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Abstract 

Recent advances shifted the focus on single-brain functioning toward two-brain 

communication during learning interactions, following the demonstration that 

interpersonal brain synchronization (IBS) can track instructor-learner information 

exchange. Here, we investigated (i) whether sleep deprivation (SD) that potentially 

impacts both social interactions and learning abilities modulates IBS, and (ii) 

conversely whether and to what extent IBS might compensate for SD-related learning 

deficits. Instructors (always with regular sleep, RS) were asked to teach numerical 

reasoning strategies to learners (either SD or RS), during which the activity of both 

brains was simultaneously recorded using functional near-infrared spectroscopy 

(fNIRS). SD learners initially performed below their baseline level, worse than RS 

learners, but learning improvement was comparable between RS and SD conditions 

after learning with the instructor. IBS within the instructor-learner dyads was higher 

in the SD (vs. RS) condition in the left inferior frontal cortex. In addition, clustered 

IBS (estimated by nonnegative matrix factorization) was correlated with performance 

improvement. Moreover, Granger Causality analyses revealed biased causality with 

higher instructor-to-learner than learner-to-instructor directionality in brain signal 

processing. Together, these results indicate that SD-related learning deficits can to 

some extent be compensated via interactions with an instructor, as reflected by 

increased IBS and preserved learning ability, and implicate an essential role of the 

instructor in driving synchrony between teaching and SD learning brains during 

interactions. 

Keywords: social interactive learning; interpersonal brain synchronization; fNIRS 

hyperscanning; empathic deficit; compensation; sleep deprivation  
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1. Introduction 

Morning sleepiness is known to interfere with educational efficiency in teenagers 

and young adults, due to altered psychosocial and life-style circumstances but also to 

the maturation of biological processes regulating sleep/wake systems (Carskadon et al., 

2004; van der Vinne et al., 2015). Insufficient sleep (Beattie et al., 2015; Cassoff et al., 

2014; Curcio et al., 2006; Gruber et al., 2010; Owens, 2014; Simon and Walker, 2018) 

and/or poor sleep quality (Bruni et al., 2006; Gruber et al., 2014) in children, 

adolescents and young adults are associated with cognitive dysfunctions, mood 

changes, and social deficits that may affect learning and academic performance.  

According to the empathic deficit hypothesis (Guadagni et al., 2014), sleep 

deprivation (SD) affects the ability to recognize and categorize others’ emotions 

(Daniela et al., 2010), and reduces the individual’s self-perceived emotional 

intelligence by affecting the ability to be empathetic towards others (Deliens et al., 

2014). Moreover, SD is associated with impaired emotional reactivity (Fountoulakis, 

2010) and control (Simon et al., 2015) – both being relevant for sharing others’ 

emotional state and social interaction. In this respect, empathic deficits are probably 

amongst the main factors that impede social exchange (Beattie et al., 2015), which 

would ultimately impede the relation between an instructor and a learner during 

interactive learning.    

Notwithstanding, SD-related social interaction deficits might to some extent be 

compensated by recruiting resources beyond those utilized after a normal night of 

sleep, a phenomenon usually accompanied by stronger or more extended brain 

activity [Drummond et al., 2005; but see e.g. Ma et al. (2015) for decreased brain 

activity after SD] and increased intrinsic brain connectivity (Kaufmann et al., 2016; 

Liu et al., 2014; Nilsonne et al., 2017). Hence, according to the compensatory 

recruitment hypothesis (Drummond et al., 2005), the sleep-deprived brain would 

exhibit compensatory neural activity enabling relatively preserved behaviour. It is 

worth noticing that at least partially shared brain networks encompassing 

fronto-temporo-parietal regions subtend compensatory recruitment (Drummond et al., 
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2005; Liu et al., 2014) and social cognition (Derntl et al., 2012; Melloni et al., 2014), 

which suggests that compensatory mechanisms might support resilient individuals’ 

social exchanges after one night of SD. 

Besides the involvement of specific brain networks, functional near-infrared 

spectroscopy (fNIRS) – based hyperscanning studies have evidenced brain-to-brain 

coupling mechanisms underpinning social interactions (Pan et al., 2017, 2018; Zheng 

et al., 2018). Interpersonal brain synchronization (IBS) was identified using this 

approach, in which brain cortical dynamics can be simultaneously recorded in two 

interacting participants (also known as the so-called “second-person neuroscience”, 

Redcay and Schilbach, 2019). Using a naturalistic interactive learning paradigm, we 

showed that IBS was able to track learning interactions within instructor-learner 

dyads and correlated with learning outcomes (Pan et al., 2018). However, it remains 

unclear whether sleep deprivation known to affect both social cognition and learning 

abilities exerts an effect of IBS, and conversely whether socially based IBS might 

compensate for SD-related deficits in learners.  

In this study, we recorded simultaneous brain activity and computed IBS between 

an instructor and a learner during a numerical reasoning learning session (Zheng et al., 

2018) under regular-sleep (RS) and sleep-deprived (SD) conditions, counterbalanced. 

In the RS condition, both the instructor and learner spent one night of sleep at home 

before testing in the morning. In the SD condition, the learner was totally sleep 

deprived for one night under controlled conditions before testing in the morning, 

whereas the instructor was normally rested. Due to the interactive nature of 

face-to-face learning, we hypothesized IBS between instructor and learner. However, 

considering the hypotheses discussed above, IBS could be decreased after SD due to 

deficient empathic abilities, alternatively enhanced if compensatory brain resources 

are recruited. Additionally, to better understand the functional significance of IBS at 

the neurophysiological level, we explored directionality coupling (i.e., whether it is 

the instructor who mostly synchronizes with the learner, or vice versa), intrinsic 

connectivity in each partner, and IBS-behaviour relationships (i.e., whether IBS is 
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associated with learning outcomes).  

2. Methods 

2.1. Participants 

Eighteen female adults (age 22.72 ± 1.99 years, range 20–28 years) completed the 

whole experiment. They were recruited through a public announcement at the 

Université Libre de Bruxelles (ULB, Belgium). We tested only female participants in 

order to mitigate inter-individual and inter-dyad variability, in accordance with recent 

hyperscanning studies (Hu et al., 2018; Pan et al., 2018). Recent use of psychiatric or 

hypnotic drugs, poor sleep quality (Pittsburgh Sleep Quality Index > 8, Buysse et al., 

1989), and high caffeine consumption (3 cups/day) excluded subjects from 

participation in this study (two additional participants were screened). Participants 

gave written informed consent prior to this experiment approved by the ULB-Erasme 

Hospital Ethics Committee (Reference P2018/284).  

All participants but two were right-handed (Edinburgh Handedness Inventory, 

Oldfield, 1971), in good health with no history of sleep, neurologic, or psychiatric 

disorders, and exhibited below cut-off scores levels for anxiety [State-Trait Anxiety 

Inventory (French version), Bruchon-Schweitzer and Paulhan, 1990], depression 

(Beck Depression Inventory-Short Form, Beck and Beck, 1972), empathy 

(Interpersonal Reactivity Index, Davis, 1983) and usual fatigue (Brugmann Fatigue 

Scale, Mairesse et al., 2017). They also had satisfactory usual sleep quality 

(Pittsburgh Sleep Quality Index, Buysse et al., 1989) and neutral or moderate 

chronotype (Morningness-Eveningness Questionnaire, Horne and Östberg, 1976) (see 

Table 1; see also Fig. S1).  

