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Abstract

The human PUF-family proteins, PUM1 and PUM2, post-transcriptionally regulate gene expression
by binding to a PUM recognition element (PRE) in the 3’ UTR of target mRNAs. Hundreds of
PUM1/2 targets have been identified from changes in steady state RNA levels; however, prior
studies could not differentiate between the contributions of changes in transcription and RNA
decay rates. We applied metabolic labeling to measure changes in RNA turnover in response to
depletion of PUM1/2, showing that human PUM proteins regulate expression almost exclusively
by changing RNA stability. We also applied an in vitro selection workflow to precisely identify
the binding preferences of PUM1 and PUM2. By integrating our results with prior knowledge, we
developed a ’rulebook’ of key contextual features that differentiate functional vs. non-functional
PREs, allowing us to train machine learning models that accurately predict the functional regulation
of RNA targets by the human PUM proteins.
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1. Introduction1

The control of gene expression at the post-transcriptional level is critical for diverse biological2

processes including proper organismal development in multicellular organisms. Many regulators,3

including RNA-binding proteins (RBPs), act to control the stability of target mRNA transcripts4

through the recognition of key sequence elements in the 3′ UTRs of mRNAs [1, 2]. A recent survey5

of all known human RBPs indicated that a substantial fraction of human RBPs bind to mRNAs,6

however, for any given RBP, the binding specificity, set of mRNA targets, and functional role for7

the RBP at each target still remains poorly understood [3].8

The PUF (Pumilio and FBF [fem-3 binding factor]) family of proteins represent one of the most9

well-studied classes of RBPs [1, 4, 5]. PUF proteins possess a shared C-terminal Pum homology10
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domain (PUM-HD). Structurally, the human PUM-HD consists of 8 helical repeats containing11

specific amino acids that both intercalate and form hydrogen bonds and van der Waals contacts12

with target RNA, resulting in exquisite specificity for a UGUANAUA consensus sequence motif or13

PUM Recognition Element (PRE) [6, 7]. Recognition by the PUM-HD is modular and specificity14

for a given base can be changed through mutation of a set of three key amino acids in a single15

repeat [7, 8]. Furthermore, the sequence specificity by PUM-HD across species can be predicted16

from the identity of these three key amino acids across the helical repeats in any given PUM-HD17

[9]. Thus, there are slight differences in the exact set of sequences recognized by the PUM-HD18

of different PUF family members and, in addition, interactions with protein partners can alter19

sequence preference [10–12].20

Functionally, the PUF family of proteins have been implicated in post-transcriptional regu-21

lation underlying control of developmental processes [1]. One of the founding members of the22

family, Drosophila Pum, together with the Nos protein, is needed for correct body patterning in23

the developing fly embryo [13, 14]. Patterning is accomplished by location-specific repression of24

the hunchback mRNA through sequence-specific recognition of a nanos response element (NRE)25

in the hunchback 3′ UTR [15]. In humans, there are two members of the PUF family, PUM1 and26

PUM2, which share 75% overall sequence identity with 91% sequence identity in the PUM-HD.27

In addition, human PUM1 and PUM2 share 78% and 79% sequence identity in the PUM-HD to28

DmPum, respectively [5, 16]. Human PUM1 and PUM2 are expressed across tissues and their ex-29

pression is highly overlapping [5, 16] suggesting that they likely act redundantly. Mammalian PUM30

proteins have been implicated in spermatogenesis [17, 18], neuronal development and function[19–31

24], immune function [25, 26], and cancer [27–30]. PUM1 missense and deletion mutants lead to32

adult-onset ataxia (Pumilio1-related cerebellar ataxia, PRCA) and loss of one copy leads to de-33

velopmental delay and seizures (Pumilio1-associated developmental disability, ataxia, and seizure;34

PADDAS) [31]. Yet, the targets responsible for these biological outcomes are largely opaque.35

Targeted experiments have indicated that human PUM1 and PUM2 are capable of repressing36

expression of a luciferase reporter through recognition of PREs in the reporter gene’s 3′ UTR,37

likely through recruitment of the CCR4-NOT complex and subsequent degradation of the mRNA38

target [32]. Additionally, similar assays have shown that repression by the human PUM2 PUM-39

HD alone—that is lacking the N-terminal domains of PUM2—requires the polyA binding protein40

PABPC1, suggesting that the human PUMs could accelerate mRNA degradation by inhibiting41

translation [33]. However, PUM-mediated repression is not the only type of gene regulation by42

human Pumilio proteins. Recently, expression of a key regulator of hematopoietic stem cell dif-43

ferentiation, FOXP1, was shown to be enhanced by human PUM1/2 binding to the 3′ UTR [29].44

Furthermore, measurements of changes in global steady-state RNA abundance between wild-type45

(WT) and PUM1/2 knockdown conditions have identified hundreds of RNAs that either increase46

or decrease in abundance upon PUM1/2 knockdown [34]. Follow-up experiments have confirmed47

activation of key targets by human PUMs through the use of a reporter gene-target 3′ UTR fusion48

construct [34], indicating that human PUMs directly activate some mRNA targets. However, the49

mechanism of PUM-mediated activation remains to be elucidated.50

High-throughput measurements of PUM1 and PUM2 binding sites in vivo have confirmed high51

specificity for a PRE and have identified a diverse set of PUM targets in human cell lines, including52

those involved in regulating neuronal function and signaling cascades [35–38]. Thus, sequence-53

specific recognition of the PRE is an important aspect of target recognition for the PUM proteins.54

However, key questions about PUM-mediated gene regulation remain. There are on the order of55

10,000 PRE sites across the full set of annotated human 3′ UTRs, but only ∼1000 genes change in56

steady state RNA levels under PUM1/2 knockdown [34]. Additionally, models using a simple count57

of PREs in the 3′ UTR of a transcript do not completely capture the complexity of PUM-mediated58
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gene regulation [34]. The identification of additional sequence features that discriminate functional59

PREs from apparently non-functional PREs will improve the understanding of PUM-mediated60

gene regulation. Furthermore, as the measurement of steady-state RNA levels do not allow for61

differentiation between the individual contributions of transcription rates and RNA stability, we62

instead set out to directly measure changes in RNA stability under PUM1/2 knockdown condi-63

tions. Through the use of high-throughput sequencing methodologies, we demonstrate that human64

PUM1/2 modulate the abundance of mRNA targets primarily through controlling mRNA stability65

and not transcription rates. We demonstrate, through high-throughput in vitro binding assays,66

that PUM1 and PUM2 PUM-HDs have highly similar preferences for the same sets of sequences.67

Consistent with prior reports, we find that PUM1/2 control the mRNA stability of transcripts68

involved in signaling pathways, neuronal development, and transcriptional control. In addition, we69

identify a key set of contextual features around PREs that contribute meaningful information in70

predicting PUM-mediated regulation including proximity to the 3′ end of a transcript and the AU71

content around PRE sites. Taken together, our study illuminates key contributors to determining72

functional PRE sites and represents a rich resource for interrogating the control of mRNA stability73

by the PUM RBPs.74

2. Results75

2.1. Bru-seq and BruChase-seq reveal PUM-mediated effects on mRNA stability76

In order to measure the effect of the human PUM1 and PUM2 proteins on mRNA stability at a77

transcriptome-wide scale, we employed the Bru-seq and BruChase-seq methodology [39]. In brief,78

Bru-seq and BruChase-seq involve the metabolic labeling of RNA using 5-bromouridine (BrU),79

which is readily taken up by the cells and incorporated into the nascent NTP pool [40]. After80

incubation with BrU over a short time period, newly synthesized and labeled RNAs are selectively81

pulled out of isolated total RNA using an anti-BrdU antibody and sequenced. Labeled RNA abun-82

dance is then tracked over time by continuing to grow the cells in the absence of BrU and isolating83

BrU-labeled RNA at additional time points. To distinguish relative changes in transcription rates84

from relative changes in RNA stability between WT and PUM1/2 knockdown cells, we chose two85

time points: (1) a zero hour time point taken at the transition to unlabeled media after 30 minutes86

of incubation in BrU-containing media and (2) at six hours, a time point chosen to coincide with the87

average mRNA half-life in cultured mammalian cells [41–43]. To determine the impact of PUM1/288

on relative RNA abundances, the experiment was performed in the presence of a mix of siRNAs89

targeting both PUM1 and PUM2 mRNAs (siPUM) or in the presence of scrambled non-targeting90

control siRNAs (NTC), as previously established [32, 34](Figure 1A). Cells were treated with siR-91

NAs for 48 hours before BrU labeling, identically to the method used in Bohn et al. [34], to allow92

for PUM depletion prior to labeling. Overall, four biological replicate samples were collected for93

each time point and RNAi condition resulting in a total of 16 samples and above the minimum94

recommendations for replicates suggested by the ENCODE consortium for RNA-seq and ChIP-seq95

experiments [44, 45]. HEK293 cells were chosen for this study as they express both PUM1 and96

PUM2, have been previously used to analyze PUM activity [32, 34], support efficient BrU-labeling97

[46], and support RNA interference [47]. As we have previously demonstrated [32, 34], knockdown98

of both PUM1 and PUM2 is necessary to alleviate PUM repression of PRE-containing mRNAs. It99

is important to note that the use of two time points does not allow for determination of full decay100

rate constants for each transcript, but it does allow for measurements of relative changes in mRNA101

stability between the two conditions [48].102

Clear changes in RNA abundance can be seen between time points and conditions at the gene103

level. Consider the Cyclin G2 (CCNG2) mRNA which encodes a cyclin involved in the cell cycle,104
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contains 2 PREs in its 3′ UTR, and was among the most dramatically affected mRNAs (Figure105

1B). At the 0 hr time point, read coverage resulting from recent transcription for four distinct106

replicates in each condition can be seen (Read coverage includes immature RNAs that still contain107

introns) (Figure 1B top). At the six hour time point, only mature RNA remains, with read coverage108

primarily observed at exons and no longer prevalent in the intronic regions (Figure 1B bottom).109

Here, silencing of both PUM1 and PUM2 clearly increases RNA abundance relative to the non-110

targeting control at the 6 hr time point, but does not appear to impact transcription as seen at the111

0 hr time point.112

To quantify the effect of silencing PUM1 and PUM2 on changes in relative labeled RNA abun-113

dance between the 0 and 6 hour time points, we used DEseq2 [49] to model the count of reads114

observed from each gene using a generalized linear model that considers the effects of time, condi-115

tion, and the interaction between time and condition (see Methods for details). We interpret the116

term associated with the interaction between condition and time to be the PUM-mediated effect117

on stability—where a positive value indicates that an RNA was stabilized in the PUM knockdown118

condition and a negative value indicates that an RNA was de-stabilized in the PUM knockdown119

condition. Likewise, we interpret the condition term as the PUM-mediated effect on transcription120

rates, thus, we are able to separate the impacts of transcription from RNA stability using our exper-121

imental procedure and statistical methodology. We find that hundreds of genes show altered RNA122

stability under PUM knockdown conditions. Figure 1C displays an overview of PUM-mediated ef-123

fects on stability as a volcano plot, with 12,165 genes represented in a two-dimensional histogram.124

Using an FDR-corrected p-value threshold of 0.05 and a fold-change cutoff of log2(1.75) (see Meth-125

ods), we found 44 genes were statistically significantly de-stabilized (56 with no fold-change cutoff)126

and 200 genes were statistically significantly stabilized in the PUM knockdown condition (252 with127

no fold-change cutoff). Of these genes, 30 were also identified as having lower abundance under128

PUM knockdown in the Bohn et al. [34] RNA-seq data set (37 with no fold-change cutoff). Like-129

wise, 95 were also identified as having higher abundance under PUM knockdown in the Bohn et al.130

