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Abstract 
An important challenge of crop improvement strategies is assigning function to paralogs in 
polyploid crops. Gene expression is one method for determining the activity of paralogs; 
however, the majority of transcript abundance data represents a static point that does not 
consider the spatial and temporal dynamics of the transcriptome. Studies in Arabidopsis have 
estimated up to 90% of the transcriptome to be under diel or circadian control depending on the 
condition. As a result, time of day effects on the transcriptome have major implications on how 
we characterize gene activity. In this study, we aimed to resolve the circadian transcriptome in 
the polyploid crop Brassica rapa and explore the fate of multicopy orthologs of Arabidopsis 
circadian regulated genes. We performed a high-resolution time course study with 2 h sampling 
density to capture the genes under circadian control. Strikingly, more than two-thirds of 
expressed genes exhibited rhythmicity indicative of circadian regulation. To compare the 
expression patterns of paralogous genes, we developed a program in R called DiPALM 
(Differential Pattern Analysis by Linear Models) that analyzes time course data to identify 
transcripts with significant pattern differences. Using DiPALM, we identified genome-wide 
divergence of expression patterns among retained paralogs. Cross-comparison with a 
previously generated diel drought experiment in B. rapa revealed evidence for differential 
drought response for these diverging paralog pairs. Using gene regulatory network models we 
compared transcription factor targets between B. rapa and Arabidopsis circadian networks to 
reveal additional evidence for divergence in expression between B. rapa paralogs that may be 
driven in part by variation in conserved non coding sequences. These findings provide new 
insight into the rapid expansion and divergence of the transcriptional network in a polyploid crop 
and offer a new method for assessing paralog activity at the transcript level. 
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Significance 
The circadian regulation of the transcriptome leads to time of day changes in gene expression 
that coordinates environmental conditions with physiological responses. Brassica rapa, a 
morphologically diverse crop species, has undergone whole genome triplication since diverging 
from Arabidopsis resulting in an expansion of gene copy number. To examine how this 
expansion has influenced the circadian transcriptome we developed a new method for 
comparing gene expression patterns. This method facilitated the discovery of genome-wide 
expansion of expression patterns for genes present in multiple copies and divergence in 
temporal abiotic stress response. We find support for conserved sequences outside the gene 
body contributing to these expression pattern differences and ultimately generating new 
connections in the gene regulatory network. 
 
Author contributions: K.G., T.C.M., and C.R.M. designed research; K.G. and P.L. performed 
experiments; K.G., R.C.S., and S.Z. analyzed data; and K.G., R.C.S., and C.R.M. wrote the 
paper. 
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Introduction 
The transition from basic research in Arabidopsis to new model systems for monocot and dicot 
crops has focused attention on the implications of polyploidy on our current models of genetic 
processes developed in Arabidopsis. The expansion of gene content through whole genome 
duplication (WGD), tandem duplication or transposed duplicates has been predicted to account 
for the evolution of morphological complexity (1). Improving crop yield in rapidly changing 
climates depends on our ability to integrate these gene content expansions into functional 
classifications of physiological importance. This will rely on the growing collection of sequenced 
genomes, not just across crop species but of ecotypes within species, including complementary 
genomic datasets such as transcriptomes, methylomes, chromatin accessibility and 
metabolomic profiling. One difficulty in assigning new or overlapping functions among paralogs 
arises from heterogeneity in transcript abundance datasets generated under various 
environmental conditions, from various tissue types, and at distinct times of day. Many studies 
have explored the potential for functional divergence of duplicated genes by comparing 
expression levels normalized across a collection of expression studies (2–5) which limits the 
search to genes showing very dramatic differences in transcript abundance at a single time 
point. 
  
The importance of daily rhythms was recognized with the 2017 Nobel prize in physiology or 
medicine to Jeffrey Hall, Michael Rosbash and Mike Young for their discoveries of the molecular 
mechanisms generating circadian rhythms in Drosophila (6, 7). The conservation of circadian 
oscillators across the animal and plant lineages supports a role for these rhythms in maintaining 
fitness and evolving new regulatory pathways to fulfill that role (8). Many lines of evidence 
support the importance of circadian rhythms to plant biology, including photosynthesis, starch 
metabolism, biomass accumulation, and reproduction (9, 10). The circadian clock responds to 
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environmental conditions to set these circadian rhythms to local time (10). As a consequence, 
circadian rhythms and thus much of plant biology are likely to be influenced by climate change. 
Examples of natural variation in plant circadian function are accumulating, as is evidence that 
many domestication traits that facilitated the geographic expansion of crops are due to 
alterations in circadian clock genes (11–13). This supports the utility in targeting circadian clock 
processes as a means of trait improvement without disrupting critical pathways required for 
growth and yield. 
  
Plant circadian biologists have focused primarily on Arabidopsis as a model for defining 
circadian clock components and function in plants (14). Transcriptome studies have revealed 
extensive circadian control of transcript abundance resulting in time of day changes in 
expression (15–17). These rhythmic changes in transcript abundance are not unexpected given 
the daily changes in light, temperature and precipitation that affect physiological processes such 
as photosynthesis. Dynamic changes in metabolism and physiology must be driven by dynamic 
changes in gene expression and ultimately protein regulation and activity. To identify candidate 
circadian regulators for trait improvement in crops, more detailed time course resolution of 
transcript abundance levels is needed to confirm whether the diel and circadian patterns 
observed in Arabidopsis are maintained in highly polyploid crops. The crop plant Brassica rapa 
offers an excellent model system for studies in crops. It is a member of the Brassicaceae and 
close relative of Arabidopsis making comparative studies feasible. The morphological diversity 
in B. rapa with turnip, Chinese cabbage, pak choi, leafy and oil-type varieties provides a wealth 
of phenotypic traits to study in one species allowing for broad applicability to other crops. 
Preliminary studies have shown diversity in circadian clock parameters among morphotypes 
that correlate with various physiology measures suggesting that circadian clock variation has 
contributed to B. rapa diversification (18). Examination of the orthologs of known circadian clock 
genes in Arabidopsis revealed preferential retention of these genes in B. rapa following the 
triplication and extensive fractionation of the genome after diverging from Arabidopsis around 24 
million years ago (MYA) (19). The preferential retention of clock genes suggests that their 
involvement in protein complexes and regulation of critical pathways makes them sensitive to 
dosage effects. The gene dosage balance hypothesis proposes that duplication of the entire 
genome is favored over single or chromosome level duplications because it maintains the 
appropriate concentration of gene products (20). This is supported by studies in yeast where 
genes of protein complexes tend to be lost simultaneously with their interacting proteins (21). 
The increase in expression of one duplicate could lead to or permit loss of the other duplicate or 
neo-functionalization (21). 
  
To assess the functional significance of the retention of circadian clock genes in B. rapa and 
look for possible examples of neo-functionalization we performed two high resolution circadian 
transcriptome experiments to characterize the circadian network. To compare the expression 
dynamics of paralogous genes, we developed a novel method for identifying and classifying 
changes in expression patterns. This method is available as an R package called DiPALM 
(Differential Pattern Analysis via Linear Models). DiPALM facilitated a comparison of paralog 
expression patterns, revealing genome-wide expansion of phase domains among paralogs 
providing novel insight into the rapid divergence of the transcriptional network in this crop. We 
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applied DiPALM to our recent drought time course experiment in B. rapa and discovered 
differential responses to mild drought stress among paralogs suggesting evidence for neo- and 
sub-functionalization. Using previously generated circadian microarray data in Arabidopsis we 
compared gene regulatory networks (GRNs) to identify the more Arabidopsis-like versus the 
more divergent (less Arabidopsis-like) among pairs of B. rapa paralogous Transcription Factors 
(TFs) based on conservation of connected targets in the network. The identification of the more 
Arabidopsis-like TF ortholog was supported by the presence of conserved noncoding 
sequences (CNSs) surrounding TF target genes, reinforcing the importance of these CNSs for 
regulating gene expression.  
  
