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Abstract

There is an urgent necessity of effective medication against SARS CoV-
2, which is producing the COVID-19 pandemic across the world. Its main
protease (MP™) represents an attractive pharmacological target due to its
involvement in essential viral functions. The crystal structure of free MP™
shows a large structural resemblance with the main protease of SARS CoV
(nowadays known as SARS CoV-1). Here we report that as average SARS
CoV-2 MP™ is 1900% more sensitive than SARS CoV-1 MP™ in transmit-
ting tiny structural changes across the whole protein through long-range
interactions. The largest sensitivity of MP™ to structural perturbations
is located exactly around the catalytic site Cys-145, and coincides with
the binding site of strong inhibitors. These findings, based on a simplified
representation of the protein as a residue network, may help in designing
potent inhibitors of SARS CoV-2 MP™,

The main protease of the new coronavirus SARS CoV-2 rep-
resents one of the most important targets for the antiviral phar-
macological actions againsts COVID-19. This enzyme is essen-
tial for the virus due to its proteolytic processing of polypro-
teins. Here we discover that the main protease of SARS CoV-2
is topologically very similar to that of the SARS CoV-1. This
is not surprising taking into account that both proteases dif-
fer only in 12 amino acids. However, we remarkable found a
topological property of SARS CoV-2 that has increased in more
than 1900% repect to its SARS CoV-1 analogue. This property
reflects the capacity of the new protease of transmitting pertur-
bations across its domains using long-range interactions. Also
remarkable is the fact that the amino acids displaying such in-
creased sensitivity to perturbations are around the binding site
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of the new protease, and close to its catalytic site. We also show
that this sensititivy to perturbations is related to the effects of
powerful protease inhibitors. In fact, the strongest inhibitors of
the SARS CoV-2 main protease are those that produce the least
change of this capacity of transmitting perturbations across the
protein. We think that these findings may help in the design of
new potent anti-SARS CoV-2 inhibitors.

1 Introduction

Since December 2019 an outbreak of pulmonary disease has been expanding
from the city of Wuhan, Hubei province of China [1, 2]. This disease—produced
by a new coronavirus named SARS-CoV-2 [3]-has become pandemic in about
three months, affecting more than 200 countries around the world. SARS-CoV-2
belongs to the genus Betacoronavirus [4, 5], to which the virus which produced
the respiratory epidemic of 2003 (nowadays known as SARS-CoV-1) also belongs
to. The new coronavirus shares about 82% of its genome with SARS CoV-1.
In spite of this similarity and of the fact that SARS-CoV-1 appeared almost 20
years ago, there are currently no approved specific drugs against SARS-CoV-2
[6, 7, 8, 9]. In consequence, most of the clinical treatment used against the
disease is symptomatic in combination with some repurposed drugs, such as the
antiviral Remdesivir or the antimalarials chloquine [10] and hidroxychloroquine
[11]. This situation urges the scientific community to search for specific antiviral
therapeutics and vaccines against SARS-CoV-2.

An attractive pharmacological target against the novel coronavirus is its
viral protease, also known as the main protease (MP™) of SARS CoV-2. It is
a key enzyme for the virus because it is essential for proteolytic processing of
polyproteins [12]. As remarked by Zhang et al. [13] “inhibiting the activity of
this enzyme would block viral replication. Since no human proteases with a
similar cleavage specificity are known, inhibitors are unlikely to be toxic.” The
three-dimensional structure of SARS CoV-2 MP' has been resolved at different
resolutions [14, 15, 13]. Other structures of SARS CoV-2 MP* complexed with
inhibitors have also been reported in recent works [13, 16, 17].

There are some remarkable characteristics of SARS CoV-2 MP™ in relation
to the protease of SARS CoV-1. They share 96% of amino acids sequence, i.e.,
they differ in the amino acids at only 12 out of 303 positions in the sequence.
Zhang et al. [13] have reported that the superposition of the chain A of two
structures corresponding to the main proteases of SARS CoV-1 and of SARS
CoV-2, namely 2BX4 and 6Y2E, respectively, shows a root mean square (r.m.s.)
deviation of only 0.53 A for all C,, positions. The first question that emerges here
is whether such similarities are also reflected at the topological structural level of
the proteins. By topological we mean here the discrete topology emerging from
a network theoretic representation of a protein. In this representation of the
protein structure the nodes of the network represent amino acids and the edges
connecting them indicate that the corresponding residues are at a distance in
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which they can interact to each other. Because the Euclidean distance between
the amino acids is used to construct the network we more correctly should
refer to this framework as topographical more than topological. This network
theoretic representation has been previously used to answer several questions
related to protein structure and functioning [18, 19, 20, 21, 22]. Among the tools
in use, the one of node centrality [23, 24] has played a fundamental role (see
for instance [22]. These indices capture the relative importance—both structural
and dynamical-of an individual amino acid in the protein.

