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Abstract 

Functional network activity alterations are one of the earliest hallmarks of Alzheimer’s 

disease (AD), detected prior to amyloidosis and tauopathy. Better understanding the neuronal 

underpinnings of such network alterations could offer mechanistic insight into AD 

progression. Here, we examined a mouse model (early-tauopathy 3xTgAD mice) 

recapitulating this early AD stage. We found resting functional connectivity loss within 

ventral networks, including the entorhinal cortex, aligning with the spatial distribution of 

tauopathy reported in humans. Unexpectedly, in contrast to decreased connectivity at rest, 

3xTgAD mice show enhanced fMRI signal within several projection areas following 

optogenetic activation of the entorhinal cortex. We corroborate this finding by demonstrating 

neuronal facilitation within ventral networks and synaptic hyperexcitability in projection 

targets. 3xTgAD mice thus reveal a dichotomic hypo-connected resting/hyper-responsive 

active phenotype. The strong homotopy between the areas affected supports the translatability 

of this pathophysiological model to tau-related deficits in humans.  
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Introduction 

Tauopathies are a hallmark of many neurodegenerative disorders, including Alzheimer’s 

disease (AD) 1. To date, clinical trials targeting later stages of AD pathology have all failed 

(except the recently approved aducanumab 2), or, in some cases, made symptoms worse 3. As 

such, there is increased interest in identifying predictive biomarkers at the earliest stages of 

illness, before symptoms have become clinically apparent. Synaptic dysfunction is one such 

candidate 4, and is thought to lead to a discrepancy in resting vs. evoked functional activity 

patterns in early AD. For example, decreased connectivity patterns are typically observed at 

rest, while increased connectivity is observed during tasks in early AD patients (5–8).  

Despite a strong interest in investigating the early stages of illness, the mechanisms 

underlying aberrant connectivity reorganization are not known. Transgenic animals bearing 

mutations from familial AD and tauopathies also develop several of the distributed network 

dysfunctions found in AD, such as in the early stages of cerebral amyloidosis 9–11. To 

understand the physiological basis underlying discrepant resting vs. evoked brain activity 

patterns during pre-tauopathy, we used the triple-transgenic mouse model for AD (3xTgAD) 

12. 3xTgAD mice were positive for phospho-tau, a precursor of neurofibrillary tangles, a 

central feature of tauopathy. Specifically, phospho-tau accumulation was found in the 

amygdala by 3 months of age, and in the hippocampus at 6 months of age. We further found 

that local connectivity loss at rest resulted in macroscale network dysfunction already by the 3 

month time point. The spatial distribution of these deficits showed a high degree of overlap 

with homologous networks affected by tauopathies in humans 13. 

Finally, we  employed optogenetics in combination with fMRI (ofMRI) to examine the 

evoked response from photostimulation of the lateral entorhinal cortex (ENTl), a central 

dysfunctional node in 3xTgAD 14,15 and AD patients 16–18. Unexpectedly, this revealed a 

hyperemic response in 3xTgAD relative to wild-type mice in several distal projection areas. 
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Our observations underscore several of the physiological underpinnings behind local and 

distal connectivity dysfunctions commonly observed in groups at risk of developing AD and 

other tauopathies, thus supporting a reconciliation for the apparent discordant results put 

forward in early-AD subjects 5,19,20. This study provides a neurophysiological model of early 

network disturbances in AD and points to key translational targets of clinical interest. 

 

Results 

Ventral networks are affected during tauopathy. 

To identify the networks affected in tauopathy, we first performed a neuroimaging literature 

meta-analysis for the search term `tauopathy` through the NeuroQuery library, based on loci 

reported in 70 studies 21. A convergence of loci was found in ventral networks, including the 

entorhinal cortex, the amygdala, and the nucleus accumbens (Figure 1a), corresponding with 

the areas affected in the early Braak stages of the pathology 13,22.     

To understand the physiological processes underlying network dysfunction during tauopathy, 

we turned to the 3xTgAD model of cerebral amyloidosis and tauopathy. To examine early 

pathological processes, we studied mice at a stage corresponding to Braak ~II in humans, 

namely phospho-tau in entorhinal-hippocampal-ventral areas 13. Brain slices from 3xTgAD 

and control animals aged 3, 6, and 10 months were examined for immunoreactivity to 6e10 

(targeting the N-terminus of beta-amyloid, Aβ) and AT8 (targeting neurofibrillary tangle-

specific phospho-tau (Ser202, Thr205), see Additional file 1: Supplementary Method). 

Consistent with previous work 12,23, no immunoreactivity was observed to 6e10 at 3 and 6 

months of age (Additional file 1: Figure S1), while AT8 binding was revealed in the amygdala 

at 3 months and also observed in the  hippocampus at 6 and 10 months (Figure 1d, Additional 

file 1: Figure S2). Only at 10 months of age did 3xTgAD exhibit the immunoreactivity 

patterns attributable to neurofibrillary tangles (Additional file 1: Figure S2c).  
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Figure 1 Loss of functional connectivity at rest, and enhanced evoked response, in 3xTgAD  

 

a) Networks implicated in human tauopathy as revealed by meta-analysis (top) and Regional Homogeneity 

(ReHo) thresholded group analysis for 3- and 6-month-old mice (middle, bottom). Significant decrease in ReHo 

within the ENTl, ACB, and BLA in 3- and 6-month-old 3xTgAD, respectively. b) ReHo distribution in the ENTl 

(left hemisphere: Δmean3months = -0.007 [-0.010, -0.005]; Δmean6months = -0.006 [-0.009, -0.003]). c) Pair-wise 

