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Abstract  

 

Reduced representation libraries present an opportunity to perform large scale studies on non-model 
species without the need for a reference genome. Methods that use restriction enzymes and fragment 
size selection to help obtain the desired number of loci - such as ddRAD - are highly flexible and 
therefore suitable to different types of studies. However, a number of technical issues are not 
approachable without a reference genome, such as size selection reproducibility across samples and 
coverage across fragment lengths. Moreover, identity thresholds are usually chosen arbitrarily in order 
to maximize the number of SNPs considering arbitrary parameters. We have developed a strategy to 
identify de novo a set of reduced-representation single-copy orthologs (R2SCOs). Our approach is based 
on overlapping reads that recreate original fragments and add information about coverage per fragment 
size. A further in silico digestion step limits the data to well covered fragment sizes, increasing the 
chance of covering the majority of loci across different individuals. By using full sequences as putative 
alleles, we estimate optimal identity thresholds from pairwise comparisons. We have demonstrated our 
full workflow with data from five sea turtle species. Locus numbers were similar across all species, 
even at increasing phylogenetics distances. Our results indicated that sea turtles have in general very 
low levels of heterozygosity. Our approach produced a high-quality set of reference loci, eliminating a 
series of biological and experimental biases that can strongly affect downstream analysis, and allowed 
us to explore the genetic variability within and across sea turtle species. 

 

Keywords: ddRAD, single-copy loci, non-model species, sea turtles, high-throughput sequencing, 
RAD pipeline. 
 

1. INTRODUCTION 

Reduced representation sequencing (RRS) has become very popular in the last few years among 
scientists studying the genetic variation of non-model organisms (Andrews, Good, Miller, Luikart, & 
Hohenlohe, 2016; Beichman, Huerta-Sanchez, & Lohmueller, 2018; Narum, Buerkle, Davey, Miller, & 
Hohenlohe, 2013), with special emphasis on digestion-based techniques, here commonly referred to as 
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RAD (restriction-site-associated DNA). Coupled with high-throughput sequencing technologies, RAD 
libraries produce sequencing data covering thousands to millions of short (<1000 bp) loci throughout 
the entire genome that can be replicated in large amounts of individuals, within and between related 
species. The various protocols (reviewed in Andrews et al., 2016) allow for different levels of genome 
coverage, and are differently suited to studies involving population genetics, phylogenetics, linkage 
mapping, genomic scans and association mapping. Several of the RAD flavours, such as the double-
digest RAD (ddRAD, Peterson, Weber, Kay, Fisher, & Hoekstra, 2012) and other approaches alike (e.g. 
3RAD, ddGBS), generate fixed-length (FL) fragments that must start and end at a recognition site of 
one of the restriction enzymes utilized. The FL (here generalized as ddRAD-like) protocols offer high 
flexibility in terms of number of loci targeted and have seen an explosion of publications using the 
various methods (see Campbell, Brunet, Dupuis, & Sperling, 2018 for an etymological analysis of 
publications involving reduced-representation methods). 

The high flexibility of ddRAD-like protocols relies on the combination of the utilized pair of enzymes 
and the fragment size selection. Once enzymes have been chosen, researchers can still opt for a specific 
number of loci, as the range of fragment lengths selected will greatly dictate the extension of genome 
coverage. However, not only the number of loci may vary, but the complete locus repertoire will change 
across different ranges of fragment lengths. It has been shown that the set of loci covered can be affected 
by slight changes in library building protocols (DaCosta & Sorenson, 2014) or by simply including 
individual libraries in different pools during size selection (Franchini, Monné Parera, Kautt, & Meyer, 
2017). Large sensitivity to changes in the protocol affects reproducibility and may not only increase 
costs but also prevent entire datasets from being comparable. Although a few approaches have been 
suggested in attempts to homogenize the outcome of library building across many specimens (e.g. 
Franchini et al., 2017), the type of data generated and the lack of a reference genome prevent researchers 
from understanding what issues may have caused a drop in individual coverage and/or in the set of loci 
overlapping among samples. 

Bioinformatic pipelines commonly used for ddRAD data analysis include Stacks (Catchen, Hohenlohe, 
Bassham, Amores, & Cresko, 2013), ipyrad (Eaton & Overcast, 2020) and dDocent (Puritz, Hollenbeck, 
& Gold, 2014), among several others (LaCava et al., 2020). Such pipelines are usually compared and 
evaluated on the basis of the amounts of loci and variation (i.e. single nucleotide polymorphisms, SNPs) 
they output and parameters are usually tested in values and combinations arbitrarily chosen (Shafer et 
al., 2017; Díaz-Arce & Rodríguez-Ezpeleta, 2019). Shafer et al. (2017) have shown that changing 
parameters and pipelines may strongly affect downstream analysis and hypothesized that the biggest 
differences among methods is caused by the crucial locus definition step. It remains, however, difficult 
to assess the actual causes for differences among pipelines, since primary data is rarely analysed from 
a close perspective. Although theoretically possible, even when good (i.e. closely related and well 
assembled) reference genomes are available, no proper evaluation of the general coverage and 
differences among individuals is performed. Another problematic fact is that often no deeper analysis 
on the effects of the chosen parameters are performed during the initial stages of locus catalog building, 
as recommended for example by Paris, Stevens and Catchen (2017). 

Perhaps the most attractive feature of ddRAD is the fact that no reference genome is needed to perform 
analyses, as a reference locus catalog can be built directly from the data. However, using a reference 
genome can help improve SNP calling, depending on the genetic distance to the species analyzed (Paris 
et al., 2017; Shafer et al., 2017). Even if references can theoretically help SNP calling, draft genomes 
are prone to incompleteness and high levels of mis-assemblies due to - among other reasons - haplotype 
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divergence in homologous regions (Guan et al., 2020) and extensive repetitive regions (Phillippy, 2017). 
Moreover, it is still largely unknown how genome assembly quality can affect RAD data analysis. 

Regardless of the approach chosen - whether de novo or reference-based - to analyse RAD data, the 
main goal is to ensure that variation among individuals is retrieved from comparisons among 
orthologous loci (or true homologues), in contrast to paralogous loci. A key challenge to identify true 
homologous alleles is the definition of identity thresholds between sequences, which should be 
established through an empirically-justifiable protocol (McCartney-Melstad, Gidiş, & Shaffer, 2019). 
If thresholds are too high, they will over-split orthologous alleles, while too low thresholds will cluster 
paralogous alleles into the same putative locus. The threshold definition step is considered as a crucial 
step for de novo protocols (Ilut, Nydam, & Hare, 2014), and could also potentially be used to help 
evaluate the quality of draft genomes. In any case, if loci are mis-identified, the over- or under-clustering 
of alleles will affect observed heterozygosity and consequently results of downstream analysis that 
depend on genotype frequencies.  