Here we construct protein residue networks (PRN) for SARS CoV-2 MP*
and some of its inhibitors. The PRN of SARS CoV-2 MP™ is illustrated in Fig.
1. We then analyze the similarities in the topological structure of SARS CoV-2
MP™ with that of SARS CoV-1 for which we also construct the corresponding
PRN. We then show that both proteases are very similar in relation to a few
topological characteristics which account for a very close environment around
the amino acids. That is, when the measures used account for the locality of the
topological environment of a residue the two proteases do not differ in more than
2%. However, when the measures considered account for wider environments
around the nodes the difference between the two proteins can increase up to
10-20%. These measures quantify how a perturbation at an amino acid is trans-
mitted through the whole structure to the rest of the residues in the protein.
When this transmission is allowed not only between close pairs of amino acids
but also between very distant ones, the difference between the two proteases
increases up to 1900%. That is, SARS CoV-2 MP™ is 1900% more sensitive to
the transmission of perturbations between amino acids through the topologi-
cal structure of the protein than SARS CoV-1 MP™. We discovered that the
residues with this largest sensitivity in SARS CoV-2 MP™ are the ones involved
in the binding of the three inhibitors studied here. That is, the most central
amino acids according to this long-range indices are also the most affected by
the interaction with the inhibitors as they are either in the binding site or very
close to it. Consequently, we have discovered that the most relevant amino acids
from the topological point of view are also the most relevant ones for the binding
of some inhibitors to the SARS CoV-2 MP™ and should play an important role
in the design of drugs inhibiting this protease.

2 Methods

2.1 Construction of the protein residue networks

The protein residue networks (PRN) (see ref. [23] Chapter 14 for details) are
built here by using the information reported on the Protein Data Bank [25] for
the proteases of SARS CoV-1 and SARS CoV-2 as well as the complexes of the
last one with an inhibitor. The nodes of the network represent the a-carbon
of the amino acids. Then, we consider cutoff radius r¢o, which represents an
upper limit for the separation between two residues in contact. The distance
r;; between two residues 7 and j is measured by taking the distance between C,
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Figure 1: Cartoon representation (left) of the MP™ of SARS CoV-2
(PDB=6Y2E) and the corresponding protein residue network (right).

atoms of both residues. Then, when the inter-residue distance is equal or less
than r¢o both residues are considered to be interacting and they are connected
in the PRN. The adjacency matrix A of the PRN is then built with elements
defined by

_ [ H(rc—rij) i#7

Aij - { 0 i=3, (1)
where H (x) is the Heaviside function. Here we use the typical interaction
distance between two amino acids, which is equal to 7.0 A. We have tested
distances below and over this threshold obtaining in general networks which are
either too sparse or too dense, respectively.

In this work we consider the structures of the MP* of SARS CoV-1 deposited
in the PDB with codes: 2H2Z [26], 2DUC [27], 1UJ1 [28], and 2BX4 [29]. We
also study the following structures of of SARS CoV-2 with PDB codes: 6M03
[14], 6M2Q [14], and 6Y2E [13]. For the complexes of MP™ of SARS CoV-2
with inhibitors we study the structures with PDB codes: 6MOK [17], 6YZE [17]
and 6Y2G [13].

The length of the proteases is 306 amino acids. However, there are structures
(see Table 1) which are only resolved for amino acids 3 to 300, which gives a
length of 298 [29]. Thus, for the sake of homogeneity of the analysis we consider
here the same part of the amino acids sequence for all the structures analyzed,
i.e., from residue 3 to residue 300. This does not alter the analysis as the two
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extremes of the protease are disordered and do not participate in important
interactions.

2.2 Network measures

The first category of measures correspond to those related to the most local
structure around the nodes, such as those based on the degree of the nodes, i.e.,
the number of connections that a node has (see [23] for details). The degree

accounts for the immediate effect of a node to its closest neighborhood. Among
2m

n(n—1)
where m is the number of edges and n is the number of nodes. Because the

these measures we use here the edge density, which is defined as 6 =

2
average degree (k) = —m, the relation with the edge density is clear. An-
other measure related to the degree of the nodes is the degree heterogeneity,
2
P = Dij)eE (ki_l/Q - k:j_l/Q) [30], which represents a measure of how het-
erogeneous the degrees of the nodes is [31]. A regular network, i.e., a network
with all nodes of the same degree, will have p = 0, it is followed by networks
with normal-like degree distributions, then networks with more heterogeneous
ones, and will end up with networks with in which the probability P (k) of
finding a node of degree k decays like distribution of the form P (k) ~ k=1,

where p = 1. The average Watts-Strogatz clustering coefficient [32] is defined

1 2t; . . o
as (C) = =31, m, where t; is the number of triangles incident to
n i (R —