ROI interactions relative to the left ENTl: decrease of functional connectivity in contralateral ENTl, ACB, BLA 

at both ages. Increased functional connectivity in somatosensory regions. d) Paired-pulse electrical stimulation 

of the ENTl is recorded as fEPSPs in the BLA: increased facilitation in 3xTgAD, at both ages. Response to ENTl 

stimulus pairs calculated as the paired-pulse index (PPI) was reported for intervals of 20, 50, 100, 200, 500 and 

1000 ms. * p < 0.05, ** p < 0.005, ***p < 0.001 (3 months old: Ncontrols = 7, N3xTgAD = 6; 6 months old: Ncontrols = 

4, N3xTgAD = 4). Immunohistochemistry (AT8/DAPI) reveals phosphorylated tau in the BLA, at both ages (age-

matched insets). Top-left inset: example of raw data for control and 3xTgAD in BLA for pulse 1 (P1) and pulse 

2 (P2) at 3 months. SSp-II: somatosensory area, lower limb; ENTl: lateral entorhinal cortex; BLA: basolateral 

amygdala; ACB: nucleus accumbens; fEPSP: field excitatory postsynaptic potential. Scale bar: 100 μm 

 

We confirmed these results with ELISA performed on brain tissue homogenate. Soluble 

amyloid peptides levels in 3xTgAD were of comparable magnitude (~12000/~16000 pg/mg) 

to that of age-matched control animals at 3 months of age; a difference of 1.7-fold in soluble 
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amyloid peptides was seen between controls (~9000 pg/ml) and 3xTgAD (~16000 pg/ml) at 6 

months of age. No difference was observed for insoluble amyloid peptides at both age points. 

Furthermore, 3xTgAD mice showed an increase in tau levels of several orders of magnitude 

compared to age-matched controls at both age points, e.g., 20-fold increment at 6 months of 

age. We conclude that 3xTgAD mice aged 3 and 6 months represent a pre-plaque and pre-

tangle stage of AD-like pathology, equivalent to Braak stage ~II. Therefore, the 3- and 6-

months age points were examined for the remainder of this study.  

 

Functional deficits in 3xTgAD ventral network during pre-tauopathy stage. 

To examine spontaneous fluctuations in brain activity, we recorded rsfMRI in male 3xTgAD 

and wild-type control mice on the same background strain (129sv/c57bl6) at 3 (N3xTgAD = 19, 

Ncontrols = 10) and 6 months of age (N3xTgAD = 13, Ncontrols = 10), longitudinally. The rsfMRI 

protocol employed here was recently compared to others in a multicenter study, which 

indicated elevated sensitivity and specificity for resting-state networks detected in this dataset 

relative to other protocols, including an awake mouse protocol 24. One 3xTgAD mouse 

developed hydrocephalus, which, despite the acute condition, only marginally affected 

functional connectivity 25. This animal was removed from our study following a priori 

exclusion criteria.  

Firstly, we examined local connectivity coherence using the Regional Homogeneity (ReHo) 

method 26, a sensitive indicator of local connectivity in mice 27. 3xTgAD mice in both age 

groups presented a bilateral deficit in ReHo, compared to controls, localized to the ventral-

amygdaloid-striatal system (Figure 1a). The latter included the ENTl (Δmean3months = -0.007 [-

0.010, -0.005]; Δmean6months = -0.006 [-0.009, -0.003], Figure 1b) within the retrohippocampal 

area, the nucleus accumbens (ACB; Additional file 1: Figure S3a) within the ventral striatum, 

basolateral amygdala (BLA; Additional file 1: Figure S3b) and medial prefrontal cortex 

(mPFC, prelimbic cortex within the mPFC reported as an example in Additional file 1: Figure 
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S3c). Concurrently, 3xTgAD mice exhibited increased ReHo in somatosensory areas, such as 

barrel field cortex (SSp-bfd, Δmean3months = 0.122 [0.005, 0.020], Δmean6months = 0.017 

[0.006, 0.035], Additional file 1: Figure S3d).  

Strikingly, the functional deficit hotspots, identified with the ReHo method, overlapped with 

homologous areas in the human brain, namely, the ventral-amygdaloid-striatal system. These 

areas represent an early target for tau aggregation, as consistently highlighted in a meta-

analysis for the keyword ‘tauopathy’ through the NeuroQuery library (Figure 1a). Thus, the 

3xTgAD model, similar to other transgenic models, e.g. PSAPP, ArcAβ 9,28,29, presents 

functional alterations that precede extracellular Aβ and tangle deposition and aligns with the 

spatial distribution of pathology reported in patients affected by mild cognitive impairment. 

Importantly, deficits within the ventral-amygdaloid-striatal system are consistent with 

behavioral results in young 3xTgAD, where fear and emotional processes are highly affected 

30. Emotional control, regulated by the hippocampal-prefrontal-amygdaloid system, is also 

affected in pre-AD patients 30,31, further highlighting the trans-species relevance of our results. 

Moreover, not all brain areas were affected in a comparable manner: the somatosensory cortex 

of 3xTgAD presented elevated ReHo, reminiscent of previous findings in the APP transgenic 

model 32. This highlights that pathophysiology does not affect each brain region equally.  

 

Dopamine response genes are enriched in functionally compromised regions in 3xTgAD 

We hypothesized that the patterns of functional alteration were the consequence of 3xTgAD 

transgene products interacting with others from the brain transcriptome. To test this, we 

searched for gene expression patterns overlapping with the functional deficits highlighted 

above (Figure 1a). The expression profile from 4117 genes selected for their brain expression 

was spatially correlated with the ReHo deficits in the 3-month-old 3xTgAD dataset 

(Additional file 1: Figure S4). We compared the occurrence in biological processes in a 
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ranked-test in the GOrilla database. Genes associated with dopamine signaling overlapped 

with regional deficits (Table 1, p-valueFDR < 0.001). These included genes encoding for G 

protein signaling (Rgs9, EntrezID = 19739, r = 0.178), G protein subunit (Gnal, EntrezID = 

14680, r = 0.215), and Adenylate cyclases (Adcy5, EntrezID=224129, r = 0.184, Adcy6, 

EntrezID = 11512, r = 0.142).  

