  > 2.54 cm (1 in.) diameter are 101	

assigned unique tags and tracked within 4, 2.07 m (6.8 ft.) radius microplots within the larger 102	

adult plots. Finally, seedlings <2.54 cm diameter are counted within the same microplots as the 103	

saplings. 104	

Two censuses were conducted 10 years apart in each plot. In some cases, additional plot 105	

surveys occurred between the standard 10 year interval. These additional surveys were excluded 106	

because they were sporadic and not standardized across the dataset. The exact timing of the 107	

initial censuses varied by state and region within state (typically 10-20% of plots in each state are 108	

surveyed each year) but occurred between 2000 and 2007.  109	

Demographic Modeling 110	

Data on adult and sapling growth and survival are collected at the individual level. 111	

Individual plants >2.54 cm diameter are tagged, and as a result the growth and survival of an 112	

individual plant can be tracked over the census interval. We develop growth (i.e. change in size) 113	

and survival models following the well-developed generalized linear model functional forms 114	

common for plant demography models (Rees et al. 2014). Individual diameter size change is 115	

modeled as  116	

z !,!!!~𝑁𝑜𝑟𝑚𝑎𝑙(𝑢!,! ,𝜎!)  [1] 117	

𝑢!,! = 𝛼(!)𝑧!,! + 𝐗![!]𝐛(!) + 𝜔![!]  [2] 118	
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Where z !,! is the size of plant i (i=1…I) in the first census (t), 𝛼(!) is a regression coefficient for 119	

plant size, 𝐗![!] is a vector of plot-level environmental covariates for plot d (d=1…D) where 120	

individual i is located, 𝐛(!) is a vector of environmental regression parameters specific to the size 121	

model, 𝜔![!] is a plot-level spatial random effect, and 𝜎 is a variance parameter.  122	

Similarly, survival probability is modeled as 123	

s!,!!!~𝐵𝑒𝑟𝑛(𝑝!,!) [3] 124	

𝑙𝑜𝑔𝑖𝑡(𝑝!,!) = 𝛼(!) 𝑧!,! + 𝐗![!]𝐛(!) + 𝛿![!] [4] 125	

where 𝑝!,! is the probability of survival for individual i from t to t+1, 𝑧!,! is again the size of plant 126	

i in the first census (t), 𝛼(!) is a regression coefficient for plant size on survival, 𝐛(!) is a vector 127	

of environmental regression parameters specific survival, and 𝛿![!] is a plot-specific spatial 128	

random effect for each individual i. Note, the comparatively small number of observed JuOs 129	

mortality events led spatial random effects to be non-identifiable, thus were not included in the 130	

JuOs survival model.  131	

Spatial random effects were fit using a predictive process model (Banerjee et al. 2008, 132	

Latimer et al. 2009). Predictive process models address the computational challenges of fitting 133	

spatial models to large datasets by reducing point locations (i.e. plots) to a lesser number of 134	

constituent knots that encapsulate the landscape of spatially autocorrelated processes not 135	

explained by covariates. In the case of growth random effects,  136	

𝛚∗~𝑀𝑉𝑁(0, Σ∗)  [5] 137	

Σ!,!!
∗ = 𝜏(!)𝑒

!!(!)!!,!!    [6] 138	

𝛚 = Σ(!,!∗)Σ∗!!𝛚∗   [7] 139	
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𝛚∗ is a K-length vector of random effects (𝛚∗=𝜔∗
!,𝜔∗

!…𝜔∗
!) associated with each knot (k).  140	

Σ∗ is a covariance matrix where each element is a correlation among knots weighted by 141	

distance, 𝛿!,!!. 𝜙 is a parameter describing the rate at which correlations decay as a function of 142	

distance (km), and 𝜏 is an error term. 𝛚 is a D-length vector of random effects for each plot 143	

(𝜔! = 𝜔!,𝜔!…𝜔!). The underlying knot-based spatial landscape is then linked back to specific 144	

plots using Eq. 7, where Σ(!,!∗) is a cross-covariance matrix which describes the spatial 145	

relationship between plots (𝛚) and knots (𝛚∗) using Eq. 6, where in this case 𝛿!,!! is the distance 146	