Results 
How pervasive is circadian regulation of the transcriptome in B. rapa? 
The preferential retention of genes contributing to circadian clock function in multiple copies in 
B. rapa (19) suggests that relative dosage of clock proteins is important. Have these retained 
paralogs diversified in function and contributed to robustness and flexibility in the circadian 
clock? If the clock were essential for plant growth and coordinating responses with the 
environment, we would expect that the circadian regulation of the transcriptome would be 
similarly impacted. To examine the extent of circadian regulation of the B. rapa transcriptome 
and the expression patterns of circadian regulated paralogs, we designed two RNA-seq 
experiments. The first photocycle (LD) experiment involved entraining B. rapa yellow sarson 
(R500) plants under 12 h light/ 12 h dark and constant 20°C for 15 days after sowing (DAS) 
before transfer to constant light and 20°C (LDHH). The second thermocycle (HC) experiment 
involved entraining B. rapa R500 plants under 24 h light with 12 h 20°C and 12 h 10°C 
temperature cycles (LLHC) until 15 DAS before transfer to LLHH. Following 24 h in constant 
conditions leaf tissue from the youngest leaf was collected and flash frozen in liquid nitrogen 
every 2 h for 48 h. These two conditions were designed to capture the genes under circadian 
regulation driven by light and temperature zeitgebers (German for “time givers”, referring to 
entraining signals). Studies in Arabidopsis have demonstrated widespread circadian regulation 
of the transcriptome with distinct and overlapping genes involved in various entraining 
conditions (16, 22). 
 
To identify the circadian transcriptome, we analyzed the LD and HC datasets and ran the 
circadian analysis program RAIN (23), a nonparametric method for the detection of rhythms 
from a variety of waveforms that are typical of transcript abundance datasets. The 2 h sampling 
regimen provided the resolution to capture more cycling genes than possible with typical 4 h 
sampling (24). Using a Benjamini-Hochberg corrected p-value of 0.01, we identified 16,973 high 
confidence circadian regulated genes from the two datasets. Of the 22,204 genes that were 
expressed in the RNA-seq datasets, 76% of them passed our cutoff for cycling in one or both 
conditions, indicating retention of circadian regulation of the transcriptome following WGD in B. 
rapa. To assign cycling genes to specific phase bins based on timing of peak expression we 
generated co-expression networks for each dataset using the weighted gene correlation 
network analysis (WGCNA) package in R (25). Applying a network approach to time series data 
has proven to be an effective method for grouping similarly phased genes based on their 
expression pattern (26). This resulted in 14 modules in the LD dataset and 10 modules in the 
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HC dataset. To demonstrate the uniformity of the genes within each module, a heat map was 
generated with the log2 transformed expression data of each gene for all modules numbered 
based on their phase (Fig. 1). From the heatmaps, it is evident that each module reflects a 
similarly phased set of genes that collectively are phased throughout the day with the LD_01 
module showing peak expression at ZT24 (subjective dawn) and LD_09 showing peak 
expression at ZT36 (subjective dusk). Most striking is the proportion of the transcriptome that 
exhibits rhythmic patterns of expression with 13,474 genes in LD clustered into just 14 modules 
and 14,211 genes in HC clustered into just 10 modules; these data establish that a substantial 
portion of the transcriptome is under circadian regulation in B. rapa. 
 

 
 
Figure 1. Expansion of the circadian transcriptome in B. rapa. Co-expression networks were generated for the 
LDHH (LD) and LLHC (HC) datasets. The 14 modules from the LD dataset are shown in the heatmap on the left and 
the 10 modules from the HC dataset are shown on the right. Heatmaps were generated using the log2 transformed 
FKPM expression data. Low expression level is in purple and high expression level in orange. The circos plot in the 
middle shows the overlap in genes between the LD and HC modules. Modules are numbered based on their phase 
starting at the beginning of the day (ZT24). The size of the ribbon signifies the number of genes in common between 
the connected modules and the color represents the Pearson correlation between the eigengenes of the two 
datasets.  
 
 
The similarity in patterns seen in the LD and HC heatmaps in terms of phasing and distribution 
of genes within those phase bins suggests that there may be considerable overlap in gene 
phasing under LD and HC entrainment. To quantify the overlap, we matched the genes across 
the two networks and compared the correlation of eigengenes between LD and HC modules. 
The circos graph in Fig. 1 depicts the overlap between the two networks where the size of the 
ribbon represents the number of genes in common between the two modules and the color 
signifies the Pearson correlation between the eigengenes of the two datasets with dark orange 
being a correlation of 1. Because the modules are numbered based on their phase, similarly 
phased modules are arranged in the same order in the circos plot and the significant overlap 
and expression pattern between these modules is evident. This comparison demonstrates that 
most genes have the same or similar phasing when entrained by either photocycles or 
thermocycles. To further assess the similarity between these two datasets, GO ontologies were 
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compared for each module from the LD and HC experiments (Dataset S1). This revealed similar 
biological processes enriched in the modules with significant correlation in expression pattern. 
For example, genes in LD_03 and HC_02 were both significantly enriched for photosynthetic 
processes and response to abiotic stress, consistent with their morning phased expression. 
Interestingly, genes in LD_07 and HC_07 were significantly enriched for protein phosphorylation 
suggesting a time-of-day dependency for the regulation of this process.  
 
The correlation between module membership is not a rigorous test of differential transcript 
abundance and many genes have low correlations with their module eigengene that are not 
reflected in the analysis in Fig. 1. To our knowledge, there was not a rigorous test available for 
identifying significantly different gene expression patterns that would classify the change based 
on phase, amplitude or a combination of both. Rather than looking at differentially expressed 
genes at any given time point, we felt it was more important to classify a pattern change that 
encapsulated the entire time course. This led us to the development of the R package DiPALM. 
DiPALM takes advantage of the network analysis that assigns an eigengene to each module 
and therefore produces a minimal set of patterns representing the entire data set. The 
expression correlation of a given gene to any module’s eigengene defines the module 
membership (kME) of that gene to the module. The combination of kMEs for a gene across all 
modules can be used to encode its expression pattern numerically and allows for quantitative 
comparisons between any two gene’s expression patterns. This allowed us to run a set of linear 
model contrasts (one for each eigengene) that is analogous to running a contrast of gene 
expression data between time points or treatments except in this case the kME value represents 
the entire expression profile across the time course. We first tested for differential expression 
patterns between the LDHH and LLHC datasets. To generate a significance cutoff, we also ran 
the analysis on a permuted gene expression set where gene accessions were randomly re-
assigned to expression patterns. P-values were then calculated using this permuted set. Using 
a p-value cutoff of 0.01, we identified just 1713 genes, or 11% of all cycling genes, that have 
altered patterns between LDHH and LLHC entrainment. To quantify overall expression level 
variation, we ran a similar linear model analysis on the median expression level for all genes 
and identified 3465 (23%) genes, only 448 of which overlapped with the pattern change list 
(Dataset S2). The 11% of cycling genes with entrainment-dependent cycling patterns are very 
interesting but further analysis in this area is not within the intended scope of this manuscript. A 
functional enrichment analysis of these genes revealed translation initiation factors and ncRNA 
metabolic process among the significant functional categories (Dataset S1, 
“Differential_Pattern” Tab). Given that the majority of genes show similar expression between 
the LD and HC datasets, we have combined the datasets for all further analysis in order to 
increase our statistical power by having four replicates per time point rather than two. One 
significant advantage of a linear model-based frame-work is the ability to account for any 
identified effect. Therefore, for all subsequent references to the RNA-seq dataset we combined 
LD and HC entrainments and included the LD/HC factor as a covariate in the linear model. 
 
Do retained multi-copy circadian regulated genes exhibit gene dosage behavior? The 
network analysis revealed that a large portion of the transcriptome exhibits rhythmic expression 
patterns. This would imply that multi-copy paralogs have retained their rhythmic expression 
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patterns and circadian regulation consistent with the preferential retention of circadian clock 
orthologs in B. rapa (19). These results provide the first evidence of genome-wide expansion 
and retention of circadian control of the transcriptome following a WGD in B. rapa. Based on the 
gene dosage model, the balance in expression among different subunits of protein complexes 
must be maintained resulting in the proper adjustment of paralog expression level, in some 
cases resulting in one copy maintaining high expression while the other is repressed (20). To 
evaluate this model, we calculated the mean expression level for all cycling genes across the 48 
h time course. The mean expression levels for the set of retained multi-copy paralogs was 
significantly higher than for genes retained in single copy (Fig. 2A). It is possible that one of the 
retained copies is expressed at a much higher level than the average single copy gene as well 
as its paralog. To test whether this is the case, we separated all the cycling 2- and 3-copy 
paralogs into the highest and lowest expressed copies. We compare this to randomly paired 
single-copy gene pairs that were also separated into high and low groups (Fig. 2B). Surprisingly, 
the difference is observed in the low expressed paralog where these duplicated genes have 
significantly higher average expression levels compared to the genes retained in single copy. 
This suggests that although the duplicate paralogs do appear to exhibit gene dosage, their 
overall expression is retained at a higher level than expression of single copy genes.  
 