Table 1 Dopamine receptor signaling pathway genes overlap with the ReHo functional deficit in 3xTgAD 

 

GO term  Description  p-value  FDR q-value  Enrichment  

GO:0007212 dopamine receptor 

signaling pathway 

6.8E-9  7.62E-5 16.47  

Top ranking genes  

Rgs9 - regulator of g-protein signaling 9 

Adcy5 - adenylate cyclase 5 

Gnal - guanine nucleotide-binding protein, alpha stimulating, olfactory type 

Gnao1 - guanine nucleotide-binding protein, alpha o 

Drd3 - dopamine receptor d3 

Drd2 - dopamine receptor d2 

Drd1a - dopamine receptor d1a 

Adcy6 - adenylate cyclase 6 

 

Changes in dopamine signaling were reported previously in an animal model of cerebral 

amyloidosis also overexpressing APPswe. In addition, loss of midbrain dopamine (DA) 

neurons, as well as deficits in hippocampus-to-ACB signaling mediated by DA, has been 

observed at 3 months of age in Tg2576 mice 33,34. In AD, alterations in DA levels or DAergic 

receptors are found to significantly impact synaptic plasticity and hippocampal-memory 

encoding 35. Loss of DA receptors, especially D2, has been shown in areas such as the 

hippocampus, prefrontal cortices, and BLA 36,37 in AD patients. PET studies on AD patients 

also confirm a loss of striatal D2-like receptors 38. Our results, therefore, bring supporting 

evidence for an interaction between the DAergic system associated with early cerebral 

amyloidosis and tauopathy, which leads to synaptic dysfunction.  
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Local functional connectivity deficits translate into whole-brain network alterations 

The ENTl and associated hippocampal areas are fundamental for declarative memory 

encoding and retrieval 39,40. In particular, the ENTl is among the first hubs affected in both 

human AD 41 and the 3xTgAD model of cerebral amyloidosis and tauopathy 12 (Figure 1a). 

As such, the ENTl was targeted for further analysis. To examine distal functional connectivity 

alterations at rest, we assessed pair-wise ROI interactions relative to the left-hemisphere 

ENTl. Functional connectivity to the ENTl was decreased in the retrohippocampal and 

hippocampal regions (Figure 1c, and e.g. ENTl right hemisphere: Δmean3months = -0.114 [-

0.193, -0.035], Δmean6months = -0.127 [-0.205, -0.058], Additional file 1: Figure S5c), ventral 

striatum (ACB, Additional file 1: Figure S5b), and amygdala (BLA, Additional file 1: Figure 

S5c). Similarly, an increase in functional connectivity relative to the ENTl was reported in the 

somatosensory cortex (lower limb, SSp-ll; Additional file 1: Figure S5d). These results, 

focusing on the ENTl-specific network, show similarities to the whole-brain functional 

connectivity changes assessed with ReHo, presented in an overlapped design in Additional 

file 1: Figure S6. 

To confirm the connectivity results, we performed electrophysiological recordings in 

urethane-anesthetized 3xTgAD and control mice, in vivo, at 3 or 6 months of age (Additional 

file 1: Supplementary Method). Field excitatory postsynaptic potentials (fEPSP) were 

assessed within the BLA and dentate gyrus (DG), following electrical stimulation in the 

ENTl. A paired-pulse stimulation (PPS) protocol, used to assess short-term synaptic plasticity 

changes, was analyzed through the paired-pulse index (PPI) and revealed a quadruple effect 

between ROI, age, genotype, and paired-pulse intervals: F(51,46) = 28.135, p < 0.001. 

Specifically, no difference between 3xTgAD and controls was found for longer paired-pulse 

intervals in both the BLA and DG at both age points. A strong increase in facilitation was 

instead reported for short intervals in both BLA (e.g. 3 months old: 20 ms, z-score = -3.96, p 
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< 0.001; 50 ms, z-score = -3.11, p < 0.05; Figure 1d) and DG (e.g. 3 months old: 20 ms, z-

score = -3.16, p < 0.01; 50 ms, z-score = -4.54, p < 0.001; Additional file 1: Figure S7). This 

may indicate neuronal synaptic hyperexcitability in 3xTgAD: intracellular Ca2+ residuals from 

the first stimulus (P1) likely elicit augmented release of the presynaptic neurotransmitter in 

response to the second pulse (P2). This hyperexcitable neuronal profile may support the 

network dysfunction observed, through compensatory mechanisms in response to the 

compromised functional connectivity reported at rest. Additionally, the Input/Output curve 

(IOC) analysis for synaptic strength revealed a quadruple interaction effect between ROIs, 

age, genotype, and stimulation amplitude: F (35,32) = 108.31, p < 0.001. Within the BLA, 

3xTgAD mice did not show significant differences compared to controls at 3 months, 

whereas, there was a significantly larger response at 6 months for all stimulus intensities, e.g. 

300 μA (z = -6.23, p < 0.001), 450 μA (z = -6.64, p < 0.001) and 600 μA ( z = -7.1, p < 0.001; 

Additional file 1: Figure S8a). Within DG, 3xTgAD mice showed larger responses than 

controls by 3 months (e.g. 300 μA z-score = 2.36, p < 0.05 and 600 μA z-score = 2.93, p < 

0.005; Additional file 1: Figure S8b, left panel). At 6 months, there was a significant 

difference between genotypes for the strongest current stimulus (600 μA, z-score = 2.12, p < 

0.05), although there was a trend for increased facilitation in 3xTgAD mice compared to 

controls (Additional file 1: Figure S8b, right panel). Taken together, our electrophysiological 

in-vivo evidence reveals hyperexcitable behavior during the evoked neuronal response in 

disease-relevant 3xTgAD brain regions. This suggests a dichotomous relationship between 

increased-evoked and reduced-spontaneous activity in AD-like vulnerable areas, where 

functional connectivity is highly compromised at rest.  