(km) between each the fuzzed location of plot (d) and knot (k) pair. While model fit will improve 147	

as the number of knots increase, the choice of the number of knots is a tradeoff of model fit and 148	

computational efficiency. We follow the recommendations of Latimer et al. 2009 (i.e. 100-400 149	

knots) by using 200 knots who’s locations are assigned to maximize coverage of FIA plot 150	

locations using the “cover.design” function in the “fields” package (v. 9.6) in R (Nychka and 151	

Furrer 2017). 152	

FIA data present several challenges for estimating recruitment rates. First, unlike the 153	

growth and survival of saplings and adults, the recruitment, growth, & survival of seedling is 154	

never directly observed. All conifers <2.54 cm diameter but >15.25cm height are simply 155	

counted, making it impossible to directly separate new recruits from the fate of pre-existing 156	

seedlings. In other words, the change in the count from census to census represents both new 157	

recruitment, but also the survival and growth of existing plants. While this data structure does 158	

not preclude inference on the underlying reproduction rate, it is incompatible with most 159	

traditional statistical approaches (e.g. Poisson GLMs) for estimating plant reproduction 160	

recruitment, which require clearly identifying the reproductive output (e.g. seeds) of existing 161	

individuals and the fate of these propagules.  162	
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Second, the search area for seedlings is small given the low density of seedlings, and 163	

considerably smaller than area adult trees are measured over (~12x smaller). This presents a 164	

challenge for estimating recruitment because as the number of individuals in a plot declines 165	

separating the true signal of environmental and spatial processes from noise introduced by 166	

sampling and demographic stochasticity is increasingly difficult. This may be particularly 167	

problematic for tree species exhibiting spatially and temporally heterogeneous seedling 168	

distributions, such as woodland tree species (Bell et al. 2014). 169	

To address these challenges, we developed an integrated size-structured population 170	

modeling approach that shares available information among our different datasets (i.e. 171	

growth/survival of adults/saplings and counts of seedlings) and across FIA plots to infer the 172	

growth and survival of seedlings along with the reproductive output of existing trees leading to 173	

new recruits. Because the fate of all tagged individuals in the first census (i.e. any individual 174	

>2.54 cm) is already known, our goal is to build a model that describes the fate of all untagged 175	

individuals. Untagged individuals include all plants <2.54 cm and any plants that were not 176	

tagged in the first census, but reached the minimum tagged size (2.54 cm) by the second census. 177	

Plants reaching the 2.54 cm threshold in the second census could comprise existing plants 178	

previously <2.54 cm or new recruits.   179	

We model the number of untagged plants in a plot as conditionally Negative Binomial 180	

𝐜!,!!!! ~𝑁𝑒𝑔.  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐧!,!!!! ∗ 𝑎, 𝜅)  [8] 181	

Where 𝐜!,!!!!  is a 5x1 vector of the counts of all untagged plants in plot d at the second census 182	

t+1. 𝐧!,!!!!  is a 5x1 vector of area standardized occurrence rates. 𝑎 is the total plot area in which 183	

plants were counted. And, 𝜅 is a dispersion parameter. Each element in 𝐜!,!!!!  represents the 184	

counts of individuals in each 2.54 cm (or 1 inch) diameter class up to 12.7 cm. While the choice 185	
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of diameter class is flexible, we use the natural choice of 2.54 cm diameter classes for all trees 186	

because the FIA dataset already lumps any plants <2.54 cm into a single class. Only plants less 187	

than 12.7 cm (i.e. size classes 1 to 5) were considered because untagged plants larger than this 188	

are more likely a results of previous missed observations than growth and recruitment from the 189	

smallest classes. 𝐧!,!!!!  is defined as  190	

𝐧!,!!!! = 𝐀!,!𝐧!,!  [9] 191	

Where 𝐀!,! is a 5 x 30 (h=1…5, j=1…30) discretized integral projection model (IPM) kernel (i.e. 192	

a matrix projection model with 2.54 cm size classes) describing all the pathways by which an 193	

existing plant could lead to an untagged plant (survival/growth of existing plants <2.54 cm and 194	

new reproduction from existing plants). 𝐧!,! is a 30x1 vector of area standardized rates of 195	

occurrence of all plants in the first census in each 2.54 cm bin, derived from the empirical counts 196	

of all plants.  197	

𝐀!,! is made up by the two different pathways by which untagged plants may appear: 1) 198	

the growth/survival of plants that were <2.54 cm in the previous census, and 2) recruitment 199	

arising from reproduction of existing trees.  200	

𝐴!,! = 𝑔!,! ∗ 𝑠!
!".!