the vertex. It account for the cliquishness around a node in terms of triangles,
that is it account for how crowded the immediate neighborhood of a node is.
We use Newman modularity index @ [33] to account for the modular struc-
2
ture of PRNs. It is defined as [33): Q = > ;< [li‘f' — 4—;2 (Z;—;l kj> ],
where |Ej| is the number of edges between nodes in the kth community of the
network, m is the total number of edges in the network and k; is the degree
of the node j. these communities were previously detected by using Newman
eigenvector method [34]. Another measure related to the degree is the de-
gree assortativity coefficient [35], which is Pearson correlation coefficient of the
degree-degree correlation. r > 0 (degree assortativity) indicates a tendency of
high degree nodes to connect to other high degree ones. r < 0 (degree dis-
assortativity) indicates the tendency of high degree nodes to be connected to
low degree ones. Other measures in this class assume that “information” is
transmitted in the network through the topological shortest paths. The length
of the shortest path is a distance d(i,j) between the corresponding pairs of
nodes ¢ and j, and it is known as the shortest path distance. The average
path length (L) = ﬁ > icj d(4, ) is typically used as a measure of the
‘small-worldness’ of the network [32]. We also consider the average between-

ness centrality [36] (BC) = =3, ; @,Where pik; is the number of shortest
n Pij
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paths between the nodes ¢ and j that cross the node k, and p;; is the total
number of shortest paths that go from 7 to j. It accounts for the importance
of a node in passing information through it to connect other pairs of nodes via
shortest path only.

The second category of measures is formed by those that account for the
transmission of information not only via the shortest paths but by using any
available route that connect the corresponding pair of nodes. These measures
use the concept of walk instead of that of a path. A walk of length k£ in G is
a set of nodes i1,142,...,0g,ig+1 such that for all 1 <1 < k, (4;,4141) € E. A
closed walk is a walk for which i; = ixy1. The number of walks of length k
between the nodes i and j in a network is given by (Ak)ij. The first of these
measures considered here is the eigenvector centrality EC [37], which is the
corresponding entry of the eigenvector associated with the largest eigenvalue
of A. The relation of this index with walks is given by the following. Let
Ni(i) be the number of walks of length k starting at node ¢ and ending else-
where. Then, if the network is not bipartite, which is the case of the current
work, EC; = limg_,o0 Ng(2)/ Z?ﬂ Ni(j) (see Chapter 5 in [23]). That is, the
eigenvector centrality of a node is the ratio of the number of walks of infinite
length that start at this node to the whole number of such walks starting else-
where. Consequently, the average eigenvector centrality (EC'), accounts for the
spread of information from the nodes beyond the nearest neighbors and using
any infinite-length walk in the graph. A type of measures of the second kind
are based on counting all walks of any length, but giving more weight to the
shorter than to the longer ones. These measures are based on the following
matrix function: G =377 Ak—f = exp (A), where exp (A) is the exponential of
the matrix. then, we consider the average of the diagonal entries of this matrix,
which is known as the average subgraph centrality (SC) = %Zzzl Gpp [38],
which accounts for the participation of the corresponding node in all subgraphs
of the graphs, giving more weight to the shortest than to the longer ones. Such

subgraphs include for instance, edges, triangles, wedges, squares, etc. Another
measure is the average of the non-diagonal entries of exp (A), which is known as

— Gpq [39].
n (TL _ 1) Zp,q prq [ ]
It accounts for how much a pair of nodes can communicate to each other by

using all potential routes available in the network, but giving more weight to
the shortest than to the longer ones. Finally, in this category we include the

the average communicability of the network, (G,,) =

average communicability angle (#) = ———<3" 0,4 [40], where the angle

n(n—1)

G
between a pair of nodes is defined as: 6,, = cos™! ( =

VGppGaq
communicability angle describes how efficiently a network transmit information
between its pairs of nodes by using all available routes.

The third category of measures is formed by all-walks indices that penalize
less heavily longer walks connecting pairs of nodes in a network. That is, al-

) . The average
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though G' = exp (A) accounts for all walks connecting every pair of nodes, it
penalizes very much those walks of relatively large length, then making more
emphasis in shorter walks around a given node. In order to include longer walks

in the analysis we study the following matrix function [41]: Z = Y 77, ?—S =

% [\/ 2merf (%) + 27 } exp (A;), which penalizes the walks of length k& not by
k! (simple factorial) but by k!! (double factorial). Then, we will consider here

the average of the main diagonal (Z;;) = — > " | Z;;, which accounts for the
n

participation of the node i in all subgraphs in the graph but ingluding bigger
nin=1) >ij Zijs
which accounts for the global capacity of the network of transmitting informa-
tion between pairs of nodes and allowing longer-range transmission than in the
case of the communicability. For those reasons we propose to call these indices
long-range (LR) subgraph centrality and communicability.