In an exploratory analysis, we examined whole-brain network deficits in 3xTgAD mice at 3 

and 6 months of age (Additional file 1: Figure S9b). Alterations were consistent between both 

age groups and  localized within and between regions highlighted in the ReHo analysis, 
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namely, in the amygdaloid/cerebral nuclei (including BLA and ACB) and the ENTl and the 

hippocampal formation (Figure 1a, Additional file 1: Figure S9b). Importantly, the nodal 

degree distribution, i.e., the number of affected connections per ROI, was found to overlap 

with ReHo (Additional file 1: Figure S9b). This indicates that local functional connectivity 

deficits translate into distal functional connectivity deficits and, in turn, greater network 

dysfunction. Moreover, regions highlighted in the pairwise correlation analysis (amygdala and 

hippocampus, Additional file 1: Figure S2) were also found to be enriched in tau aggregates  

consistent with tau dispersions across functionally connected networks 42.  

 

Functional connectome of the ENTl revealed by optogenetics 

The ENTl was revealed above to be a major hub region affected in the 3xTgAD brain at rest. 

To further explore the functional consequences of this finding, , we leveraged fMRI combined 

with optogenetics (ofMRI; Figure 2) 43 to visualize the hemodynamic response to a 10-block 

design photostimulation of ChR2-transfected CaMKIIα-positive (AAV5-CamKIIα-hChR2 

(H134R)-mCherry) ENTl neurons (Ncontrols = 10, N =123xTgAD; Figure 2ab, Additional file 1: 

Figure S10ab). Anatomical imaging of the optic fiber revealed that the ENTl was accurately 

targeted (Figure 2c, Additional file 1: Figure S10c). Transfection led to robust expression at 

the target site (Figure 2b, Additional file 1: Figure S11a). Cell bodies of transfected neurons 

were consistent with those of excitatory pyramidal cells (Additional file 1: Figure S11b, 

Supplementary Method). ENTl neurons faithfully responded to 5 and 20 Hz light pulse trains 

in both controls and 3xTgAD (Figure 2d, Additional file 1: Figure S11c). Prolonged 

photostimulation (500 ms) applied to patched neurons in vitro confirmed an effective ChR2-

induced inward current on both control and 3xTgAD mice post hoc (Additional file 1: Figure 

S11d).  
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Fig.2 Optogenetic modulation of the lateral entorhinal cortex 

 

a) Diagram of stereotaxic injection in the left ENTl (in mm from Bregma and middle line: AP: -2.8, ML: +4.2, 

DV: -2.6). b) ChR2-mCherry/Hoechst (left) and mCherry/Hoechst (right) indicate successful targeting of the 

ENTl and stable transfection. c) 3-d rendering of fiber tip position for each experimental animal, red dots 

indicate 3xTgAD subjects (N = 12) and blue dots indicate controls (N = 10). d) Optogenetic stimulation of 

ChR2-transfected neurons at 5 Hz and 20 Hz in vitro shows frequency-locked spiking activity. e) 

Optogenetically-locked BOLD response overlaps with density projection maps. Top and middle sections 

indicating one-sample t-test for stimulation-locked BOLD response in the control group and 3xTgAD mice (N = 

10, N = 12, respectively; p < 0.05 corrected) highlighting activation in key regions related to ENTl projections, 

i.e., HIP, BLA, ACB and mPFC; AIBS tracer projection density map with injection in ENTl (experiment ID: 

#114472145; bottom section). Stimulation site (ENTl) indicated with a blue star. f) BOLD response profile, 

averaged across 10 blocks, following 20 Hz stimulation in control mice injected with ChR2-mCherry (N = 10) 

and control mice injected with mCherry only (N = 9) shows an opsin-dependent BOLD response. AP: anterior-

posterior; ML: medio-lateral; DV: dorso-ventral; HIP: hippocampus; BLA: basolateral amygdala; ACB: nucleus 

accumbens; mPFC: medial prefrontal cortex. Scale bar: 1000 μm 
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There was no evidence of aberrant spontaneous behavior to photostimulation protocols in 

freely behaving mice, unlike seizures previously reported following photostimulation of the 

hippocampus in rats 44. An unbiased voxel-wise analysis revealed the BOLD signal associated 

with our modeled response in controls and 3xTgAD at 3 months of age (Figure 2e, top and 

middle rows respectively) in several regions, including the hippocampal formation 

(hippocampus and retro hippocampal areas), the amygdaloid area (e.g. BLA), the ventral 

striatum (ACB), the prefrontal and the insular areas. Similar results were reported for the 6-

month age point (Additional file 1: Figure S12, left and middle panels). Interestingly, 

optogenetically-evoked activity was mostly confined to the ipsilateral hemisphere, despite the 

presence of contralateral projections, as predicted by viral tracers (Figure 2e bottom row, 

spatial correlation r = 0.36). This supports the notion of a neuronal mechanism that silences 

the response contralaterally but not ipsilaterally to artificially generated neuronal activity, 

perhaps via feed-forward active inhibition 45.  The response elicited through photostimulation 

of ENTl was comparable between mice at 3 and 6 months of age, indicating a stable 

expression allowing for longitudinal analysis. A negative control carried out in healthy wild-

type mice (NmCherry-controls = 9) transfected with mCherry alone (Figure 2b) did not reveal the 

presence of a light response, except for a visual-associated response of the lateral geniculate 

nucleus and superior colliculus, probably due to the fiber illumination received as a direct 

visual response to retinal illumination (Additional file 1: Figure S10d). Hence, we concluded 

that the response recorded with ofMRI was not associated with potential heating and/or 

vascular photoreactivity artifacts. Photostimulation at frequencies ranging from 5 to 20 Hz 

indicated spatially overlapping results (Additional file 1: Figure S10e), in contrast to previous 

research 46. In fact, the non-specific, visually-associated response amplitude was stronger at 

lower frequencies (Additional file 1: Figure S10d, upper panel), while the opsin-associated 

response was more marked at 20 Hz (Figure 2e, Additional file 1: Figure S12). The areas 
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associated with a visual response elicited with 5 Hz stimulation were subsequently masked 

from our results and the remainder of the analysis focused on the 20 Hz paradigm (Additional 

file 1: Figure S10d, lower panel).  