The retention of multi-copy genes that are under circadian regulation and maintained at a 
relatively high expression level led us to explore whether there is evidence for divergence in 
expression pattern that would support neo- or subfunctionalization among paralogs.  To 
associate similar patterns we applied the same WGCNA method to the combined dataset as 
was done for the individual analysis shown in Fig. 1. This resulted in 12 modules with distinct 
phasing throughout the day that is clearly visible when the eigengene expression for each 
module is presented as a heat map (Fig. 2C). We next wondered whether there was any 
association between phase of expression and retained copies that may suggest certain 
biological processes that are phased to specific times of day and may preferentially retain multi-
copy genes. Based on the number of genes within each module, we ran a hypergeometric test 
to look for over- and under-enrichment of multi-copy genes within the modules. Surprisingly, we 
found that modules with phasing from morning to midday tend to be enriched for multi-copy 
genes. In contrast, evening and night phased modules were depleted for multi-copy genes (Fig. 
2D). These trends were not associated with the number of genes within the module as can be 
seen with two of the largest modules LDHC_02 and LDHC_09 being over- and under-enriched, 
respectively. GO enrichment was carried out on a combined group of all multi-copy genes from 
the 5 morning modules with significant enrichment for multi-copy genes (p-value <0.05). The 
same was done for the group of all multi-copy genes from all 4 evening modules with significant 
depletion in multi-copy genes. Both of these sets appear to be representative of the whole 
modules from which they came with the morning-phase copied genes being significantly 
enriched for photosynthesis, translation and response to abiotic stimulus genes. The evening-
phase multi-copy genes were significantly enriched for protein phosphorylation and 
glycosinolate biosynthesis genes, consistent with a phase at dusk (Fig. 2D, Dataset S3). Given 
the importance of proper transcriptional regulation of photosynthetic processes and the balance 
of enzyme components it is not surprising that there is a higher retention of multi-copy genes 
within these pathways. However, whether these genes are performing similar functions to their 
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orthologous counterparts in Arabidopsis or have acquired new functions that could lead to 
additional regulation of the photosynthetic process is one exciting avenue of future study. 
 

 
Figure 2. Retained multi-copy circadian regulated genes are highly expressed and display time of day 
variation. A. Mean log2 FPKM expression levels for each gene across the combined LD & HC time course. for multi-
copy paralogs compared to single copy genes. Numbers above the whiskers indicate the number of genes in each 
group. P value is the result of an ANOVA test. B. Expression level comparison when paralogs are separated into high 
and low expression groups compared to randomly paired single copy genes. Numbers above the whiskers indicate 
the number of genes in the groups. P value is the result of an ANOVA test. C. Heatmap of the 11 modules of the 
combined LDHC co-expression network arranged by ZT time (in Zeitgeber [ZT] time, where ZT0 represents the most 
recent dark to light or cold to warm transition) across the x-axis and circadian phase along the y-axis. D. Results of a 
hypergeometric test of the number of multi-copy genes in each module. The left barplot shows the results of the 
hypergeometric test expressed as a -log10 P value with enrichment to the right and depletion to the left of 0. The right 
barplot shows the number of multi-copy genes in each of the modules.  
 
 
To look for signs of possible neo- or sub-functionalization among paralogs, we compared the 
expression profiles to identify paralogs with significantly different expression patterns. For 3-
copy paralogs, where all three copies were expressed, these sets were converted into three, 2-
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copy pairs. We applied a similar linear modeling test using DiPALM that we ran on the LDHH 
and LLHC comparison but including a covariate in the model to account for differences in LD vs. 
HC. We ran this analysis on 4433 pairs where both genes are expressed. We found 3743 (84%) 
pairs with differential median expression (exDif) and 1883 (42%) paralog pairs exhibiting 
differential expression patterns (pDif) the vast majority (1607; 85%) of which overlapped with the 
exDif set (Dataset S4). Thus, 42% of expressed paralog pairs have diverged in circadian 
expression pattern in the R500 genome. However, this does not describe how the patterns 
differ. As with standard differential expression tests, it is critical to associate a direction of 
change in expression to know how a gene transcript is affected by a treatment or condition. To 
isolate the type of pattern change for the paralogous pairs exhibiting significantly different 
patterns, we performed clustering on the vector of expression values across the combined LD 
and HC data for each gene whose expression differed significantly from its paralog. This 
clustering had the effect of grouping genes based on their phase. Similar clustering was done 
for the significant exDif set. This clustering component is also part of the DiPALM package. A 
detailed description and example dataset of the analysis pipeline is provided with the package 
on CRAN (27). 
 
To visualize the degree of pattern change, we generated a heat map of each of the clustering 
methods with the paralogous gene pairs stacked for comparison. As expected, the pDif 
clustering uncovered the changes in rhythmic patterns between pairs (Fig. 3A) while the exDif 
uncovered overall changes in transcript abundance (SI Appendix, Fig. S1). From the heatmap 
visualization it is clear that the majority of the pattern change among paralogous pairs is the 
result of a phase shift in peak expression. In some cases (Fig. 3A and B, clusters 4 and 12) the 
pairs are completely antiphase. This suggests genome-wide expansion of phase domains 
among retained paralogs. The expansion of expression domains is reminiscent of the PSEUDO-
RESPONSE REGULATOR (PRR) and REVEILLE (RVE) families of circadian clock genes that 
were retained following WGD as well as tandem duplication events (28). The PRR genes in 
Arabidopsis have a temporally sequential expression pattern with PRR9 expressed just after 
dawn followed by PRR7, PRR5, PRR3 and finally PRR1/TOC1 expressed in the evening (29). 
The PRR proteins appear to retain some common functions but their diverged expression 
patterns results in differential contributions to the circadian network (30–33). This also 
emphasizes the benefit of applying a network framework to the data that associates similarly 
regulated genes. A coordinated regulation must underlie these changes since we see paralogs 
with similar expression patterns having their paralogous pair diverging in expression together. 
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Figure 3. Divergence in phase domains among retained paralogs. A. Heat map of the results from the DiPALM 
pDif (A) clustering showing the changes in expression pattern for paralogous pairs. Each line of the heat map for 
each block corresponds to a paralogous pair. Three-copy paralogs were split into three 2-way comparisons. 
Expression values are log2 transformed FPKM values and the expression is arranged by ZT time across the x-axis. 
Higher expression levels are orange and low expression levels are purple. For example, pDif_01 shows paralogous 
pairs that are anti-phase with Paralog 1 peaking at ZT36 and ZT60 and Paralog 2 peaking at ZT24 and ZT48. B. Line 
plots showing the expression patterns for three modules (pDif_04, pDif_14, and pDif_18). Each plot shows the 
normalized expression of paralogous pairs for all the genes in the module. Ribbons (shaded regions) represent the 
standard deviation.  
 
 
Identifying the ‘Arabidopsis-like’ paralog of B. rapa using gene regulatory networks. The 
divergence in expression pattern among retained paralogs led us to speculate as to how 
diverged the retained pairs are with respect to their Arabidopsis ortholog (Fig. 4A). Are 
paralogous gene pairs equally likely to diverge in expression or does one copy retain the 
Arabidopsis-like expression pattern while the other copy acquires new expression variation? 
One method of comparing the orthologs between B. rapa and Arabidopsis is to compare phase 
of expression. However, assigning an accurate phase to circadian data from two cycles is 
challenging and often gene expression patterns show very broad peaks in abundance that can 
be difficult to classify, especially with the resolution of only 4 h that is available for Arabidopsis. 
Also, because we are comparing two species, we have to consider the properties of the clock in 
each species. The B. rapa R500 clock has a slightly shorter period than Arabidopsis Col-0 that 
results in apparently altered phasing among genes that is not indicative of divergence in 
function but arises merely from the different paces of the Arabidopsis and B. rapa oscillators. 
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For example, if we plot the expression of single copy circadian clock genes from B. rapa and 
their corresponding orthologs in Arabidopsis we see a leading phase in B. rapa (SI Appendix, 
Fig. S2). To avoid these phase complications, we chose to use a gene regulatory network 
(GRN) approach that would provide additional statistical robustness by first predicting 
transcription factor (TF) targets based on expression dynamics within each species followed by 
a comparison of network connections between the species. We constructed the GRNs using 
GENIE3 (34). GENIE3 uses a random forest based method for GRN construction that 
demonstrated superior performance in the DREAM4 In Silico Multifactorial (35) and DREAM5 
network inference (36) challenges (Fig. 4B).  
 