subgraphs than in SC. In a similar way we consider (Z;;) =

3 Results

3.1 Free protease

The main goal of this section is to analyze a few network theoretic measures
of the MP™ of SARS CoV-2 and compare them with those of the protease of
SARS SARS CoV-1. The amino acid sequence of both proteases share 96% of
similarity, i.e., only 12 amino acids are different in both proteases of a total of
303. These amino acids are at positions 33, 44, 63, 84 86, 92, 132, 178, 200, 265,
283 and 284. In order to compare the topological features of the main proteases
of SARS CoV-1 and of SARS CoV-2 we go a step further here and compare
several structures of the MP™ of SARS CoV-1 and SARS CoV-2. In Table 1
we give the PDB codes of 6 structures of the main protease of SARS CoV-1
and 4 of SARS CoV-2 without inhibitors. In these structures not only there
are no inhibitors, but also there are no mutations in the structure of the wild
proteases. In the case of the structure with PDB code 1Q2W the residues 45-48
are missing in the PDB. In 3VB3 we have found that di(hydroxyethyl)ether
(PEG) and 1,2-ethanediol (EDO) are also present in the crystal structure. In a
similar way the structure 6YB7 contains dimethylsulfoxide (DMS) in the crystal
structure. For these reasons we will not include these three structures in the
further analysis.

For the rest of the structures, i.e., 4 structures of the main protease of
SARS CoV-1 and 3 structures of the same for SARS CoV-2, we calculate all
the topological measures defined in Methods. We then obtained the mean and
standard deviation of these measures for the two groups of structures and report
them in Table 2. We can observe in this Table that most of the topological
characteristics of the first kind of the PRNs of both proteases are very similar
with relative differences not bigger than 2% for all the properties analyzed.
In order to test the significance of the differences between the two groups of
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SARS CoV-1 SARS CoV-2

PDB \ res. (A) \ length PDB \ res. (A) \ length
2H27 1.60 306 GYBT7*** 1.25 306
2DbUC 1.70 306 6M2Q 1.70 305
1Q2W* 1.86 295 6Y2E 1.75 306
10J1 1.90 301 6MO03 2.00 306
3VB3** 2.20 301

2BX4 2.79 298

Table 1: Protein Data Bank codes for structure of the main protease of SARS
CoV-1 and SARS CoV-2 without inhibitors (apo forms). In the structure 1Q2W
the residues 45-48 are missing. **The structure 3VB3 is resolved with two
ligands di(hydroxyethyl)ether and 1,2-ethanediol. ***The structure 6YB7 is
resolved with dimethylsulfoxide as a ligand.

proteases we use the p-values of the Mann-Whitney U-test [42]. This statistical
measure has been proposed for the analysis of network measures, in particular
for protein networks [43, 44]. According to the p-values (see last column in
Table 2) none of these measures display significant difference between the two
groups of proteases.

We then continue the analysis by comparing the topological measures of the
second kind. We notice that the eigenvector centrality, which has been found
very useful in previous analysis of PRN [22], does not display any significant
difference between both proteases according to the Mann-Whitney test. How-
ever, there are differences in the mean subgraph centrality of about 14% and
of the average communicability between pairs of nodes of about 18%. In both
cases, the indices are significantly larger for the protease of SARS CoV-2 than
for that of SARS CoV-1. According to the p-values these differences are signif-
icant at 94% level of confidence in the Mann-Whitney U-test. This means that
the structural changes that make the difference between the proteases of SARS
CoV-1 and SARS CoV-2 increase the capacity of the individual amino acids of
feeling a perturbation or thermal oscillation produced in another amino acid
of the protein. As we have previously explained these communicability factors
penalizes very heavily any perturbation being transmitted between two amino
acids separated by a relatively long distance in the protein. Thus, they can
be considered as indices that account for shorter range interactions than the
third kind measures considered here. It should be noticed that although the
communicability angles display very little relative variation between the two
groups of proteases, these differences are significant at 94% of confidence in the
Mann-Whitney test.

Both LR subgraph centrality and communicability display dramatic incre-
ment in SARS CoV-2 relative to SARS CoV-1. In this case the increase of
these indices is more than 1900% for both, the LR communicability and LR
subgraph centrality. In short, this means that the protease of SARS CoV-2 has
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measure SARS CoV-1 SARS CoV-2 Arer (%) | U-stat
5 0.0260 0.0262 -0.71 0.2286
P 0.0163 0.0164 -0.98 0.8571
(L) 6.37 6.33 0.69 0.2286
Q 0.613 0.610 0.49 1.0000
(@) 0.542 0.540 0.31 0.8571
r 0.390 0.398 -1.85 0.8571
(BC) 796.29 793.76 0.32 0.6286
(EC) 0.00336 0.00334 0.50 0.5714
(SC) 172.00 196.04 -13.97 | 0.0571
(Gpg) 22.42 26.46 -18.01 | 0.0571
@) 82.29 82.01 0.34 | 0.0571
(Zpp) 4.65 - 107 9.57 - 101® -1960.15 | 0.0571
(Zpq) 1.44-10"7 2.91-10™ -1921.88 | 0.0571