 

Potentiated hemodynamic response and neuronal activity in 3xTgAD 

To assess response differences across the brain, a non-parametric second-level analysis 

comparing the amplitude of activation between 3xTgAD and controls was carried out (Figure 

3, central segment). Group size at 6 months of age was reduced due to group attrition, e.g., 

detachment of the implant. Therefore, group sizes differed between 3 months (Ncontrols = 10, 

N3xTgAD = 12) and 6 months (Ncontrols = 8, N3xTgAD = 10) of age. Surprisingly, and in contrast to 

the results observed at rest, 3xTgAD mice showed significantly larger responses across 

several regions compared to controls at 3 months. The regions affected included the ipsilateral 

dorsal hippocampus, ACB, mPFC, cingulate and retrosplenial areas, and contralateral ENTl. 

The presence of an effect at 6 months could not be detected, potentially due to the reduced 

group size, or to a normalization of the response at a later age.  

To examine local response amplitude, contrast of parameter estimates (COPEs) were 

extracted from ROIs highlighted in the voxel-wise comparison: ENTl (Δmean3months = 0.044, 

[0.022, 0.070]), ACB (Δmean3months = 0.15 [0.0106, 0.298]), mPFC (Figure 3c, Δmean3months = 

0.283 [0.161, 0.431]) and DG (Figure 3f). Similar results were present at lower stimulation 

frequencies, although the more distal regions had a mitigated effect at lower frequencies 

(example for 10 Hz, ENTl: Δmean3months = 0.008, [-0.08, 0.09]). Data acquired at rest, prior to 

optogenetic stimulation, indicated ReHo deficits converging with that acquired in the previous 

dataset, replicating our observations above, despite lower acquisition quality due to a room 

temperature receiver coil instead of a cryoprobe coil (Additional file 1: Figure S13).  
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Figure 3 Increased optogenetically-locked response in 3xTgAD compared to controls at 3 months   

 
 

Central panel: Two-sample t-test showing significantly higher response (p < 0.05, corrected) in 3xTgAD 

compared to controls in AD-like vulnerable regions, such as mPFC and DG, left and right sections respectively. 

a,d) Representative action potential firing patterns to 120 pA injection in ILA pyramidal cells (Ncontrols = 4, n = 

10 / N 3xTgAD = 4, n = 11) and DG granule cells (Ncontrols = 4, n = 29 / N 3xTgAD = 5, n = 18) respectively. b, e) The 

evoked spike number during various injected currents in ILA pyramidal cells and DG granule cells, respectively. 

The data are plotted as mean action potential numbers ± 1 SD. The statistical significance is presented with 

asterisks (*p < 0.05, **p < 0.01 by Mann-Whitney U test). c, f) COPEs are represented for 3xTgAD and controls 

at both age points for mPFC and DG, respectively 

 

To confirm the increased response observed in ofMRI, we examined neuronal excitability ex 

vivo in two projection areas highlighted above; the DG, within the hippocampus, and the 

infralimbic area (ILA), within mPFC, (Additional File 1: Supplementary Method). Acute 

brain slice electrophysiology indicated that excitatory neurons of 3xTgAD, in both ILA 

(Figure 3ab) and DG (Figure 3de), were prone to increase the number of spikes derived by 

current injection compared to controls, but ILA neurons showed enhancement of 

afterhyperpolarization (AHP) latency and half-width of the action potential, a phenotype 

consistent with previous results 47 (Additional file 1: Table S2), while spike morphology was 

comparatively unaltered (Additional file 1: Table S3). To examine how the alterations of the 
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ENTl functional projectome at 3 months related to a loss of functional connectivity at rest, we 

projected the two responses onto the same template (Additional file 1: Figure S12, right 

panel). We found that several of the ROIs, presenting decreased functional connectivity at 

rest, were responding with greater amplitude to optogenetically-driven neuronal activity. This 

was the case for regions encompassing the ventral striatum (ACB), the dorsal DG within the 

hippocampal formation and prefrontal regions.   

In sum, 3xTgAD mice showed decreased functional connectivity at rest and, in contrast, an 

increased response during optogenetic stimulation. Direct neuronal recordings, both in vivo 

and ex vivo, showed a hyperactive phenotype. Taken together, these results support a hypo-

connected/hyper-responsive dichotomy characterizing rest vs. evoked states in early stages of 

pathology progression in 3xTgAD. 

 

Discussion 

Neurological disorders, including tauopathies such as AD, are one of the greatest challenges 

in modern medicine. The absence of disease-modifying treatment for AD represents a major 

loss for the millions of patients affected worldwide. A detailed understanding of the disease 

mechanisms across spatial and temporal scales constitutes a translational opportunity to 

facilitate the drug development process. Here, we have determined that the pre-tangle stage of 

the 3xTgAD mouse model presents functional connectivity patterns overlapping with areas 

affected by tauopathy in humans. This supports the trans-species relevance of our results. 