+ 𝑟! ∗ 𝑓!
!".!

  [10] 201	

The first term (10.1) describes the fate of individuals <2.54 cm at time t. 𝑔!,! aregrowth 202	

transition probabilities describing the movement of individuals in size class 1 to size classes 1 to 203	

5. 𝑠! is the survival probability of individuals in size class j=1 at time t. The second term (10.2) 204	

describes the number of new recruits produced per existing plant in each size class, 𝑓!, and the 205	

probability new recruits will transition to size class h by the second census. Note each element in 206	

Eq. 10 would also be indexed by site (d) and census interval (t), but we have omitted this for 207	

clarity.  208	
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Like tagged plants, 𝑔!,! is defined by a normal distribution, but here it is a discretized 209	

kernel to account for size class binning. For a given site, d,  210	

𝑔!,! = (Φ(𝑈𝑝𝑝𝑒𝑟!|𝑢! ,𝜎!)−Φ(𝐿𝑜𝑤𝑒𝑟!|𝑢! ,𝜎!))/Φ(0|𝑢! ,𝜎!)  [11] 211	

Where Φ indicates a cumulative normal distribution with mean 𝑢 and variance 𝜎! evaluated at 212	

the upper and lower size limit of size bin h (Doak et al, In Revison). The final term renormalizes 213	

the kernel to strictly positive size values to prevent biologically impossible transitions to 214	

negative sizes. 𝑢 is the same function used to evaluate the growth of tagged individuals (see eqs. 215	

1 and 2), but in this case individual size (𝑧𝒊,𝒕) is approximated by the midpoint of bin j=1, 𝑚!   216	

𝑢! = 𝛼(!)𝑚! + 𝐗!𝐛(!) + 𝜔!   [12] 217	

𝑠! is also based on the same survival function used for tagged plants, again approximated by the 218	

midpoint of bin j=1 (𝑚!).  219	

𝑠! = 𝑙𝑜𝑔𝑖𝑡(𝑝!) = 𝛼(!)𝑚! + 𝐗!𝐛(!) + 𝛿𝒅 [13] 220	

𝑟! uses a Gaussian kernel (normalized to sum to 1) to estimate the probability of any new recruit 221	

reaching size classes 1 to 5 as  222	

𝑟! = 𝑁 𝑚! 𝜈, 𝜐!)/ 𝑁 𝑚! 𝜈, 𝜐!)!
!!!  [14] 223	

Finally, the function of primary interest is the number of new recruits produced per 224	

existing tree of size j, 𝑓!.   225	

log (𝑓!,!) = 𝛼(!)𝑚! + 𝐗!𝐛(!) + 𝛾𝒅   [15] 226	

Where 𝑓!,! is the number of new recruits produced per adult of size j at across all 30 size classes. 227	

𝑚! is the midpoint of each of the size classes, and 𝛼(!) is a regression parameter describing the 228	

effect of size on reproduction. 𝐛(!) are regression parameters describing the impact of size on 229	
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reproductive output, and  𝛾𝒅 is a spatial random effect again defined  by a predictive process (see 230	

Eq. 5) with its own parameters 𝜙(!) and 𝜏(!).  231	

Covariates 232	

Based on previous research in dry woodland ecosystems, covariates in 𝐗! were selected to 233	

summarize the effects of moisture availability (MA), heat stress (HS), and neighbor density (ND) 234	

on the growth, survival, and recruitment (McDowell et al. 2008, Allen et al. 2010). Moisture 235	

availability was the mean growing season (May to October) available soil water (i.e. >-3.9 MPA) 236	

over 40 to 100 cm depth over the 10-year census interval. Heat stress was the average 237	

temperature over the growing season over the 10-year census interval. Neighbor density was the 238	

basal area density of all living trees in the plot at the first census.  239	

𝐗! = [1,MA! ,MA!! ,HS! ,HS!! ,ND!  ]  