From the pool of 18 participants, two with instructor training (Educational 

Sciences) for at least 2 years were selected and assigned as instructors. Only two 

instructors were used in order to make the teaching style as similar as possible across 

dyads (Thepsoonthorn et al., 2016). The remaining 16 participants were learners, 
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randomly assigned to the 2 instructors. Thus, each instructor had to teach 8 learners in 

a face-to-face format, both in the RS and SD conditions (see next section), resulting in 

16 instructor-learner dyads in total. This target number of participant dyads was 

determined by an a priori power analysis based on effect sizes reported in the 

literature from our previous study using an interactive learning paradigm (Pan et al., 

2018). Using these reported effect sizes (Cohen’s ds > 0.79), the power analysis 

(using the pwr package in R, Champely et al., 2018) indicated that a sample of 14 

participant dyads would be sufficiently powerful (at a level of 0.80) to detect an effect 

of this size. Along these lines, previous hyperscanning studies using the 

instructor-learner interactive learning paradigm have typically used sample sizes of 

around 12 – 15 participant dyads (Bevilacqua et al., 2019; Pan et al., 2018; Takeuchi 

et al., 2017). Because the results reported in the manuscript did not differ across 

performance of the two instructors, these were pooled together. 

Table 1. Questionnaire scores of the study sample. 

 Mean Standard Deviation Range Cut-off scores 

Handedness 65.82 51.81 -75–100 / 

State-Trait Anxiety Inventory (STAI) 

STAI - Trait 

 

28.74 

 

3.64 

 

21–34 

 

40 

STAI - State 29.10 1.72 23–40 40 

Beck Depression Inventory  1.53 1.88 0–3 9 

Brugmann Fatigue Scale 3.90 2.36 0–11 12 

Pittsburgh Sleep Quality Index 3.32 1.56 0–5 7 

Morningness-Eveningness Questionnaire 53.11 8.88 30–69 69 

Interpersonal Reactivity Index (IRI) 

IRI - Perspective Taking 

 

19.00 

 

5.81 

 

7–28 

 

30 

IRI - Fantasy 18.11 4.90 9–27 30 

IRI - Empathic Concern 20.28 4.59 12–28 30 

IRI - Personal Distress 12.17 5.58 2–22 30 
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2.2. Experimental protocol 

In a repeated-measures crossover counterbalanced design, the learners (n = 16) 

took part in two experimental conditions (Fig. 1A): (i) once after a night of regular 

sleep at home (i.e., regular-sleep, RS), and (ii) once after 24 h of sleep deprivation 

(SD).  

Each experimental condition (SD or RS) was conducted over two sessions. On 

Day 1 of the first administered condition, participants completed a set of 

psychological scales (i.e., Pittsburgh Sleep Quality Index, STAI–Trait, 

Morningness-Eveningness Questionnaire, Beck Depression Inventory, Edinburgh 

Handedness Inventory, and Interpersonal Reactivity Index), and were administered a 

numerical reasoning test to evaluate their baseline level. At Day 4 three days later, 

they participated in the fNIRS-hyperscanning experimental session either after a night 

of regular sleep (RS) at home or total sleep deprivation (SD) in the laboratory. In this 

fNIRS-hyperscanning experimental session, they had first to complete self-report 

questionnaires (STAI – State and Brugmann Fatigue Scale) and a numerical reasoning 

pre-learning assessment. Then, the instructor taught numerical reasoning strategies 

(see below) to the learner in a one-on-one interactive format while their cortical 

activity was simultaneously recorded, and their interactions videotaped. Immediately 

after the scanning session, participants were administered a post-learning numerical 

reasoning assessment. 

Day 1 and Day 4 for the second administered condition were identical as the first 

condition but for the status of the night preceding the fNIRS-hyperscanning session 

(SD or RS), and the fact that no baseline numerical reasoning evaluation was 

administrated. RS and SD sessions were separated by at least one week with their 

order counterbalanced across participants. In both RS and SD conditions, normal 

rest-activity patterns (7 to 9 hours of sleep) were monitored using actimetry (i.e., a 

wrist-worn device monitoring motor activity; wGT3X-BT, ActiGraph) and subjective 

sleep logs (Stanford Sleepiness Scale, Hoddes et al., 1973) for 3 consecutive days 

before the fNIRS-hyperscanning session (Fig. 1A). Participants were also specifically 
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instructed not to engage in daytime naps and to abstain from alcohol and caffeine 

during this period, including throughout the SD night. 

In the RS fNIRS-hyperscanning session, participants came to the laboratory at 

9:00 AM after a night of regular sleep at home. In the SD fNIRS-hyperscanning 

session, participants arrived at the laboratory at ~8:50 PM the day before. Starting 

from 9:00 PM. and every 2 h, participants were administered sleepiness and empathy 

questionnaires, and a psychomotor vigilance task (PVT) (details below). The SD 

session included two participants in the same night. They were allowed access to the 

Internet, books, and movies with low to moderate emotionality levels; physical 

activity was restricted to short walks and food intake to a small sandwich at ~3:00 

AM. Water was available ad libitum. At ~ 9:20 AM in both conditions, participants 

performed the fNIRS - hyperscanning interactive learning session (with pre-learning, 

learning and post-learning phases, Fig. 1A&B).  

Instructors (n = 2) were never sleep deprived and participated in the 

scanning/learning conditions after regular sleep at home (normal sleep patterns were 

monitored using actimetry). They had to complete a battery of psychological scales 

(i.e., Pittsburgh Sleep Quality Index, STAI-Trait, Morningness-Eveningness 

Questionnaire, Beck Depression Inventory, Edinburgh Handedness Inventory, and 

Interpersonal Reactivity Index) during the first meeting. Besides, they were asked to 

complete self-report questionnaires (STAI-State and Brugmann Fatigue Scale) as well 

as the sleepiness and empathy assessments at 9:00 AM every time when arriving at 

the laboratory. 
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Fig. 1. Experimental setting. (A) Schematic description of the experimental protocol. The experiment 

spanned on 4 days, two per condition (sleep-deprived vs. regular-sleep, SD vs. RS). Test sessions were 

separated by at least one week. (B) Detailed timetable in the SD and RS conditions. (C) Illustration of 

the fNIRS - hyperscanning experimental setup. (D) Optode emitters [red dots] and detectors [blue dots] 

located on bilateral fronto-temporo-parietal regions, both for the instructor and the learner.  

2.3. Interactive learning task 

Participants were taught numerical reasoning strategies, i.e. to find the hidden 
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rules and relations within a digit sequence. For example, for a given digit sequence “1, 

3, 5, (  ), 9”, the hidden rule is that all digits in the sequence are odd numbers that 

differ by the constant of “2”; as a result, “7” is the correct answer. Numerical 

reasoning items were extracted from the Chinese Civil Servants Administrative 

Professional Knowledge Level Tests (CCSAPKLT), a national standard guidebook. 

CCSAPKLT was designed to measure and improve a variety of cognitive abilities, 

entailing numerical reasoning, in young adults. It was previously used in an 

fNIRS-based hyperscanning study (Zheng et al., 2018). Learners in our study had 

never been exposed previously to the CCSAPKLT.  

Prior to the formal experiment, the two instructors received a teaching training to 

ensure consistent strategies when interacting with the learners during the experimental 

teaching sessions. They were given 8 numerical reasoning instances (selected from 

CCSAPKLT) and the teaching script, and asked to prepare their teaching at home for 

one week. They then had to demonstrate teaching to the experimenter in a one-on-one 

manner, and received feedbacks until their performance was deemed satisfactory by 

the principal investigator (Y. P.).  