In this study, we present a simple but effective solution to overcome issues in ddRAD-like data that can 
be transferred to virtually any given species or population. By using overlapping paired-end reads, we 
allow data to be analyzed using haplotypes that represent the original DNA fragments, producing 
important information on the fragment length and its associated coverage. Our pipeline can be used to 
overcome the lack of an appropriate reference genome or to evaluate the reference available. Our 
approach scrutinizes, in a stepwise fashion, the library building process in the lab as well as the 
bioinformatics behind the locus catalog building. The locus catalog - here also referred to as the set of 
reduced-representation single-copy orthologs (R2SCOs) - is built based on a controlled size range and 
coverage per length. It can serve as a reference for SNP calling, be used for marker development, for 
inter-specific analysis or even for full haplotype analysis. We have also developed a new approach to 
define two identity thresholds for any species based on the generated data. We have obtained data for 
five different sea turtle species and compared each set of R2SCOs to loci identified via an in silico 
analysis of the green sea turtle reference genome. By performing the same exact procedure for different 
sea turtle species presenting variable genetic distances and splitting times as deep as 100 million years 
(Naro-Maciel, Le, FitzSimmons, & Amato, 2008), we also analyse the inter-specific potentiality of 
ddRAD and briefly evaluate the use of draft genomes as references.  

 
2. METHODS  
 
Sample collection 
 
Tissue samples were obtained for five out of the seven sea turtle (superfamily Chelonioidea) species: 
the leatherback turtle Dermochelys coriacea, the green turtle Chelonia mydas, the olive ridley turtle 
Lepidochelys olivacea, the loggerhead turtle Caretta caretta and the hawksbill turtle Eretmochelys 
imbricata. Species names were abbreviated as Dc, Cm, Lo, Cc and Ei, respectively. The tribe Carettini 
is represented by Lo, Cc and Ei, and the family Cheloniidae by all three Carettini species plus Cm. Dc 
is the only representative of the family Dermochelyidae. For each species, two samples were selected 
(total n=10) from southwestern Atlantic nesting females - with one exception - from areas that were 
previously shown to belong to different genetic pools: D. coriacea (Martinique and Espírito Santo State 
in Brazil), C. mydas (French Guiana and Fernando de Noronha Archipelago in Brazil), E. imbricata 
(Rio Grande do Norte and Bahia States from Brazil), L. olivacea (French Guiana and Sergipe State in 
Brazil) and C. caretta (Bahia State in Brazil and Rio Grande Elevation feeding area). Nine out of the 
ten samples were obtained in nesting beaches and should therefore represent the population of origin. 
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The only sample coming from a feeding area (C. caretta from Rio Grande Elevation) presented a 
mitochondrial haplotype typical from the Indo-Pacific Ocean (Reis et al., 2010). Samples were 
collected/transported under SISBIO permit 37499-2. Tissue samples were exported from Brazil under 
CITES permit 14BR015253/DF and imported into Germany under CITES permit E-03346/14. Samples 
from French Guiana were transported into Germany under institutional CITES between the Leibniz 
Institute for Zoo and Wildlife Research and Institut Pasteur in French Guiana. 
 
Preliminary in silico tests and reference genome 
 
A draft genome of C. mydas (CheMyd_1.0, GenBank accession number GCA_000344595.1; Wang et 
al., 2013) was used to perform preliminary estimations of fragment yield for different enzyme 
combinations and size ranges before designing the study, using a dedicated python script 
(RAD_digestion.py) that performs in silico digestions according to the ddRAD workflow (Peterson et 
al., 2012). We have chosen the enzyme pair EcoRI (a 6-bp cutter) and MseI (a 4-bp cutter) based on the 
number of expected genome fragments (20,000-30,000 loci) within a size range of 400-500 bp.  
 
For analyses performed after the sequencing data was obtained, we have utilized the version of 
CheMyd_1.0 genome scaffolded by the DNAzoo project (Dudchenko et al., 2017), identified here as 
CheMyd_1.0_DNAzoo.  
 
Library preparation  
 
DNA extractions were performed using the DNeasy Blood and Tissue kit (Qiagen). The preparation of 
the ddRAD libraries followed the protocol of Peterson et al. (2012) with modifications of adapter 
sequences according to Meyer and Kircher (2010). In brief, 1µg of genomic DNA (20-100 ng/µl) was 
digested with EcoRI and MseI at 37 °C for at least two hours. The ligation of adapters was performed 
immediately after the digestion. The P5 adapter had inline barcodes of varying sizes (5 to 9 bp) at the 
restriction site positions and P7 adapter was designed with one of the strands lacking the indexing 
primer complementary region. Ligated samples were cleaned with 1.8X CleanPCR magnetic beads 
from CleanNA. A ten-cycle indexing PCR was performed independently for each individual using one 
of the 50 indexes described by Meyer and Kircher (2010) at the P7 adapter. The PCR was cleaned with 
0.8X CleanPCR magnetic beads and concentration measured with Qubit 2.0 using the dsDNA HS assay 
(Life Technologies) and checked in the Bioanalyzer (Agilent). The indexed libraries were equimolarly 
pooled before the size selection step.  
 
Size selection and sequencing 
 
The size selection step was performed using either the PippinPrep with a 2% cassette and K2 marker or 
the BluePippin with a 1.5% cassette and the R2 marker (Sage Science). The initial sequencing runs 
showed a shift in the size selection among different pools and runs (Fig. S1), and therefore the size 
range selection was extended for the two last runs to ensure overlapping. Four MiSeq runs were 
performed with size selections of 495-605, 490-610, 450-650 and 450-650 bp, respectively. Between 
129 bp and 134 bp represented adapter sequences, which means that the longest internal fragments 
should reach ~520 bp. Pool amplification was avoided after size selection, and only performed in one 
run (Run2) with fewer than 10 cycles and in five independent reactions per library, which were pooled 
and cleaned. The final libraries were characterized with a qPCR using the KAPA SYBR® FAST (Kapa 
Biosystems) kit and also checked with the Bioanalyzer. The libraries were run on the in-house Illumina 
MiSeq using the 600-cycle v3 kit.  
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Preliminary contamination and homology analysis 
 
Samples were demultiplexed into pools using the Illumina MiSeq Reporter (v2.6.2.1), based on the P7 
index. The pools were then demultiplexed into individual samples using the P5 inline barcodes, with 
Flexbar v.3.0.3 (Roehr, Dieterich, & Reinert, 2017) allowing no mismatches (parameters: -be 
LEFT_TAIL -u 3). In order to run a preliminary test for major contaminants, a subsample of 50,000 
paired-end reads from each individual library was compared against two turtle genomes. For this 
purpose, the paired-end reads were first mapped against CheMyd_1.0_DNAzoo using bowtie2 v.2.3.0 
(Langmead, Trapnell, Pop, & Salzberg, 2009) with parameters adjusted to reach a minimum of ~80% 
identity (parameters: --mp 10 --score-min L,-1,-2.0 --no-unal). Unmapped read pairs were compared 
against CheMyd_1.0_DNAzoo using blastn as implemented in NCBI’s BLAST+ package (v.2.6.0) with 
a maximum e-value of 10-20 and subsequently against the freshwater turtle Chrysemys picta (Shaffer et 
al., 2013; Chrysemys_picta_bellii-3.0.3, NC_024218.1). Finally, reads that did not produce matches 
were aligned against the GenBank nucleotide (nt) database using the same parameters. The output from 
blast was visualized using MEGAN v.6.8.18 (Huson et al., 2018). 
 