Table 2: Average values of the global topological properties of the MP™ of SARS
CoV-1 (2H2Z, 1UJ1, 2DUC, 2BX4) and SARS CoV-2 (6M03, 6Y2E, 6M2Q).
The relative difference between them, expressed as percentages of change relative
to SARS CoV-1, and the p-values of the Mann-Whitney U test are also given.

more than 13 times more capacity of transmitting perturbations between pairs
of nodes than the protease of SARS CoV-1. This is equivalent to say that the
protease of SARS CoV-2 is significantly much more topologically efficient in
transmitting “information” among its amino acids than the protease of SARS
CoV-1. These two topological measures display significant differences between
the two groups of proteases according to the statistical p-values obtained from
the Mann-Whitney U-test at 94% of confidence.

We now proceed to the analysis of the local variation of the subgraph and
the LR subgraph centralities for the amino acids of the two MP™ (see Fig. 2)
averaged for all the structures previously mentioned, i.e., 2H2Z, 1UJ1, 2DUC,
2BX4 for SARS CoV-1 and 6M03, 6Y2E, 6M2Q for SARS CoV-2. In the case
of the subgraph centrality the largest change is produced for a few amino acids
which increase their centrality in SARS CoV-2 relative to SARS CoV-1. These
are the cases of 25, 26, 27, 118, 17, and 24. But there are also other amino
acids which drop their centrality in SARS CoV-2, such as 170, 73, 169, 165,
89, and 252 among others (see Fig. 2(b)). Therefore, the increase of the sub-
graph centrality of a few amino acids makes that in total the average subgraph
centrality increases in SARS CoV-2 in relation to SARS CoV-1. An important
characteristic feature of the differences in this centrality between the two pro-
teases is that they are spread across the three domains of the proteases with a
large increment in the domains I and III. This is a major difference with the
LR subgraph centrality (see Figs. 2(c) and (d)), where the main change is a
dramatic increase in the centrality of the nodes in the domains I and II of the
SARS CoV-2 protease relative to SARS CoV-1. The changes occurring in the
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Figure 2: Plot of topological properties of the amino acid residues for the MP*
of SARS CoV-1 (broken red line) and of SARS CoV-2 (solid blue lines). (a)
Subgraph centrality; (b) LR subgraph centrality.

domain III are imperceptible in relation to those of the other two domains.32

In order to illustrate the distributions of the most central amino acids ac-
cording to both measures in the three-dimensional structures of the proteases we
selected two structures, 2BX4 for SARS CoV-1 and 6Y2E for SARS CoV-2 as
representative of the two groups of structures. Notice that these two structures
have been used by Zhang et al. [13] for their comparison of the 3D structures
of both proteases. Both structures are illustrated in Fig. 3. It can be seen that
the largest values of the LR subgraph centrality are concentrated in a relatively
small region of the protein structure, while those of the subgraph centrality are
more spread across the whole structure. We then inquire about this region of
the MP™ in SARS CoV-2 which shows the largest change in the LR subgraph
centrality relative to its analogue of SARS CoV-1.

The first remarkable observation of the amino acids with the largest change
in the LR subgraph centrality is that they are all closely separated to each other
in the three-dimensional space. For instance, the 22 amino acids displaying the
largest change in this centrality form a connected subgraph of the PRN as
illustrated in Fig. 4. This subgraph of 22 nodes has 48 connections among
these amino acids, which produces an edge density of 0.21, almost 10 times

10
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(d)

Figure 3: Illustration of the subgraph (a), (¢) and LR subgraph (b), (d) central-
ities of the amino acid residues of the chain A of SARS CoV-1 MP* of (top),
and of SARS CoV-2 (bottom). The size of the nodes is proportional to the cor-
responding centrality normalized to its largest value in the protease analyzed.
The colors also correspond to the same values in the jet color code, with red for
higher and blue for smaller values.
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Figure 4: Hlustration of the 22 amino acids which display the largest difference in
the LR subgraph centrality in a representative MP™ of SARS CoV-2 (6Y2E) in
relation to one of SARS CoV-1 (2BX4). The radius of the nodes is proportional
to the difference in the LR subgraph centrality between the two proteases. The
catalytic site Cys-145 is pointed to with an arrow. The size of the nodes is
proportional to the corresponding centrality normalized to its largest value in
the protease analyzed. The colors also correspond to the same values in the jet
color code, with red for higher and blue for smaller values.