During the fNIRS hyperscanning interactive learning phase, the instructor taught 

several numerical reasoning strategies to the learner face-to-face (Fig. 1C). The 

instructor was not informed of the learner condition (but it is likely that they realized 

the sleep state of the learner, as sleep-deprived learners looked exhausted). The task 

procedure was as follows: (i) the instructor presented an example on a computer 

screen; (ii) the learner read and thought about the problem for approximately 20 

seconds; and then (iii) the instructor guided the learner to find the hidden rule 

according to the approach described in the script using a questions and answers (Q&A) 

approach. The learner’s numerical reasoning performance was evaluated at the 

beginning of the experiment (baseline level) and immediately before and after the 

fNIRS hyperscanning (for a total of five tests).  

To determine the learning material, 50 four-choice items were selected from 

CCSAPKLT’s test bank. To create five tests with equal difficulty levels (i.e., baseline, 
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SD-pre, SD-post, RS-pre, and RS-post), we asked 10 additional participants (not 

involved in the main experiment) to solve the problems, and used their scores to 

determine the difficulty level of the 50 items. We then rejected 10 items based on the 

following criterion: (i) confusing expressions based on pilot participants’ feedback; (ii) 

highest (>70%) and lowest levels (<30%) of accuracy (to avoid potential 

ceiling/flooring effects). The 40 remaining items were pseudo-randomly split into five 

testing sets of 8 items each. Difficulty levels did not significantly differ between the 

five testing sets (ts < 1.44, ps > 0.16). During baseline and pre-and post-learning tests, 

participants were allowed a maximum of 20 minutes (the exact time for each learner 

was recorded) to complete their testing set.  

The numerical reasoning performance was assessed using the Efficiency score 

[adapted from Franceschini et al. (2013)]: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 

which was measured as a ratio between accuracy (defined as the ratio between the 

correct items and the total number of items) and duration (defined as the time in 

seconds necessary to complete the items). This measure was chosen to control for the 

potential tradeoff between accuracy and duration. Statistical analyses on numerical 

reasoning performance (i.e., Efficiency) were conducted using nonparametric 

Wilcoxon tests since data were not normally distributed (Shapiro-Wilk test, p = 0.04).  

2.4. Sleepiness and empathy assessments 

2.4.1. Sleepiness assessments 

Objective sleepiness. To assess SD-related changes in objective alertness across 

the night, we administered the 10-min version of Psychomotor Vigilance Task (PVT, 

Dinges and Powell, 1985) every 2 hours from 9 PM. In the PVT, participants are 

instructed to press a key as fast as possible whenever a millisecond countdown 

appears in the middle of a computer screen. Stimuli were randomly presented with an 

inter-stimuli interval ranging 2 to 10 seconds. PVT response speed (i.e., reciprocal 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2020. ; https://doi.org/10.1101/2020.04.03.022954doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.03.022954
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

reaction time = mean 1/RT) and lapses (i.e., number of RTs > 500 ms) were the 

primary outcomes (Basner and Dinges, 2011). 

Subjective sleepiness and fatigue. To assess subjective changes in sleepiness over 

the SD night and before the task in SD and RS conditions, the Stanford Sleepiness 

Scale38 was administered every 2 hours from 9 PM. Participants had to choose the 

statement that defined them best from 7 options ranging from “feeling active and vital; 

wide awake” to “sleep onset soon; lost struggle to remain awake.” Participants also 

completed a 10 cm visual analog scale (VAS) to rate their fatigue (i.e., ‘How tired do 

you feel?’), ranging from not very tired (left) to very tired (right).  

Sleepiness assessments (PVT, Stanford Sleepiness Scale, and fatigue VAS) were 

obtained every 2 h during the SD night (9:00 PM to 9:00 AM) and in the morning of 

the RS session (~9:00 AM) (see Fig. 1B). 

2.3.2. Empathy assessments 

Objective empathy. To track changes in empathy after SD using objective 

measurements, we administered a modified version of the Multifaceted Empathy Test 

(MET11). This test uses 120 color pictures of people, selected from the International 

Affective Picture System (Lang and Bradley, 2007). From this set of images, we 

created 5 parallel versions of the task (i.e., to be administered at the 4 testing sessions 

across the whole night in the SD condition (9:00 PM, 1:00 AM, 5:00 AM, and 9:00 

AM) and once in the RS condition (9:00 AM); administration order counterbalanced). 

The five subsets entailed 24 pictures each, each comprising 8 pictures for each 

valence: positive, negative or neutral, matched for arousal. In the task, the 24 images 

were presented four times, resulting in 96 trials in total. At each trial, participants had 

to answer a specific question that aimed at measuring either (i) cognitive empathy (i.e., 

‘how much could you feel about the thoughts of this person?’), (ii) direct emotional 

empathy (i.e., ‘how strong is the emotion you feel about emotions of this person?’), 

(iii) indirect emotional empathy (i.e., ‘how calm/aroused does this picture make you 

feel?’), or (iv) a mere image valence judgement (i.e. ‘how would you judge this 
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image?’ positive/negative/neutral). Each question was presented at first for 4 s, 

followed by a fixation cross (1 – 3 s) and then the image stimulus. When presented 

with the stimulus, they had to respond as fast as possible, at maximum within 10 

seconds. Participants responded to cognitive and emotional empathy questions by 

using a reduced version of the Self-Assessment Manikin (Bradley and Lang, 1994) 

valence scale which consists of four figures, ranging from calm and not concerned to 

anxious and very concerned. The sum of ratings of cognitive empathy and emotional 

empathy was calculated as an index of general empathy.  

Subjective empathy. To track the subjective empathy changes following SD, a 10 

cm VAS was used to rate participants’ empathy (i.e., ‘how much do you feel about the 

emotions of others?’), ranging from not very much (left) to very much (right).  

Empathy assessments (MET and empathy VAS) were obtained every 4 h during 

the SD night (from 9:00 p.m. to 9:00 AM) and in the morning of the RS session 

(~9:00 AM) (see Fig. 1B). 

SD-related empathic deficit. A potential SD-related empathy deficit was 

calculated by subtracting objective/subjective empathy levels at ~9:00 AM in the SD 

condition from that in the RS condition. 

2.5. fNIRS data acquisition 

The instructor and the learner sat side-by-side in front of a computer in a silent 

room (Fig. 1C). Brain imaging data were collected from the instructor and the learner 

simultaneously using a multichannel BrainSight NIRS system (V2.3b12, Rogue 

Research Inc., Canada). The configuration of the optodes featured 8 light emitters and 

16 detectors, clustered over the fronto-temporo-parietal regions based on previous 

studies showing that these regions are associated with social cognition and interaction 

(Baker et al., 2016). The detectors were located at a distance of approximately 3 cm 

from the emitters. Each pair of emitters and detector formed one channel, resulting in 

a total of 13 channels measured over each hemisphere (Fig. 1D, see detailed MNI 

coordinates for each channel in Table S1). Probe set locations were checked and 
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adjusted to ensure consistency within the instructor-learner pair, and across pairs. The 

spatial position of the optodes was set up using a 3D coordinates system coupled with 

a Polaris localization device. Since no individual structural magnetic resonance 

images (MRI) were available for our participants, MNI coordinates of fNIRS channels 

were determined using a probabilistic registration method (Singh et al., 2005; Tsuzuki 

et al., 2007; Tsuzuki and Dan, 2014). This method utilizes MRI stored in a reference 

database and probabilistically registers fNIRS channel positions onto a standard brain 

template. The probabilistic registration consisted of four steps (cf. Tsuzuki and Dan, 

2014). First, we measured positions for channels and reference points (real-world 

space) using the 3D digitizer. Four reference points were used: Nz (i.e., nasion), Cz 

(international 10/20 system), AL and AR (i.e., left and right preauricular points). 