Sequence preprocessing  
 
The first step performed with the fastq data was the phiX control library cleaning, as it was spiked into 
every run. Each demultiplexed pool was mapped to an Enterobacteria phage phiX174 reference 
genome (NC_001422.1) using bowtie2 with default parameters. All read pairs that mapped 
concordantly were removed from the sample. Subsequently, PEAR v.0.9.11 (Zhang, Kobert, Flouri, & 
Stamatakis, 2014) was used to merge the paired-end reads (parameters: -v 30 -n 50). The 
RAD_digestion.py script was used to redigest the samples according to ddRAD (options: --dd --rad --
q) to account for any undigested or chimeric sequences. To remove non-targeted loci derived from star 
activity of the enzymes, sequences with incorrect restriction sites at either end of the locus (MseI and 
EcoRI, respectively) were discarded using the script checkRestrictionSites.py. Finally, sequences with 
average Phred quality score below 20 were discarded using Trimmomatic v.0.3.6 (Bolger, Lohse, & 
Usadel, 2014). The read preprocessing workflow is shown in Fig. S2. 
 
Chimera estimation 
 
Merged sequences including internal restriction sites could represent either undigested sequences due 
to low efficiency of restriction enzymes or the ligation of independent digested fragments into chimeric 
sequences during the adapter ligation step. In order to distinguish both cases, fragments generated from 
in silico digested sequences were analyzed in comparison to each other. The details of the workflow are 
found in the Supporting Information and Fig. S3.  
 
In silico size selection 
 
The in-silico size selection of preprocessed reads was based on the widest size range presenting at least 
20x estimated coverage (based on the genome digestion, Fig. S4) across all ten individuals, while 
avoiding very high peaks of coverage that could represent highly repetitive paralogous loci. The range 
and the best run per individual were selected concomitantly. 
 
Definition of the R2SCO term 
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We have designed a locus catalog pipeline that is based on two of the most utilized pipelines for RAD 
data - Stacks and ipyrad - but that incorporates information about coverage from merged sequences 
based on fragment size and uses the entire sequence as a putative allele. At the end of this pipeline, loci 
with accepted genotypes are considered as the set of reduced-representation single-copy orthologs (or 
R2SCOs, pronounced “Artuscos”). The idea to form a set of R2SCOs was inspired on BUSCO 
(Benchmarking Universal Single-Copy Orthologs, Seppey, Manni, & Zdobnov, 2019), but instead of 
representing orthologous single-copy coding genes among species, an R2SCO represents a set of 
orthologous loci produced by a certain combination of enzymes and a specific size range. R2SCOs from 
this study, for example, are defined as R2SCO-MseI-EcoRI-384-448, in which the last two numbers 
represent the in-silico size selection range.  
 
R2SCO pipeline 
A general scheme of the R2SCO pipeline is depicted in Figure 1. The first two general steps of the 
pipeline are (i) the reads pre-processing (Figure S1) and (ii) the in-silico size selection based on the 
coverage per fragment size estimated from the merged sequences. We have also established five 
different thresholds to be used in the pipeline, all based on preliminary analyses of the data. The 
thresholds and pipeline steps are explained in detail in the Supporting Information and briefly described 
below: 
- Minimum count per putative allele (m): the minimum coverage per unique sequence within an 

individual that should represent a putative allele.  
- Minimum locus coverage (COVmin): the minimum coverage per locus within an individual to yield 

reliable genotypes. It is not used for defining R2SCOs since a locus can be defined by a single allele. 
- Maximum locus coverage (COVmax): limit between the distribution of sequence coverages of single-

copy loci and outlier coverages that mostly represent paralogs. 
- Ancestral identity threshold (Tances): the ancestral threshold represents a minimum identity that 

connects recent paralogous loci. It can be based on the distance between the most distant samples or 
in case of an intra-specific analysis, it can be a conservative value that would avoid the successful 
mapping of sequences to a closely-related paralogous locus (e.g. 90%). 

- Intra-specific identity threshold (Tintra): the identity threshold within species represents an identity 
value among sequences that clusters the great majority of orthologous alleles and excludes the great 
majority of paralogs. This threshold is obtained by comparing identities among putative alleles within 
and between individuals from the same species (Supporting Information). 

 
Following the steps i and ii of the R2SCO pipeline, four other steps represent the definition of loci 
within and between samples: (iii) the de-replication of the preprocessed and size-selected sequences, 
performed for each individual separately, (iv) the definition of putative alleles, also performed by 
individual, (v) the pairwise comparison of putative alleles, performed among all individuals together 
and finally (vi) clustering and definition of putative loci within and between individuals. 
 
By using the set of loci generated within each individual, the next four steps of the pipeline add a 
classification to all loci for every individual independently. First, in step vii all preprocessed and merged 
sequences (not de-replicated) are mapped back to the loci of that given individual. For the latter, the 
merged sequences used must fall within the selected size range with a ±5% extension. Subsequently, in 
step viii a SNP calling is performed for each locus individually and in step ix the called SNPs are used 
to “reconstruct” haplotypes. The last step of the pipeline (x) consists of getting all information obtained 
so far, including putative alleles, mapping results, reconstructed haplotypes and thresholds and running 
through a decision tree to classify the loci as “accepted” or “removed”. The accepted loci will be part 
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of the official set of reduced-representation single-copy orthologs (R2SCOs) of an individual, species 
or set of species. 
 

 
Fig. 1: Workflow of the reduced-representation single-copy orthologs (R2SCO) catalog building. The 
general representation of a ddRAD set of loci sequenced across the genome can be seen in A. The 
reconstruction of an entire locus by merging overlapping reads is shown in B. The R2SCO pipeline is 
illustrated from C-G with figures that represent each of the ten steps, from i to x (identified on the 
right part of the figure).  
 
Locus classification decision tree 
The decision tree (Figure 2) is run for each individual independently and the output can be roughly 
subdivided into three types of classifications: putative paralogs, removed loci and accepted loci. Loci 
are mostly removed due to incongruencies between the clustered putative alleles and the reconstructed 
haplotypes from SNP calling. For performing locus classification, the decision tree will utilize: the 
identity and coverage thresholds defined above (Tintra, Tances, COVmin, COVmax); the evaluation of the re-
mapping of reads against each locus; and the comparison between variants positions derived from the 
putative alleles and from the SNP calling. More details about the decision tree can be found in the 
Supporting Information. 
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Fig. 2: Decision tree for classification of loci clustered within individuals using the R2SCO pipeline. 
Acceptance of a locus depends on the reliability of the genotype called. The input data (blue square on 
top) include alleles from all loci defined after clustering above Tances and sam files including merged 
reads mapped to each locus. Orange rhombi represent each checking step, pink squares identify the non-
turtle, paralogous and removed loci, and the green squares identify the accepted loci. The additional 
haplotype frequency (AHF) denotes the frequency of the first haplotype that exceeds the number of 
alleles when there are more haplotypes than alleles. 
 