[34] RNA-seq data set (106 with no fold-change cutoff). As expected, in our data both PUM1131

and PUM2 were substantially destabilized in the PUM knockdown condition relative to the WT132

condition indicating that the siRNAs were successful in disrupting PUM1/2 expression and that133

our methodology is capable of detecting known changes in RNA stability. Additionally, we found134

that genes with a PRE in their 3′ UTR were, on average, more stabilized in the PUM knockdown135

condition than those without a PRE in their 3′ UTR (Figure 1C bottom). Taken together, this136

suggests that PUM1/2 are selectively modulating the RNA stability of target transcripts.137

To further examine the effects of PUM knockdown on both transcription and stability, we tested138

for statistically significant changes under a null model centered around a log2 fold change of 0 for139

both the condition term (transcription) and the interaction between condition and time (stability).140

In addition, for each term, we also tested for a statistically significant lack of change by considering141

a null model centered around the boundary of a defined region of practical equivalence spanning142

from − log2(1.75) to log2(1.75)(see Methods for details); such a test is important because failure143

to reject the null hypothesis cannot, by itself, be taken as evidence favoring the alternative. In144

total, four statistical tests were run for each gene: a test for change and a test for no change for145

both transcription and stability. For each axis, the smaller of the two FDR-corrected p-values (i.e.146

test for change vs. test for no change) was chosen as the coordinate for that term, which enabled147

classification of each gene into one of four quadrants: 1. Genes that change in both stability and148

transcription (Figure 1D, upper right quadrant), 2. genes that change only in stability (Figure 1D,149

lower right quadrant), 3. genes that change only in transcription (Figure 1D, upper left quadrant)150

and 4. genes that change in neither (Figure 1D, lower left quadrant). Thus, using this methodology,151

we identified 213 genes with a statistically significant change in stability (Figure 1D lower right152
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quadrant). We were also able to identify a set of 2,834 genes with evidence for no change in stability153

under our experimental conditions (Figure 1D lower left quadrant) and 19,744 genes we were have154

insufficient information to reliably classify. Additionally, we show only one gene, ETV1, with155

a statistically significant change in transcription, 11,527 genes with statistically significant lack156

of change in transcription and 11,263 genes we have insufficient information to reliably classify.157

Taken together and consistent with the Pumilio proteins’ role in post-transcriptional regulation,158

these results suggest that PUMs regulate gene expression at the level of RNA stability and not159

transcriptional initiation. Furthermore, this analysis allows us to divide the genes into those in160

which Pumilio knockdown has an effect on RNA stability and those in which there is evidence161

for a lack of effect on RNA stability, a stronger statement than simply failing to reject the null162

hypothesis that no change was occurring. The words EFFECT and NOEFFECT will be used to163

refer to these respective gene classes throughout the rest of the paper.164
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Figure 1 (previous page): Bru-seq and BruChase-seq allow for determination of PUM-mediated effects on RNA
stability. A) Experimental design for measuring PUM-mediated effects on RNA stability. HEK293 cells incubated
for 30 minutes in the presence of 2mM BrU prior to time 0. Cells were then washed and cultured in media containing
20 mM unlabeled uridine for six hours. At 0 and 6 hour timepoints, a portion of cells were harvested and BrU
labeled RNA was isolated for sequencing. Changes in relative RNA abundance between the 0 and 6 hour time points
were compared between cells grown in the presence of silencing RNA targeting PUM1 and PUM2 (siPUM) and a
non-targeting control siRNA (NTC). Cells were treated with siRNAs for 48 hours prior to BrU labeling to allow for
PUM depletion. B) Read coverage traces for CCNG2 as measured in reads per million (RPM). Traces are shown for
siPUM (orange) and NTC (blue) conditions at both 0H (top) and 6H (inverted bottom) time points. Four replicates
for each combination of siRNA and time point are overlaid. Known isoforms for CCNG2 are represented above. C)
(Top) Volcano hexbin plot displaying global changes in RNA stability under PUM knockdown conditions. Stability in
PUM knockdown is represented by a normalized interaction term between time and condition, where positive values
indicate stabilization upon PUM knockdown and negative values indicate destabilization upon PUM knockdown (see
Methods for details). No change in stability is represented with a dotted line at 0. Statistical significance at an FDR
corrected p-value < 0.05 is represented with a horizontal dashed line. A selection of genes known to be regulated
by PUM [34, 35] and genes newly identified in this study are labeled. For selected genes only, red triangles indicate
genes that have a PRE in any annotated 3′ UTR as determined by a match to the PUM1 motif we identified using
SEQRS (Figure 2A). Gray squares indicate genes that did not have a PRE in their 3′ UTR. Unlabeled genes are
binned into a two-dimensional histogram to avoid overplotting. (Bottom) Marginal distribution of Stability in PUM
knockdown for genes with a PRE in their 3′ UTR (red) and genes without a PRE in their 3′ UTR (gray). Median
values for each distribution are plotted as a dashed line in the appropriate color. The star indicates a statistically
significant difference in the median stability as measured by a two-sided permutation of shuffled labels (n =1000,
p < 0.001). D) Analysis of changes in transcription vs. changes in stability. Four separate statistical tests were
calculated for each gene: 1. a test for statistically significant changes in RNA stability (∆ Stability 6= 0), 2. a test for
statistically significant changes in transcription (∆ Txn 6= 0), 3. a test for no change in RNA stability (∆ Stability
= 0), and 4. a test for no change in transcription (∆ Txn = 0). Genes are plotted as an (x,y)-coordinate where each
coordinate represents the ± log10(FDR corrected p-value) of the test with greater evidence (∆ 6= 0, +log10; or ∆ = 0,
-log10) for each axis (see Methods for details). Representative genes displaying a range of stability effects are labeled.
Red squares represent genes that were destabilized in PUM knockdown, whereas red triangles represent genes that
were stabilized in PUM knockdown. All other genes were binned into a two dimensional histogram. Gray rectangles
represented a statistical significance cutoff of q-value > 0.05. (Left and Below) Marginal histograms for each axis are
plotted with matching gray rectangles to represent the same statistical significance cutoff of q-value > 0.05.

2.2. SEQRS shows conserved preference for the canonical UGUANAUA PRE by Pumilio proteins165

The sequence preferences for both the full length PUM1 and PUM2 have been previously probed166

in vivo [36–38, 50] and the sequence preferences for the RNA-binding domains of both PUM1 and167

PUM2 were probed in vitro [10, 51, 52]. Each of these approaches and methodologies agree on a168

general preference for the UGUANAUA consensus motif for both PUM1 and PUM2, with subtle169

differences in the information content for the Position Weight Matrices (PWM)s obtained from170

each technique, particularly at the 3′ end of the PWM. However, prior in vitro determination171

of human PUM sequence preferences have involved only one round of selection [51] or a selected172

subset of possible sequences [52]. Thus, to compare the binding specificity of the PUM-HD of173

the human PUM1 and human PUM2 proteins we applied in vitro selection and high-throughput174

sequencing of RNA and sequence specificity landscapes (SEQRS) to purified PUM-HDs of each175

protein [53]. Similar to systematic evolution of ligands by exponential enrichment (SELEX) [54],176

SEQRS allows for the determination of an RNA-binding protein’s sequence specificity by selecting177

for RNAs that interact with the RBP out of a pool of random 20mers generated by T7 transcription178

of a synthesized DNA library. The RNA pulled-down from a previous round is reverse-transcribed179

into DNA to be used as the input for the next round of transcription and selection, allowing for180

exponential enrichment of preferred sequences for any RBP of interest. We applied five rounds of181

SEQRS to the PUM1 and PUM2 PUM-HDs separately and quantified the abundance for each of182

the 65536 possible 8mers in the sequencing libraries for each round (including 8mers that would183
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overlap with the adjacent static adapter sequences see Methods for details).184

To obtain representative PWMs for each round of selection (Figure 2A,B (top)), we used the top185

enriched 8mer, UGUAAAUA, as a seed sequence to create a multinomial model from the abundance186

of every possible single mismatched 8mer to the seed sequence (see Methods for details). This data187

analysis approach has yielded similar results to that of expectation-maximization algorithms such as188

MEME [55] and has been used successfully with SELEX experiments using DNA-binding proteins189

[56, 57]. We also applied this same analysis pipeline to previously published SEQRS analysis of the190

D. Melanogaster Pumilio PUM-HD [53] and find that it readily captures the D. mel Pum sequence191

preference for the canonical UGUANAUA PRE (Figure 2D (top)). However, the PWMs defined192

here (Figure 2A,B,D (top panels)) are representative of only the most highly enriched sequences in193

each dataset and round.194

In order to determine how representative the UGUANAUA consensus motif is for the entire195

dataset of each protein, we grouped each 8mer based on its similarity to the UGUAAAUA seed196

sequence as measured by the number of mismatches to that seed (Hamming distance). We then197

considered the relative enrichment of a given 8mer within each round compared to its relative en-198

richment within the input pool. Thus, scores above 0 indicate higher relative abundance than the199

input pool for a given 8mer and scores below 0 indicate lower relative abundance. Here, we see that200

8mers within 1-2 mismatches of the UGUAAAUA seed sequence are highly enriched compared to201

8mers with more than 2 mismatches across each round for each protein (Figure 2A,B,D (bottom)).202

However, the high level of variation in enrichment scores with higher numbers of mismatches and203

the inclusion of some 8mers with high enrichment scores in these groups, suggests that only con-204

sidering sequences that are within 1 or 2 mismatches of the canonical PRE (here represented by205

UGUAAAUA) may not fully describe PUM binding specificity. Additionally, the PWM we ob-206

tained from our SEQRS experiment for PUM2 PUM-HD (Figure 2B-C) suggests that the PUM2207

has much weaker enrichment for the canonical PUM PRE compared to PUM1, which is inconsistent208

with PUM2 sequence preferences obtained from in vivo transcriptome-wide experiments [36, 37].209

This may indicate differences between in vitro and in vivo conditions that specifically impact PUM2210

or may indicate that PUM2 PUM-HD does not bind as efficiently to RNA as the full-length PUM2211

protein. However, comparing PWMs between these two proteins only considers the most highly212

enriched sequences in each dataset. As seen in Figure 2C, the consensus motif emerging from the213

PUM2 SEQRS data strongly resembles those for other PUMs, albeit with less apparent stringency.214

To compare the overall sequence preferences between PUM1 and PUM2 we plotted the enrich-215

ment scores for all possible 8mers in each dataset against each other (Figure 2E). We find that the216

8mer enrichment scores between these two proteins are highly correlated (Spearman’s ρ = 0.63)217

which indicates that PUM1 and PUM2 PUM-HDs have overall similar sequence preferences when218

considering all possible sequences rather than highly enriched sequences. We also see that the PUM1219

PUM-HD has an overall stronger enrichment for highly enriched sequences compared to PUM2,220

which may explain the differences in obtained PWMs for each protein. When considering only the221

8mers within one mismatch to the UGUAAAUA seed sequence used for creating the PWMs, we222

find that enrichment scores between PUM1 and PUM2 are nearly perfectly correlated (Spearman’s223