Second, we applied an affine transformation of the fNIRS channel coordinates on the 

participant's head (real-world space) to the reference heads in the database (MNI 

space). Third, we projected head surface points onto their corresponding cortical 

surfaces in MNI space. Finally, the cortically projected channel positions for each 

participant were integrated to generate the most likely coordinates in MNI space.  

Absorption of near-infrared light at two wavelengths (685 and 830 nm) was 

measured with a sampling rate of 10 Hz. Based on the modified Beer-Lambert Law, 

changes in oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) concentrations were 

obtained by measuring fNIRS light absorption changes after transmission through the 

cortical tissue. In this study, we focused on HbO concentrations only, since HbO was 

reported to be a sensitive indicator to reveal changes in the regional cerebral blood 

flow (Hoshi, 2007) and of high signal-to-noise (Ding et al., 2014; Liu et al., 2017), 

which has been successfully used in the field of social neuroscience to evidence IBS 

in recent hyperscanning studies (Hu et al., 2017, 2018; Pan et al., 2017, 2018; Zheng 

et al., 2018).  

Data collection started with a baseline 5-minute resting-state phase during which 

both participants were required to focus on a same fixation point on the computer 

screen, while keeping still and avoiding unnecessary movements. The 
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interactive-learning phase immediately followed for an approximate duration of 13 

to18 minutes. 

2.6. fNIRS data analyses 

2.6.1. Pre-processing 

Data collected during rest and interactive learning (task) phases were 

pre-processed as follows. First, 30-second signal blocks were removed from the initial 

and ending rest and task phases to ensure steady state periods. Principal component 

analysis was then applied on continuous fNIRS data to separate the neuronal from 

global components (Zhang et al., 2016). Moreover, a Correlation-Based Signal 

Improvement method (Cui et al., 2010) based on the negative correlation between 

HbO and HbR concentrations was applied to further reduce motion artifacts and 

improve signal quality. Furthermore, data from fNIRS channels were visually 

inspected for excessive noise and checked with previously established 

signal-quality-detecting algorithms (Cui et al., 2010). Channels with excessive noise 

and poor signal-to-noise (< 4%) were excluded from subsequent analyses. 

2.6.2. Interpersonal brain synchronization (IBS) measurement 

 Pre-processed data were then analyzed using wavelet transform coherence (WTC) 

to explore the relationship between the two fNIRS time series generated by each 

participant in the dyad. WTC analysis was computed using a standard MATLAB 

package [http://grinsted.github.io/wavelet-coherence/; see also Grinsted et al. (2004) 

for more information]. WTC function for a pair of signals i(t) and j(t) was defined as 

follows: 

WTC(𝑡, 𝑠) =  
|〈𝑠−1𝑊𝑖𝑗(𝑡, 𝑠)〉|2

|〈𝑠−1𝑊𝑖(𝑡, 𝑠)〉|2|〈𝑠−1𝑊𝑗(𝑡, 𝑠)〉|2
 

where W denotes a complex coefficient matrix calculated by the continuous wavelet 

transform with the Morlet wavelet as the mother function. This W matrix contains 
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information about both instructor and learner signals’ amplitude and phase. The 

cross-wavelet transform  𝑊𝑖𝑗 = 𝑊𝑖𝑊∗𝑗  of the two signals is calculated with * 

indicating the complex conjugate. Moreover, t, s, and 〈·〉 represents the time, wavelet 

scale and smoothing operation in time and scale, respectively (Grinsted et al., 2004). 

WTC values range from 0 (totally unsynchronized) to +1 (perfectly synchronized). 

WTC values were converted into Fisher-z values. IBS between instructor and learner 

was estimated by WTC as described in previous studies (Pan et al., 2018; Zheng et al., 

2018). Considering 26 channels per participant, a 26 × 26 IBS matrix was generated 

for each dyad. The IBS matrices were further rendered over 3D head models using a 

plot function (dualheadnetplot.m, Delaherche et al., 2015). The resulting map was 

corrected for multiple comparisons using the false discovery rate (FDR), thresholded 

at a 0.05 significance level. 

 Task-evoked IBS. As a first step to assess whether our interactive learning task 

evoked IBS, we performed the IBS analysis across all channels and all conditions. To 

do so, IBS was averaged across time and all channels in each dyad. The averaged IBS 

was then compared between the resting-state phase and the interactive-learning phase 

using paired sample t-tests. Comparisons were conducted for each frequency band 

within the 0.01 – 1 Hz range, including almost all frequencies reported in previous 

fNIRS hyperscanning studies (Nozawa et al., 2016; Pan et al., 2018). The resulting p 

values were corrected using FDR. This data-driven analysis evidenced task-evoked 

IBS in frequencies ranging from 0.16 to 0.19 Hz (see Fig. 3A). That is, IBS was 

significantly larger in the task than the rest phase in the frequency of 0.16 – 0.19 Hz. 

This frequency band was thus chosen as our frequency of interest (FOI) for further 

analyses. It also excluded undesired effects from physiological noises [e.g., cardiac 

pulsation (~1 Hz), respiration (~0.2 – 0.3 Hz) and Mayer waves (~0.1 Hz)].  

 State-related differences in IBS. In a second step, we compared the IBS in the SD 

and RS conditions. We averaged the IBS within the FOI (i.e., 0.16 – 0.19 Hz.) in each 

condition, and computed an index of task-related IBS by subtracting IBS during rest 

from that during the task (i.e., IBStask-related = IBStask – IBSrest). Two complementary 
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analyses were then conducted on task-related IBS. First, we aimed at determining 

condition-specific IBS [i.e., contrasting IBS values with the null value hypothesis 

(IBS = 0) for each channel using one-sample t-tests separately in the RS and SD 

conditions]. Second, we evaluated the condition-related IBS [i.e., contrasting IBS 

values between RS and SD conditions for each channel using paired-sample t-tests].  

 IBS validation. To confirm that the detected IBS was specific to real 

instructor-learner dyads, we pseudo-randomly re-paired signals from all participants 

into 16 new shuffled dyads and re-conducted the IBS analysis. This shuffling 

procedure was conducted 1,000 times. 

 Clustered IBS. In the next step, IBS matrices in the SD and RS conditions were 

clustered using nonnegative matrix factorization (NMF, Gaujoux and Seoighe, 2010). 

NMF is an unsupervised learning approach used to extract meaningful information 

from multi-dimensional data such as IBS arrays (Goldstein et al., 2018). To achieve 

stable results, we conducted the NMF with 1,000 runs. As our primary interest, 

channels associated with significant IBS during interactive learning in the SD 

condition were selected as features; as a control, we used the same features in the RS 

condition. The number of the cluster (i.e., factorization rank) was set to 3. This 

parameter was determined by considering the smallest value at which the decrease in 

the residual sum of squares (RSS) is lower than the decrease of the RSS obtained 

from reshuffled data (Frigyesi and Höglund, 2008), in accordance with recent 

recommendations (Goldstein et al., 2018). The Brunet version of NMF was applied. 