Squared MA and HS terms were added to account for possibility of nonlinear responses of 240	

species to environmental conditions across their range. Although multi-model inference using 241	

differing variables and functional form is possible given unlimited time (models take about 5-8 242	

days to fit), we chose instead to focus on a limited set of variables and functional forms that are 243	

common to the demographic modeling literature and well supported based on our prior 244	

knowledge of the biology of Piñon and Juniper. All covariate parameters were given non-245	

informative priors. Further details and covariates, model fitting, and priors can be found in the 246	

Supplemental Material.  247	

Results 248	

To understand how vital rates vary across climate and geographic space we estimated 249	

posterior mean demographic rates for a 15 cm diameter individual using the observed moisture 250	

availability, heat stress, and neighbor density in each plot as well as plot random effects. This 251	
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allowed us to quantify and visualize how vital rates change with each climate variable, while still 252	

taking into account the considerable spatial variability that can be introduced from other climate 253	

conditions (e.g. a dry-warm vs. dry-cool plot) and unaccounted for environmental conditions (i.e. 254	

random effects). 255	

Climate and competition 256	

Model results indicate consistent responses in both JuOs and PiEd recruitment to climate. 257	

In both species, recruitment increased, on average, as moisture availability increased, saturating 258	

or declining slightly in the wettest conditions (Figs. 1 & 2). JuOs and PiEd recruitment decreased 259	

with both increasing neighbor density and heat stress, but the overall magnitude of recruitment 260	

change due to heat stress is smaller than moisture availability and neighbor density. Both species 261	

showed consistent increases in recruitment output with plant size (Table S3 & S4). 262	

Posterior mean probabilities of survival were far more variable across plots for PiEd (0.2-263	

1) than JuOs (0.98-1) (Figs. 1 & 2). In fact, the number of observations of JuOs mortality not 264	

associated with fire or harvest was only 153 individuals (0.6% of 25,015), compared to 1,597 265	

(9.4% of 16,951) for PiEd.  In contrast to recruitment, increasing heat stress led to clear declines 266	

in survival. JuOs and PiEd individuals in the coolest plot are expected to have 10-year survival 267	

probabilities near 1. PiEd survival rates were declined by ~10-15% in the driest conditions, while 268	

JuOs survival declined ~1%. Plots with higher neighbor density and lower moisture availability 269	

are also estimated to have lower PiEd survival (Fig. 3), but JuOs showed no consistent survival 270	

changes across the gradient in neighbor density or moisture availability.  There was little effect 271	

of individual size on survival, and estimates overlap with 0 (Table S3 & S4).  272	

Growth (i.e. change in diameter size) increased on average for PiEd with increasing 273	

moisture availability and declining temperatures (Fig. 1). In contrast, JuOs showed little 274	
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consistent growth response to moisture availability and increasing growth with warmer 275	

temperatures (Fig. 2). Both species showed clear and consistent declines in diameter growth with 276	

increasing neighbor density and plant size, but the decrease in diameter growth with size is in 277	

part due to the radial growth geometry, and may not represent declines in overall biomass growth 278	

at larger sizes. (Table S1).   279	

Geographic Space 280	

We found limited evidence of consistent responses of either species’ demographic rates 281	

to single geographic gradients (latitude, longitude, elevation), except increasing survival at high 282	

latitudes/elevations and declining growth at high elevations in JuOs (Fig. 3, S11, & S12). 283	

However, we did find clear hotspots including low survival and recruitment in PiEd in the 4 284	

corners, lower survival and higher recruitment for JuOs in southwest Utah. We also found 285	

regions of high survival for both JuOs and PiEd in their northwestern range, with survival 286	

generally declining towards their central and southern range (Fig. 3, S11, & S12). 287	

Discussion 288	

Our approach offers a promising step forward in leveraging non-traditional 289	

spatiotemporal datasets to understand the link between plant demographic rates and large scale 290	

abundance and distribution patterns (Briscoe et al. 2019). An explosion of large-scale monitoring 291	

and remote sensing dataset provide exciting opportunities to understand the drivers of species 292	

abundance and distributions, but these datasets are rarely fully compatible with traditional 293	

demographic modeling approaches (e.g. Easterling et al. 2000).  For example, in our study, FIA 294	

data provide detailed information on individual growth and survival, yet recruitment of new 295	

individuals was not directly observed. To overcome this, we developed integrated modeling 296	