ρ = 0.91). Furthermore, mismatches in the 3′ end of the motif appear to be less detrimental to224

enrichment by PUM1 and PUM2 compared to mismatches in the 5′ end of the motif, which is225

also represented by the lower information content at the 3′ end of the PWMs. Due to the overall226

similarity in sequence preferences between these two proteins and the higher overall information227

content in the PUM1 PWM, the SEQRS round 5 PWM for PUM1 will be used to determine PREs228

throughout the text, unless otherwise indicated.229
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Figure 2: SEQRS analysis of Human PUM1 and PUM2 PUM-HDs reveals preference for the canonical PUM Recog-
nition Element. A) (Top) Position weight matrices representing 8mer sequence preferences for purified Human PUM1
PUM-HD, as determined for each SEQRS round. (Bottom) 8mer enrichment, as measured by log2(Enrichment SE-
QRS round/ Enrichment no protein) (see Methods for details) for each 8mer as binned by Hamming distance from
the canonical UGUAAAUA PUM recognition element. Enrichment scores for 8mers within 2 mismatches are filled in
red. B) Same as in A, but for Human PUM2 PUM-HD. C) Closer view of Human PUM2 PUM-HD PWMs. D) Same
as in A, but for Drosophila Pum PUM-HD. E) Correlation of 8mer enrichment between Human PUM1 and Human
PUM2 PUM-HDs. Enrichment for all possible 8mers are displayed in a two dimensional histogram. The dashed black
line represents one to one correspondence. All 8mers within one mismatch to the UGUAAAUA sequence are plotted
as red points with the color specifying the position within the motif where the mismatch occurs. The red line is a
linear fit using only the UGUAAAUA 8mer and all 8mers within one mismatch.
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2.3. Contextual features around PREs are associated with PUM-mediated RNA stability effects230

Determining what distinguishes a functional binding site from a non-functional binding site is a231

major question for any RBP. Taken as a whole, RBPs tend to bind similar low sequence complexity232

motifs in vitro [51]. Additionally, probing of RBP binding in vivo at a transcriptome-wide scale,233

has indicated that the majority of predicted binding sites are not bound for some RBPs [58].234

Global in vivo experiments with the Pumilio-family of proteins have established that mammalian235

Pumilio proteins recognize the UGUANAUA PRE in the 3′ UTR of target genes [22, 32, 36, 37].236

However, predicting the PUM-mediated effect on gene expression from sequence information and/or237

PUM-binding measurements remains an elusive goal [34].238

To determine sequence motifs de novo that have explanatory power for our RNA stability239

dataset, we used FIRE [59] to find motifs in the 3′ UTR of transcripts that share high mutual240

information with our RNA stability dataset by taking the normalized interaction term (see Methods241

for details) and discretizing it into ten bins, with an equal number of genes in each bin. Figure 3A242

shows that FIRE rediscovers the canonical UGUANAUA PRE using only the RNA stability data243

as input. Furthermore, the UGUANAUA PRE is enriched in transcripts that are highly stabilized244

under PUM knockdown conditions, suggesting that these transcripts are regulated by PUM through245

recognition of a UGUANAUA PRE in their 3′ UTR.246

To determine whether there was evidence for PUM binding at PREs associated with a change247

in RNA stability, we used publicly available in vivo binding data for human PUM2 obtained using248

photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) [37].249

The PAR-CLIP technique involves incorporation of 4sU into the total cellular RNA pool allowing250

for efficient crosslinking of proteins that bind near an incorporated 4sU. Upon creation of sequencing251

libraries from PAR-CLIP samples, a T → C mutation is induced at the crosslinking site which can252

be used as additional evidence for a protein binding. We used PAR-CLIP data from Hafner et al.253

[37] to determine the amount of binding signal at PREs associated with transcripts that have a254

statistically significant change in RNA stability under PUM knockdown (EFFECT class, Figure255

1D) and compared it to transcripts with a statistically significant lack of change in RNA stability256

(NOEFFECT class, Figure 1D). In Figure 3B, we report the average PAR-CLIP read coverage257

in a 40 bp window around PREs in the 3′ UTR of transcripts associated with the EFFECT and258

NOEFFECT classes. We use a 5% truncated mean to remove the impact of extreme outliers on259

the average coverage reported. To estimate a 95% confidence interval on the average coverage260

(shaded region), we performed bootstrapping (n = 1,000) by sampling vectors of read coverage for261

individual PREs with replacement. Here, we clearly see that PREs in transcripts with a change262

in RNA stability have higher binding signal than those with no change in RNA stability. This is263

consistent with higher overall PUM binding at PREs associated with changes in RNA stability but,264

as the PAR-CLIP signal is not normalized to RNA abundance, the possibility that these transcripts265

were simply more abundant under the PAR-CLIP conditions cannot be definitively ruled out.266

We have shown that a PRE in the 3′ UTR is associated with a change in RNA stability under267

PUM knockdown and that PREs in transcripts with a change in RNA stability have evidence for268

being bound by PUM in vivo. However, knowledge of the presence or absence of a PRE in the269

3′ UTR alone is not sufficient to predict the magnitude of PUM-mediated repression, and a wide270

variation in the effect of knocking down human PUM1 and PUM2 on steady-state RNA levels has271

been observed in previous transcriptome-wide analysis [34]. Here, we demonstrate that a similar272

level of variation can be seen in measurements of RNA stability. Figure 3C displays the overall273

distribution of RNA stability measurements for transcripts with increasing numbers of PREs in274

annotated 3′ UTRs. We find that an increase in the number of PREs is, on average, associated275

with an increase in RNA stability under PUM knockdown conditions compared to transcripts that276

do not have a PRE in their 3′ UTR. However, wide variations in RNA stability can be seen for277
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each category, consistent with previous measurements of changes in steady state RNA levels under278

PUM knockdown [34]. Thus, a simple count of PREs does not fully explain PUM-mediated action279

at a particular transcript.280

To explore the local sequence context around PREs, we trained a 3rd order Markov model on281

the full set of unique annotated human (hg19) 3′ UTRs that were greater than 3 basepairs long282

(29,380 3′ UTRs). Using this Markov model, we simulated 1,000 different sets of 29,380 3′ UTRs283

that were the same length and shared similar sequence composition to the set of true 3′ UTRs.284

We then searched for matching PREs in the simulated sets of 3′ UTRs and calculated the AU285

content in a 100 bp window around these PREs. On average, we discovered 12200 matching PREs286

(standard deviation of 112) in simulated sets of 3′ UTRs compared to the 14086 matching PREs287

in the annotated set of 3′ UTRs. We find that the true set of PREs have, on average, higher local288

AU content than PREs in simulated sets of 3′ UTRs (Figure 3D). Additionally, in the simulated 3′289

UTRs the local AU content for PREs is centered around the average AU content for all 3′ UTRs,290

as would be expected if there was no selective pressure for PREs to occur in AU rich areas of 3′291

UTRs. This analysis is consistent with Jiang et al. [60] who also observed a preference for PREs292

to occur in AU rich areas as compared to shuffled PREs with preserved overall sequence content.293

Here we further show that the local AU content surrounding a PRE is associated with a functional294

effect on PUM-mediated regulation.295

To determine the relationship between local AU content and changes in RNA stability upon296

PUM knockdown, we plotted the AU content of a 100 bp window surrounding a PRE within a gene’s297

3′ UTR against the corresponding RNA stability measurement for that gene (Figure 3E top). For298

3′ UTRs with more than one PRE, the PRE with the highest local AU content was considered. We299

find that large changes in RNA stability are associated with higher local AU content. Additionally,300

PREs in transcripts that had a statistically significant stability effect in PUM knockdown had301

higher local AU content compared to PREs in transcripts with no change in stability (p < 0.001,302

Figure 3E bottom). These data indicate that local sequence context beyond the PRE plays a role303

in PUM function.304

Previously proposed mechanisms of PUM-mediated control of RNA stability involve interaction305

with the CCR4-NOT complex and/or PABPs, both of which act at the 3′ end of mRNA transcripts306

to promote deadenylation or participate in translation initiation [32, 33]. Thus, the location of PUM307

binding sites within the 3′ UTR of target transcripts may play a role in determining PUM-mediated308

effects on stability by physically locating PUM near known co-regulators. Using the Markov models309

described above, we also determined the location of PREs within 3′ UTRs. As shown in Figure310

3H, we observe that the observed distribution of true PRE locations in length-normalized 3′ UTRs311

appear enriched towards the 3′ end of 3′ UTRs (red) as compared to PREs found within 1000312

simulated sets of 3′ UTRs (gray). Again, this suggests a selective pressure for PRE sites to exist at313

the 3′ end of 3′ UTRs as compared to the uniform distribution of PREs found in simulated 3′ UTRs314

with similar sequence properties. Like the AU content analysis, this analysis is also consistent with315

observations made by Jiang et al. [60] who saw an enrichment towards the 3′ end for PRE locations316

in the full set of human 3′ UTRs compared to a shuffled PRE motif with preserved overall sequence317

content. While these approaches are complementary, our approach allows for the exact identity of318

the PRE to remain intact thereby maintaining a PRE-centric assessment rather than one based319

solely on the general sequence content within the motif. Additionally, we observe that transcripts320

with a PRE towards the 3′ end of the 3′ UTR tend to have a larger RNA stability effect (Figure321

3G center) and PREs in transcripts that had a statistically significant change in stability in PUM322

knockdown were, on average, closer to the 3′ end of the 3′ UTR than those with no change in RNA323

stability (p < 0.001, Figure 3G bottom), suggesting a functional role for PRE location in the 3′324

UTR of target transcripts.325
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High throughput analysis of many human RBPs has indicated that some RBPs prefer to bind326

bipartite motifs, suggesting that clustering of RBP binding sites may contribute to binding speci-327

ficity and subsequent function [51]. To determine the relationship between PRE clustering and328

RNA stability in PUM knockdown, we discretized transcripts according to the maximum number329

of complete PREs that were within a sliding 100 bp window in the 3′ UTR of a transcript and330

plotted the distribution of RNA stability measurements for each cluster (Figure 3F). Similar to331

the association with the number of PREs (Figure 3C), we find that having more PREs clustered332

together is associated, on average, with a higher stabilization effect under PUM knockdown condi-333

tions. We also find that PREs tend to cluster together more than one would expect by chance by334

determining the divergence from a simple Poisson model (Figure 3I, p < 0.001 for clusters 2-5; see335

Methods for details). Taken together, this analysis suggests that clustering of PREs may facilitate336

PUM action on target transcripts.337
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Figure 3 (previous page): Features associated with a PUM Recognition Element (PRE) explain some variability in
PUM-mediated effect on decay. A) Results of motif inference using FIRE [59] on the stability in PUM knockdown
data discretized into 10 equally populated bins. Red bars within each bin represent the spread of RNA stability
values within each bin. Stability in PUM knockdown is represented by a normalized interaction term between time
and condition throughout this figure, where positive values indicate stabilization upon PUM knockdown and negative
values indicate destabilization upon PUM knockdown (see Methods for details). B) 5% truncated average of Pum2
PAR-CLIP read coverage [37] over each PRE site in the 3′ UTRs of genes with a statistically significant change
in RNA stability (blue) compared to genes in which there was a statistically significant lack of change in stability
(orange; see Methods for details on NOEFFECT test). Shaded regions represent bootstrapping (n = 1,000) within
each group. Dashed lines indicate the PRE site. C) Violin plots representing the distributions of RNA stability for
genes with 0 to 15 PRE sites within their 3′ UTR. Stars represent statistical significance as measured by a Wilcoxon
rank sum test using equality of pseudomedian with the 0 PRE case as the null hypothesis. D) Distribution of AU
content in a 100 bp window around all unique PRE sites in the 3′ UTRs of the human transcriptome. The observed
distribution (red) is compared to the distribution of AU content around PRE sites in 1,000 simulated sets of 3′ UTRs
the same size as the true set of 3′ UTRs as simulated from a third order Markov model trained on the true 3′ UTR
sequences. The dotted line represents the average overall AU content of the entire set of 3′ UTRs in the human
transcriptome. E) Relationship of AU content in a 100 bp window around a PRE to RNA stability. (left) Marginal
histogram of RNA stability for genes with 0 PREs in their 3′ UTRs. (right) 2D histogram of RNA stability and AU
content around each PRE site for all genes with at least one PRE in the 3′ UTR. Dotted line represents the average
AU content over the entire set of 3′ UTRs in the human transcriptome. (bottom) Marginal kernel density plot of AU
content around a PRE site split amongst genes with a statistically significant change in RNA stability (red) and genes
with a statistically significant lack of change in stability (blue). Dotted black line represents the average AU content
of 3’UTRs. Dashed lines represent the median AU content around a PRE for the EFFECT (red) and NOEFFECT
(blue) genes. The star represents a statistically significant difference in medians using a one-sided permutation test
(n=1,000) of shuffled class labels. F) Violin plots representing the distributions of RNA stability for genes with 0 to
6 full PRE sites clustered within a 100 bp window. Stars represent statistical significance as measured by a Wilcoxon
rank sum test using the 0 PRE case as the null distribution. G) Relationship of normalized location of PRE site
in 3′ UTR to RNA stability. Plots as in (D). H) Distribution of length normalized locations of PRE sites in the 3′

UTRs of the human transcriptome. The observed distribution (red) is compared to that of PRE sites found in 1,000
simulated sets of 3′ UTRs calculated as in (G). I) Comparison of the observed frequencies of PRE site clustering
over all possible 100 bp windows in the full set of human 3′ UTRs with at least 1 PRE in them to the probabilities
expected from a Poisson null distribution. Error bars represent 95% confidence intervals based on 1,000 bootstraps
of the observed distribution.