Intra and inter-specific set of R2SCOs 
Once R2SCOs were defined for each individual, the pairwise results from allele clustering within and 
between species were used for defining homology between individuals. Homologous loci across 
individuals were defined by clustering loci that have at least one putative allele between individuals 
with identity above Tances. A new class of paralog could be identified, in case two or more loci from 
within one individual were clustered together in any new comparison level: Paralog Species or Paralog 
Inter-species. The genotypes in comparisons across individuals from within or between species keep 
the classification of the decision tree, but loci will be removed in case they are classified as Paralogs at 
the level of comparison tested or if they are not present in one or more species of the set. If a locus is 
present and accepted in one of the two individuals, it is considered as part of the R2SCO set of that 
given species. 
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Comparisons between individual replicates 
Whenever the non-selected run (see above-section in silico size selection) of an individual presented 
enough coverage (>10x) for at least part of the range selected for the R2SCO pipeline, it was used to 
evaluate the genotypes obtained and the classifications from the decision tree. A nested size range was 
selected for each individual depending on the coverage of the non-selected run, and both runs were 
processed throughout the R2SCO pipeline as independent samples. Loci from the selected runs were 
only evaluated if they were also present in the non-selected run. Genotypes from the non-selected runs 
were based solely on sequences with coverage ≥3. The great majority of the genotypes were identical 
between selected runs and their replicates (AVG=94.92%, SDV=1.35%). In order to evaluate the 
possible causes for different genotype calling as well as the decision tree classification, we have 
evaluated four different categories, where: a) both runs called 1 allele, b) both runs called 2 alleles, c) 
selected runs called 1 allele and non-selected 2 alleles, and d) selected runs called 2 alleles and non-
selected 1 allele.  
 
Reference genome evaluation 
CheMyd_1.0_DNAzoo was used in different types of tests. First, the genome was digested using the 
RAD_digestion.py script and the sequence fragments were size-selected according to the R2SCO 
pipeline. Size-selected sequences were compared pairwise and clustered using Tances, as described above 
for the empirical data. Any sequences forming clusters represent putative paralogs in the genome 
considering only the ddRAD simulated and size-selected sequences (not the entire genome). The 
putative single-copy and paralogous loci were compared with the locus classification obtained through 
the R2SCO pipeline for the two individuals of C. mydas (Cm1 and Cm2). The clusters obtained for the 
genome were also used to evaluate the identity among potential paralogs, obtained via the pairwise 
identity comparison performed using vsearch v.2.8.6 (option: --allpairs_global; Rognes, Flouri, 
Nichols, Quince, & Mahé, 2016) with an identity defined by Tances (here 0.90). 
 
Statistical analysis and visualization was performed in Python v.2.7.13 (Rossum, 1995) using the 
biopython library v.1.68 (Cock et al., 2009) and in R v.3.6.1 (Team & Others, 2013) using the packages 
ggplot2 (Wickham, 2016), gplots (Warnes et al., 2015), circlize (Gu, Gu, Eils, Schlesner, & Brors, 
2014) and gridExtra (Auguie, Antonov, & Auguie, 2017).  
 
3. RESULTS 
 
Runs summary and in silico size range 
Ten individuals (2 from each of 5 sea turtle species) were sequenced in four different MiSeq runs (Fig. 
S1). Nine out of the ten individuals were sequenced in replicates. The four runs yielded very different 
distributions, partially due to the increasing size range selection from subsequent runs, but strikingly 
also due to very different levels of small fragments largely out of the selected range of each run (Figure 
3 and Fig. S1). The size range chosen for the selected samples was 384-448 bp, avoiding a very high 
peak observed in all species but D. coriacea at sizes 450 bp and 449 bp. One individual from L. olivacea 
(Lo2) did not reach the desired coverage for the entire range (Figure 3). 
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Fig. 3: Fragment size distribution of merged and preprocessed reads for 10 sea turtle individuals from 
5 species, including only the selected run for each individual. The zoomed-in area on the left side shows 
the main distribution area for each individual and highlights in light red the in-silico selected size range. 
The plots on the right side for each individual show the entire fragment size distribution, including the 
very high peaks at size 450 bp.  
 
Preprocessing 
The average number of raw read pairs per individual was 2,968,893 (SD=1,110,900, Table 1). Across 
all ten selected samples an average of 98.47% (SD=0.17%) of the raw demultiplexed reads remained 
after all pre-processing steps. For each selected sample, >99% of the reads merged correctly. The in-
silico digestion showed a frequent occurrence of internal restriction sites within the reads, representing 
between ~6% and ~37% of the merged sequences across individuals (AVG=15.1%, SD=8.7%). The 
great majority of the remaining sequences presented the correct restriction sites on the edges 
(AVG=99.2%, SD=0.16%) and virtually all the remaining ones (>99.97%) presented average quality 
above Phred score 20. Although at this point all individuals still keep the absolute majority of the initial 
reads (Table 1), the large amounts of small fragments have caused the proportion of remaining 
sequences after the in-silico size selection (384-448 bp) to drop substantially across individuals. Final 
preprocessed and size-selected sequences ranged from only ~13% of the initially demultiplexed reads 
in Ei1 to ~57% in Lo2 (AVG=34.03%, SD=11.69%). The statistics for each step can be seen in Table 
1 for all sizes and limited to the size range selected in Figure 4. 
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Table 1: Sequence counts for each step of the preprocessing workflow and after size selection 

Species Sample Demultiplexed Merged 
Non-Digested + 

Digested Restr. sites filtered Q>=20 384-448 

Caretta 
caretta 

Cc1 3,465,724 
3,439,549 

(99%) 
3,237,364 (93%) + 

202,185 (6%) 
3407035                     

(98%) 
3,406,031 

(98%) 
1,357,949 

(39%) 

Cc2 3,663,866 
3,636,115 

(99%) 
3,220,418 (88%) + 

415,697 (11%) 
3,612,355                     

(99%) 
3,611,516 

(99%) 
897,962 
(25%) 

Lepidochelys 
olivacea 

Lo1 1,737,259 
1,725,492 

(99%) 
1,412,472 (81%) + 

313,020 (18%) 
1,715,404                         

(99%) 
1,715,157 

(99%) 
627,451 
(36%) 

Lo2 956,361 
947,488 
(99%) 

771,539 (81%) + 
175,949 (18%) 

940,205                           
(98%) 

939,981    
(98%) 

543,961 
(57%) 

Eretmochelys 
imbricata 

Ei1 4,757,833 
4,731,081 

(99%) 
4,286,842 (90%) + 

444,239 (9%) 
4,694,583                        

(99%) 
4,693,922 

(99%) 
631,421 
(13%) 

Ei2 2,347,676 
2,332,021 

(99%) 
1,981,023 (84%) + 

350,998 (15%) 
2,307,027                         

(98%) 
2,306,419 

(98%) 
872,961 
(37%) 

Chelonia 
mydas 

Cm1 2,870,709 
2,848,253 

(99%) 
1,796,353 (63%) + 
1,051,900 (37%) 

2,831,077                        
(99%) 

2,830,546 
(99%) 

888,641 
(31%) 