We determined that distal connectivity disturbances could be explained by local connectivity 

deficits. Moreover, we observed a dichotomy between resting activity, which leads to 

decreased connectivity, and evoked activity, that promotes increased metabolic demand and 

neuronal hyperexcitability. We confirmed fMRI results with electrophysiological recordings 

that indicated a pathological effect on signal transmission and electrical properties of neurons 
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in vulnerable neuronal circuits. Hence, we demonstrated that fMRI connectivity deficits are 

rooted in a deeper physiological context. Further, an in-silico transcriptome analysis indicated 

a potential association of these results with deficits in the DA system. Importantly, our results 

connect to two widely examined models of AD pathological progression, namely the tau 

seeding hypothesis 13,48, and a revised amyloid hypothesis 32. Finally, we examined potential 

mechanisms underpinning the electrophysiological signatures. Staging the disease progression 

has been an important question in AD in order to understand mechanisms and to improve 

diagnostics 49.  

We observed phospho-tau spreading from 3 to 10 months in 3xTgAD model mice and found 

that this was associated with long-range connectivity deficits in young model animals. This 

underpins the notion of a tight coupling between functional connectivity and tau progression 

42, supported by molecular work by others 50. The seeding hypothesis can be further connected 

to other models of axonal degeneration and inflammation 51 and, thus, it provides a coherent 

description of the pathophysiology process taking place in AD.  

The contribution of different Aβ species (soluble oligomers, fibrils, plaques) has been the 

subject of ardent discussion in the literature. Here, we demonstrate functional connectivity 

dysfunction in the absence of amyloid plaques and detectable elevated Aβ levels, similar to 

previous results in other models 9,10,32 and in subjects at risk of developing AD 5,19. Our results 

thus contribute to the view that the traditional amyloid cascade hypothesis for AD 52 

etiopathogenesis should be updated. Additionally, our results contribute to a modern re-

interpretation of the cascade and reconcile contradicting results within the human literature. 

Decreased resting connectivity patterns were paired with an increased response to 

optogenetically-driven and electrically-driven neuronal activity, thus highlighting a possible 

increase in neuronal excitability following stimulation and increased metabolic demands 

(Figure 3, Additional file 1: Figure S12 right panel).  
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The dichotomy of the direction of these changes in resting and evoked activity, specifically 

within the ENTl network, mirrors several findings in preclinical and early stages of AD 

patients. Decreased functional connectivity is found in mild AD patients at rest, in areas 

related to the DMN, including the hippocampal formation 53. However, task-based fMRI 

studies show increased activity in memory-related areas in subjects at risk of AD but who are 

cognitively still normal (e.g. APOEε4 carriers) suggesting a dichotomy in network 

organization of the brain at rest and in engaged status 54. Taken together, our findings help to 

reconcile apparent discordant results put forward in early-AD subjects 5,7,20.  

Importantly, our results also fit into modern hypotheses for the amyloid cascade. Buckner and 

colleagues demonstrated that network dysfunction overlapped and preceded amyloid 

deposition revealed with PET 55. Bero and colleagues demonstrated in APP transgenic mouse 

models that hyper-connectivity patterns at a young age correlated with amyloid plaque 

distribution later in life 32. Our results support the notion that local and distal network 

dysfunction at rest impairs information transmission and processing. This leads to increased 

metabolic demand during evoked activity, which putatively leads to circuit exhaustion and 

further accumulation of Aβ species through increased neuronal activity 56. It will be important 

to confirm this model prediction in older 3xTgAD mice.  

 

Conclusions 

In sum, the functional deficits found within and relative to the temporal and ventral brain 

areas in 3xTgAD mice recapitulate several important effects described in pre-AD subjects 

with functional neuroimaging. Importantly, we postulate a disruption in DAergic signaling 

pathways as one of the earliest features characterizing AD development. Moreover, the 

photostimulation of the ENTl leads to a marked increase in BOLD response in several 

important projection areas. The dichotomic behavior between resting and evoked functional 
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responses, taking place during the early stages of cerebral amyloidosis and tauopathy, reveals 

an endophenotype in line with the human tauopathy profile. This suggests that similar 

pathophysiological mechanisms might be the cause of network dysfunction in clinical cases, 

providing an understanding of the underlying mechanisms leading to functional deficits 

preceding this fatal neurodegenerative disorder.  

 

Methods 

Animal permit 

All procedures conducted in the UK were performed in accordance with the UK Animals 

(Scientific Procedures) Act 1986 and the University of Manchester Ethical Review Panel 

under Home Office license PPL 70/7843. All experiments performed in Singapore 

Bioimaging Consortium, A*STAR, Singapore, were in accordance with the ethical standards 

of the Institutional Animal Care and Use Committee (A*STAR Biological Resource Centre, 

Singapore, IACUC #171203).  

In both locations, the 3xTgAD and the control colonies were maintained ‘in-house’ through 

the pairing of homozygous individuals. Mice were housed in cages of up to five, with same-

sex and genotype cage-mates in a pathogen-free environment, kept at a 45-65% humidity, 

under a 12:12-hour light-dark cycle and room temperature, with ad libitum access to food and 

water. The detailed breakdown of animal group sizes per experiment is detailed in Additional 

file 1: Table S1. 

Specifically, male 3xTgAD and control mice on the same background strain (129sv/c57bl6) 

aged either 3-4 months (N = 6 and N = 7, respectively) or 6-7 months old (N = 4 and N = 4, 

respectively) were used for electrophysiological recordings in vivo. Additionally, male 

controls (total N = 29) and 3xTgAD (total N = 31) have been used for the imaging 

experiments. Specifically, Ncontrols = 10 and N3xTgAD = 19 underwent rsfMRI experiments. 
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Additionally, Ncontrols = 19 and N3xTgAD = 12 mice underwent ofMRI experiments. An a priori 

power analysis was performed following results in 28 using R (power.t.test), indicating that N 

= 10 per group for rsfMRI is sufficient to achieve 80% power with the following parameters: 

delta = 14, SD = 11, two-tailed test, significance threshold = 0.05.  