We obtained previously published circadian microarray data from Arabidopsis that were 
generated under similar conditions with LD and HC entrainment (LL_LDHC, LL_LLHC, 
LL12_LDHH and LL23_LDHH from (17)). We selected the Arabidopsis TFs from the 
Arabidopsis TF database (https://agris-knowledgebase.org/AtTFDB/) and B. rapa TFs selected 
from the Mapman annotation “RNA regulation of transcription” in addition to known circadian 
clock TFs not included in the list. This resulted in a list of 612 Arabidopsis and 2147 B. rapa TFs 
that were expressed in their respective datasets. For the target set, we included 9201 
Arabidopsis expressed genes and the corresponding 14,541 B. rapa expressed orthologs. 
Separate GRNs were generated for Arabidopsis and B. rapa. To identify significance of TF-
target edges, we generated a permuted network by using the same TFs but shuffling the 
expression values for the target genes resulting in an Arabidopsis GRN with 71,216 edges and 
a B. rapa GRN with 947,062 edges. A gene was said to be a target of a TF if the edge between 
them was significant. We hypothesized that the paralogous TF in B. rapa that retained more of 
the Arabidopsis orthologous function would have a greater overlap in targets in the network 
compared to the more diverging pair. In other words, using TFs as features to describe the 
targets, how well can the expression of the target genes be explained by the expression of that 
TF (Fig. 4B)? A set of 256 TFs exist where one Arabidopsis TF can be associated with two B. 
rapa paralogs and all three of these genes had target groups defined by their respective GRNs.    
 
For each of these 256 sets, we examined the significance of the overlap between the 
Arabidopsis TF target group vs. the corresponding B. rapa orthologous TF target groups. This 
resulted in two p-values for each group indicating how similar each B. rapa TF is to its 
orthologous Arabidopsis TF in terms of target gene overlap. Next we wanted to determine if the 
difference in these two p-values was significant; that is, does one of the B. rapa TFs show more 
conservation of target gene overlap with its Arabidopsis ortholog than the other B. rapa TF? 
This was accomplished with another permutation-based test where genes were randomly 
sampled to create target groups of the same sizes. The two B. rapa vs. Arabidopsis p-values 
were calculated and the difference was taken. This was repeated 10,000 times for each of the 
256 TF sets. As a result, 49 TF pairs exhibited significant enrichment for one B. rapa TF 
(assigned Br1) being more similar to Arabidopsis than its paralog suggesting possible 
divergence in function between these TFs (Fig. 4C and D). It is worth noting that the size of the 
target group is not driving the enrichment as we see a broad distribution in target size and 
significance (Fig. 4C). Among the list of 49 TFs, six are part of the core circadian clock (ELF3, 
ELF4, PRR9, PRR7, PRR5, and TOC1), and a seventh, RVE1, integrates the circadian clock 
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and auxin pathways (37, 38). Based on the predicted targets of these TFs in the GENIE3 model, 
there are 11,559 B. rapa and 3387 Arabidopsis genes regulated by these 49 TFs, providing 
further support for the retention and novel innovation of the circadian network in B. rapa. The 
divergence in TF target genes indicates several possible changes have occurred; these could 
include modifications to regulatory elements of the target genes, mutations that alter the TF 
protein binding efficiencies for motifs or interacting partners or a combination of both. Alterations 
to regulatory elements associated with core TFs and/or target genes can lead to whole pathway 
level restructuring. One possible mechanism for altered expression regulation is the distribution 
of conserved noncoding sequences (CNSs). A set of CNSs were identified across the 
Brassicaceae that show signs of selection (39). To associate CNSs with the R500 genome, we 
performed a BLAST analysis with a collection of ~63,000 CNSs against the B. rapa R500 
genome. Provided the alignment met our BLAST filters, we allowed each CNS to have a 
maximum of three targets (see Materials and Methods). We repeated the BLAST with the 
Arabidopsis genome but restricted each CNS to one target gene. 
 
To test for altered regulatory element occurrences between target genes of the identified 
diverging TFs we asked whether variation in CNS retention followed the same pattern as the 
observed gene expression changes. Do we see a similar divergence in B. rapa paralogous TF 
enrichment with Arabidopsis in the GENIE3 network if we replace the target set gene 
expression data with CNSs? With the list of genes and associated CNSs we replaced the target 
genes in the GENIE3 networks with CNSs resulting in a network with TFs targeting a group of 
CNSs rather than genes. We performed the same permutation tests to assign significant 
enrichment to the groups to ask whether we could identify a R500 TF ortholog that was more 
Arabidopsis-like than its paralogous pair. We identified 68 significant TFs (Fig. 4E and F), 35 of 
which overlapped with the 49 TFs identified based on target gene overlap (Fig. 4G). The 
agreement between these two approaches is apparent when the corresponding p-value 
distributions from the overlap of targets are plotted (Fig. 4D and F). In these boxplots, the Br1 
enrichment for At target gene overlap is shown with the paralogous pairs connected by the red 
lines. Not only does the agreement between the target gene and CNS overlap further 
strengthen the support for those 35 TF pairs showing signs of divergence but suggests that the 
CNS distribution is associated with gene expression patterns and is a good predictor of 
expression variation. With this set of high confidence diverging TFs from the overlap group, we 
wondered whether changes in amino acid sequence contribute to the divergence between 
paralogous pairs in which case we would expect the Arabidopsis-like B. rapa TF to be more 
similar than its pair. To test this, we ran a protein BLAST using the B. rapa TFs against the 
Arabidopsis genome and examined the distribution of blast scores for the more and less 
Arabidopsis-like TF. Results from the BLAST suggest very little association between amino acid 
sequence and TF divergence (Fig. 4I) suggesting that changes to regulatory regions associated 
with target genes is likely to be a major driver of TF divergence. TF expression pattern changes 
are likely contributing to the divergence in regulation. To test this further, we conducted a similar 
analysis to the BLAST comparison where we looked at the expression correlation of B. rapa TFs 
vs. the orthologous Arabidopsis TF. In general, the more conserved B. rapa TF was more likely 
to maintain higher expression correlation to the Arabidopsis ortholog but the effect is not 
significant (Fig. 4H, p-value 0.057) and several of the 35 TF sets tested do not show this result. 
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However, due to the Arabidopsis and B. rapa datasets being slightly out of phase it is difficult to 
compare expression patterns directly (SI Appendix, Fig. S2). While paralogous TFs likely retain 
binding to the same motifs, a divergence in expression may result in the loss of transcriptional 
coactivators or corepressors required for gene activation or repression due to temporal 
separation in expression pattern resulting from the shift in phase of that TF. Similarly, an altered 
phase of expression might allow interaction with new TF interacting factors to provide new 
target affinity for that TF resulting in a new target set. 
 
If the CNSs are driving the expression differences we would expect them to be enriched for TF 
binding motifs (39). To test for motif enrichment, we selected the overlap between the top 15 
most significant TFs from the gene expression and CNS GRNs. This resulted in a list of 12 TFs 
that included those encoded by the circadian clock genes TOC1 and PRR5. For each TF (B. 
rapa paralogs and Arabidopsis ortholog), we took the collection of CNSs represented by their 
target genes in the GRNs and ran them against the HOMER motif analysis algorithm (40). 
Because the CNSs are located throughout the gene (promoter, 5’UTR, introns, 3’UTR) we 
selected the sequence from 2kb upstream of the start codon to the 3’UTR for each target gene 
for comparison. We also included just the 2kb upstream sequence to compare to standard motif 
search parameters. For all 12 TFs tested, we found 3-5 fold greater enrichment for motifs in the 
CNS elements compared to the full length and 2kb promoter background sets (SI Appendix, Fig. 
S3). This is consistent with the results from the GRN analysis showing that CNSs are as 
predictive as expression dynamics and contain important regulatory elements. Further studies 
are needed to look for associations between groups of CNSs with their corresponding binding 
motifs and specific gene expression patterns. Since the GENIE3 algorithm associates target 
genes based on a TF being an activator or repressor, the target genes typically have several 
major expression patterns (Fig. 4B). Isolating distinct patterns and analyzing CNS variation 
between the target groups may reveal new motif groupings or novel motifs. 
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Figure 4. Identifying the ‘Arabidopsis-like’ paralog using GRNs. (A). Schematic showing the triplication event 
following the divergence between Arabidopsis and B. rapa leading to multi-copy orthologs of known Arabidopsis 
transcription factors (TF). (B) GENIE3 networks are generated to associate a TF with target genes based on the 
expression patterns of the TF and all the genes in the network. There is no assigned direction to the TF regulation in 
our GENIE3 network resulting in possible positive or negative regulation. (C&E) Scatterplots show all 256 B. rapa TF 
pairs in the analysis. Triangles indicate that they were identified as having one B. rapa TF significantly more 
Arabidopsis-like than the other; circles were not significantly different. Points colored red means that Br1 (the more 
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Arabidopsis-like TF) has a larger target group and teal means Br1 has the smaller target group. (C) Shows the results 
for the gene overlap network analysis and (E) shows the results from the CNS overlap analysis. P value distributions 
of the overlap in B. rapa vs. Arabidopsis target genes (D) and CNSs (F). All Br1 and Br2 TFs are viewed as separate 
groups with paralogs connected by red lines. (G) Of the 49 TFs identified as more Arabidopsis-like based on target 
genes between the Arabidopsis and B. rapa networks, 35 overlapped with the 68 TFs identified based on CNSs 
between Arabidopsis and B. rapa target groups. (H) Distribution of the Pearson correlation of TF expression patterns 
comparing each Br1 and Br2 TF with Arabidopsis TF ortholog. (I) Distribution of BLAST bit score of Br1 and Br2 TFs 
compared to their orthologous Arabidopsis TF. 
 