2.4. Pumilio proteins modulate the stability of genes involved in neural development, cell signaling,338

and gene regulation339

Mammalian Pumilio proteins have been shown to regulate a diverse set of genes, including those340

involved in signaling pathways, transcriptional regulation, and neurological functions [18, 22, 23,341

34, 35]. Consistent with prior observations, we see changes in RNA stability for genes involved342

in these functions. For example, multiple epidermal growth factor-like-domains 9 (MEGF9 ) is a343

transmembrane protein that is highly expressed in the central and peripheral nervous system and344

its expression appears to be regulated during nervous system development in mice [61]. We see345

strong stabilization of the MEGF9 transcript under PUM knockdown conditions (Figure 4A top).346

Furthermore, of the five PREs we identify in two unique 3′ UTRs for MEGF9, we see the most347

PUM2 binding signal for the 3′-most PRE (Figure 4A bottom right). Additionally, we see that the348

3′-most PRE has high local AU content compared to the overall distribution of PRE sites (Figure 4A349

bottom left). Taken together, these data implicate the PUM proteins as direct post-transcriptional350

regulators of MEGF9.351

Another transcript that is strongly stabilized under PUM knockdown conditions is glycogen352

synthase kinase-3 B (GSK3B) (Figure 4B top). GSK3B is a serine-threonine kinase that is involved353

in the regulation of diverse cellular processes and its misregulation is associated with neurological354

disease [62, 63]. We identify four PREs in GSK3B 3′ UTRs (Figure 4B below) with largely similar355
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adjacent AU content (Figure 4B bottom left). We also find that the 3′ most distal PRE has evidence356

for PUM2 binding consistent with the global trends we describe in Figure 3. Like MEGF9, this357

evidence suggests that PUM proteins are involved in destabilizing GSK3B transcripts.358

We also see examples of RNAs that are destabilized when PUM is knocked down, suggesting359

that PUM may actually act to stabilize these transcripts under conditions containing WT levels of360

PUM expression. Transcription dimerization partner 2 (TFDP2 ) encodes a protein that cooperates361

with E2F transcription factors to regulate genes important for cell cycle progression; dysregulation362

of this system can lead to cancer [64]. PUM proteins have been previously shown to regulate another363

member of the E2F family by functionally cooperating to enhance the effect of miRNA-mediated364

regulation of E2F3 expression [65]. Furthermore, regulation of TFDP2 by the liver-specific miRNA365

miR-122 has been shown to be important for preventing up-regulation of c-Myc in hepatic cells366

[66]. We observe that TFDP2 is highly destabilized under PUM knockdown conditions (Figure 4C367

top). Additionally, we find that the TFDP2 3′ UTR has a single PRE site toward the 3′ end of368

the 3′ UTR and has high adjacent AU content (Figure 4C bottom and lower left). However, there369

is limited evidence for PUM2 binding in PAR-CLIP data (Figure 4C lower right). One possible370

mechanism for PUM mediated activation of TFDP2 is by acting to block regulation by miRNAs;371

however, the nearest conserved miRNA site of a conserved miRNA family to the PRE is over 100372

bases away [67] and further evidence would be needed to establish this link.373

Another example of a highly destabilized transcript under PUM knockdown conditions is the374

embryonic lethal abnormal vision 1 (ELAVL1 ) or HuR RNA-binding protein (Figure 4D top).375

The ELAVL1 RBP stabilizes RNA transcripts by binding to AU-rich elements in the 3′ UTR of376

transcripts [68] and its dysregulation is associated with several different types of cancer [69]. We377

found one PRE in the 3′ UTR of ELAVL1 (Figure 4D bottom). This motif is found towards the378

3′ end of the 3′ UTR but has average local AU enrichment compared to other PREs found across379

all annotated 3′ UTRs (Figure 4D lower left). Additionally, there is limited evidence for binding380

by PUM2 at either of the PREs in the ELAVL1 3′ UTR (Figure 4D lower right). Taken together,381

this suggests that ELAVL1 may be indirectly regulated by PUM.382

To discover categories of genes that are globally associated with RNA stability changes in PUM383

knockdown, we applied iPAGE—a computational tool that uses mutual information to find in-384

formative Gene Ontology (GO) terms associated with discretized gene expression data [70]—to385

our stability dataset as represented by the normalized interaction term discretized into 5 equally386

populated bins. It is worth noting that this analysis will discover pathways regulated both indi-387

rectly and directly by PUM out of the full set of annotated GO terms. Figure 5A displays the388

iPAGE results with several GO terms that are either significantly overrepresented (red-filled box)389

or underrepresented (blue-filled box) across the full range of stability data. We see several enriched390

GO term categories that are consistent with previous reports of changes in steady-state RNA lev-391

els under PUM knockdown in HEK293 cells [34] including categories related to guanyl-nucleotide392

exchange factor activity (GO:0005085), WNT signaling (GO:0030177), nucleosome (GO:0000786)393

and platelet-derived growth factor receptor signaling (GO:00048008).394

For a finer grain view, we plotted the RNA stability results for each gene involved in selected395

GO terms as indicated by either blue (destabilized in PUM KD) or red (stabilized in PUM KD)396

text for that GO term in Figure 5A. In Figure 5B, we show two selected GO terms whose members397

tend to be de-stabilized upon PUM knockdown: nucleosome (GO:0000786, left) and myelin sheath398

(GO:0043209, right). For genes related to the nucleosome, we see a general destabilization under399

PUM knockdown conditions. However, when comparing genes within this GO term that have a400

PRE in their 3′ UTR to those that do not, we see that genes with a PRE in their 3′ UTR have401

a median stability upon PUM KD that is significantly higher than those without a PRE in their402

3′ UTR (p < 0.001), suggesting that the destabilization of most nucleosome genes under PUM403
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knockdown conditions may be mediated indirectly. Some of these effects could be explained by404

perturbation of the stem-loop binding protein (SLBP), as SLBP is a protein involved in the proper405

maturation of replication-dependent histone mRNAs [71], and we observe that SLBP is significantly406

stabilized under PUM knockdown conditions (Figure 1C).407

PUM knockdown also causes a general de-stabilization of genes categorized into the myelin408

sheath GO term. A role for PUM in controlling the stability, either indirectly or directly, of genes409

involved in the myelin sheath is consistent with the previously identified role of mammalian PUMs410

in neurogenesis and neurodegenerative diseases [19, 22, 23, 31]. However, we see no evidence for411

a difference in stability between genes that have a PRE in their 3′ UTR compared to genes that412

do not have a PRE in their 3′ UTR. Furthermore, the genes that have a statistically significant413

de-stabilization under PUM knockdown have no PRE in their 3′ UTR, whereas the genes with a414

significant stabilization do, suggesting a complex role of PUM in modulating the stability of genes415

in this GO term, possibly arising mainly through indirect effects.416

In Figure 5C, we report specific GO terms that were enriched in genes that were stabilized417

under PUM knockdown and thus likely contain many classic, PUM-repressed targets. Consistent418

with this idea, we find that each of these GO terms represent classes of genes that have previously419

been associated with PUM-mediated regulation. For instance, the guanyl-nucleotide exchange420

factor activity GO term (GO:0005085; Figure 5C, far-left) includes guanine nucleotide exchange421

factors (GEFs) which activate Rho-family GTPases to regulate a diverse suite of cellular functions,422

including cell-cycle progression, the actin cytoskeleton, and transcription [72]. Additionally, genes423

involved in peptidyl-serine phosphorylation (GO:0018105; Figure 5C, mid-left), represent a broad424

class of kinases, including those involved in neurological disease and inflammation [63, 73]. Finally425

genes involved in transcriptional repressor activity (GO:0001078, Figure 5C, mid-right), include426

proteins involved in regulating hematopoiesis and controlling neurological development [74–76].427

Supporting the idea that PUMs are directly repressing subsets of genes within these GO terms428

we find that, for each GO term above, genes with a PRE in their 3′ UTR are significantly more429

stabilized under PUM knockdown than those with no PRE.430

Of particular interest is the mild enrichment of genes that were stabilized under PUM knock-431

down for the CCR4-NOT complex GO term (GO:0030014; Figure 5C, far-right). Almost every432

gene in this GO term was stabilized under PUM knockdown to some extent. Although the overall433

effect of a PRE for genes in this category did not meet our threshold for statistical significance,434

several of the genes have a PRE in their 3′ UTR including both genes with a statistically significant435

change in stability. Human Pumilio proteins have been shown to interact with the CCR4-NOT436

complex and recruit the complex to target mRNAs for de-adenylation [32]. These data suggest437

that PUM could also be acting to directly inhibit CCR4-NOT expression and thus globally lower438

deadenylation rates, perhaps providing a feedback loop that further regulates PUM activity.439