approach that simultaneously inferred the fate of existing seedling as well as new seedlings 297	
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entering the population through recruitment. Using FIA data and novel demographic inference 298	

approaches, we found that variation in abiotic climate conditions (heat stress and moisture 299	

availability) and biotic conditions (neighbor density) can both help explain variation in the 300	

recruitment, survival, and growth of woodland species across their range.  Similar modeling 301	

approaches that link individual- and population-scale data provide exciting opportunities to 302	

improve our understanding and predictions of how individual demographic rates translate into 303	

population changes over time and across landscapes (Shriver et al. 2019).  304	

 PiEd exhibited a much greater variability in survival rates, and greater sensitivity of 305	

growth and survival to heat stress and moisture availability than JuOs. This finding compliments 306	

a growing body of work which have found regional mortality in pinyon pine associated with 307	

drought and heat waves, and link the greater mortality rates in pinyon compared to juniper 308	

species to differences physiological responses to warming and drying and susceptibility of PiEd 309	

to pine beetle during drought (McDowell et al. 2008, Allen et al. 2010). Considerably less is 310	

known about environmental conditions that drive PiEd and JuOs recruitment. Consistent with 311	

findings from other semi-arid tree species (Petrie et al. 2017, Stevens-Rumann et al. 2018), we 312	

found that increasing moisture is generally associated with increasing recruitment in both JuOs 313	

and PiEd. But we also found evidence that recruitment rates may level-off, or begin to decline, in 314	

the wettest conditions. Evidence that increasing temperatures will lead directly to declining 315	

recruitment were more equivocal. With modest declines in PiEd recruitment, but no clear 316	

response in JuOs.     317	

 Together our results indicate that future warming and drying conditions, as are expected 318	

throughout the SW (Garfin et al. 2013), will likely lead to declines in survival and recruitment 319	

and increasing demographic vulnerabilities of PiEd and JuOs. Quantitatively assessing the 320	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2020. ; https://doi.org/10.1101/2020.04.03.024497doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.03.024497
http://creativecommons.org/licenses/by-nc-nd/4.0/


likelihood and speed of forest decline at different locations will require integrating these 321	

demographic vulnerabilities into population models, and will be the focus of future work. We 322	

also find potential opportunities for management to alleviate the impacts of climate change. 323	

Increases in tree density lead to notable declines in all vital rates (except JuOs survival). 324	

Managed reductions in tree density could provide an opportunity to increase individual growth 325	

and decrease the risk of widespread mortality (Bradford and Bell 2017). Similarly, increases in 326	

recruitment associated with declining density could provide a natural compensatory mechanism 327	

enabling resilience of some populations following mortality events.   328	
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Figure 1. Response of Pinus edulis (PiEd) recruitment, survival, and size to moisture 388	

availability, heat stress, and neighbor density. Posterior mean estimates of a 15 cm diameter 389	

individual for each plot (points) are aggregated into boxplots. Growth is calculated as the change 390	

in size from the size model. Each boxplot spans a width of climate space (x-axis) that includes 391	

10% of the total plots, i.e. each boxplot has an equal number of plots. Boxplot heights along y-392	

axis span the spatial variability in plots created by additional climate conditions and plot random 393	

effects.  394	

 395	

Figure 2. Response of Juniperus osteosperma (JuOs) recruitment, survival, and growth to 396	

moisture availability, heat stress, and neighbor density. Posterior mean estimates of a 15 cm 397	

diameter individual for each plot (points) are aggregated into boxplots. Growth is calculated as 398	

the change in size from the size model. Each boxplot spans a width of climate space (x-axis) that 399	

includes 10% of the total plots, i.e. each boxplot has an equal number of plots. Boxplot heights 400	

along y-axis span the spatial variability in plots created by additional climate conditions and plot 401	

random effects.  402	

 403	

Figure 3. Spatial variation in recruitment, survival, and growth for PiEd and JuOs. 404	

Posterior mean estimates of a 15 cm diameter individuals recruitment rate, survival probability, 405	

and growth at all plots (points) in response to climate, competition, and unaccounted for 406	

environmental variation (random effects). Growth is calculated as the change in size from the 407	

size model. Note, points are fuzzed plot locations from publicly available FIA data.  408	

 409	

 410	
	411	
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