 

Optogenetic surgery 

Male 129sv/c57bl6 and 3xTgAD mice (~30 g, N = 19, N = 12 respectively) were anesthetized 

with a mixture of ketamine/xylazine (ketamine 75 mg/kg, xylazine 10 mg/kg). The head was 

shaved and cleaned with three wipes of Betadine® and ethanol (70%). Lidocaine was 

administered subcutaneously, in situ under the scalp. Each animal was kept on a warm pad to 

prevent hypothermia, and the head was positioned in a stereotaxic frame; protective 

ophthalmic gel was applied to avoid dryness. A portion of the scalp was removed to expose 

the skull. The distance between Bregma and Lambda was measured and compared to the 

standard 4.2 mm reported in the mouse brain atlas. Any deviation from 4.2 mm allowed a 

proportional adjustment for craniotomy coordinates. Small craniotomies were performed 

above the left hemisphere with a drill (burr tip 0.9 mm2) at -2.8 from bregma, +4.2 from the 

midline. Virus injection into ENTl was carried out through this craniotomy at -2.8 to -2.7 mm 

from the brain surface and cannula positioning reached -2.6 mm from the surface. 

Coordinates were taken according to the Paxinos mouse brain atlas 57. An injection of adeno-

associated virus (AAV) was performed in the target location using a precision pump (KD 

Scientific Inc., Harvard Bioscience) with a 10 μl NanoFil syringe with a 33-gauge beveled 

needle (NF33BV-2). The AAV used 58, AAV5-CaMKIIa-hChR2(H134R)-mCherry (Ncontrols = 

10, N3xTgAD = 12) or AAV5-CaMKIIa-mCherry (NmCherry-controls = 9), titer 1-8x1012 vg/ml, 

were acquired from Vector Core at the University of North Carolina (USA). A total volume of 

0.75 μl of the vector was injected in each mouse at a rate of 0.15 μl/min. The injector was 
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kept in location for 10 minutes after injection completion to preclude backflow. After the 

extraction of the needle, a fiber optic cannula (diameter 200 μm, 0.39 NA, length according to 

the injection site, diameter 1.25 mm ceramic ferrule) was lowered to the targeted region 

(Laser 21 Pte Ltd, Singapore; Hangzhou Newdoon Technology Co. Ltd, China). The cannula 

was fixed in place with dental cement (Meliodent rapid repair, Kulzer). Buprenorphine was 

administered post-surgically to each animal. Animal recovery took place on a warm pad. 

 

Animal preparation for imaging 

Animal preparation followed a previously established protocol 59. Anesthesia was induced 

with 4% isoflurane; subsequently, the animals were endotracheally intubated, placed on an 

MRI-compatible cradle, and artificially ventilated (90 breaths/minute; Kent Scientific 

Corporation, Torrington, Connecticut, USA). A bolus with a mixture of Medetomidine 

(Dormitor, Elanco, Greenfield, Indiana, USA) and Pancuronium Bromide (muscle relaxant, 

Sigma-Aldrich Pte Ltd, Singapore) was administered subcutaneously (0.05 mg/kg), followed 

by a maintenance infusion (0.1 mg/kg/hr) administered 5 minutes later while isoflurane was 

simultaneously reduced and kept to 0.5%. Functional MRI was acquired 20 min following 

maintenance infusion onset to allow for the animal state to stabilize. Care was taken to 

maintain the temperature of the animals at 37°C. 

 

fMRI data acquisition and stimulation protocols 

Data were acquired on an 11.75 T (Bruker BioSpin MRI, Ettlingen, Germany) equipped with 

a BGA-S gradient system, a 72 mm linear volume resonator coil for transmission. A 2×2 

phased-array cryogenic surface receiver coil was adopted for the rsfMRI experiment (N = 29) 

and a 10 mm single-loop surface coil for ofMRI experiments (N = 31). Images were acquired 

using Paravision 6.0.1 software.  
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For the rsfMRI data acquisition, an anatomical reference scan was acquired using a spin-echo 

turboRARE sequence: field of view (FOV) = 17×9 mm2, FOV saturation slice masking non-

brain regions, number of slices = 28, slice thickness = 0.35, slice gap = 0.05 mm, matrix 

dimension (MD) = 200×100, repetition time (TR) = 2750 ms, echo time (TE) = 30 ms, RARE 

factor = 8, number of averages = 2. Functional scans were acquired using a gradient-echo 

echo-planar imaging (EPI) sequence with the same geometry as the anatomical: MD = 90×60, 

TR = 1000 ms, TE = 15 ms, flip angle = 50°, volumes = 600, bandwidth = 250 kHz.  

Parameters for the ofMRI data acquisition were adapted to the lower sensitivity of the room 

temperature receiver coil. The anatomical reference scan was acquired using FOV = 20×10 

mm2, number of slices = 34, slice thickness = 0.35, slice gap = 0 mm, MD = 200×100, TR = 

2000 ms, TE = 22.5 ms, RARE factor = 8, number of averages = 2. Functional scans were 

acquired using FOV = 17×9 mm2, FOV saturation slice masking non-brain regions, number of 

slices = 21, slice thickness = 0.45, slice gap = 0.05 mm, MD = 60×30, TR = 1000 ms, TE = 

11.7 ms, flip angle = 50°, volumes = 720, bandwidth = 119047 Hz. Field inhomogeneity was 

corrected using MAPSHIM protocol. Light stimulation was provided through a blue light 

laser (473 nm, LaserCentury, Shanghai Laser & Optic Century Co., Ltd; ~12-15 mW output 

with continuous light at the tip of the fiber) controlled by in-house software (LabVIEW, 