Overall, we observe that genes associated with GO terms that are stabilized under PUM knock-440

down have a significant association with PREs suggesting that these GO terms contain mainly genes441

that are direct targets of PUM. In contrast, we find that genes associated with GO terms that are442

destabilized under PUM knockdown do not have a significant association with PREs, suggesting443

that these GO terms contain mainly genes that are indirect targets.444

2.5. Conditional random forest models allow for prediction of PUM-mediated effects from sequence-445

specific features446

A long standing goal in the study of RBPs is to predict that RBPs effect on a given transcript447

from known features about possible targets. Previous models of PUM-mediated regulation have448

reported modest performance based on the number of PREs in various locations across the tran-449

script including the 5′ UTR, CDS, and 3′ UTR [34]. Here, we use a different approach, which450
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Figure 4: PUM-mediated effects on RNA stability under PUM knockdown include stabilization and destabilization.
A) (top) Read coverage traces for MEGF9 and surrounding region (chr9:123348195-123491765, hg19) as measured in
reads per million (RPM). Traces are shown for siPUM (orange) and NTC (blue) conditions at both 0H (upper track)
and 6H (inverted lower track) time points. Four replicates for each combination of siRNA and time point are overlaid.
Known isoforms for MEGF9 are represented above. The black arrow indicates the direction of the 5′ and 3′ ends of the
transcribed RNA molecule from the gene shown. (Below) Diagram of unique MEGF9 3′ UTRs. Sites matching the
PUM1 SEQRS motif are represented as vertical lines and labeled alphabetically from 3′ to 5′ for each UTR. (Below
left) AU content of a 100 bp window around each PRE labeled above in the overall distribution of surrounding AU
content for all PUM1 SEQRS motif matches in the entire set of 3′ UTRs. (Below right) PAR-CLIP read coverage
[37] of 40 bp around each indicated PRE. Number of reads with a T→C mutation are shown in red, whereas the
number reads with no T→C mutation are shown in gray. B) As in A), but for GSK3B and surrounding region
(chr3:119509500-119848000). C) As in A), but for TFDP2 and surrounding region (chr3:141630000-141900000).
Annotations for the 3′ end of the GK5 gene are included due to their proximity to the TFDP2 5′ end. D) As in A),
but for ELAVL1 and surrounding region (chr19:8015000-8080000).
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Figure 5: Gene ontology terms associated with PUM-mediated changes in RNA stability. A) Results of iPAGE
analysis to find GO terms sharing mutual information with RNA stability discretized into 5 equally populated bins.
Red bins indicate over representation of genes associated with the corresponding GO term. Blue bins indicate under
representation of genes associated with the corresponding GO term. A black box indicates a statistically significant
over or under representation with a p-value < 0.05 using a hypergeometric test [70]. Throughout this figure stability
in PUM knockdown is represented by a normalized interaction term between time and condition, where positive values
indicate stabilization upon PUM knockdown and negative values indicate destabilization upon PUM knockdown (see
Methods for details). B) Selected GO terms whose members are over represented in the RNAs that are destabilized
under PUM knockdown, as labeled in blue in panel A. For each GO term, a volcano plot is shown for all genes
within the GO term. Volcano plots are shown as two dimensional histograms for genes below a statistical significance
threshold (q-value < 0.05) and as individual points for genes above the statistical significance threshold. Individual
points are blue if a PRE can be found within any annotated 3′ UTR for that gene and red otherwise. The dashed line
represents the statistical significance threshold and the dotted line represents no change in RNA stability under PUM
knockdown. Below each volcano plot is a marginal density plot for the RNA stability split into two categories within
the specified GO term: Genes with a PRE in any annotated 3′ UTR (blue) and genes with no PRE in any annotated
3′ UTR (red). Medians for each distribution are shown as dashed lines in the appropriate color. The black dotted
line represents no change in RNA stability, as in the volcano plot above. A star represents a statistically significant
(p < 0.05) difference in the medians as tested by a two-sided permutation test of shuffled group labels (n = 1000).
C) As in (B), but for selected GO terms whose members are over represented in the RNAs that are stabilized under
PUM knockdown, as labeled in red in panel A.
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allows us to include a larger feature set of possible predictors for PUM-mediated regulation. Using451

conditional random forest models [77], we divided genes into EFFECT and NOEFFECT classes,452

as shown in Figure 1D. We used four different definitions for a PRE, (Figure 6A) including the453

SEQRS motifs we defined for PUM1 and PUM2 in Figure 2A-B, the PUM2 motif determined from454

Hafner et al. [37], and a regular expression (regex) representing UGUANAUW as defined from the455

PUM consensus sequence which has been used extensively to define PREs in previous publications456

[7, 34, 60]. We focused our analysis on PREs found in the 3′ UTRs of target genes. For each457

definition of a PRE, we calculated several features based on our analysis in Figure 3, including AU458

content around a PRE, clustering of PREs, total count of PREs, a score for PRE match to the459

specific PRE definition, relative location of the PRE in the 3′ UTR, number of miRNA sites near a460

PRE, and predicted secondary structure around a PRE. In addition to these features, we included461

motif matches for additional human RBPs, in vivo PUM binding data, predictions of secondary462

structure, and the fraction optimal codons for the CDS of target genes (see Methods for details).463

As our data is highly unbalanced (199 EFFECT genes and 2535 NOEFFECT genes, after only464

including genes that are present in all features) we trained 10 different machine learning models465

where the NOEFFECT class was randomly downsampled to match the number of EFFECT class466

genes in each model. Within each downsampled dataset, 5-fold cross validation was performed to467

assess performance.468

To determine which features best help predict EFFECT genes from NOEFFECT genes, we used469

an AUC-based permutation variable importance measure [78], which indicates the average change470

in the area under the curve (AUC) of a receiver operator characteristic (ROC) plot across all trees471

with observations from both classes in the forest when the predictor of interest is permuted. By472

permuting the feature of interest and measuring the change in AUC of the ROC curve, one can473

measure the importance of that variable in predictive performance. Typically values of the AUC474

of a ROC curve span from 0.5 to 1.0 where 1.0 indicates perfect classification performance and 0.5475

indicates random guessing of class distinctions. Since the AUC-based variable importance measure476

is calculated using the change in AUC when the predictor is permuted, the expected values are much477

smaller and fall between 0.0 and 0.06 in simulated cases with 65 predictors and variable numbers of478

observations from n=100 to n=1,000 [78]. Higher values indicate a larger drop in performance when479

that variable is permuted; thus, the variables can be ranked based on their unique contribution480

to the model, with higher values indicating a more important individual contribution. Figure 6B481

displays the top 20 variables ranked according to their average AUC-based variable performance482

across all 50 models (10 sets of downsampled models with 5-fold cross-validation each). Count483

based metrics enumerating the total number of PREs within the 3′ UTR appear to be the most484

important variable for predicting a PUM-mediated effect in the Bru-seq and BruChase-seq data. In485

addition, local AU content and PRE clustering appear to be substantial contributors to the models.486

To a lesser extent, the number of miRNA sites around a PRE, the location of the PRE in the 3′487

UTR, and the “Bound” status of the 3′ UTR also appear to contribute meaningfully to our models.488

It is possible that each of these variables contain largely the same information (i.e., whether or not489

the 3′ UTR has a PRE or not in it). Thus, in order to rule out the possibility that each feature was490

simply differentiating between genes with a PRE in their 3′ UTR from genes without a PRE, we491

trained separate models for each motif definition where we only considered genes that have at least492

one PRE present in their 3′ UTR. Each of these models also displayed substantial contributions493

for AU content, clustering, and total count in predicting PUM-mediated regulation, as measured494

by Bru-seq and BruChase-seq (Figure S2A-D left panel) suggesting that each of these features are495

contributing meaningful information to the model.496

The high similarity in appearance between each of the definitions of a PRE we include here led497

us to explore how much redundant information is contained between each of the top 20 highest498
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contributing features. To measure redundancy, we use an information theoretic definition based on499

discretization of each feature (see Methods for details). In Figure 6C, we display the redundancy500

between the top 20 features as a hierarchically clustered heatmap, where a value of 1.0 indicates501

that the features contain exactly the same information and a value of 0.0 indicates that the fea-502

tures share no information. Here, we can see that features that are defined around the same motif503

definition or feature-type tend to share information (as expected). However, despite their similar-504

ity in appearance, there are some differences in information content between the different motif505

definitions and different feature types, indicating that there is knowledge to be gained outside of a506

simple PRE count.507

To assess the performance of our conditional random forest models we considered several typical508

performance measures including summary metrics (Accuracy, F1 measure, Matthews correlation509

coefficient [MCC], Area Under the Curve of a Precision-Recall Curve [AUC PRC], and AUC ROC),510

and metrics more focused on performance for positive or negative cases (Negative Predictive Value511

[NPV], Precision, Recall, Specificity). We considered each of these metrics for all 50 models (10512

downsampled datasets with 5-fold cross-validation each) at a classification probability cutoff of 0.5.513

The full range of values obtained are displayed in Figure 6D. It is evident that the models are514

robust to both downsampling and cross validation and the performance hovers around 0.75 for515

each metric (and 0.5 for MCC), indicating balanced performance in predicting both positive and516

negative classes. These results are robust even in the case where we only use one PRE definition517

and only consider genes that contain a PRE in their 3′ UTR (Figure S2A-D).518

In order to determine the predictive efficacy of our models we tested their performance against519

the Bohn et al. [34] RNA-seq dataset which was not used to the train the models (Figure 6E). Here,520

the performance on the trained Bru-seq and BruChase-seq data is reported as the five-fold cross-521

validation performance for each of the 10 downsampled models. To observe the overall performance522

of the models, we display precision-recall curves on both the Bru-seq and BruChase-seq data on523

which the model was trained and the RNA-seq data for each of the 10 different models (Figure 6F).524

The baseline is defined separately for each dataset as the overall class balance between the positive525

and negative class. A perfect model tends toward the upper right of the graph, and a poor model526

follows the dotted baseline for that dataset. Despite the differences in technique and biological527

implications between RNA-seq and Bru-seq and BruChase-seq in determining PUM-mediated gene528

regulation, we find that the models trained on Bru-seq and BruChase-seq are able to perform529

well in predicting PUM-mediated regulation in RNA-seq data. We see similar performance when530

considering a single definition for a PRE and only considering genes that have a least one PRE in531

their 3′ UTR (Figure S2A-D). Although the features we have included here are not sufficient to fully532

describe PUM-mediated gene regulation in human cells, we have demonstrated a clear functional533

association and predictive utility for PUM motifs (i.e. match scores and count of PREs) as well534

as contextual features around PREs including the location, neighboring AU content, clustering of535

PREs, and overlap with predicted miRNA sites.536
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Figure 6 (previous page): Predicting PUM-mediated effect on decay using both sequence-based and experimental
features. A) Motifs used to calculate features for machine learning. Shapes indicate the type of feature calculated,
whereas colors indicate the motif used to calculate those features. Total count is a simple count of motifs; Match
score refers to a numerical value indicating how well a sequence matches a motif; clustering indicates motif proximity
to additional instances of the same motif; location indicates features associated with a single motif’s location on the
3′ UTR. Shapes filled in with the appropriate color are used to label features throughout the rest of the figure. B)
Variable importance plot displaying the top twenty most important features, as determined by training a conditional
random forest classifier on PUM decay data (see Methods for details including information on feature names). Violin
plots represent density from ten separate downsamplings of the majority class, each with five fold cross-validation. An
AUC based variable importance measure is used as described in Janitza et al. [78]. C) Calculation of the redundancy
in information between the top twenty most important variables, as determined in A. Redundancy is calculated in
the information-theoretic sense (see Methods for details) where 1 is completely redundant information and 0 is no
redundancy in information between the two variables. D) Cross-validation of conditional random forest classifier
performance. Each boxplot represents a separate downsample of the majority, no PUM-mediated effect class. Values
for each boxplot represent the performance metric as calculated for each of five folds using a classification cutoff of
0.5. E) Performance of conditional random forest models on the steady state RNA data-set from [34]. Blue boxplots
represent values from seperate downsamplings of the majority, no PUM-mediated effect class used to train the model
on the Bru-seq and BruChase-seq data set. Red boxplots indicate values from testing each model on the Bohn et al.
[34] steady-state RNA-seq data set. Metrics were calculated using a classification cutoff of 0.5. F) Precision Recall
curves using the models in E. Each line represents one of ten conditional random forest models trained on separate
down sampled sets of the entire Bru-seq and BruChase-seq data set and tested on the steady state RNA data set.