 
B. rapa paralog expression pattern response to abiotic stress. In agreement with the gene 
balance hypothesis, which posits that multi-subunit complexes are sensitive to variations in 
stoichiometry resulting in dosage compensation to produce the same amount of product (41), 
the exDif clustering did reveal a consistent trend with one paralog having significantly higher 
median expression levels compared to the other retained paralog of that pair (SI Appendix, Fig. 
S1). However, as previously demonstrated, the overall expression levels for multi-copy genes is 
higher than the single-copy genes (Fig. 2A and B). In addition, the rhythmicity in the paralogous 
pairs is still apparent providing further support for focusing on the importance of the pattern of 
expression rather than simply the overall levels. This led us to wonder whether there is any 
indication that these pattern changes may contribute to new temporal responses to 
environmental stimuli such as abiotic stress. The gated stress response has been characterized 
in several plant species including Arabidopsis, poplar, rice and B. rapa (26, 42–45). If a time-of-
day dependent stress responsive gene in Arabidopsis now has two copies in B. rapa with 
altered expression patterns does this result in an expanded stress response window or does 
one copy retain stress response while the other loses it?  
 
To look for indications of divergence in function we used our previous mild drought time course 
RNA-seq dataset (26) to test for altered responses to drought among pairs of paralogs. We first 
used the well-watered control samples to identify the paralogous pairs with altered patterns. 
Consistent with the divergence in pattern change under circadian conditions, the same trend is 
apparent under diel conditions. Out of 4664 total pairs where two copies show detectable 
expression levels, 3259 pairs had significantly different patterns under control conditions. In the 
circadian dataset we observed just 42% of genes with altered pattern but these diel data reveals 
70% of pairs with altered pattern. Similarly, 77% of pairs (3602) had significantly different 
median expression levels (Dataset S5). Of the total pairs, 35% and 50% had one or both genes 
identified as circadian-regulated, respectively, indicating that both circadian and diel regulation 
drives the rhythms observed under diel conditions. For the pairs with altered patterns under the 
well-watered conditions, 93% were tested (both genes were expressed) under circadian 
conditions and 52% showed significant pattern changes. 
 
To identify differential response to drought among paralogous pairs, we first ran DiPALM on all 
(23,248) expressed genes and identified 3891 with a significant pattern change and only 327 
with median expression changes (Dataset S6). Unlike the circadian dataset, the largest source 
of variation in expression is due to a phase change consistent with the importance of time-of-
day gating of stress response (26, 43). This provides further support for the dynamic nature of 
expression regulation and the limitations of simply quantifying transcript abundance differences 
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at single time points. It should also be noted that this drought treatment captured the early signs 
of drought perception with very subtle expression changes during the first 24 h and more 
evident changes in the subsequent 24 h (26). The ability to detect these distinct patterns using 
DiPALM highlights the effectiveness of the network pattern approach for capturing unique and 
unpredictable patterns. To test whether the paralogous pairs exhibiting differential expression 
patterns under well-watered conditions are enriched for drought responsive genes we 
performed a permutation test. We randomly sampled the same number of pairs from the full set 
of pairs (3259 out of 4664) for 10,000 permutations to identify the likelihood of selecting drought 
responsive genes within the 3891 sampled set. As a result, the differentially patterned copies 
were enriched for genes with drought responsive patterns (P-value 0.0005) (Fig. 5A) whereas 
copies with differential median expression level were not enriched (P-value 0.6457) for drought 
responsive patterns (Fig. 5A). With enrichment of drought responsive genes among these pairs 
exhibiting different patterns, we wondered whether these pairs are more or less likely to have 
one or both copies responding to drought. Using the same 10,000 randomly sampled sets of 
3891 pairs, we estimated a null distribution of the expected number of pairs with one and two 
drought-responsive genes. Results from the permutations indicated significant enrichment for 
pairs in which one member is drought responsive (P-value < 0.0001) and no enrichment for both 
copies being drought responsive (P-value 0.1852) (Fig. 5B and C). Thus, we observed 
enrichment for only one but not both paralogs responding to drought stress in B. rapa. This 
suggests that the genome-wide expansion of expression domains among paralogs is 
biologically meaningful, in this case for drought stress response.  More broadly, these results 
have important implications for how we capture and characterize transcriptomic responses or 
‘states’ when making predictions about paralog function. Temporal, spatial and conditional 
regulation can reveal new expression dynamics. 
 

 
Figure 5. Divergence in drought responsiveness among retained paralogs. (A) Frequency distributions showing 
the results of a permutation test of the likelihood of paralogous pairs with significantly diverged expression patterns 
(blue) or significantly different expression levels (orange) in control conditions being drought responsive. Frequency 
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distributions showing permutation results testing the significance of only one member of the paralogous pair being 
drought-responsive (B) or both paralogs being drought-responsive genes (C). The dashed vertical lines represent the 
true test statistic and the frequency distributions represent the null distributions that results from the 10,000 
permutation tests.  
 
 
An assessment of functional comparisons among paralog expression levels defines the gene 
with the highest expression in one or multiple tissue samples as ‘winning’ over the other (3). 
This classification is often referred to when looking for signs of subgenome dominance within 
polyploid species. With our set of pairs with one drought responsive paralog, we wondered 
whether the responsive member of a pair had a higher median expression level under control 
conditions. Of the 764 pairs with a drought responsive paralog, the drought responsive gene 
was the lower expressing member in 420 pairs and the higher expressing member in 344 pairs 
in the control conditions. Thus, we conclude that transcript abundance, whether at a single time 
point or combined across a time series, is not a reliable predictor of a gene’s functional 
importance. As validation of this, we ran a standard linear model test at each time point 
comparing well-watered and drought treatments and did not detect significant transcript 
abundance differences for the genes identified in the DiPALM analysis. To detect the initial 
transcriptional response to drought perception we had to incorporate the complete transcript 
profile into the differential expression test. What appear to be very subtle changes in the 
abundance of a subset of transcripts are contributing to the measured temporal physiological 
changes in Fv’/Fm’ and stomatal conductance also occurring at specific time points (26). The 
ability to capture these early transcriptomic responses to the onset of drought offers new insight 
into how responsive the network is to slight adjustments in the temporal regulation of 
expression. The next challenge is to capture this fine-scale resolution across genotypes with 
diverse physiological responses to stress and identify the associated patterns. 
 
Discussion 
This study emphasizes the power of B. rapa as a model system for investigating the 
consequences of polyploidy on transcriptional network dynamics. The close relationship of B. 
rapa to Arabidopsis facilitates comparative studies and guides gene function hypotheses due to 
the wealth of genomic and molecular resources developed in Arabidopsis. The development of 
DiPALM has enabled a new line of inquiry into how temporal regulation of paralogs influence 
GRNs in B. rapa. Replacing single time point comparisons of differential expression with pattern 
analysis provides a more complete view of the transcriptional network and the pervasiveness of 
rhythmic gene expression. We have provided further support for the extensive circadian and diel 
regulation of the transcriptome that has been well documented in Arabidopsis and a few other 
plant species (22, 43, 44, 46, 47). Our circadian time course experiments with 2h sampling 
density provided the resolution to reliably assess rhythmicity for all expressed genes resulting in 
roughly 77% showing circadian clock regulation in B. rapa (Fig. 1). The retention of circadian 
regulation of the transcriptome is consistent with a critical role of the circadian clock in 
regulating diverse aspects of plant physiology. Interestingly, we found that genes retained in 
multi-copies in B. rapa are enriched in network modules that are phased during the day whereas 
evening and night phased modules are depleted for multi-copy genes (Fig. 2D). This disparity in 
phase among paralogs might be related to the dosage sensitivity of processes occurring during 
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the day. Gene ontology enrichment processes for the genes in these daytime phased modules 
included photosynthesis and abiotic stress response (Dataset S3).  However, it should be noted 
that in general, evening phased genes are likely to be greatly understudied because most 
experiments are performed during the day (45). 
 