The coef function implemented in the NMF package (Gaujoux and Seoighe, 2010) in 

R 3.5.1 was used to estimate the cluster loadings. 

 IBS-behavior correlation. Pearson correlational analyses were performed to test 

the relationship between clustered IBS values and numerical reasoning performance 

(as well as empathy scores) in both SD and RS conditions. Resulting p values were 

FDR-corrected. Statistical analyses were conducted using MATLAB (version 2016b, 

MathWorks Inc., Natick, MA) and SPSS (version 18.0, Chicago, IL, USA) software. 

2.6.3. Directional coupling 
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We further asked about coupling directionality (i.e., whether it was mostly the 

instructor who synchronized with the learner or the other way around) during 

interactive learning after sleep loss, using a Granger causality estimation toolbox 

(https://www.dcs.warwick.ac.uk/~feng/causality.html). After pre-processing (see 

section above), which made the time series relatively stationary, time series were 

normalized using z-transforms (i.e., converting task phase data into z-scores using the 

mean and standard deviation of rest phase data). As previously reported (Pan et al., 

2018), clean time series from channels exhibiting significant IBS condition-related 

differences were averaged as a region of interest (ROI). The mean pair-wise 

conditional Granger Causality of the pair of time series was computed for both 

directions [i.e., from learner (L) to instructor (I), L → I, and from instructor to learner, 

I → L]. Latent variables were the averaged signals from channels associated with 

non-significant IBS in both instructors and learners. The model order was set to 12 

based on the Bayesian information criterion (Schwarz, 1978). Ljung-Box Q-tests 

confirmed that there was no significant autocorrelation in the residuals. Because the 

data were not normally distributed (Shapiro-Wilk test, p = 0.03), nonparametric 

Wilcoxon tests were used to compare the difference between the two directions in 

each condition (SD and RS), Bonferroni corrected for multiple comparisons. 

2.6.4. Within-individual, seed-based intrinsic brain network 

 As a complementary analysis, we also explored seed-based intrinsic brain 

network to assess whether interactive learning would modify individual within-brain 

synchronization in the instructor and/or the learner. Seed-based intrinsic brain 

synchronization was estimated using the aforementioned WTC method. Inferior 

frontal cortex (IFC, MNI coordinates: x = -52, y = 36, z = -12) was selected as our 

seed of interest for two main reasons: (i) significant IBS condition-related differences 

were identified in the IFC in this study (see results), and (ii) our previous work on 

instructor-learner interactions evidenced significant IBS in the IFC (Pan et al., 2018). 

We calculated the synchronization between IFC (channel 15, closest to the MNI 
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coordinates) and the remaining channels (channels 1–14 & 16–26) in each participant 

of dyads (25 channel combinations in every participant). The resulting 

synchronization matrices revealed intrinsic brain connectivity patterns that were 

strengthened/weakened during interactive learning. Three contrasts of interest were 

computed. First, task-related IBS (IBS during task minus that during rest) was 

contrasted against the null hypothesis (IBS = 0) to evidence interactive 

learning-related intra-brain synchronization; second, it was contrasted across 

conditions (SD vs. RS) in each participant of dyads aiming at identifying 

condition-related differences; third, it was contrasted across roles (instructor vs. 

learner) separately in the SD and RS conditions to explore potential role-related 

differences. The resulting p-values from these contrasts were controlled using FDR 

multiple-comparisons correction. Directional coupling and intrinsic brain networks 

were visualized using the BrainNet Viewer (Xia et al., 2013). 

3. Results 

3.1. Behavioral data and task performance 

3.1.1 SD-related changes in sleepiness and empathy 

Actimetry and subjective sleep logs validated that participants were well rested 

for the 3 consecutive days before the fNIRS - hyperscanning session (asleep 8.19 ± 

0.86 hours for each night, rising at ~ 8:16 ± 0:57 AM). There were no significant 

differences in sleep duration and wake-up time for the three consecutive days before 

testing between the two sleep conditions (ps > 0.12). These results rule out the 

possibility that irregular sleep before RS and SD night might have impacted upon 

sleepiness and empathy. 

We then assessed both objective (PVT) and subjective (SSS and VAS-sleepiness) 

measures of sleepiness and vigilance in learners (see Fig. S2 for details). All scores 

were significantly altered in the SD vs. RS conditions when tested at 9:00 AM: 

PVT-response speed, mean ± standard deviation, 2.68 ± 0.44 vs. 3.42 ± 0.33; 
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PVT-lapses, 11.69 ± 2.32 vs. 1.50 ± 0.60; SSS, 5.46 ± 1.99 vs. 2.33 ± 0.85; 

VAS-sleepiness, 8.83 ± 2.97 vs. 3.27 ± 2.16; ps < 0.002, as well across the SD night 

in the SD condition (9:00 AM vs. 9:00 PM); PVT-response speed, 2.68 ± 0.44 vs. 

3.33 ± 0.35; PVT-lapses, 11.69 ± 2.32 vs. 1.69 ± 0.48; SSS, 5.46 ± 1.99 vs. 2.50 ± 

0.90; VAS-sleepiness, 8.83 ± 2.97 vs. 3.67 ± 2.32; ps < 0.002. These results confirm 

that sleepiness and vigilance parameters were altered in learners in the SD condition. 

Empathy in learners was also impaired following SD, as evidenced using both 

objective (MET) and subjective (VAS-empathy) assessments (see Fig. S2 for more 

details). VAS-empathy scores at 9:00 AM were decreased after SD vs. RS (5.50 ± 

2.78 vs. 7.17 ± 1.67, p = 0.004) as well as over the night in the SD condition (9:00 

AM vs. 9:00 PM; 5.50 ± 2.78 vs. 7.75 ± 1.83, p = 0.0001). The decline in MET scores 

was significant for the negative stimuli (9:00 AM, SD vs. RS; 8.21 ± 0.70 vs. 9.14 ± 

0.51, p = 0.0005; 9:00 AM vs. 9:00 PM in the SD condition, 8.21 ± 0.70 vs. 9.22 ± 

0.61, p = 0.0003), but not for neutral and positive stimuli (ps > 0.10).  

As for instructors, who always had regular sleep during the experiment, we also 

collected their scores of sleepiness and empathy assessments each time when they 

arrived at the laboratory in the morning (9:00 AM). All scores (obtained when 

instructors taught RS learners) were not significantly different from those of learners 

in the RS condition: PVT-response speed, mean ± standard deviation, 3.06 ± 0.17 vs. 

3.42 ± 0.33; PVT-lapses, 2.20 ± 2.14 vs. 1.50 ± 0.60; VAS-sleepiness, 3.31 ± 2.27 vs. 

3.27 ± 2.16; VAS-empathy, 7.88 ± 1.71 vs. 7.17 ± 1.67; MET-negative, 9.35 ± 1.04 vs. 

9.14 ± 0.51, ps > 0.05. Moreover, no significant difference was detected between 

scores obtained when instructors taught SD learners and scores obtained when they 

taught RS learners, ps > 0.28. These results indicate that our instructors were likely to 

be well rested and comparable with our RS learners across experimental sessions.  