3. Discussion537

Through the combination of our high-throughput probing of RNA decay and the mining of538

sequence information in the 3′ UTRs of human transcripts, we were able to establish several general539

rules of PUM-mediated gene regulation in human cells.540

3.1. Human PUM proteins control gene expression by modulating RNA stability541

Previous studies have established that both PUM1 and PUM2 control the stability of individual542

transcripts through recognition of a UGUANAUA PRE [32]. Transcriptome-wide measurements in543

PUM1 and PUM2 knockdown conditions have shown that hundreds of RNAs change in abundance,544

as measured using RNA-seq [34]. However, measurements of RNA abundance using RNA-seq only545

allow for determination of changes in steady-state RNA abundances and do not allow one to dif-546

ferentiate effects from changes in RNA stability versus changes in transcription rates. Through the547

use of metabolic labeling, we are able to differentiate the effects of knocking down both PUM1 and548

PUM2 on transcription from the effects on RNA stability [39]. Our results indicate that perturbing549

the expression of human PUM1 and PUM2 has a widespread effect on the mRNA stability of many550

transcripts in HEK293 cells, but does not appear to perturb transcription rates in any meaningful551

way, as measured by our system. Rather than determine full decay rate constants for each tran-552

script, which would have required the use of additional time points throughout the chase period553

of our experiment, we chose to determine relative changes in RNA stability using just two time554

points. The measurements obtained from these experiments cannot be interpreted on an absolute555

scale, but the rank order of stability measurements within the experiment is preserved, allowing556

us to determine the relative effects of PUM knockdown between any two genes [48]. Consistent557

with the changes in steady-state RNA levels determined under PUM knockdown conditions, we see558

transcripts that are both destabilized and stabilized. As expected, the number of genes that are559

stabilized under PUM knockdown is much higher than the number of genes that were destabilized,560

which is consistent with PUM’s role in reducing the expression levels of target genes likely through561

the recruitment of the CCR4-NOT complex and subsequent destabilization of the transcript [32].562

20

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2020. ; https://doi.org/10.1101/2020.04.01.019836doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.01.019836
http://creativecommons.org/licenses/by/4.0/


3.2. General rules for predicting PUM-mediated activation remain elusive563

In contrast with the clear and robust effects of PUM on PUM-repressed transcripts, the mech-564

anism for the rarer case of PUM-mediated stabilization remains unclear. Measurements using565

luminescent reporter assays have shown activation of a subset of predicted PUM-activated tran-566

scripts that is dependent on the presence of a PRE in the 3′ UTR of the reporter [34]. Furthermore,567

direct binding of PUM1 or PUM2 to PREs present in the FOXP1 3′ UTR has been reported to568

promote expression of the FOXP1 protein, an important regulator of the cell cycle in hematopoi-569

etic stem cells [29]. Conversely, when considering PAR-CLIP measurements of PUM2 occupancy at570

PREs for only the transcripts that were destabilized under PUM knockdown, we find inconclusive571

evidence for binding in targeted examples (Figure 4C,D) and an insufficient number of examples572

to draw firm conclusions when considering the group as a whole separately from the stabilized573

transcripts (data not shown). Furthermore, attempts to classify transcripts that were stabilized574

in PUM knockdown from those that were destabilized using random forest models with identical575

feature sets to those used in Figure 6 showed poor performance, possibly due to the small num-576

ber of examples for transcripts that were destabilized under PUM knockdown. There is also the577

possibility that the destabilization of the transcripts under PUM knockdown are indirect effects578

mediated through another factor that PUM is either directly regulating or PUM is competing with579

for binding. It is likely that the PUM-mediated activation of genes found through high-throughput580

studies represent a combination of direct and indirect targets. However, despite the clear evidence581

for direct PUM-mediated activation of some targets, general rules for predicting PUM-mediated582

activation remain elusive and mechanistic insights into PUM-mediated activation of key targets583

will require further study.584

3.3. PUM1 and PUM2 have shared sequence preferences585

Using SEQRS [53] on purified PUM-HDs for both PUM1 and PUM2, we find a strong preference586

for the UGUANAUA motif for PUM1 and, somewhat surprisingly, a much weaker preference for587

this motif for PUM2. However, when considering the enrichment of all possible 8mers, we see that588

the preferences for each PUM-HD are highly correlated with a larger magnitude in enrichment589

for PUM1 PUM-HD compared to PUM2 PUM-HD. Our approach uses a random library of RNA590

sequences to determine RNA binding preferences and our analysis of PUM1 qualitatively agrees591

with previous in vitro approaches with randomized libraries [51]. However, using a curated library592

of sequences based on mutations from the consensus UGUANAUA motif, Jarmoskaite et al. [52]593

created a thermodynamic model for PUM2 binding that considers the effects of non-consecutive594

bases in target recognition, as opposed to our simpler model that only considers the frequency of595

occurrence of consecutive bases in a fully randomized library. Using this model, they show that596

PUM-HDs from both PUM1 and PUM2 share nearly identical sequence preferences, which is in597

agreement with our strong correlation in enrichment between the two proteins.598

When we considered the local sequence content and location of PREs, we found that PREs599

tend to be located towards the 3′ end of the 3′ UTR and have high local AU content. We are600

not the first to observe these properties, as Jiang et al. [60] also arrived to this conclusion by601

comparing the locations of shuffled PREs. However, we instead considered the locations of PREs602

in simulated sets of 3′ UTRs that share similar trinucleotide content to that of the true set of 3′603

UTRs and this strengthens the claim that PREs are enriched in these areas more than one would604

expect by chance. Furthermore, we are able to connect these observations directly to functional605

outputs, showing that PREs in transcripts that had a significant change in RNA stability under606

PUM knockdown are closer to the 3′ end of the 3′ UTR and have higher flanking AU content,607

suggesting a functional role for the location of PREs within the 3′ UTR itself. The non-random608
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propensity of PREs to occur towards the 3′ end of the 3′ UTR is consistent with a model where609

PUMs recruit the CCR4-NOT complex for de-adenylation of target sequences.610

3.4. Human Pumilio proteins regulate genes involved in signaling pathways611

When looking at the classes of genes that are stabilized under PUM knockdown, we find that612

many GO terms with evidence for direct repression by PUMs revolve around regulating signaling613

pathways mediated by proteins including kinases (GO:0018105), GEFs (GO:0005085), and receptor614

signaling (GO:0030177, GO:0048008). The role of mammalian Pumilio proteins in modulating615

signaling through controlling mRNA levels has been well established. In human testes, PUM2616

is thought to interact with DAZL proteins to regulate germ-line development and many GTP-617

binding, receptor-associated, and GEF encoding-mRNAs are found among a list of targets that618

co-immunoprecipitate with both proteins [17]. Similarly, PUM1 has been shown to be important in619

mouse testis development through downregulation of many proteins involved in MAPK signaling620

and ultimate activation of p53 [18]. In fact, it has been argued that an ancestral function of the621

PUF family of proteins is to regulate the maintenance of stem cells and cells that behave in a stem622

cell-like manner through the down-regulation of kinases involved in critical signaling pathways [1].623

Many studies looking at mRNAs associated with PUM1 or PUM2 binding in mammalian cells624

tend to find similar sets of GO terms overlapping with PUM bound targets. Early RIP-Chip625

experiments with human PUM1 and PUM2 found that genes bound by both proteins belonged to626

GO terms associated with the Ras pathway, MAPK kinase cascade, PDGF signaling pathway, WNT627

signaling pathway, small GTPase-mediated signal transduction, and transcription factor activity,628

among others [35, 36]. More recent iCLIP experiments in mouse brains have found that mouse629

PUM1 and PUM2 bind transcripts for genes associated with WNT signaling, regulation of MAP630

kinase activity, small GTPase-mediated signal transduction, and several categories related to neural631

development [22]. Similarly, changes in steady-state RNA abundance under both human PUM1632

and human PUM2 knockdown identified several similar classes of genes including WNT signaling,633

GEF activity, NOTCH signaling, and PDGF signaling [34]. Each of the categories noted above is634

consistent with identified biological roles for mammalian PUMs. For example, mice lacking PUM1635

and PUM2 have impaired learning and memory, as well as decreased neural stem cell proliferation636

and survival [22]. Further, human PUM1 haploinsufficiency is associated with developmental delay637

and ataxia [31]. Likewise, PUM2-deficient mice are more prone to chemically-induced seizures and638

have impaired nesting abilities [20], and mouse PUM2 regulates neuronal specification in cortical639

neurogenesis [23]. Our work shows that genes in these GO categories are modulated at the level640

of mRNA stability, likely through direct interaction of the human PUM proteins by recognition of641

PREs in the 3′ UTR of transcripts.642

In many ways, post-transcriptional regulation of proteins involved in signaling cascades is an643

ideal way to rapidly modulate those pathways. In contrast to the delay in time between the644

control of mRNA synthesis and the resulting protein production involved in regulating a gene at645

the transcriptional level, post-transcriptional regulation allows for a rapid dampening of expression646

levels directly where protein synthesis is occurring. Furthermore, gene regulation in the cytosol647

allows for the possibility of localized control of expression [79]. In fact, temporal and localized648

control of gene expression—important for proper development of the fly embryo—was exactly how649

the PUF family of proteins were initially discovered [13]. Given the emerging role for human650

PUM proteins in neuronal development and function, and the need for localized control of gene651

expression in neuronal tissue [80] it is conceivable that PUM proteins could be heavily involved in652

RNA polarity within the neuron as has been observed in C. elegans olfactory neurons [81].653
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3.5. Prediction of PUM-mediated regulation defines a set of general principles for an ideal PUM654

target site655

Many attempts have been made to predict gene regulation by Pumilio proteins given sequence656

information about the possible targets. Previously, a biologically inspired model based strictly on657

the count of PREs within the 5′ UTR, CDS, and 3′ UTR was fit to steady state RNA levels [34].658

In this model, the effects of having multiple PREs on a single transcript were found to be less659

than linear on the target response to PUM knockdown, which was interpreted to indicate that660

multiple PRE sites function to increase the odds of having a PUM bound and that a single PRE661

likely performs most of the functions needed for PUM-mediated regulation [34]. In this study we662

expanded the feature set of possible predictors for PUM-mediated activity and determine a set of663

rules that define a functional PRE. Consistent with the Bohn et al. [34], we find that a simple count664

of PREs in the 3′ UTR acts as the best predictor for PUM activity. However, surprisingly we find665

that the simple UGUA.AU[AU] regular expression outperforms more sophisticated PWM-based666

definitions from either in vivo and in vitro high throughput data. This may indicate that, although667

PUMs can bind PREs with mismatches from this consensus motif, the UGUANAUA may represent668

the “ideal” PRE for functional regulation. In fact, structural studies of human PUM1 and PUM2669

have identified three different modes of binding between the nucleotide bases of the fifth base in the670

consensus motif and the amino acids of PUM repeats 4 and 5. Lu and Hall [82] show that changes671

between these modes of binding do not alter PUM binding affinity, but could conceivably present672

different surfaces for effector proteins. Although our regular expression allows for any base at the673

fifth position, PUM repeats are modular [7] and it is conceivable that a similar mechanism could674

apply to other bases in the motif. Additionally this suggests that PUM binding to the UGUANAUA675

consensus motif could represent the ideal structure for PUMs interaction with effector molecules.676

We also find sequence features surrounding a PRE to be important in predicting PUM activity677

on a target. High AU content and position within the 3′ UTR both appear to be important for678

predicting mammalian PUM regulation. Consistent with prior reports of cooperativity between679

PUM and miRNAs [36, 50, 60, 65], we find that a count of predicted miRNA sites near PREs680

helps predict PUM effect, with a higher number of miRNA sites near a PRE indicating a larger681

stabilization under PUM knockdown (Figure S1A). It is possible that PUM could act to block or682

enhance miRNA function through direct interactions with the miRNA machinery or through local683

rearrangements of RNA secondary structure.684

Secondary structure has been predicted to have an effect on many RBPs [51] and PUM has been685

shown to change secondary structure upon binding to facilitate miRNA interaction [65]. However,686

we found that in silico predictions of RNA secondary structure around PREs were not predictive687

of PUM function (Figure S1C). Targeted regression models considering PRE count and structure688

performed worse when structural information was added (data not shown). Recent studies have689

shown that structural probing experiments used in tandem with in silico folding algorithms vastly690

improve biological predictions based on structural information [83]. Similar methods may be needed691

to determine the role of secondary structure in PUM-mediated regulation. Alternatively, PUM692

proteins may be able to overcome RNA secondary structure in order to bind PREs, in which case,693

secondary structure would have no bearing on PUM binding. Similarly, RNA modifications may694

limit the ability for PUM to recognize PREs. Recent efforts have identified m6A sites across the695

human transcriptome at single nucleotide resolution [84]; however, we find limited to no overlap696

between m6A sites and PREs (data not shown).697

There has also been a recent interest in the role of codon optimality in mRNA decay in human698

cells [85, 86]. Using, as a measure of codon optimality, the fraction of optimal codons—where699

a codon is designated as optimal if its Codon Stability Coefficient is positive [87]—we find that700