Cm2 3,964,066 
3,933,845 

(99%) 
3,581,213 (90%) + 

352,632 (9%) 
3,900,863                       

(98%) 
3,900,245 

(98%) 
1,545,462 

(39%) 

Dermochelys 
coriacea 

Dc1 3,297,045 
3,275,771 

(99%) 
2,919,309 (89%) + 

356,462 (11%) 
3,247,108                      

(98%) 
3,246,868 

(98%) 
810,048 
(25%) 

Dc2 2,628,393 
2,606,818 

(99%) 
2202842 (84%) + 
403,976 (15%) 

2,588,546                        
(98%) 

2,588,180 
(98%) 

1,015,233 
(39%) 

Notes: % Percentages refer to the Demultiplexed sequences; The headers refer to the steps in the preprocessing workflow; 348-448 refers to 
fragments within the size range 348 bp-448 bp. 
Abbreviations: Restr., Restriction; Q, Phred Quality  

 
Chimera detection 
The only significant drops in sequence numbers within the in silico selected size range (384-448 bp) 
during the preprocessing step happened after in silico digestion (Figure 4A). We have used our newly 
developed pipeline (Supporting Information and Fig. S3) to differentiate between chimeric sequences 
and undigested fragments (Table S1). The individual Cm1 presented the highest levels of sequences 
with internal restriction sites (~37%, Figure 4B), mostly due to incomplete digestion. On average 53% 
(SD=24.4%) of the sequences with at least one internal restriction site seem to have remained 
undigested, while an average of ~34.6% of the sequences represented a chimeric construction.  
 

 
Fig. 4: Results of preprocessing analysis within the selected size range (384-448 bp). A shows the 
preprocessing statistics for the ten different samples and B presents the percentage of digested fragments 
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identified as either chimeras, with an incomplete digestion or inconclusive classification (i.e. 
unmapped). RS: restriction site; Q: Phred quality. 
 
Contamination and turtle homology  
The preliminary contamination analysis performed with a subsample of 50,000 paired-end reads per 
individual revealed very little contamination for each individual (Fig. S5). In contrast, the analysis 
indicated very high levels of putative homology among sea turtles. All individuals from the five species 
presented very high proportions of successful read mapping to the C. mydas genome using bowtie2 
(between ~94% and ~98% of the subsampled reads, Table S2). By adding the two blast comparisons to 
the genomes of C. mydas and the western painted turtle Chr. picta, all ten individuals have reached 
putative homology levels above 97%. 
 
R2SCO pipeline 
Putative alleles were defined as identical sequences within an individual with a minimum coverage of 
three (m≥3) with sizes between 384 and 448 bp, after the in-silico size selection. Putative alleles were 
compared pairwise within and between all 10 individuals in order to define the two identity thresholds, 
Tances and Tintra. The distribution of allele identities between D. coriacea and each of the other species 
was used to define a conservative ancestral threshold (Tances=0.90, Figure 5A and 5C). For each species, 
the pairwise comparison between putative alleles within individuals and between individuals helped 
establish the intra-specific threshold (Tintra, Figure 5A-B). The Tintra values for Cc, Lo, Ei, Cm and Dc 
were respectively set to 0.989, 0.991, 0.987, 0.98 and 0.991. COVmax ranged from 75 to 131 mapped 
reads depending on the individual (Fig. S6).	
 

 
 
Fig. 5: Definition of identity thresholds (Tances and Tintra) based on putative alleles pairwise identity. The 
figure shows the example of C. caretta individuals Cc1 and Cc2 and the comparison with the D. 
coriacea individual Dc1. Tances and Tintra are shown as dashed red lines. In A, the whole grey zone 
between thresholds should include all paralogous loci that will be annotated as Paralog Tintra. The 
comparison between individuals in B shows the high amounts of identical alleles shared between them. 
The tree in C represents the sea turtle phylogeny and shows a hypothetical duplication of a locus before 
the tribe Carettini split (node marked with *). The identity relation between alleles from this locus is 
shown in all 3 figures, exemplifying where identity between paralogs are supposed to fall.  
 
The number of accepted R2SCOs within each species was very homogeneous ranging between ~24,500 
and 25,000 loci. Rejected loci were more numerous in C. mydas (n=3,514) followed by E. imbricata, 
C. caretta, L. olivacea and D. coriacea and accounted for 12.45% to 3.48% of the total number of initial 
loci. Comparing species pairwise within the three main phylogenetic clades (Carettini, Cheloniidae and 
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Chelonioidea) also revealed very homogeneous numbers of loci in common, while the total number of 
common loci for all species from each clade decreased as the last common ancestral became more 
distant (Figure 6, bars with asterisks). The number of accepted R2SCOs for all species within Carettini, 
Chelonioidea and Cheloniidae were respectively 16,515, 11,796 and 6,337 (Figure 6). 
 

 
Fig. 6: Number of putative loci within and shared between species. Darker shades represent the accepted 
loci and lighter shades the loci removed by the decision tree. The * denotes comparisons between all 
species within the corresponding tribe/family/super-family. The lower part of the figure shows which 
species were tested together, matching the corresponding bar above. 
 
An analysis of the total locus count per fragment size (Figure 7) revealed that all five species as well as 
the digested genome present not only similar numbers of loci but also the same trend of decreasing the 
number of loci as the fragment size increases for the pair of utilized enzymes (MseI-EcoRI). In Figure 
7B, the locus counts per fragment size are shown for CheMyd_1.0_DNAzoo digested in-silico with and 
without clustering the fragments using Tances. 
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Fig. 7: Number of loci per fragment size estimated after clustering ddRAD data for 9 individuals (A) 
and (B) comparing the two C. mydas individuals (Cm1 and Cm2) and CheMyd_1.0_DNAzoo digested 
fragments before (Genome) and after (Genome clusters) clustering them using Tances. The individual 
Lo2 was removed from this analysis as it presented very low coverage for the first part of the 
distribution.  
 
When considering the loci for each fragment size, we noticed that the average coverage per locus clearly 
follows the total number of reads for a given length (Figure 8). It is possible to see in Figure 8, however, 
that individuals presenting smooth drops in read coverage as fragment size increases, such as Cc1, Ei2 
and Cm1, show a stable average coverage per locus across most of the size range distribution. This 
relation reflects the drop on the number of loci across the size range as seen in Figure 7. 
 

 
Fig. 8: Total amount of reads (y axis left, full line) vs. average locus coverage (y axis right, dotted line) 
per length (x axis) for each of the 10 individual selected runs. Lines were smoothed using local 
regression. 
 