National Instruments). After an initial 50 s of rest as a baseline, 5, 10 or 20 Hz light pulses (10 

ms long pulses)  were applied for 10 s followed by a 50 s rest period, in a 10-block design 

fashion. An additional 60 s of rest were recorded after the last block of stimulation 

(Additional file 1: Figure S10a). The experimental groups (3xTgAD and wild-type mice with 

ChR2-mCherry) and the negative control group (wild-type mice with mCherry alone) 

underwent the same imaging protocol, i.e., one resting-state scan, followed by randomized 5 

Hz, 10 Hz and 20 Hz evoked fMRI scans. The negative control group was imaged with the 

same imaging protocol as the experimental groups to exclude potential heating and/or 
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vascular photoreactivity artifacts 60,61. Additionally, in order to exclude abnormal behavior 

induced by the photostimulation protocol 44, all animals underwent the three stimulation 

sessions (5 Hz, 10 Hz, and 20 Hz) again while awake and freely walking in a behavior-

chamber.  

 

fMRI analysis 

Images were processed using a protocol optimized for the mouse and corrected for spikes 

(3dDespike, AFNI 62), motion (mcflirt, FSL 63) and B1 field inhomogeneity (fast). Automatic 

brain masking was carried out on the EPI using bet, following smoothing with a 0.3 mm2 

kernel (susan) and a 0.01 Hz high-pass filter (fslmaths). Nuisance regression was performed 

using FIX 11. Separate classifiers were generated for rsfMRI and ofMRI. The EPIs were 

registered to the Allen Institute for Brain Science (AIBS) reference template ccfv3 using SyN 

diffeomorphic image registration (antsIntroduction.sh, ANTS 64). 

Local connectivity was assessed with ReHo (3dReHo) 26,27. Pair-wise region-of-interest (ROI) 

analysis was carried out with respect to ROIs defined in the AIBS atlas. Time series extracted 

with the atlas were cross-correlated to the time series from the ENTl using Pearson’s 

correlation. The ofMRI response was examined using a general linear model (GLM) 

framework (fsl_glm). The stimulation paradigm and its first derivative were convolved using 

the default gamma function and used as regressors in the analysis, with motion parameters as 

covariates. Nomenclature and abbreviations for the brain regions are in accordance with 

https://atlas.brain-map.org/.  

Human literature spatial meta-analysis was performed on the neuroquery.org platform on 

November, 8th 2019, using the term ‘tauopathy’ in the query 

(‘https://neuroquery.org/query?text=tauopathy+’). The query returned 30 spatial maps 
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depicting activation voxels in neuroimaging literature associated with the searched term 

(Figure 1a).  

 

Anatomical gene expression atlas comparison 

The spatial expression profile for 4117 genes was obtained from the anatomical gene 

expression atlas database using the application programming interface from the AIBS 65. The 

spatial correlation between the ReHo second-level statistical map and each of the genes was 

estimated using Pearson’s correlation (fslcc). ReHo-gene correlations were ranked and tested 

for enrichment of biological processes using Gene Ontology enRIchment anaLysis and 

visuaLizAtion tool (GOrilla, http://cbl-gorilla.cs.technion.ac.il/) 66,67. Enrichment was tested 

with Fisher's Exact test with FDR correction. 

 

Statistics and data availability 

Descriptive statistics for neuroimaging data are given as mean difference and [95th 

confidence interval] unless stated otherwise, and graphically represented as ‘Gardner–Altman 

plots’ (https://www.estimationstats.com/; 68). If not specified, descriptive statistics are 

provided for left hemisphere ROIs. The statistical threshold for significance was set at p < 

0.05, two-tailed. Voxel-wise was carried out with a non-parametric permutation-based (5000 

permutations) test (randomize). Cluster correction was carried out with threshold-free cluster 

enhancement (tfce). Thresholded t-statistic for one-sample and two-sample t-tests (p < 0.05, 

tfce corrected) are shown as a color-coded overlay on the AIBS template. ROI analysis was 

carried out with a linear mixed model using genotype and age as fixed effects and individual 

intercepts as random effects, using the lme4 package (1.1-21) for R (https://cran.r-

project.org/, 3.5.3, “Great Truth”). Significance was assessed with general linear hypothesis 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 9, 2021. ; https://doi.org/10.1101/2020.04.03.022590doi: bioRxiv preprint 

https://paperpile.com/c/cbOW1L/l8wrx
http://cbl-gorilla.cs.technion.ac.il/
https://paperpile.com/c/cbOW1L/CuyxN+Exu4X
https://www.estimationstats.com/
https://paperpile.com/c/cbOW1L/2WGm
https://cran.r-project.org/
https://cran.r-project.org/
https://doi.org/10.1101/2020.04.03.022590
http://creativecommons.org/licenses/by/4.0/


25 

tests implemented in the multcomp (1.4-10) package and corrected with the false discovery 

rate.  

The rsfMRI and ofMRI datasets supporting the conclusions of this article are available  on a 

CCO license in the OpeNeuro repository,  https://openneuro.org/ (DOI: 

10.18112/openneuro.ds001890.v1.0.1, 10.18112/openneuro.ds002134.v1.0.0). 
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List of abbreviations 

AAV = adeno-associated virus 

ACB = nucleus accumbens 

AD = Alzheimer’s disease 

BLA = baso-lateral amygdala 

BOLD = blood-oxygen-level-dependent 

DG = dentate gyrus 

DMN = default-mode network 

ENTl = lateral entorhinal cortex 

ILA = infralimbic area 

mPFC = medial prefrontal cortex 

ofMRI = optogenetics functional MRI 

ReHo = regional homogeneity 

rsfMRI = resting state functional MRI 
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