PUM targets undergoing PUM-mediated decay in our data set have a lower fraction of optimal701
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codons on average than those with no PUM-mediated effect (Figure S1B). However, the fraction of702

optimal codons did not rank in the top twenty most important features for differentiating between703

transcripts subject to PUM-mediated decay from those that are not affected in our machine learning704

models (Figure 6). Recent studies have implicated codon optimality as an important determinant705

of mRNA stability in eukaryotes [85–88] and it is conceivable that PUM proteins could be directly706

mediating some of these effects. However, it is also possible that RNAs with a lower fraction of707

optimal codons represent more ideal targets for PUM or that PUM could be interacting with the708

factors that mediate decay for RNAs with less optimal codons. Further studies will be needed to709

establish the relationship between PUM and codon optimality.710

By combining high-throughput functional data with statistical modeling, we have identified711

several contextual features around PREs that have improved our understanding of PUM-mediated712

gene regulation and increased our ability to predict PUM targets. However, there is still substan-713

tial room for improvement. Recent successes in Pumilio target prediction in Drosophila have come714

from characterizing binding partners of DmPum: Nos and Brat [89]. Nos binds together with715

DmPum to modulate the 5′ sequence specificity of the Pum-Nos complex, thus introducing fine-716

tune control over Pum target recognition [11]. A recent study identified many new and previously717

known interacting partners for the human PUM1 and PUM2 proteins including DAZL, PABP,718

FMRP, miRISC, and members of the CCR4-NOT complex [90]. Like the Nos/DmPum example,719

these partners likely add an additional layer of information in the control of PUM-mediated gene720

regulation. Furthermore, the probing of RNA secondary structure in vivo may allow for better in-721

corporation of secondary structural information into models of PUM-mediated regulation. Finally,722

we were unable to find determinants of PUM-mediated activation, an area that is rich for future723

targeted experiments.724

4. Materials and Methods725

4.1. Experimental methodology726

4.1.1. SEQRS protein purification727

Methods are reproduced here from Weidmann et al. [11]. Recombinant Halo-tag PUM1 RBD (aa728

828-1176) and Halo-tag PUM2 RBD (aa 705-1050) were expressed from plasmid pFN18A (Promega)729

in KRX E. coli cells (Promega) in 2xYT media with 25 µg/mL kanamycin and 2mM MgSO4 at 37◦C730

to OD600 of 0.7–0.9, at which point protein expression was induced with 0.1% (w/v) rhamnose for731

3hr. The PUM RBD expression constructs were originally described in Van Etten et al. [32]. Cell732

pellets were washed with 50mM Tris-HCl, pH 8.0, 10% (w/v) sucrose and pelleted again. Pellets733

were suspended in 25mL of 50mM Tris-HCl pH 8.0, 0.5mM EDTA, 2mM MgCl2, 150mM NaCl,734

1mM DTT, 0.05% (v/v) Igepal CA-630, 1mM PMSF, 10 µg/ml aprotinin, 10 µg/ml pepstatin,735

and 10 µg/ml leupeptin. To lyse cells, lysozyme was added to a final concentration of 0.5 mg/mL736

and cells were incubated at 4◦C for 30min with gentle rocking. MgCl2 was increased to 7mM and737

DNase I (Roche) was added to 10 µg/mL, followed by incubation for 20 min. Lysates were cleared738

at 50,000×g for 30min at 4◦C. Halo-tag containing proteins were purified using Magnetic HaloLink739

Resin (Promega) at 4◦C. Beads were washed 3 times with 50mM Tris-HCl pH 8.0, 0.5mM EDTA,740

2mM MgCl2, 1M NaCl, 1mM DTT, 0.5% [v/v] Igepal CA-630) and 3 times with Elution Buffer741

(50mM Tris-HCl, pH 7.6, 150mM NaCl, 1mM DTT, 20% [v/v] glycerol).742

To confirm protein expression, beads were resuspended in Elution Buffer with 30 U of AcTEV743

protease (Invitrogen), cleavage proceeded for 24hr at 4◦C, and beads were removed by centrifugation744

through a micro-spin column (Bio-Rad). Concentration of eluted protein was measured by Bradford745

assay, followed by coomassie stained SDS-PAGE analysis.746
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SEQRS was conducted on PUM1 PUM-HD and PUM2 PUM-HD as described in Campbell747

et al. [9] with minor modifications including the use of Magnetic Halolink beads (Promega). The748

PUM test proteins remained covalently bound via N-terminal Halotag to the beads.749

The initial RNA library was transcribed from 1µg of input dsDNA using the AmpliScribe T7-750

Flash Transcription Kit (Epicentre). 200 ng of DNase treated RNA library was added to 100 nM751

of Halo-tagged proteins immobilized onto magnetic resin (Promega). The volume of each binding752

reaction was 100µl in SEQRS buffer containing 200 ng yeast tRNA competitor and 0.1 units of753

RNase inhibitor (Promega). The samples were incubated for 30min at 22◦C prior to magnetic754

capture of the protein-RNA complex. The binding reaction was aspirated and the beads were755

washed four times with 200µl of ice cold SEQRS buffer. After the final wash step, resin was756

suspended in elution buffer (1mM Tris pH 8.0) containing 10 pmol of the reverse transcription757

primer. Samples were heated to 65◦C for 10min and then cooled on ice. A 5µl aliquot of the758

sample was added to a 10µl ImProm-II reverse transcription reaction (Promega). The ssDNA759

product was used as a template for 25 cycles of PCR using a 50µl GoTaq reaction (Promega).760

4.1.2. Bru-seq and BruChase-seq experimental procedure761

Bru-seq and BruChase-seq were conducted as described in Paulsen et al. [39] in HEK293 cells762

grown in the presence of siPUM1/2 or siNTC. RNAi conditions and siRNA sequences were previ-763

ously described by Bohn et al. [34] and include treatment with siRNAs for 48hrs to allow for PUM764

depletion prior for BrU labeling. Four replicates were gathered for each time point and siRNA con-765

dition, resulting in 16 total samples. Resulting cDNA libraries were sequenced using an Illumina766

HiSeq 2000 via the University of Michigan Sequencing core.767

4.2. Bru-seq and BruChase-seq Computational analysis768

4.2.1. Modeling PUM-mediated RNA decay769

Sequencing reads were aligned to the human genome (hg19) and processed according to Paulsen770

et al. [39] up to obtaining read counts for exons and introns for each gene and sample. Our771

experimental design resulted in four different replicates of siNTC (WT) and siPUM1/2 (PUMKD)772

conditions with two different time points each: t0hr and t6hr. For the t0hr time points, read counts773

from both exons and introns were pooled for each gene. For the t6hr time points, only read counts774

from exons were used. Read abundance was modeled using DESeq2 [49]. As described in Love775

et al. [49], DESeq2 models read count abundance K for gene i in sample j using the generalized776

linear model described below:777

Kij ∼ NB(µij , αi) (1)

Where αi is a gene-specific dispersion parameter for gene i and µij is defined by the following:778

µij = sjqij (2)

Here, sj is a sample specific size factor used to put read count abundances on the same scale779

between samples. Finally, qi,j is defined according to our design matrix:780

log2(qi,j) = β0 + βcc+ βtt+ βtctc (3)

Where, c is an indicator variable that is 0 when the sample is in condition WT and 1 when781

the sample is in condition PUMKD. Likewise, t is an indicator variable that is 0 when sample is782

in the 0 hour time point and 1 when the sample is in the 6 hour time point. We interpret the783

βtc term to represent changes in RNA stability resulting specifically from the PUM KD condition.784
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Similarly we interpret the βc term to represent changes in transcription rates between the two785

conditions. Throughout the text, unless otherwise noted, we report βtc normalized by the reported786

standard error for the coefficient, which amounts to the Wald statistic computed for that term by787

DESeq2. Thus, the Wald statistic for the interaction term is denoted as “RNA stability in PUM788

KD” throughout the text and is a unitless quantity.789

4.2.2. Analysis of transcriptional vs. stability effects790

To test for significant changes in transcription or stability, the Wald test statistic for the ap-791

propriate term—βc for transcription and βtc for stability—was calculated as described above. The792

Wald statistic was compared to a zero centered normal distribution and a two-tailed p-value was793

calculated using statistical programming language R’s pnorm function (n.b. this is virtually equiv-794

alent to the p-values calculated by the DEseq2 package for contrasts [49]). To test for a statistically795

significant lack of change in transcription or stability, the Wald statistic for the appropriate term796

was compared to a normal distribution centered at the nearest boundary of a region of practical797

equivalence (ROPE) and a two-tailed p-value was calculated using R’s pnorm function. The ROPE798

was defined as log2(1/1.75) – log2(1.75) and was chosen to be within the range of fold expression799

change of a RnLuc reporter gene with between one and three PREs in its minimal 3′ UTR [34].800

Each p-value was FDR-corrected using the Benjamini-Hochberg procedure [91] and, for each term,801

the smaller of the two FDR-corrected p-values was reported. In order for a gene to be classified802

in the EFFECT class the following conditions had to be met: 1. its change in stability q-value803

had to be smaller than its no change in stability q-value; 2. Its change in stability q-value had to804

pass a cutoff of 0.05 for statistical significance; and 3. The original log2 fold-change value had to805

be outside the defined ROPE. In contrast, in order for a gene to be classified in the NOEFFECT806

class the following conditions had to be met: 1. it was not classified as an EFFECT gene; 2. its no807

change in stability q-value had to be smaller than its change in stability q-value; 3. its no change808

in stability q-value had to pass a cutoff of 0.05 for statistical significance; and 4. The original log2809

fold-change value had to be within the defined ROPE. Genes not passing the criteria for either the810

EFFECT or NOEFFECT groups are those for which we lack sufficient information to make any811

strong statement on the effects of PUM knockdown.812

4.3. SEQRS Computational analysis813

Each raw sequencing read from the SEQRS experiments has the following expected structure:814

NNNNNN-CTGATCCTACCATCCGTGCT-NNNNNNNNNNNNNNNNNNNN-CACAGCTT815

CGTACCGAGCGG-GATCGGAAGA-XXXXXX-ATCTCGTA816

Where X represents a known barcode sequence used to split the reads from a multiplexed817

experiment and N represents a random variable base. The in vitro transcription reaction uses818

the above sequence as a template resulting in RNA with sequence starting from the 3′ end of the819

CACAGCTTCGTACCGAGCGG downstream of the 20mer and going in the opposite direction.820

Thus, the RNA molecules in the SEQRS experiments are the reverse complement of the following:821

CTGATCCTACCATCCGTGCT-NNNNNNNNNNNNNNNNNNNN-CACAGCTTCGTACC822

GAGCGG823

Raw sequencing reads were split by barcode, allowing for up to two pairwise mismatches on824

both the upstream and downstream adapter sequences. The 20mer variable regions and constant825

flanking adapter sequences of each read were reverse complemented and broken into all possible826