Genotypes and Decision tree evaluation 
Six out of the nine non-selected runs for each individual were used as replicates in a genotype evaluation 
analysis. The comparisons were plotted for three individuals (Cc1, Cm2, Ei2) in Figure 9 and include 
information about allele coverage for both selected and non-selected runs and decision tree 
classification per locus only for the selected runs. The most important points can be summarized as: 1) 
The very few paralogs due to coverage in the selected run (Figure 9A) were not always highly covered 
in the replicate run; 2) True heterozygous in the replicate that presented a single allele in the selected 
run (Figure 9B, diagonal) were mostly low coverage (i.e. <15 reads) in the latter and got removed by 
the decision tree; 3) True heterozygous in the selected run that presented a single allele in the replicate 
(Figure 9C, diagonal) were mostly low coverage (i.e. <15 reads) in the latter; 4) True homozygous in 
the replicate that presented two putative alleles in the selected run (Figure 9C, two perpendicular lines 
at low values for one axis) were classified based on SNP calling as homozygous by the decision tree 
and clearly had very low coverages for the minor putative allele; 5) True homozygous in the selected 
run that presented two putative alleles in the replicate (Figure 9B, two perpendicular lines at low values 
for one axis), similarly presented very low coverages for the minor allele in the latter and 6) There 
seems to be a gradient of coverage per locus when comparing both runs in 9D (diagonal), indicating 
that despite the constructions of new libraries, the chance of covering each locus might not be random. 
A more detailed evaluation of the replicate results can be found in the Supporting Information. 
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Fig. 9: Analysis of replicate runs (selected and non-selected) for three individuals. Comparisons are 
shown for A) loci where both runs agree on one allele, B) cases where the selected run has one allele 
and the non-selected run has two, C) the selected run has two alleles and the non-selected one and D) 
where the selected and non-selected run agree on two alleles. Colours on the bottom figure represent 
the minimum coverage between the two alleles from the non-selected run. All classifications coming 
from the decision tree represent only selected runs. 
 
Reference Genome x R2SCOs 
We have compared the results from the two C. mydas individuals independently (Cm1 and Cm2) and 
in combination (Cm species) against CheMyd_1.0_DNAzoo after in silico digestion with and without 
a clustering step (Figure 10). The great majority of accepted loci in the two individuals were found as 
singletons on the genome (88.47% for Cm1, 87.99% for Cm2 and 85.43% of the combined Cm species). 
The analysis shows that paralogy is very minor compared to the totality of loci obtained for our R2SCO 
set (Figure 10A and 10B), reaching only 1.04% of the genome digested fragments. In contrast, missing 
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loci between the genome and the two individuals reach up to ~16% of the genome loci, ranging from 
1,212 to 4,229 loci, depending on the comparison (Table S3). Similarly, there is a high proportion of 
removed loci for Cm1 and Cm2 (11.28% and 7.23%, respectively), most of which were found as 
singletons in the genome. Removed loci within individuals are clusters that - although not identified as 
paralogous within the first steps of the decision tree - were removed due to at least one type of 
genotyping issue identified further down in the decision tree. A more detailed analysis of the 
comparison between Cm individuals and the genome can be found in the Supporting Information. 
 

 
 
Fig. 10. Circos plots of the comparisons of two C. mydas individuals (Cm1 and Cm2) and their 
combined loci (Cm species) against the genome clusters of digested sequences (A). For the genome, 
loci are either missing (present in the individuals but not in the genome), singleton (cluster of one locus), 
P2 (clusters with 2 loci) or P3+ (clusters with three or more loci). For the Cm individuals, loci can be 
accepted (as single copies), missing (if present only in the genome digestion), removed by the decision 
tree or classified as paralogs based on coverage (Pcov), Tintra (PTintra) or the presence of more than 2 
alleles (Pind). In B only relations to putative paralogs are shown in detail. 
 
Sea turtle genetic variability 
In order to compare the genetic variability across sea turtle species, we used the set of 6,337 R2SCOs 
for the whole superfamily Chelonioidea (Chelonioidea-R2SCO-MseI-EcoRI-384-448, Figure 6), 
excluding the accepted genotype low frequency category for each individual. The numbers of loci used 
in this analysis for each individual can be seen in Table S4.  
 The levels of heterozygosity found for conspecific individuals were very similar, but diverged 
greatly among species (Figure 11A). Chelonia mydas was the most variable species, almost three-fold 
higher than the second most heterozygous one, E. imbricata. Caretta caretta individuals were the third 
most variable and presented very similar heterozygosity values although belonging to very distant 
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locations (Atlantic vs. Indo-Pacific). Lepidochelys olivacea and D. coriacea both presented extremely 
low levels of heterozygosity (<0.05%), roughly 10-fold smaller than C. mydas. Among the five sea 
turtle species evaluated in this study, D. coriacea seems to present the lowest genetic variability. 
 The third histogram bar for each species in Figure 11A shows a comparison of pairwise genetic 
distances between individuals. For the four species whose both individuals belong to southwestern 
Atlantic populations there was only a slight increase in the level of variability when comparing both 
individuals in relation to intra-individual analysis, indicating that both populations share a major part 
of their variability. This is however not true for C. caretta, for which individuals originated from 
different ocean basins and seem to have quite divergent alleles, reaching twice as much the distance 
between alleles found within individuals (Figure 11A, Cc1-Cc2 bar). 
 The amounts of variable loci per individual follow the trend of species heterozygosity levels 
(Figure 11B), with C. mydas individuals presenting the highest proportion of heterozygous loci 
(AVG=53.61%) while L. olivacea and D. coriacea present roughly only 10% of variable loci within 
individual. However, there is a clear tendency to saturation as the average number of SNPs per locus 
increases (see the theoretical red line in Figure 11C based on L. olivacea and D. coriacea values). 
Finally, in order to check if the heterozygosity levels calculated based on the R2SCOs at the 
Chelonioidea level could be biased due to the conservation of restriction sites across all five species, 
we have estimated heterozygosity at different sets of loci, within and among species. Very similar values 
of heterozygosity were found across the different levels of R2SCOs (Fig. S7). 
 

 
 
Fig. 11: Heterozygosity levels at Chelonioidea R2SCOs. In A and B, the third bar for each species 
corresponds to the analysis of conspecific individuals. In A, the heterozygosity was estimated for each 
individual and genetic distances between individuals. B shows the proportion of variable loci for each 
individual and the combining results from two individuals. In C, the relation between heterozygosity 
per base pair vs. the proportion of heterozygous loci is shown for each individual. The blue line is a 
loess regression based on all values and the red line is a linear regression based on values for Dc and 
Lo. 
 
Using the 6,337 Chelonioidea R2SCOs to estimate pairwise genetic distances among all individuals we 
obtained the true phylogenetic relationships among the five sea turtle species, as seen in a heatmap 
analysis (Figure 12). Dermochelys coriacea showed an average of 4.67% (SD=0.11%) genetic distance 
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against the other four lineages, while showing slightly smaller distances against C. mydas 
(AVG=4.48%). Chelonia mydas presented very similar genetic distances (2.32%, 2.39% and 2.35%) 
against each of the three species from the Carettini tribe. Lepidochelys olivacea and C. caretta presented 
the smallest genetic distances (AVG=0.96%), while C. caretta had a slightly smaller genetic distance 
to E. imbricata compared to L. olivacea (averages 1.08% and 1.15%, respectively). The genetic distance 
matrix among all individuals from the five species can be found in Table S5. 
 

 
Fig. 12: Heatmap of pairwise genetic distances across all individuals from the five sea turtle species. 
Genetic distance was calculated based on the total number of differences between the representative 
sequences of shared loci averaged by the total sequence length. 
 