bigger than the total density of the protease. The second remarkable feature
of this subgraph is that it contains one of the two catalytic amino acids of the
MP*® of SARS CoV-2, which is Cys-145. That is, the region with the largest
increase in the LR subgraph centrality of the protease of SARS CoV-2 relative
to SARS CoV-1 is the one enclosing the catalytic binding site of amino acid
Cys-145. It is also remarkable that this region of large increment in the LR
subgraph centrality contains some amino acids which are located in the binding
site of the MP™ to a-ketoamide inhibitors as well as other kind of inhibitors, as
we will analyze further in this work. This is the case of the residue 144-147,
other amino acids in this binding site like residues 162, 163 also display large
increment in the LR subgraph centrality. The last remarkable observation is
that the domain III displays small change in relation to the changes of domains
I and II in this topological parameter. However, as we will see in the next
paragraphs this domain (residues 198-303) which is formed by 5 helices and
is involved in the dimerization of the MP™, also increases significantly the LR
communicability in relation to SARS CoV-1.

A better picture of the changes in the different regions of the MP™ of SARS

12


https://doi.org/10.1101/2020.04.03.023887

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.03.023887; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

CoV-2 relative to SARS CoV-1 can be obtained again by analyzing the differ-
ences between the communicabilities and LR-communicabilities averaged for the
4 structures of SARS CoV-1 and 3 structures of SARS CoV-2 before considered.
For this we obtain an average communicability (resp. LR communicability) ma-
trix for the structures of SARS CoV-1 and another for the structures of SARS
CoV-2. Then, we obtain the difference between these two matrices. In Fig.
5 we illustrate the difference matrices for both kinds of communicabilities. In
the first case it can be observed that the communicability between all pairs
of residues in the domain I (residues 10-99) mainly increase in SARS CoV-2
relative to SARS CoV-1, with an increase of 12.8% relative to SARS CoV-1.
However, in the domain II (residues 100-182) there is mainly a drop of the com-
municability between the residues in the domain, which decrease 2.02%, but
there is an increase of 19.6% in the trade off between domains I and II, and an
increase of 39.2% in the trade between domains I and III. The domain IIT shows
a mixed behavior with some pairs of residues increasing and other decreasing
their communicability, but the main result is an increase of 5.58% relative to
SARS CoV-1. The communicability between domains II and III in the SARS
CoV-2 structures increase in 23.9% relative to the same in SARS CoV-1.

We finally analyze the changes in the LR communicability between the dif-
ferent domains of the SARS CoV-2 protease. Here the changes are dramatic and
in all cases the LR communicability in the SARS CoV-2 protease is higher than
that in SARS CoV-1. For instance, the average communicability between pairs
of nodes in the domain I is 1997% higher in SARS CoV-2 than in SARS CoV-1.
This percentage of increment are 1814% in the domain IT and 2651% in domain
III. The inter-domain communicability also increases very significantly with in-
crement of 1896% (domains I-IT), 2350% (domains (I-III) and 2237% (domains
II-III). In closing, the structural changes between the main proteases of SARS
CoV-1 and SARS CoV-2 produced a dramatic impact in the LR communica-
bility between residues in the protease of SARS CoV-2 with huge improvement
in long-range communication between residues practically in all domains of the
protease.

3.2 SARS CoV-2 protease bounded to inhibitors

We turn now our attention to the analysis of the MP™ of SARS CoV-2 complexed
with some inhibitors. The selection of these inhibitors has been based on: (i) the
existence of the crystallographic structure of the complex inhibitor-MP*°, (ii) the
existence of reports about the inhibitory concentration IC5g of the inhibitor, and
(iii) the fact that the inhibitors display a great potency against the main protease
of SARS CoV-2. Then, we have selected three complexes which correspond to
PDB codes 6M0OK, 6LZE and 6Y2G. The first two compounds were recently
reported by Dai et al. [17] and the third is an a-ketoamide inhibitor reported
by Zhang et al. [13]. The first two inhibitors display IC59 < 0.1uM and the
third shows ICsg ~ 0.67 = 0.18.

In Table 3 we resume the results of the calculation of average topological
properties of the MP™ structure bounded to these inhibitors. In these calcula-
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Figure 5: Difference between communicabilities (a), and LR communicability
(b) between pairs of amino acids in the averaged structures of MP™ of SARS
CoV-2 in relation to that of SARS CoV-1.

tions we consider only the residues 3-298 of the protease as explained in Methods
to make these results comparable with the ones obtained in the previous section.
It can be seen that here again the topological measures of the first class display
relatively little variation for the three complexed proteases relative to the free
one.