The retention of multi-copy genes that are circadian regulated provided an opportunity to assess 
the level of retention of transcript abundance patterns among paralogs to look for signs of 
possible neo- or sub-functionalization. Applying DiPALM to our list of circadian regulated 
paralogs uncovered evidence for extensive rearrangement of the transcriptional network 
through the divergence in expression pattern among retained paralogs in B. rapa (Fig. 3). These 
changes in phasing among paralogs occur in similar network modules where groups of genes 
are classified with a particular phase while their paralogous pair-mate exhibit a similar phase 
difference indicative of common regulatory control. The expansion of expression domains 
among paralogous pairs provides ample opportunity for neo- and sub-functionalization through 
new network connections and novel interacting targets now expressed in phase with the pair 
member with the altered phase of expression. To test this hypothesis and predict the possible 
network rearrangements that have occurred in B. rapa since diverging from Arabidopsis, we 
took a GRN approach to model the relationships between TFs and gene expression patterns. 
 
Using GENIE3 (34), we input the gene expression pattern information for all TFs and target 
genes creating a GRN with TFs associated with a group of predicted targets based on 
expression pattern (Fig. 4B). By comparing orthologous TFs between Arabidopsis and B. rapa 
we could assess the overlap in network connections between the TFs and their target genes. 
This comparison resulted in a set of 49 TF B. rapa paralogs where one paralog showed 
significantly more overlap with the Arabidopsis ortholog (Fig. 4C), supporting the divergence in 
network regulation between retained paralogous TFs in B. rapa. This is further supported by the 
overlap of CNSs among target genes in the GRNs. By replacing genes by CNSs in the GRN we 
were able to identify the more Arabidopsis-like paralog with strong consensus with the original 
GRN. The success of the CNS network approach supports a predictive role of these CNSs for 
expression dynamics and provides a refined nucleotide sequence space to explore in future 
studies to associate regulatory elements with specific expression patterns. Associating CNSs 
with specific gene pattern responses may uncover new regulatory elements or novel 
combinations of regulatory elements that contribute to the differential regulation of paralogs and 
their targets, for example in response to drought stress. The significant enrichment of one rather 
than both members of a paralogous pair being drought responsive provides support for possible 
neo- or sub-functionalization (Fig. 5). That significant amino acid sequence variation apparently 
does not contribute to the divergence between B. rapa paralogous TFs reinforces the 
importance of regulatory element variation. This raises the question of how two paralogous TFs 
with the same motif binding affinities can have such diverse targets in the GRN. One possibility 
is that the presence of new interacting partners at the novel phase of expression could modify 
binding affinity or prevent binding to certain motifs. Similarly, the lack of critical interacting 
partners due to a mismatch in phasing could either permit or eliminate some binding targets. 
Further study into the temporal regulation of known binding partners for the divergent TFs is 
needed. 
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These findings bring up several questions surrounding the importance of the variation in paralog 
expression pattern. Are these differential patterns maintained across B. rapa morphotypes or is 
there additional within-species variation? Did these phase differences arise post genome 
triplication or were they present in the diploid progenitors that gave rise to B. rapa? The 
morphotypes do exhibit differential circadian clock parameters, as assessed by leaf movement 
analysis (18), strongly supporting additional within-species variation in the transcriptomic 
network.  An examination of the circadian networks across B. rapa morphotypes is needed to 
characterize these differences and begin to associate network plasticity with morphotype 
specific traits. Our analysis reveals divergence in drought response among retained paralogs; 
how do these responses differ in more or less drought tolerant genotypes? Applying these 
pattern analysis approaches on pan-transcriptome time course studies has the potential to 
identify regulatory elements that contribute to transcriptional network architecture and the 
evolution of new forms of transcriptional control in polyploids.  
 
Materials and Methods 
 
Circadian Transcriptome Growth Conditions  
Seeds of Brassica rapa subsp. trilocularis (Yellow Sarson) R500 were planted in (31/4” x 35/8”) 
pots with a soil mixture of 2 parts Metro-Mix PX1 + 1 part Pro-Mix amended with 0.5ml of 
Osmocote 18-6-12 fertilizer (Scotts, Marysville, OH). The LDHH time course plants were 
entrained in a 12h light/12h dark cycle at 20°C and the LLHC plants were entrained in a 12h 
20°C/12h 10°C under constant light for 15 days. Lights in the chamber at plant height were 
~130 µmol photons m-2 s-1. Plants were shifted to constant light and temperature LLHH for 24h 
prior to starting the leaf tissue sampling at ZT24. Leaf tissue (~100mg) from the youngest fully 
developed leaf was harvested and frozen in liquid nitrogen every 2h for 48h (ZT24 – ZT72). At 
each time point, leaf tissue from 10 plants was collected. 
 
RNA-sequencing library preparations and processing 
Leaf tissue was ground to a fine powder using a Retsch Mixer Mill MM 400 (Vendor Scientific, 
Newtown PA). The mRNA extraction was performed according to Greenham et al. (26) and the 
strand specific libraries according to Wang et al. (48). For each leaf sample (~100mg), 1mL lysis 
binding buffer (LBB) was used to resuspend ground tissue. For each of two biological replicates, 
200µl aliquots of LBB lysate from each of five plants were pooled prior to mRNA isolation. 
Library size and quality was verified using a 2100-bioanalyzer (Agilent Technologies, Santa 
Clara, CA). Libraries were indexed and pooled into 12 sample sets and sequenced as 101 bp 
paired-end reads using Illumina HiSeq2500 (Illumina, San Diego, CA). Raw data have been 
submitted to GEO (http://ncbi.nlm.nih.gov/geo) under accession number GSE123654 . The raw 
fasta reads were filtered using trimmomatic (49) with mostly default settings 
(ILLUMINACLIP:./Tru-Seq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:25 
MINLEN:50). Reads were aligned to the B. rapa R500 genome Brapa_R500_V1.2.fasta 
(https://genomevolution.org/CoGe/OrganismView.pl?org_name=Brassica%20rapa) using 
tophat2 (https://ccb.jhu.edu/software/tophat/index.shtml) with the following options: --library-type 
fr-firststrand -I 12000 -G R500_v1.6.gff -M --max-segment-intron 12000 --max-coverage-intron 
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12000. Sample LD_ZT62_rep2 was identified as an outlier and removed, to avoid over-
weighting rep1 the rep2 values were imputed by averaging the values of ZT60_rep1 and 
ZT64_rep1. Raw counts were generated in Subread version 1.6.3 
(http://subread.sourceforge.net/) with the following options: -F SAF -M -T 6 --fraction -s 2 -p -B -
C. Count data was normalized using edgeR (50, 51) 
(https://bioconductor.org/packages/release/bioc/html/edgeR.html) version 3.22.1 using 
'calcNormFactors' and log2 FPKM values were calculated using 'rpkm' with log=TRUE, 
prior.count=0.1. 
 
R package DiPALM (differential Pattern Analysis by Linear Model) 
We created an R package that takes a raw count table of RNAseq data and runs differential 
pattern analysis from time series gene expression data. DiPALM is available through the 
Comprehensive R Archive Network (CRAN) (https://cran.r-project.org/) or via the Greenham Lab 
Github page (https://github.com/GreenhamLab/Brapa_R500_Circadian_Transcriptome). A 
sample dataset is provided with the package along with a detailed vignette and manual that 
describes the analysis pipeline.  
 
Bioinformatic and Statistical Analysis 
The entire analysis pipeline, starting with raw count data, was carried out using the R Statistical 
Programing Language (27) along with the Rstudio integrated development environment (52). A 
comprehensive R markdown file is available through the Greenham Lab Github page 
(https://github.com/GreenhamLab/Brapa_R500_Circadian_Transcriptome). This analysis script 
includes all data processing, statistical analysis and plotting that was used for this publication. 
Additional R packages were used in this analysis, including ‘edgeR’ (50, 51), ‘stringr’(53), 
‘ggplot2’ (54), ‘rain’ (23), ‘WGCNA’ (25, 55), ‘circlize’ (56) and ‘pheatmap’ (57). 
 