4. DISCUSSION 
 
A new strategy to build ddRAD-like locus catalogs 
Here we present a carefully designed (R2SCO) pipeline, which proved to be a powerful tool to build 
reliable references to intra and interspecific analysis. Each step of the study, from experimental design 
to statistical analysis, is carefully planned and analyzed in detail. As the first step, in order to build high-
quality locus catalogs that maximize the identification of variation for future population or other types 
of studies, individuals should represent most of the variation across the set of populations to be analyzed 
(Davey & Blaxter, 2010). Therefore, we selected two individuals for each species coming from the most 
genetically distant populations we could identify in our collection.  
 
The biggest novelty in our approach, in terms of methodology, is the use of overlapping Illumina reads. 
Illumina sequences have very low error rates (Pfeiffer et al., 2018), however, base quality usually drops 
towards the end of the read. This is especially true for the longest Illumina reads (i.e. 300 bp paired-end 
reads from MiSeq), as also observed in our run quality controls (data not shown). This problem was 
completely solved with merging the reads, and quality was generally very high across the whole extent 
of the merged sequences. This was also verified in our quality filtering step, which barely removed any 
sequences. The pattern of low removal rates remained the same when we increased the average scores 
threshold to Q30.  
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With high quality sequences representing the original fragment length, we could use the distribution of 
fragment lengths to evaluate the size selection performed in the lab and to perform a new size selection 
in silico, in order to homogenize coverages across loci and individuals. Our analysis of the fragment 
length distribution revealed huge variations across ddRAD libraries. However, even if in some cases 
we had to remove more than 80% of the sequences, we managed to select a range of well covered (>20x) 
loci across all five species, representing roughly 25,000 single-copy loci per individual. The R2SCO 
pipeline generated not only well-supported single-copy loci, but also gave indications of whether SNP 
calling would be able to retrieve the whole variation present in the alleles of each locus. The loci 
“removed” by our decision tree have issues of either biological (e.g. one allele out of range) or technical 
background (e.g. erroneous SNP calling, accumulation of sequencing errors, or alleles that are not 
mappable to representative locus sequences). 
 
The consistency across individuals is also seen in the comparison of expected versus observed average 
locus coverage per length (Fig. S8). The putative alleles are compared to each other exhaustively (i.e. 
pairwise for all possible combinations), and a new script was designed to build clusters based on the 
pairwise alignments above the ancestral threshold. The exhaustive search for identity connections 
guarantees reproducibility of alleles clusterization within and between individuals. Since the data was 
extremely reduced to a set of high-quality and high-coverage sequences, the extended computational 
time demanded for exhaustive searches became a minor issue. We also performed the pairwise 
comparisons including putative alleles from all 10 individuals at the same time, and the alignment 
results were used for all intra-individual, intraspecific and interspecific analyses later on. 
 
We have also selected identity and coverage thresholds in an innovative way, using the identities 
generated by the pairwise comparisons to help establish an ancestral as well as intraspecific thresholds. 
Tintra correlates negatively with the species heterozygosity, as it should be set to the initial point of the 
distribution of identities between alleles (Figure 5). In fact, D. coriacea and L. olivacea presented the 
highest Tintra and the lower heterozygosity, while C. mydas, the most polymorphic species, presented 
the lowest Tintra. Tintra is comparable to the value M of Stacks (Catchen et al., 2013), as it is set to avoid 
over-splitting of alleles, but should still keep the number of allowed differences low considering an 
intra-specific analysis. In contrast, we can arguably compare Tances with the identity threshold from 
ipyrad (Eaton & Overcast, 2020), which is set to accommodate homology across a set of different 
species. The combination of both thresholds allowed us to keep clusters representing paralogous loci 
and annotate them as putative paralogs within species. This way, we still perform comparison of loci 
across species using lower thresholds (Tances), even if using an intra-specific identity threshold (Tintra) 
for locus classification for each species independently. 
 
Given our analysis and comparisons to the genome, we believe that our set of R2SCOs for each species 
is better suited for future population studies than the draft genome available. Although most of the loci 
were classified as single copy in both C. mydas R2SCOs and in the genome, we have identified large 
numbers of problematic loci that will most likely cause issues during genotyping of population data. 
We identified a variety of possible explanations, such as: presence of a second allele out of the size 
selected range, mostly due to internal indels; too many erroneous sequences within a locus; errors in 
homopolymeric or microsatellite regions; difficulties for the SNP caller to properly identify some longer 
or complex indel regions; issues with mapping for part of the reads that originally matched one allele 
within a locus; among others. Finally, the genome has a large amount of missing – in-silico digested - 
loci compared to Cm1 and Cm2. This might be due to the higher heterozygosity levels of C. mydas and 
the fact that the genome sample comes from an individual from the Indo-Pacific (Wang et al., 2013), in 
contrast to the two individuals from southwestern Atlantic populations. As we have seen in the initial 
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contamination analysis, levels of homology between the Cm individuals and the entire genome are very 
high (~98.8%, Table S2). This means that the fact that after genome digestion ~10% of the accepted 
loci for Cm1 and Cm2 are missing in the genome is mostly due to the genetic divergence (in the 
restriction sites) accumulated between the distant populations. 
 
Possible adjustments for future libraries and analysis limitations 
Our data revealed significant carryover of small fragments in the size selection attempted in the lab, as 
also seen by daCosta & Sorenson (2014). We believe that this is due to a combination of enzyme choice 
and the protocol used. MseI-EcoRI generates high amounts of small fragments (Fig. S4), mostly due to 
the fact that MseI is a 4-bp cutter rich in AT (recognition site: AATT) and cuts the genome with a very 
high frequency. Moreover, we have performed the indexing PCR before size selection, therefore 
including all digested fragment sizes in the 10-cycle-amplification. As amplification of sequencing 
libraries tends to favour smaller fragments (Dabney & Meyer, 2012), we believe that the number of 
small fragments increased so dramatically for some libraries that even precise machines like the 
PippinPrep did not manage to remove them all. This might be easily solved by performing the indexing 
PCR after the size selection, as performed in the original protocol (Peterson et al., 2012). Moreover, it 
is probably sensible to choose enzymes, if possible, that do not produce such a biased ratio towards 
small fragments. Similarly to daCosta & Sorenson (2014), the fragment analyzer analysis did not show 
any obvious presence of small fragments after our libraries were ready for sequencing (data not shown).  
 
Our approach has some limitations in the identification of paralogs that are very closely related and 
present up to two alleles in total. If alleles of such paralogs have identities above Tintra and coverage 
does not reach outlier levels, the only way to identify them is by using either a high-quality assembled 
genome or population data, since the proportion of heterozygous individuals should be greater for 
duplicated loci in comparison to singleton loci at any given allele frequency (McKinney, Waples, Seeb, 
& Seeb, 2017). This is more prone to happen in species with low variability, as clustering two 
paralogous loci together would not give indication of a third allele. When testing several individuals 
across populations, the chance of identifying a third allele within an individual is also increased. 
 