We then move to the analysis of the measures of second and third type.
As can be seen in Table 3 there are significant changes, of more than 20%, in
the subgraph centrality and the communicability of the complexed proteases
in relation to the average of the wild proteases previously analyzed. However,
here again, the most dramatic change in these topological properties occurs in
the values of the LR subgraph centrality and communicability, with relative
changes of more than 98%. We should notice that the smallest change in these
parameters occurs for the structure 6MOK, which corresponds to the strongest
inhibitor, followed by 6LZE, which is the intermediate one, and finally 6Y2G
which is the weakest of the three. That is, the strongest inhibitor produces the
smallest changes in the (LR) subgraph centrality and (LR) communicability in
relation to the wild protease. In contrast, the weakest inhibitor changes the most
these communicability parameters relative to the unbounded protease. These
results appears to indicate that the potency of these inhibitors could be related
to the fact of not affecting very much the strong inter-residue communicability
of amino acids in the MP* of SARS CoV-2.

With the goal of disentangling the information contained in the changes
produced at the LR subgraph centrality of the bounded protease we study it in
more detail here. For this, we consider the amino acids displaying the largest
values of this topological parameter for the three structures. In Fig. 6 we
illustrate the region formed by the top 22 amino acids according to their values
of the Z;; index, i.e., LR subgraph centrality. The first interesting observation
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’ measure \ \ wild 6MOK 6LZE 6Y2G
5 0.0262 0.0262 0.0262 0.0255
0 0.0164 0.0167 0.0164 0.0178
(L) 6.33 6.386 6.383 6.35
() 0.54 0.54 0.54 0.54
r 0.398 0.394 0.375 0.37
(BC) 793.76 799.86 799.39 795.92
(EC) 0.00334 0.00335 0.00336 0.0033
(8C) 196.04 187.85 180.42 156.09
(Gpq) 26.46 25.07 23.40 20.09
(0) 82.01 82.12 82.24 82.45
(Zi;) 9.57-10% | 1.99-10% 4.79 - 10%7 1.28 - 107
(Zij) 2.91-10"™ | 5.93-10'7 1.54-107 4.06 - 10°
IC50 (uM) 0.04 £0.002 | 0.053 +0.005 | 0.67 +0.18

Table 3: Relative differences in percentage of global topological properties of
the MP™ of SARS CoV-2 complexed to an inhibitor in relation to free one.
The PDB of the complexes between the MP™ of SARS CoV-2 with an inhibitor
correspond to 6Y2F (space group C2), and 6Y2G (space group P212;2;).

is that for the three structures considered these amino acids form a connected
subgraph in the main protease. That is, these amino acids displaying the highest
LR subgraph centrality are not randomly distributed around the domains of
the protease but they are located in a specific location of the space. It is also
remarkable that this subgraph is connected, which means that there is no single
amino acid separated at more than 7 A from all the rest of residues forming the
subgraph. Another remarkable characteristic of these subgraphs of the most
central residues according to LR subgraph centrality is that they are exactly
around the binding site of the main protease. As can be seen in the Fig. 6
these subgraphs of residues are very close to the inhibitors and form a cluster
of amino acids around the catalytic site, which is C145.

In Table 4 we resume the results of the top ranked amino acids according to
the LR subgraph centrality for the free SARS CoV-2 MP™ taken as the average
of the three apo structures previously considered and the three complexes with
inhibitors studied here. As can be seen the top 22 amino acids in the average
free SARS CoV-2 MP™ contains more than 90% of the residues which appear
involved in the interactions with the three inhibitors studied here. In the case
of 6LZE they coincide in 100%, and in 6MOK the coincidence is of 95%.

4 Discussion and Conclusions

We present an analysis of some of the most relevant topological properties of
the main protease of the SARS CoV-2. Our approach is based on the represen-
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Figure 6: Illustration of the 22 amino acids with the largest values of the LR
subgraph centrality in 6MOK (a), 6LZE (b) and 6Y2G (c). The residues are
connected if they are at no more than 7.0 A. The color bar and the radius
of the nodes indicates the values of Z;; normalized to the largest value in the
corresponding protein.
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[ Rank | average | 6MOK | 6LZE [ 6Y2G |

1 N28 N28 | N28 | N28
G29 G29 | G29 | G29
L27 L27 | L27 | Q19
V18 Vis | Q19 | VI8
Q19 Ql9 | VI8 | L27
V20 V20 | V20 | V20
G146 | G120 | G146 | G146
G120 | G146 | S144 | C38
9 L30 L30 | C38 | MI7
10 C38 C38 | N119 | Si44
11 M17 | MI17 | CI17 | W3l
12 N119 | S144 | G120 | G120
13 S144 | NI119 | Y118 | S147
14 | Y118 | Y118 | MI17 | L30
15 C117 | C117 | SI47 | Y37
16 W31 | W31 | W3l | C117
17 V36 V36 | V36 | V36
18 Y37 Y37 | L30 | V63
19 S147 | SI147 | Y37 | N119
20 T26 | Cl45 | T21 | C145
21 C145 | V68 | Cl45 | T21
22 T21 T21 | T26 | Q69