R500 drought RNAseq dataset 
For the drought RNAseq analysis we used our previous dataset (26) and aligned the data to our 
new R500 genome assembly 
(https://genomevolution.org/CoGe/OrganismView.pl?org_name=Brassica%20rapa)  using the 
same pipeline described for the circadian datasets. These raw counts are available in a file 
called ‘DroughtTimeCourse_CountTable.csv’ on the Greenham Lab Github page 
(https://github.com/GreenhamLab/Brapa_R500_Circadian_Transcriptome).  
 
CNS Annotation 
Using a list of canonical CNS sequences derived from Haudry et. al. (39), the R500 and TAIR10 
genomes were annotated for those CNSs using NCBI BLAST+. A local BLAST database for 
each reference genome was created using the command: 
 
makeblastdb -in <reference.fasta> \ 
         -parse_seqids \ 
         -hash_index \ 
         -blastdb_version 5 \ 
         -dbtype "nucl" \ 
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         -title <title> 
 
To get an initial set of CNS alignments, the following command was run for each reference 
genome: 
 
blastn -query <cns.fasta> \ 
         -db <reference.fasta> \ 
         -task "blastn" \ 
         -out <out.csv> \ 
         -outfmt "10 qaccver saccver qlen sstart send sstrand evalue bitscore qcovs" \ 
         -dust "no" \ 
         -soft_masking "false" \ 
         -evalue 0.01 \ 
         -num_threads <num_threads> 
 
Filtering was disabled in favor of a different scheme also used in Yocca et. al.(58). All 
alignments with a bitscore of 28.2 were dropped, and alignments with a smaller than 60% 
coverage of the CNS sequence (BLAST+’s “qcovs” value) were also dropped. Finally, to ensure 
the CNS alignments are reasonably unique, all of the alignments for a particular CNS sequence 
were discarded if they appeared more than once in the TAIR10 reference, or more than three 
times in the R500 reference. Since the B. rapa genome has undergone a genome triplication 
event relative to A. thaliana, three occurrences were seen as the maximum reasonable amount. 
Two BED files were generated for each genome containing the coordinates of each resulting 
alignment. 
 
To associate the resulting CNS alignments with genes in the references, BEDtools was used to 
find the closest gene to each CNS location: 
 
bedtools closest -s -t all -D a -a <cns.bed> -b <reference.bed> > CNS_prox_genes.txt 
 
...where cns.bed is one of the two BED files generated in the previous section, and 
reference.bed is a gene annotation for the respective reference genome. The -s option 
constraints reported associations to be only on the same strand -- that is, CNS alignments and 
genes must appear on the same strand. -D a tells BEDtools to report distances, and ensures 
that the reported distances are signed (negative for occurring before the gene, positive for 
occurring after, and 0 for being intragenic). 
 
Motif Analysis 
Motif analysis was performed using HOMER -- specifically, findMotifsGenome.pl. This program 
requires that two sets of sequences be provided: a set of target sequences to be searched for 
motifs, and a set of background sequences for comparison to the target sequences to be 
compared to. Motif analyses were performed on three different target groups. 
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The first analysis consisted of searching the CNSs against an “extended” promoter background. 
For each transcription factor group, the CNSs corresponding to all of the target genes in Ath, 
Br1, and Br2 separately were pulled and placed into three BED files containing the coordinates 
of the CNSs in TAIR10 and R500 respectively. A background set of sequences was then 
generated for every gene in the TAIR10 and R500 genomes using BEDtools: 
 
bedtools slop -s -i <reference.bed> -g <reference.genome> -l 2000 -r 0 > 2kb_and_gene.bed 
 

...where reference.bed is a gene annotation for the reference genome, and 
reference.genome is a text file containing the lengths of each chromosome that BEDtools uses 
to ensure that the coordinates it outputs are valid. This outputs a BED file that annotates a 
background consisting of a 2kb promoter region before each gene, as well as the gene itself, to 
the end of the 3’ UTR. This larger background sequence was selected rather than the 2kb 
promoter alone since many CNSs occurred in the UTRs and introns, and so using only 2kb 
promoters would leave out background sequence relevant to many of the CNSs, potentially 
skewing the results. 
 
The second analysis searched the “extended” promoter sequences against themselves. The 
target set consisted of “extended” promoters corresponding to target genes in each transcription 
factor group, and the background consisted of a total list of sequences, including the target 
group, as per HOMER’s recommendations. 
 
The third analysis consisted of a more traditional motif search of promoter regions against 
promoter-only background. In this case, neither the target nor background sequences contain 
CDS, introns, or UTRs as with the “extended” regions defined in the previous two analyses. 
These promoters were pulled using BEDtools: 
 
bedtools flank -s -i <reference.bed> -g <reference.genome> -l 2000 -r 0 > 2kb_promoters.bed 
 
Everything is identical as above, except that bedtools flank does not include the genes 
themselves in the output, and only generates locations for promoter regions. As before, 
promoters corresponding to TF target groups were selected and then analyzed against the 
entire set of promoters. HOMER was run using its included plant motif database on all three 
datasets (Datasets S7-S8). Default parameters were used. 
 
Motif analyses were performed separately for the Ath, Br1, and Br2 target groups. Given that 
three analyses were performed for each of these target groups, a total of 9 motif analyses were 
performed for each TF group for a total of 108 motif analyses. Only the “knownMotifs” output of 
HOMER was considered, which consists of a database search of target and background 
sequences against known plant motifs with a hypergeometric test to quantify significance. The 
de novo results were not used. For each of the 108 analyses, the outputs of the “knownMotifs” 
analysis were simplified by grouping together found motifs that correspond to the same DNA-
binding protein domain. Of each of these domain groups, the best p-value out of all the motifs 
found for that domain were selected as representative for the entire group. For each TF group, 
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significant (p<0.01) domains were counted for the Ath, Br1, and Br2 target groups, for the CNS, 
“extended” promoter, and promoter-only motif analyses. 
 
Acknowledgements 
This work was supported by National Science Foundation grants IOS-1202779 to K.G., IOS-
1711662 to R.S., IOS-1547796 and by the Rural Development Administration, Republic of 
Korea Next Generation BioGreen. 21, grant number SSAC PJ01327306 to C.R.M. 
 
References 

1.  M. Freeling, B. C. Thomas, Gene-balanced duplications, like tetraploidy, provide 
predictable drive to increase morphological complexity. Genome Res. 16, 805–814 (2006). 

2.  J. C. Schnable, N. M. Springer, M. Freeling, Differentiation of the maize subgenomes by 
genome dominance and both ancient and ongoing gene loss. Proc. Natl. Acad. Sci. U. S. 
A. 108, 4069–4074 (2011). 

3.  M. R. Woodhouse, et al., Origin, inheritance, and gene regulatory consequences of 
genome dominance in polyploids. Proc. Natl. Acad. Sci. U. S. A. 111, 5283–5288 (2014). 

4.  E. W. Ganko, B. C. Meyers, T. J. Vision, Divergence in expression between duplicated 
genes in Arabidopsis. Mol. Biol. Evol. 24, 2298–2309 (2007). 

5.  G. Blanc, K. H. Wolfe, Functional divergence of duplicated genes formed by polyploidy 
during Arabidopsis evolution. Plant Cell 16, 1679–1691 (2004). 

6.  M. Rosbash, A 50-year personal journey: location, gene expression, and circadian 
rhythms. Cold Spring Harb. Perspect. Biol. 9, a032516 (2017). 

7.  M. W. Young, Time travels: A 40-year journey from Drosophila’s clock mutants to human 
circadian disorders (Nobel Lecture). Angew. Chem. Int. Ed. 57, 11532–11539 (2018). 

8.  D. Bell-Pedersen, et al., Circadian rhythms from multiple oscillators: lessons from diverse 
organisms. Nat. Rev. Genet. 6, 544–556 (2005). 

9.  A. J. Millar, The intracellular dynamics of circadian clocks reach for the light of ecology and 
evolution. Annu. Rev. Plant Biol. 67, 595–618 (2016). 

10.  K. Greenham, C. R. McClung, Integrating circadian dynamics with physiological processes 
in plants. Nat. Rev. Genet. 16, 598–610 (2015). 

11.  N. Nakamichi, Adaptation to the local environment by modifications of the photoperiod 
response in crops. Plant Cell Physiol. 56, 594–604 (2014). 