3.1.2 Numerical reasoning learning performance 

Summary, distribution and raw data are visualized (Fig. 2). Numerical reasoning 

learning performance was quantified using Efficiency, which was measured as the 
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ratio between accuracy and duration (see Methods). We performed a series of planned 

contrasts using nonparametric Wilcoxon tests instead of ANOVAs, since the data 

being not normally distributed. First, we tested whether performance at pre-learning 

in the SD and RS conditions differed from baseline performance levels as assessed the 

first day of the experiment and whether they differed from each other. In the SD 

condition, performance at pre-learning (median ± median absolute deviation, 0.00030 

± 0.00017) was inferior to baseline (0.00045 ± 0.00013), p = 0.04. In the RS condition, 

no significant difference was evidenced between pre-learning and baseline level 

(0.00050 ± 0.00014; p = 0.28). Importantly, at pre-learning numerical reasoning 

performance following SD was significantly worse than that following RS, p = 0.04.   

Second, we assessed the effect of the learning session by contrasting performance 

at pre- vs. post-learning. Performance was superior at the post- than the pre-learning 

phase both in the SD (0.00070 ± 0.00016) and RS (0.00075 ± 0.00009) conditions, ps 

< 0.002. To compare learning-related improvement in performance between SD and 

RS conditions, we computed a differential (delta) value by subtracting pre-learning 

from post-learning performance. Learning improvement (delta) was not significantly 

different between the SD (0.00030 ± 0.0.00017) and the RS conditions (0.00025 ± 

0.00014; p = 0.18). 

These results indicate that numerical reasoning performance significant declined 

following SD, but similarly improved through the interaction with the instructor 

during the learning session in RS and SD conditions.  
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Fig. 2. Learning performance. Numerical reasoning learning performance was quantified using 

Efficiency index (i.e., accuracy/duration). Raincloud plots (Allen et al., 2019) displaying summary data 

(box plot), distribution (probability density plot), and raw observations (one point = one learner). The 

horizontal grey line represents the baseline level (as assessed at the learners’ first visit). SD_pre: 

pre-learning in the sleep-deprived condition; SD_post: post-learning in the sleep-deprived condition; 

RS_pre: pre-learning in the regular-sleep condition; RS_post: post-learning in the regular-sleep 

condition. *p < 0.05, ***p < 0.001. 

3.2. IBS during interactive learning  

IBS (estimated by WTC, see Methods) was used to analyse fNIRS data. In a 

first-pass analysis, IBS was calculated at each channel across all conditions for each 

participant. To focus on task-related synchronized brain activity, IBS during the task 

(interactive learning) was computed against IBS during the rest (baseline) phase. 

Results are shown in Fig. 3. Increased IBS was evidenced in the 0.16 – 0.19 Hz 

frequency range (Figs. 3A) in a widespread cortical network encompassing inferior 

frontal and superior temporal areas and the temporo-parietal junctions, ts > 3.59, 

corrected ps < 0.05 (Figs. 3B&C).  
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Fig. 3. Task-evoked interpersonal brain synchronization (IBS). (A) IBS estimated by Wavelet 

Transform Coherence (WTC) from a representative dyad. The red border line denotes the frequency 

band of interest (0.16 – 0.19 Hz). (B) IBS matrix at 0.16 – 0.19 Hz. The x-axis represents channels 

from learners whereas the y-axis represents those from instructors. The colour indicates t value. Black 

rectangles highlight significant differences between task and rest phases. (C) Task-evoked (task vs. rest) 

IBS at 0.16 – 0.19 Hz across the whole sample (illustrated by orange lines; dash line indicates FDR 

corrected p < 0.05, the solid line represents FDR corrected p < 0.01). Head colour reflects the number 

of significant IBS links. 

3.3. SD-related changes in IBS 

 Having confirmed that interactive learning evokes distributed IBS across 

participant dyads, we sought to determine whether there was unchanged, impaired or 

compensatory IBS after SD. Analyses were conducted in SD and RS conditions 

separately. In the SD condition, learning (task)-related IBS significantly increased 

(one sample t-test against 0 value) in a wide fronto-temporo-parietal network, peaking 

at superior temporal and inferior frontal regions, ts > 4.57, corrected ps < 0.04 (Fig. 4, 

left column). In the RS condition, learning (task)-related IBS was found in the 

superior temporal cortex only, t15 = 6.23, corrected p = 0.01 (Fig. 4, middle column).  

Additional analyses evidenced stronger IBS in the SD than the RS condition at 

optode channels CH15-CH14 (SD vs. RS, mean ± standard deviation, 0.12 ± 0.03 vs. 

0.03 ± 0.08, t15 = 4.52, corrected p = 0.04), and CH16-CH17 (SD vs. RS, 0.13 ± 0.05 

vs. 0.01 ± 0.07, t15 = 6.40, corrected p = 0.002; note that the first and second channel 

labels separated by a dash represent the instructor and learner channels that took part 

in the IBS). These optode channels roughly correspond to left inferior frontal cortex 
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locations (Tzourio-Mazoyer et al., 2002; Fig. 4, right column).  

Altogether, our results suggest that IBS increased in a compensatory manner 

during learning after SD. The effect was specific to the real interacting dyad, as 

computations on pseudo-randomly re-paired dyads were all non-significant (see 

complete results from 1,000 shuffles of IBS validation analyses in Fig. S3). 

 

Fig. 4. Sleep deprivation-related interpersonal brain synchronization (IBS). (A) Dissociated IBS 

patterns in the SD and RS conditions. SD compared to RS elicited significantly stronger IBS. The 

x-axis represents channels from learners whereas the y-axis represents those from instructors. The 

black rectangles highlight significant results thresholded at p < 0.05 (FDR corrected). (B) 

Condition-specific IBS in widespread fronto-temporo-parietal regions in the SD condition (left column) 

and in the superior temporal cortices in the RS condition (middle column). There was significantly 

higher IBS at the inferior frontal cortices in the SD than the RS condition (right column). Dash line 

indicates FDR corrected p < 0.05; solid line represents FDR corrected p < 0.01. Head color reflects the 

number of significant IBS links.  

3.4. Associations between (clustered) IBS and learning improvement 

We next examined the relation between IBS and improvement in learning 

performance. There were no significant univariate correlations between the increase 

of IBS in either SD or RS conditions and learning improvement. To further extract 
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meaningful information from multi-dimensional arrays (Fig. 4), IBS illustrating the 

unique instructor-learner brain-to-brain network were clustered separately in the SD 

and RS conditions using nonnegative matrix factorization [NMF, see Method; see also 

Goldstein et al. (2018) for more details about NMF applications in hyperscanning 

studies]. The three-cluster solution was used to find the best fit in the SD and RS 

condition (Fig. 5A). Cluster 2 exhibited a significant correlation with learning 

improvement (learning performance at the post- minus pre-learning phase) in the SD 

condition, r = 0.62, p = 0.01. That is, increased IBS in cluster 2 was associated with 

improvement in numerical reasoning performance in the learner (Fig. 5B). Note that 

cluster 2 in the SD condition mostly engaged IFC regions (i.e., CH14_CH14, 

CH15_CH14; Fig. 5A), which echoed with our above findings. Correlations with 

cluster 1 (r = -0.07, p = 0.80) and cluster 3 (r = 0.38, p = 0.17) were not significant. In 

the RS condition, no cluster was correlated with improvement in numerical reasoning 

performance (rs < 0.24, ps > 0.37).  