QO | | T = W DN

Table 4: List of amino acids with the largest values of LR subgraph centrality
in the average free protease (average of 6M03, 6Y2E, 6M2Q) and with the same
parameter for the protease bounded to inhibitors (6MOK, 6LZE, and 6Y2G).
The amino acids in the bounded protease which are not in the top rank of the
free one are marked in red.
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tation of the three-dimensional structure of the protein as a residue network in
which C,, of every amino acid is represented by a node of the network and two
nodes are connected if the corresponding C,, are at no more than 7.0 A. We
find here that the difference between most of the topological properties of the
PRNs representing both proteases differ in less than 5%. If we exclude from the
analysis the LR measures, then 70% of the topological measures shows only a
small variation between the two proteases taking as the average of the properties
of several structures representing each of the two proteases. In this situation
it is certainly remarkable that there are topological measures which change in
more than 1000% from one protease to the other. These are the cases of the LR
subgraph centrality of the amino acids and of the LR communicability between
pairs of them. The increase of these parameters in more than 1900% for SARS
CoV-2 MP™® relative to SARS CoV-1 MP™ means that the structural changes
that differentiate both proteases have created a huge increment in the efficiency
of SARS CoV-2 MP™ in transmitting perturbations of any kind between the
amino acids of the protein using all available routes of connection and allowing
for long-distance transmission. To make clearer what this sensitivity means we
are going to use a simple example. Let us consider a tiny perturbation on the
structure of the proteases which prevent the interaction between the amino acids
P9 and G11, which have been selected at random. In SARS CoV-1 MP™ (taking
2BX4 as an example) these amino acids are at 5.69 A and in SARS CoV-2 MP
(taking 6Y2E as an example) they are 6.48 A apart. Thus, in both cases they
are connected in the corresponding PRN. Let us consider that the perturbation
remove this edge from the PRN of both proteases. The relative decrement of
the average path length in SARS CoV-2 MP™ relative to SARS CoV-1 MP™ ig
almost imperceptible, i.e., 5.7%. In the case of the subgraph centrality it is of
the same order, i.e., 3.4%. This means that according to these parameters SARS
CoV-2 MP is as sensitive as SARS CoV-1 MP™ to perceive a structural change
in its structure produced by a given perturbation. However, when we consider
the LR subgraph centrality this relative change is 316.8%. That is, according
to this topological parameter which takes into account long-range interactions,
SARS CoV-2 MP™ is more than three times more sensitive to a tiny structural
change than SARS CoV-1 MP™. This remarkable finding indicates that the
12 mutations produced in SARS CoV-1 MP™ makes the resulting SARS CoV-
2 MP™ much more efficient in transmitting “information” through the protein
skeleton using short and long-range routes.is proportional to the absolute value
of this difference.

The second remarkable finding of the current work is that the largest changes
in the LR subgraph centrality occurring in SARS CoV-2 MP™ relative to SARS
CoV-1 MP™ do not spread equally across the whole structure of the protease.
Instead, they are concentrated around a geometrical region which includes most
of the amino acids involved in the binding site of the protease to inhibitors or
close to it. One of the amino acids which has increased more dramatically its
sensitivity to long-range transmission of information in SARS CoV-2 MP™ ig
Cys-145, which is one of the two catalytic sites of the protease, and the one
involved in interactions with the inhibitors, such as the ones analyzed here. We
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have analyzed here three different inhibitors of SARS CoV-2 MP™ displaying
very potent inhibitory capacity over the protease. In the three cases we have
observed a significant variation in the LR subgraph centrality of the amino
acids which were previously observed to have increased their LR sensitivity in
the free protease. Therefore, these amino acids corresponds to those involved
in the binding of these three inhibitors, showing that their increased topological
role in the SARS CoV-2 MP™ also may play an important functional role in it.

The analysis of PRN is easier than the study of the whole protein structure.
In this sense the PRN represents a simplified model of the three-dimensional
structure of the protein. Typically, such simplification in the complexity of the
representation of systems convey a loss in the structural information which is
represented by the global system. In this case, however, we have shown that the
use of a network representation of the proteins reveals some hidden patterns in
their structure that were escaping to the analysis by using the global structure.
To detect such important structural factors it is necessary to account for long-
range interactions among the amino acids of the proteases, which are the ones
revealing the their most important characteristics in terms of their sensitivity to
tiny structural changes produced by local or global perturbations to the system.
Such LR interactions revealed here the main differences between the proteases
of SARS CoV-1 and SARS CoV-2, as well as the most important amino acids
for the interaction with inhibitors, which may produce therapeutic candidates
against COVID-19.

Data availability statement

The data that supports the findings of this study are available within the article
[and its supplementary material].
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