12.  N. A. Muller, et al., Domestication selected for deceleration of the circadian clock in 
cultivated tomato. Nat. Genet. 48, 89–93 (2016). 

13.  N. A. Müller, L. Zhang, M. Koornneef, J. M. Jiménez-Gómez, Mutations in EID1 and LNK2 
caused light-conditional clock deceleration during tomato domestication. Proc. Natl. Acad. 
Sci. U. S. A. 115, 7135–7140 (2018). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2020. ; https://doi.org/10.1101/2020.04.03.024281doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.03.024281
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

14.  N. Creux, S. Harmer, Circadian rhythms in plants. Cold Spring Harb. Perspect. Biol. 11, 
a034611 (2019). 

15.  M. F. Covington, S. L. Harmer, The circadian clock regulates auxin signaling and 
responses in Arabidopsis. PLoS Biol. 5, e222 (2007). 

16.  T. P. Michael, et al., Network discovery pipeline elucidates conserved time-of-day–specific 
cis-regulatory modules. PLoS Genet. 4, e14 (2008). 

17.  T. C. Mockler, et al., The Diurnal Project: Diurnal and circadian expression profiling, model-
based pattern matching, and promoter analysis. Cold Spring Harb. Symp. Quant. Biol. 72, 
353–363 (2007). 

18.  Y. Yarkhunova, et al., Selection during crop diversification involves correlated evolution of 
the circadian clock and ecophysiological traits in Brassica rapa. New Phytol. 210, 133–144 
(2016). 

19.  P. Lou, et al., Preferential retention of circadian clock genes during diploidization following 
whole genome triplication in Brassica rapa. Plant Cell 24, 2415–2426 (2012). 

20.  G. C. Conant, J. A. Birchler, J. C. Pires, Dosage, duplication, and diploidization: clarifying 
the interplay of multiple models for duplicate gene evolution over time. Curr. Opin. Plant 
Biol. 19, 91–98 (2014). 

21.  J. C. Pires, G. C. Conant, Robust yet fragile: expression noise, protein misfolding, and 
gene dosage in the evolution of genomes. Annu. Rev. Genet. 50, 113–131 (2016). 

22.  M. F. Covington, J. N. Maloof, M. Straume, S. A. Kay, S. L. Harmer, Global transcriptome 
analysis reveals circadian regulation of key pathways in plant growth and development. 
Genome Biol. 9, R130 (2008). 

23.  P. F. Thaben, P. O. Westermark, Detecting rhythms in time series with RAIN. J. Biol. 
Rhythms 29, 391–400 (2014). 

24.  M. E. Hughes, et al., Guidelines for genome-scale analysis of biological rhythms. J. Biol. 
Rhythms 32, 380–393 (2017). 

25.  P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network 
analysis. BMC Bioinformatics 9, 559 (2008). 

26.  K. Greenham, et al., Temporal network analysis identifies early physiological and 
transcriptomic indicators of mild drought in Brassica rapa. Elife, e29655 (2017). 

27.  R Core Team, R: A language and environment for statistical computing (2018). 

28.  A.-M. Linde, et al., Early evolution of the land plant circadian clock. New Phytol. 216, 576-
590 (2017).  

29.  A. Matsushika, S. Makino, M. Kojima, T. Mizuno, Circadian waves of expression of the 
APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the 
plant circadian clock. Plant Cell Physiol. 41, 1002–1012 (2000). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2020. ; https://doi.org/10.1101/2020.04.03.024281doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.03.024281
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

30.  N. Nakamichi, Molecular mechanisms underlying the Arabidopsis circadian clock. Plant 
Cell Physiol. 52, 1709–1718 (2011). 

31.  N. Nakamichi, et al., Transcriptional repressor PRR5 directly regulates clock-output 
pathways. Proc. Natl. Acad. Sci. U. S. A. 109, 17123–17128 (2012). 

32.  T. L. Liu, L. Newton, M.-J. Liu, S.-H. Shiu, E. M. Farré, A G-Box-Like motif Is necessary for 
transcriptional regulation by circadian pseudo-response regulators in Arabidopsis. Plant 
Physiol. 170, 528–539 (2016). 

33.  T. Liu, J. Carlsson, T. Takeuchi, L. Newton, E. M. Farré, Direct regulation of abiotic 
responses by the Arabidopsis circadian clock component PRR7. Plant J. 76, 101–114 
(2013). 

34.  V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, P. Geurts, Inferring regulatory networks from 
expression data using tree-based methods. PLoS One 5, e12776 (2010). 

35.  A. Greenfield, A. Madar, H. Ostrer, R. Bonneau, DREAM4: Combining genetic and 
dynamic information to identify biological networks and dynamical models. PLoS One 5, 
e13397 (2010). 

36.  D. Marbach, et al., Wisdom of crowds for robust gene network inference. Nat. Methods 9, 
796–804 (2012). 

37.  C. R. McClung, The plant circadian oscillator. Biology 8, 14 (2019). 

38.  R. Rawat, et al., REVEILLE1, a Myb-like transcription factor, integrates the circadian clock 
and auxin pathways. Proc. Natl. Acad. Sci. U. S. A. 106, 16883–16888 (2009). 

39.  A. Haudry, et al., An atlas of over 90,000 conserved noncoding sequences provides insight 
into crucifer regulatory regions. Nat. Genet. 45, 891–898 (2013). 

40.  S. Heinz, et al., Simple combinations of lineage-determining transcription factors prime cis-
regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 
(2010). 

41.  J. A. Birchler, R. A. Veitia, “The gene balance hypothesis: dosage effects in plants” in Plant 
Epigenetics and Epigenomics: Methods and Protocols, C. Spillane, P. C. McKeown, Eds. 
(Humana Press, 2014), pp. 25–32. 

42.  S. G. Fowler, D. Cook, M. F. Thomashow, Low temperature induction of Arabidopsis CBF1, 
2, and 3 is gated by the circadian clock. Plant Physiol. 137, 961–968 (2005). 

43.  O. Wilkins, K. Bräutigam, M. M. Campbell, Time of day shapes Arabidopsis drought 
transcriptomes. Plant J. 63, 715–727 (2010). 

44.  O. Wilkins, L. Waldron, H. Nahal, N. J. Provart, M. M. Campbell, Genotype and time of day 
shape the Populus drought response. Plant J. 60, 703–715 (2009). 

45.  D. O. Grinevich, et al., Novel transcriptional responses to heat revealed by turning up the 
heat at night. Plant Mol. Biol. 101, 1–19 (2019). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2020. ; https://doi.org/10.1101/2020.04.03.024281doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.03.024281
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

46.  R. J. Oakenfull, S. J. Davis, Shining a light on the Arabidopsis circadian clock. Plant Cell 
Environ. 40, 2571–2585 (2017). 

47.  S. Li, L. Zhang, Circadian control of global transcription. Biomed Res. Int. 2015, 187809 
(2015). 

48.  L. Wang, et al., A low-cost library construction protocol and data analysis pipeline for 
Illumina-based strand-specific multiplex RNA-seq. PLoS One 6, e26426 (2011). 

49.  A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence 
data. Bioinformatics 30, 2114–2120 (2014). 

50.  M. D. Robinson, D. J. McCarthy, G. K. Smyth, edgeR: a Bioconductor package for 
differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 
(2010). 

51.  D. J. McCarthy, Y. Chen, G. K. Smyth, Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 
(2012). 

52.  R Studio Team, RStudio: integrated development for R (2015). 

53.  H. Wickham, stringr: simple, consistent wrappers for common string operations (2019). 

54.  H. Wickham, ggplot2: Elegant graphics for data analysis (Springer-Verlag, 2016). 

55.  P. Langfelder, S. Horvath, Fast R functions for robust correlations and hierarchical 
clustering. J. Stat. Softw. 46, i11 (2012). 

56.  Z. Gu, L. Gu, R. Eils, M. Schlesner, B. Brors, circlize Implements and enhances circular 
visualization in R. Bioinformatics 30, 2811–2812 (2014). 

57.  R. Kolde, pheatmap: Pretty Heatmaps (2019). 

58.  A. E. Yocca, Z. Lu, R. J. Schmitz, M. Freeling, P. P. Edger, Evolution of conserved 
noncoding sequences in Arabidopsis thaliana. bioRxiv, 727669 (2019). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2020. ; https://doi.org/10.1101/2020.04.03.024281doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.03.024281
http://creativecommons.org/licenses/by-nc-nd/4.0/