Sea turtle genetic variability and possible applications 
We have used ~6.6K putative single copy loci distributed across the sea turtle genomes to estimate 
heterozygosity levels per bp. Since our approach used entire sequences from merged paired-end reads, 
we could also use the invariable positions to estimate levels of genetic variation. The heterozygosity 
levels (0.028% and 0.031%) found for the two C. mydas individuals are slightly higher but not 
significantly different from the heterozygosity (AVG=0.024%, SD=0.018%) estimated across the draft 
C. mydas genome (Fitak & Johnsen, 2018). Chelonia mydas was substantially more variable compared 
to the other four sea turtle species, but its heterozygosity levels were comparable to the saltwater 
crocodile Crocodylus porosus genome (Green et al., 2014). Green et al. (2014) found low levels of 
heterozygosity in all three crocodilian genomes they analyzed when compared to avian and mammalian 
genomes. The least variable species, the American alligator Alligator mississippiensis, presented 
heterozygosity levels around 0.01%, which is at least three times higher than what we found for L. 
olivacea and D. coriacea, and comparable to E. imbricata, which presented the second highest 
heterozygosity levels in our study (Figure 11). The reduced genetic diversity observed for L. olivacea 
and D. coriacea compared to other species is concordant with their lower haplotypic diversity based on 
mitochondrial control region data for worldwide populations (Reid, Naro-Maciel, Hahn, FitzSimmons, 
& Gehara, 2019). 
 Assuming that the consistency across locus numbers and heterozygosity levels in our dataset 
make values comparable across species, we can evaluate the genetic distances among sea turtle species. 
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Chelonia mydas presented smaller distances to D. coriacea in comparison to all three members of the 
Carettini tribe, which might indicate one of two things: 1) a small acceleration of genetic divergence 
within Carettini, maybe during the short period in which speciation events across lineages took place 
or 2) a deceleration of genetic divergence in the C. mydas lineage, which does not agree with the current 
higher levels of genetic variation for this species. Similarly, E. imbricata presents consistently lower 
(albeit with a minor difference) genetic distances to C. caretta in comparison to L. olivacea. Although 
this might be a small analytical artefact, it is worth mentioning that C. caretta and E. imbricata have a 
proven capacity to generate fertile hybrids in large scale (Soares et al., 2018, 2017; Vilaca et al., 2012). 
Despite the fact that this is most likely a common phenomenon within the Carettini tribe, the presence 
of gene flow across lineages might influence levels of genetic distances and deserve a closer look in 
future studies involving genome-wide analysis. 
 When comparing individuals from different populations, we could see a clear difference 
between populations that are geographically close (i.e. from southwestern Atlantic) compared to 
populations from different oceans (C. caretta individuals). Although it is not possible to confirm 
whether a slight increase in distances (Figure 11) between alleles from different populations in 
comparison to within populations (i.e. within individual) represent population structuring, it might 
indicate a trend that should be evaluated in further studies using reduced-representation methods and 
more specifically the same set of R2SCOs we established for each species. 
 The data generated in this study is highly comparable across sea turtle species and can 
potentially be readily used to develop markers for different purposes and that could fit one or even all 
five species at the same time. By presenting loci with entire allele sequences that are alignable and with 
lengths between 384 and 448 bp, our data can be used to develop primers for small to large assays for 
different purposes and that could include Sanger sequencing, SNP panels or new microsatellite markers. 
Digging deeper into the data will reveal variable microsatellites within and across species, as we have 
observed ourselves. The least variable species, D. coriacea and L. olivacea, present only about 10% of 
the loci variable within individual. This knowledge should also be useful to guide future studies 
designing reduced-representation or genome-wide analysis for these species, since the level of 
invariable loci should be considered. Because R2SCO loci are conserved across sea turtle species, they 
can be potentially used for reconstructing the evolutionary history of species, discovery of genes related 
to adaptation and sex determination, estimate the genetic diversity and population structure, 
development of methods to assign individuals to nesting population, among other uses that can benefit 
sea turtle conservation.  
 
Application to other species 
Using sea turtle data, Chow et al. (2019) showed that reference-based SNP discovery using genomes of 
more closely related species allows identifying more SNPs. Similar to several other studies, they 
demonstrate the importance of establishing a proper reference for the target species. Here we present a 
method to build a locus catalog that is comparable to results from a conspecific genome but yet better 
suited for related species and even populations divergent from the genome. Our approach can be 
potentially transferred for any other species. We have successfully tested it in birds, mammals and 
freshwater turtles (manuscripts in preparation). However, given the level of locus and even allele 
dropout that might be expected in species with higher heterozygosity levels, we recommend and use 
ourselves this approach for species with low levels of heterozygosity. Although the method was very 
successful for all sea turtle species, locus dropout was clearly more present in C. mydas, which still 
presents a fairly low level of heterozygosity of ~0.3%. 

Low coverage results in decreased ability to confidently detect heterozygotes, affecting the analysis 
involving individual genotypes (Barbanti et al., 2020; Chow et al., 2019). This should specially be 
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avoided when building the set of R2SCOs for a species, as the evaluation of heterozygosity as well as 
the potential technical issues regarding some loci will be crucial to help planning larger scale analyses 
(that could use shorter reads) and therefore would decrease issues related to genotyping at the population 
level.  

As pointed out by McCartney-Melstad et al. (2019), no single default value for clustering threshold 
should be expected to be accurate for all studies or species. Our approach can help define empirical 
thresholds for any new species analyzed, with no need for previous knowledge regarding that species 
genetic variability. It is important, however, to have educated assumptions about population 
representativeness by a given specimen. This way, the new reference set would not only be 
representative of the set of populations analyzed, but could also be used for a preliminary analysis of 
genetic distances among different populations, even with one single individual per population. 
 
Conclusions 

Coupling stepwise quality control and overlapping reads, this study presents a detailed overview of 
ddRAD-like methodologies up to the stage of variant calling. Our empirical tests showed several 
potential issues in the ddRAD laboratory protocol and bioinformatic analyses. The use of long 
haplotypes, for part or the totality of samples, can substantially improve the quality of the set of 
reference loci and therefore potentially eliminate a series of biases incorporated during analysis and that 
can strongly affect downstream analysis. 
 
There is an ever-growing number of studies trying to overcome issues produced by RAD experiments 
and data (e.g. Barbanti et al., 2020; Chow et al., 2019; LaCava et al., 2020; Paris et al., 2017; Shafer et 
al., 2017). However, the issues caused by the technique are highly variable and seem to be specific to 
each experiment (DaCosta & Sorenson, 2014). The approach developed here proposes to use 
overlapping reads to gain power over the data created, helping scientists evaluate every single library 
created for a given species or population.  

Finally, our study is a pioneer in performing a comparative study among sea turtles species using 
genome-wide data and confirming the very slow rate of genomic change in chelonians (Avise, Bowen, 
Lamb, Meylan, & Bermingham, 1992; Shaffer et al., 2013). Low yet variable levels of genetic 
variability combined with high levels of homology make sea turtles an ideal system among vertebrates 
for evaluating genomic methods that analyze vertical evolution. The very low levels of genetic diversity 
(~0.03%) found in this study in at least two of the sea turtle species reinforces the urgency to broaden 
genomic studies across the globally threatened group of sea turtle species. 
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