We additionally probed a potential relationship between IBS changes and 

empathic deficit in the SD condition. Specifically, Pearson correlational analyses were 

conducted to test the correlations between clustered IBS and subjective/objective 

empathic deficits measures (delta = SD values at 9:00 AM minus RS values at 9:00 

AM). Neither subjective (rs < 0.42, ps > 0.11) nor objective (rs < 0.31, ps > 0.24) 

measurements correlated with clusters 1–3. Full scatter plots are illustrated in Fig. S4.  
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Fig. 5. Clustered interpersonal brain synchronization (IBS). (A) Heatmaps of the three-cluster 

solution for significant IBS in the SD and RS conditions. The colours reflect IBS loadings for each 

cluster. The tree diagram illustrates the arrangement of the clusters produced by hierarchical clustering. 

The first and second channel names separated by an underscore respectively represent the instructor 

and learner NIRS channels that were involved in the IBS. (B) Scatter plots of clustered interpersonal 

brain synchronization (IBS) vs. learning improvement in sleep-deprived (SD) and regular-sleep (RS) 

conditions. Note that only Cluster 2 loadings were significantly correlated with learning improvement 

(calculated by post- minus pre- numerical learning performance). 

3.5. IBS directionality: from instructor to learner or from learner to instructor?  

 To determine the preferential directionality of IBS during learning interactions 

between instructor and learner, we conducted a Granger causality analysis (GCA). 
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Due to the data being not normally distributed, we performed a series of planned 

contrasts using nonparametric Wilcoxon tests. In the SD condition, Wilcoxon tests 

revealed a significantly biased directionality with mean causality from instructor to 

learner (median ± median absolute deviation, 0.0028 ± 0.0013) significantly larger 

than that from learner to instructor (0.0021 ± 0.0009), corrected p < 0.05 (Fig. 6). In 

the RS condition, there was no significant difference in terms of the coupling 

directionality (from instructor to learner vs. from learner to instructor, 0.0025 ± 

0.0009 vs. 0.0022 ± 0.0011, p = 0.13; Fig. 6). These results suggest that it is mostly 

the instructor who "led" the interaction with the learner in the SD condition. 

 

Fig. 6. Coupling directionality. (A) ROI-based Granger causality analysis evidencing the main 

coupling directionality. In the SD condition, mean Granger causality from instructor [averaged signals 

recorded at channel (CH) 15 and CH16] to learner [averaged signals recorded CH14 and CH17] was 

larger than Granger causality from learner to instructor in the inferior frontal cortex. (B) In the SD 

condition, mean causality from instructor (I) to learner (L) was significantly larger than vice versa. In 

the RS condition, no significant differences were evidenced. * p < 0.05. 

3.6. Synchronized seed-based intrinsic brain network after SD 

As a complementary analysis, we also investigated within-individual brain 

connectivity during learning interactions, separately in the learner and in the instructor. 

In the SD condition, a seed-based intrinsic brain network analysis (Fig. 7, see also 

whole-channel network analysis in Fig. S5) revealed significant long-range 
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connectivity between the left inferior frontal cortex (lIFC) and the right premotor 

cortex (rPMC) in the instructors, t15 = 4.08, corrected p = 0.03, and between lIFC and 

right superior temporal cortex (rSTC) in the learners, t15 = 6.40, corrected p = 0.0003. 

No significant connectivity was found in the RS condition neither in the learner or the 

instructor. Accordingly, a between-conditions comparison (SD vs. RS) revealed 

significantly larger lIFC-rPMC connectivity in the SD (mean ± standard deviation, 

0.07 ± 0.02) than the RS (-0.02 ± 0.02) condition for the instructor, t15 = 3.88, 

corrected p = 0.01, and significantly stronger lIFC-rSTC connectivity in the SD (0.07 

± 0.01) than RS (0.01 ± 0.02) condition for the learner, t15 = 3.98, corrected p = 0.01. 

In a third contrast (instructor vs. learner), we found that in the SD condition, 

interactive learning engaged larger lIFC-rPMC connectivity in the instructor (0.07 ± 

0.02) than in the learner (-0.01 ± 0.01), t15 = 3.56, corrected p = 0.03. These results 

thus suggest that during interactive learning after SD, compensatory intrinsic 

synchronization took place in action-observation circuits (IFC, PMC, and STC); 

echoing the GCA findings that the (not sleep-deprived) instructor might play a more 

important role than the sleep-deprived learner in establishing the brain interactions 

eventually leading to successful learning.  

 

Fig. 7. Seed-based intrinsic brain network. (A) Inferior frontal cortex as the seed region. (B) Brain 
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regions showing task-related (task vs. rest) connectivity in the SD (left column) and RS conditions 

(middle column); brain regions showing higher connectivity in the SD than RS conditions (right 

column). (C) Brain regions showing higher connectivity for the instructor than the learner in the SD 

and RS conditions. Circles point to regions where connectivity was significant after FDR correction 

(thresholded at p < 0.05). Colour bars denote the t-value range. 

4. Discussion 

In this study, we recorded brain activity simultaneously both in instructor and 

learner during the interactive learning of numerical reasoning abilities. At the 

behavioural level, numerical reasoning performance was impaired in the learner 

following one night of sleep deprivation (SD). Notwithstanding, sleep-deprived 

learners proportionally improved to the same extent after the learning interactive 

session than after one night of regular sleep. At the neurophysiological level, SD 

compensation was characterized by increased IBS in the inferior frontal cortex (IFC) 

between the learner and the instructor, which was predictive of learning achievements. 

Further analyses revealed that enhanced IBS was mostly attributable to the instructor, 

as compared to the learner. Finally, increased IBS after learning was accompanied by 

better seed-based synchronization in intrinsic brain networks both in the learner and 

the instructor. These results suggest that the social interactive learning in the context 

of SD features enhanced IBS in the IFC, as a compensatory recruitment process.  

4.1. Brain-to-brain coupling as a general compensatory mechanism 

counteracting sleep loss? 

Recent studies using interactive learning tasks have shown that the 

instructor-learner interactions can be tracked by their IBS (Pan et al., 2018; Zheng et 

al., 2018). In the current study, we replicate previous findings showing that social 

interactions in a naturalistic environment induce synchronous activities in 

theory-of-mind-related brain areas including inferior frontal, superior temporal, and 

temporal parietal regions. Besides validating prior findings, we show that IBS and 
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interactive learning are modulated by physiological constraints such as sleep 

deprivation. We surmise here that the IBS might act as a “tie”, through which the 

instructor continuously entrains the learner to align her/his behaviours as well as 

underlying activity in neural networks, facilitating social interaction and information 

exchange. To successfully achieve interpersonal alignment, both instructors and 

learners should recruit compensatory neural resources, beyond those utilized after a 

regular night of sleep to keep “in sync”. In this context, additional enhanced IBS 

eventually supports the instructor-learner interaction to successfully improve the 

learners’ performance. This hypothesis is supported by results from our comparison 

between IBS in the SD and RS conditions; as SD elicited more widespread IBS than 

RS. Moreover, we found a significant association between clustered IBS (represented 

by cluster 2) and learning improvement after SD, suggesting functional significance in 

the IBS. Besides individual SD-related compensatory recruitment (Drummond et al., 

2005; Liu et al., 2014), our results suggest that compensation after SD could impact 

both interacting partners simultaneously, even if one of them was actually not 

sleep-deprived.  