8mer sequences using a sliding window, and raw counts for all possible 8mer abundances for each827

sequencing round for each protein were calculated using custom python scripts. For 8mers that828

overlapped the constant flanking adapter sequences, only 8mers that had at least one base in the829

variable region were considered.830
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To determine position-weight matrices that best represented selection by the protein of interest831

for that round, we followed the approach of Jolma et al. [57] in the analysis of DNA-binding proteins832

using SELEX. Briefly, a seed sequence is determined from the most abundant N-mer within that833

round. From this seed sequence, the abundance of each base at a given position was tallied when all834

other positions match the seed sequence. The PWM frequencies were determined by dividing each835

column of the resulting count matrix by its column sum. For all PWMs determined by this method836

we used a UGUAAAUA seed sequence. Unlike Jolma et al. [57] we do not include the correction837

for non-specific carryover of nucleic acid from the previous cycle as the assumption that no more838

than 25% of 8mers would be expected to be bound may not hold for RNA-binding proteins due to839

their promiscuous binding [51]. Instead, we accounted for the bias of the initial sequencing pool by840

calculating a PWM for the initial pool using the UGUAAAUA seed sequence. We then divided the841

position frequency matrix of each PWM by the initial sequencing pool’s position frequency matrix.842

Finally, we determined the bias-corrected frequency matrix by dividing each column of the matrix843

by its column sum.844

In order to compare 8mer selection between rounds or proteins, the enrichment of a particular845

8mer was calculated with the following equation:846

E = log2

 cs,i∑Ns
i=1 cs,i
cb,i∑Nb
i=1 cb,i

 (4)

Where cs,i represents the count for 8mer i in sample s and cb,i represents the count for 8mer i in847

blank round where the input sequences were sampled. The DmPum data and corresponding blank848

sample was accessed from Weidmann et al. [11] and only the first five rounds were considered.849

4.4. GO term analysis and iPAGE850

GO term analysis was performed using the integrative pathway analysis of gene expression851

(iPAGE) software package [70]. Genes were discretized by the interaction term Wald test statistic852

into five-equally populated bins and iPAGE was run with default settings.853

4.5. Determination of matching PREs854

The full set of 3′ UTRs for hg19 genome was downloaded using the TxDb.Hsapiens.UCSC.-855

hg19.knownGene, BSgenome.Hsapiens.UCSC.hg19, and GenomicFeatures R packages. Matches856

to a given PWM across all 3′ UTRs were determined using the FIMO package with a uniform857

background using default cutoffs for reporting matches [92]. For PRE-centric figures, such as the858

heatmaps and violin plots in Figure 3 and Figure S1, each unique 3′ UTR isoform is matched to859

its corresponding “RNA stability in PUM KD” value by gene name, and each feature’s value is860

reported as the given summary statistic over a given 3′ UTR isoform for that feature, as described861

in the section below (i.e., for AU content, the value reported is the maximum AU content around862

any given PRE within that 3′ UTR isoform).863

For de novo discovery of informative motifs in our Bru-seq and BruChase-seq dataset, we864

applied the finding informative regulatory elements (FIRE) software [59] with default settings to865

each unique 3′ UTR isoform matched to its “RNA stability in PUM KD” value and discretized into866

ten equally populated bins.867

To calculate the location and AU content of PREs in randomly generated sets of the 3′ UTRs,868

a third order Markov model was trained on the annotated set of unique 3′ UTR isoforms from869

the hg19 genome. One thousand randomly simulated sets of 3′ UTRs—each with the same length870

as the annotated set of 3′ UTRs—was then generated using custom python scripts. For each of871
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the thousand simulated sets of 3′ UTRs, the fifth round SEQRS PUM1 (Figure 2A) was used to872

search for matches using FIMO as described above. Here each individual PRE was considered in873

the calculation of the kernel density plots shown in Figure 3.874

To determine the PAR-CLIP read coverage at identified PRE sites in the set of known unique875

3′ UTR isoforms, raw reads were downloaded from SRA with accession numbers SRR048967 and876

SRR048968. Raw fastq files were processed with trimmomatic [93] and cutadapt [94] to remove877

low quality reads and illumina adapters. Processed reads were aligned to the hg19 genome using878

the STAR aligner with default parameters [95]. Read coverage and T to C mutations were deter-879

mined for reads within 20 bp of each PRE in each unique 3′ UTR isoform for both EFFECT and880

NOEFFECT genes, individually, using custom python scripts. Coverage over all PREs was aligned881

and the bottom and top 5% of read coverage at each position was removed from the average cal-882

culation. Error bars were determined by bootstrapping, with stratified sampling with replacement883

read coverage from individual PREs in each group separately.884

4.6. Determination of PRE clustering885

To determine whether the PREs cluster together more than would be expected by chance, we886

determined the ratio of the observed frequency of PUM sites within all possible 100 bp windows887

of 3′ UTRs with a least 1 PRE in them to a Poisson model with the rate parameter, λ, set to the888

average count of PREs within all 100 bp windows. 95% confidence intervals were determined by889

bootstrapping the observed distribution of PRE counts within all windows.890

4.7. Predicting PUM-mediated regulation using conditional random forest models891

In order to predict the PUM-mediated regulation on a given transcript, we used conditional892

random forest models as implemented by the cforest function from the party R package [96–98].893

Binary classification models were trained using default settings with no parameter tuning on the894

Bru-Seq EFFECT and NOEFFECT classes and a permutation-based AUC variable importance895

metric was calculated for each individual model [78]. Due to the large class imbalance, ten separate896

datasets were generated from the full dataset, where the majority NOEFFECT class was randomly897

downsampled to match the EFFECT class. Within each of the ten datasets, five-fold cross validation898

was performed to assess performance and detect overtraining. Final models were generated using899

the ten downsampled datasets without cross-validation and performance was tested on the RNA-900

seq dataset from Bohn et al. [34]. Precision-recall plots were calculated using the PRROC package901

based on the methodology of Davis and Goadrich [99].902

4.7.1. Calculation of features associated with a PWM903

For each of the features described, the values were first calculated individually for each unique904

3′ UTR isoform. Values for each isoform were combined by taking the mean of the value for that905

feature and isoform weighted by the number of isoforms that shared that unique 3′ UTR in the full906

set of annotated 3′ UTRs in the hg19 genome. For features ending in “fimo best bygene max fimo”,907

the maximum FIMO match score for each unique 3′ UTR isoform for that PWM was calculated908

by setting the p-value cutoff threshold in FIMO to 1.1, thereby allowing FIMO to consider every909

possible match for a given sequence. The maximum match score for each sequence was reported910

for each unique 3′ UTR isoform. For features ending in “fimo best bygene total num”, the total911

number of matching sites for a given unique 3′ UTR isoform was calculated as described above in912

the “Determination of matching PREs” section. For each sequence, the geometric average of FIMO913

scores for each matching PRE was calculated and reported in the “fimo bygene geom avg score”.914

The maximum match score, geometric average match score, and total match number was calculated915
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for the SEQRS PUM1 round 5 PWM, SEQRS PUM2 round 5 PWM, Hafner et al. [37] PUM2 PWM,916

and each of the PWMs for human RBPs found in the CISBP-RNA database [100].917

For PREs, the shortest distance to the 3′ UTR for any given PRE is converted to normalized co-918

ordinates (i.e., 0.0 is the 5′ end and 1.0 is the 3′ end) and reported in the “fimo best bygene dist 3′’.919

For “fimo bygene at content” the largest percentage AT content in a 100 bp window surrounding920

any PRE within a given sequence was reported. Similarly for “fimo bygene max cluster”, the max-921

imum number of full PRE sites within a sliding of 100 bp was calculated. For both of these features,922

windows were truncated at the 3′ and 5′ ends of the sequence.923

Predicted miRNA sites were determined using default predictions (conserved sites of conserved924

miRNA families) from TargetScan release 7.2 [67]. Overlaps with PREs were calculated by counting925

miRNA sites within a 100 bp window surrounding each PRE. For 3′ UTRs with more than one926

PRE, the PRE with the maximum number of overlapping miRNA sites was considered.927

4.7.2. Calculation of in silico basepairing probabilities for PREs928

For each identified PRE, the probability of the given PRE being base-paired within predicted929

secondary structure was calculated using RNAfold [101] by calculating the ensemble free energy of930

an unconstrained sequence Fu of 50 bp flanking each side of a given PRE and the ensemble free931

energy of a constrained sequence where no base within the PRE is allowed to form a base pair Fc.932

The probability of the PRE being constrained from base-pairing can be calculated using:933

Pc = exp

(
(Fu − Fc)

RT

)
(5)

Where T is the temperature (set to physiological temperature, 310.15K), and R is the gas934

constant (set to 0.00198 kcal K−1 mol−1). Thus the probability of any given PRE being un-935

paired is Pc. We define two features associated with Pc for each PRE in a given 3′ UTR isoform.936

“ avgprob unpaired” is the average Pc of all the PREs within a given 3′ UTR and “ maxprob unpaired”937

is the maximum Pc of all the PREs within a given 3′ UTR. Values for each isoform were combined938

into gene level estimates, as described above.939

4.7.3. Calculation of information redundancy between features940

In order to calculate the information redundancy between features, each feature was discretized941

into ten equally populated bins. The redundancy between feature 1 (F1) and feature 2 (F2) was942

calculated with the following equation:943

R =
2× I(F1;F2)

(H(F1) +H(F2))
(6)

Where H is the entropy of a given vector X of discrete values, as defined below:944

H(X) = −
∑
x∈X

P (x) log2(P (x)) (7)

And the mutual information I(X;Y ) of vectors X and Y of discrete values is defined as:945

I(X;Y ) =
∑
x∈X

∑
y∈Y

P (x, y) log

(
P (x, y)

P (x)P (y)

)
(8)
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4.7.4. Determination of EFFECT and NOEFFECT classes for RNA-seq data946

RNA-seq data was obtained from Bohn et al. [34] and a gene was only considered if the FPKM for947

both the PUM1/2 knockdown condition and the siNTC condition were greater than 5. Genes that948

passed this cutoff and that were considered to have statistically significant differential expression949

in the original analysis were considered EFFECT genes. Genes that passed the cutoff and were950

not considered to have statistically significant differential expression were considered NOEFFECT951

genes.952
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Figure S1: Additional features considered in determining PUM-mediated decay. A) Count of predicted conserved
miRNA sites from conserved families that overlapped within 100 bp of a PRE for each gene. Stars indicate statistical
significance from a Wilcoxon rank sum test compared to the 0 overlapping miRNA case. Stability in PUM knock-
down is represented by a normalized interaction term between time and condition, where positive values indicate
stabilization upon PUM knockdown and negative values indicate destabilization upon PUM knockdown (see Meth-
ods for details).B) (Above) Relationship between the fraction optimal codons as determined by the Codon Stability
Coefficient determined in HEK293 cells [87] and PUM-mediated effect as measured in our Bru-seq data. (Below)
Marginal density plots of the fraction optimal codons for genes in the EFFECT and NOEFFECT classes. Median
fraction optimal codons for each class are plotted with dotted lines. A significant (p < 0.05, two-sided permutation
test, n = 1000) difference in medians between the classes is indicated by a star. C) (Above) Relationship between the
probability of a given PRE being unpaired in predicted RNA secondary structure. Only genes with a PRE with > 0
probability of being unpaired where shown in the heatmap. All other genes are shown in the marginal y-axis density
plot. (Below) Marginal density plot for genes in the EFFECT and NOEFFECT classes with median probabilities for
each class shown as dotted lines. See Methods for details of secondary structure prediction.
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Figure S2 (previous page): Predicting PUM-mediated effect subset by motif. A) Conditional random forest models
for the datasets considering only genes that had at least one match to the regex motif definition in a 3′ UTR. PRE
features only consider those around the regex definition. Panels are as in Figure 6B, D, and F. B) As in A), but for
the Hafner et al. [37] PUM2 motif. C) As in A), but for the SEQRS PUM1 motif. D) As in A), but for the SEQRS
PUM2 motif.
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