One may argue that the unraveled IBS simply reflect the functional similarities 

between two brains processing the same sensory information or performing the same 

actions simultaneously (Abrams et al., 2013; Hu et al., 2017). We argue that this is not 

the case in the present study for the following reasons. First, SD induced larger and 

more widespread IBS compared to RS, although both conditions shared similar 

instructions and sensory inputs. Second, the pseudo-dyad control analysis further 

excluded the potential confound of non-interaction behaviors on the increase of IBS 

(i.e., it was not expected that IBS emerged in pseudo-dyads since they performed 

similar task but produced non-interaction behaviors). Finally, strongly highlighting 

the functional significance of IBS, we observed that the SD-related clustered IBS was 

positively correlated with the learning performance of these learners. Taken together, 

these results make it less likely that IBS emerged as a consequence of the similarity 

between sensory processes across the participants forming each dyad. 
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4.2. IFC as a neural communication interface between instructors and learners 

In the present study, we found IBS mostly present over the inferior frontal cortex 

(IFC). IBS in the IFC was reported in fNIRS-based hyperscanning studies involving 

face-to-face communication (Jiang et al., 2012), cooperative singing (Osaka et al., 

2015), and instructor-learner interaction situations (Pan et al., 2018). Our results are 

also in agreement with available evidence that compensatory recruitment requires 

partially successfully behavioural adaptation, partly subtended by the IFC 

(Drummond et al., 2005). We here highlight three possible functional meanings of the 

IFC. First, the IFC is viewed as an important hub of the mirror neurons system 

(Iacoboni and Mazziotta, 2007), proposed to promote social interaction by predicting 

other individuals’ actions and intentions (Gallese, 2013). Thus, interactive learning 

could have been facilitated by the mutual abilities to infer and understand each other’s 

behaviour (i.e., high-level mentalizing, Konvalinka et al., 2010). Second, the IFC is 

also known as a critical language hub of the human brain. In this respect, left IFC 

dominance in this study might be considered alongside the syntax information parsing 

in the current numerical reasoning task (Friederici et al., 2003). Although linguistic 

and mathematical syntax in the human was reported to be independent (Varley et al., 

2005), the syntax of mathematics may be evolutionarily derived from that of language 

or vice versa (Brannon, 2005). Therefore, it is possible that numerical reasoning and 

language share neural representations in the left IFC. Finally, related to the previous 

point, the effect in the left IFC could also be explained by the simpler linguistic 

exchanges (i.e., oral communication) between participants (Jiang et al., 2012). Clearly, 

more work is required to investigate the exact functional significance of the IFC 

during interactive learning. 

Synchronized IFC (seed)-based intrinsic brain network activity paralleled IBS 

findings. Specifically, SD induced a long-range increase of intra-brain connectivity in 

the action-observation network (involving inferior frontal, premotor, and superior 

temporal cortices), which was proposed to support the understanding of other 

individuals’ goals and actions (Kilner, 2011). In this network, the premotor cortex and 
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the superior temporal cortex would support motor planning and action intentionality 

encoding, respectively (Kilner, 2011).  

4.3. Instructor-entrainment as an essential feature of interactive learning 

following SD 

A major peculiarity of our design is that we investigated synchronous brain 

activity between a learner, who was sleep-deprived, and an instructor, who did not 

receive sleep disruption at all. Granger causality analyses showed that after SD, mean 

causality was significantly larger from the instructor to the learner than the other way 

around. This suggests that the instructor might play a more important role in social 

interactive learning than the SD learner. As such, dynamic social interactions 

(Schilbach et al., 2013) that are key components for grasping the others’ mind would 

play an important role in sleep-deprived interactive learning. Following SD, despite 

brain activity compensation in the learner, the instructor guided the communication, 

monitored the learner’s responses, and entrained her/his brain activity with the one of 

the learners. This interpretation is reinforced by a seed-based intrinsic brain network 

analysis showing that the instructors displayed additionally and significantly stronger 

intra IFC-PMC connectivity than the learners. It suggests that the instructor actively 

guide the learner and help her/him to counteract the effects of sleep disruption. Taken 

together, instructor-entrainment might be a marker of the essential nature of 

interactive learning following SD, as it is much more prominent than when the learner 

is in a rested state. 

As a coin has two sides, an increase in how the instructor drives the learner’s 

brain activity could also be interpreted as an increase in the learner’s passivity. In this 

respect, one may argue that the increase in IBS or directionality is not a necessarily 

positive outcome. However, we found additional IFC-STC intrinsic brain connectivity 

in learners in the SD condition compared to the RS condition. This result stands out – 

partially against the “learner’s passivity” hypothesis in interactive learning following 

SD. Taken as such, our study holds strong pedagogical implications and warrants 
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further elaborated investigations. 

4.4. Limitations 

This study has several limitations. First, we investigated only the effects in 

female dyads in order to mitigate inter-individual and inter-dyad variability (Hu et al., 

2018; Pan et al., 2018). It remains unclear whether the findings could be generalizable 

to males. There could be gender difference given that males and females may differ in 

dyadic interaction (Cheng et al., 2015). Second, we had the learners sleep at home 

rather than in the laboratory the night before testing in the RS condition. This practice 

was to respect naturalistic conditions at maximum while controlling sleep schedules 

by the instruction and actigraphy (see Methods). Yet, the SD and RS conditions 

differed in the time spent to get familiar with the testing environment. Third, the effect 

of SD might be confounded by cognitive fatigue. For example, participants took 

sleepiness and empathy assessments multiple times in the SD condition but took these 

assessments only once in the RS condition. Recent advances showed that cognitive 

fatigue and sleepiness can be dissociated when accumulated sleep pressure is low 

(Borragán et al., 2019). Future studies should further examine and control the 

confounding effect from cognitive fatigue in SD interactive learning.  

4.5. Conclusions and future directions 

In the current study, we have evidenced the benefits of combining an interactive 

learning paradigm in educational psychology with an fNIRS hyperscanning paradigm 

used in social neuroscience. Whereas interactive learning allowed us to study the 

educational interaction between an instructor and a learner in a realistic context, the 

fNIRS hyperscanning approach enabled quantifying inter-individual information 

flows and directionality at the neurophysiological level. Although we manipulated 

only a single interaction situation (i.e., interactive learning), our study may promote 

future studies to investigate related learning and educational issues. In addition, our 

findings of compensatory IBS and intrinsic network connectivity primarily are in line 
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with the hypothesis of compensatory brain recruitment to at least partially counteract 

the deleterious effects of SD in a learner. Future studies could consolidate the current 

findings by adding a “single” condition as an active control, in which instructor and 

learner would independently solve numerical reasoning problems. In this case, they 

would be both intentionally thinking about the same thing but without the 

interpersonal interaction component.  

To sum up, our study shed light on whether and how learning performance could 

be compensated in interactive learning after that a learner experienced one night of 

sleep deprivation. Our results suggest that brain-to-brain coupling, accompanied by 

synchronization in intrinsic brain networks, may require the involvement and 

integration of high-level social cognitive processes to compensate for interactive 

learning following SD, and that the instructor might play a vital role in driving 

synchrony between teaching and SD learning brains. Our study holds strong practical 

implications for real-world education (e.g., tracking social interactions between 

teachers and SD students in the realistic classroom), and warrants more investigations 

to take the advantage of fNIRS (e.g., easy applicability, low cost, sensible temporal 

resolution, ecological validity, and free restraint) to study social interactions following 

SD. 
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