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Intratumor heterogeneity is a feature of cancer that is associated with progression, treatment 
resistance, and recurrence. However, the mechanisms that allow diverse cancer cell lineages to 
coexist remain poorly understood. The storage effect is a coexistence mechanism that has been 
proposed to explain the diversity of a variety of ecological communities, including coral reef fish, 
plankton and desert annual plants. Three ingredients are required for there to be a storage effect: 
1) temporal variability in the environment, 2) buffered population growth, and 3) species-specific 
environmental responses. Here, we argue that these conditions are observed in cancers and that it is 
likely that the storage effect contributes to intratumor diversity. Data that show the temporal 
variation within the tumor microenvironment is needed to quantify how cancer cells respond to 
fluctuations in the tumor microenvironment and what impact this has on interactions among 
cancer cell types. The presence of a storage effect within a patient’s tumors could have substantial 
impact on how we understand and treat cancer. 
 

Introduction 
 
Ecosystems in nature include coexisting 

species that compete for space, resources, and 
safety from predators1–4.  Similarly, tumors 
exhibit micro-environmental heterogeneity that 
contains coexisting cancer cell types that 
experience variations in nutrients, toxic 
metabolites, and diverse types of normal cells5.  
In nature, mechanisms of coexistence can 
explain the diversity of species within a 
community.  Typical mechanisms include food-
safety tradeoffs (one species is the better 
competitor while the other is better at avoiding 
predation), diet separation (each species has 
subset of resources on which it is the more 
successful consumer), habitat selection (each 
species has a habitat within which it is more 
successful), and competition-colonization trade-
offs (one species slowly outcompetes the other 

at a given spot while the other is more successful 
at dispersing to unoccupied spots).  Similar 
mechanisms likely explain some of the diversity 
of cancer cell types within and among a patient’s 
tumors6. 

 
Long underappreciated in ecology was a 

mechanism of coexistence now known as the 
storage effect7–11. Three ingredients can promote 
the coexistence of species by the storage effect: 
1) temporal variability in environmental 
conditions that include periods favorable and 
unfavorable for survival and reproduction (we 
shall refer to these as good and bad), 2) the 
presence of two life history states within each 
species (one conducive to proliferation during 
good periods, the other conducive to survival 
during bad periods), and 3) differences in how 
species perceive and invest effort to grow, or do 
not, in good and bad periods, reflecting some 
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underlying trade-offs and adaptation to 
somewhat different environmental conditions.  
 

Here, we posit that the storage effect 
may promote the coexistence of at least some 
cancer cell types within the tumors of some or 
many different cancers.  To demonstrate the 
plausibility of the storage effect we will discuss 
how, as in ecosystems in nature, conditions (1) 
and (2) are universal properties of most tumor 
microenvironments.  Next, we discuss why there 
may be tradeoffs in the way cancer cells 
experience good and bad periods. We then 
discuss how the storage effect manifests in 
nature, followed by a simple mathematical 
model for cancer tumor cells, illustrating how 
the storage effect works. We conclude with 
discussion of how knowledge of the presence of 
a storage effect in a patient’s disease might 
inform therapies.  
 

Temporal Variation in Nature and in the 
Tumor Microenvironment 
 
 Very few, if any, ecological 
communities experience temporally constant 
environments.  Migratory birds escape the harsh 
winter conditions of higher latitudes by 
migrating to destinations closer to the equator.  
Deciduous trees lose their leaves during dry 
and/or cold seasons.  Year to year variation in 
temperature and precipitation may portend 
droughts or floods and hot spells and cold snaps.  
Fire, disease, or pestilence occur episodically 
within ecosystems.  A beaver damming a stream 
can raise water tables, drown surrounding 
terrestrial vegetation and create a wetland. This 
wetland can revert when the beaver dam breaks 
or decays. Virtually all living organisms 
experience predictable and unpredictable 
variability in environmental conditions that 
influence growth, reproduction, and 
survivorship. 
 

Like natural ecosystems, cancer cells 
inhabiting a tumor microenvironment experience 
both regular and irregular temporal fluctuations. 
Blood flow changes due to unstable vasculature 
on timescales of minutes to hours12. This 
instability arises as cancer cells adapt to local 
hypoxic conditions by recruiting new blood 
vessels, which enable the delivery of nutrients 
and the removal of toxic metabolites so that 
cancer cells can survive when nutrients are low. 
However, as cancer cells induce the growth of 
new blood vessels, the vascular network 
becomes more irregular and disorganized 
leading to unpredictable spatial and temporal 
variations in blood flow13. Consequently, 
transient changes in perfusion lead to cycling 
hypoxia. Local fluctuations between hypoxia 
and reoxygenation affect cells adjacent to the 
poorly perfused blood vessels. This is in contrast 
to chronic hypoxia, which affects cells far away 
from vessels due to limited diffusion. Cycling 
hypoxia is associated with an increase in cell 
migration, metastatic potential, and resistance to 
treatments compared to chronic hypoxia14.  

 
While changing patterns of blood flow 

likely create the greatest source of temporal 
variability in oxygen, pH, immune infiltration, 
nutrients and toxins, the architecture of cells 
within and around a tumor microenvironment 
also may change temporally. The rate of 
diffusion of nutrients (such as glucose and 
glutamine) towards a neighborhood of cancer 
cells, and the diffusion of metabolites away 
(such as lactate, free-oxygen radicals and 
pyruvate) may vary temporally as other 
neighborhoods of cancer cells block or unblock 
intracellular channels, as immune cells move in 
or out of an area, and as fibroblasts change inter-
cellular matrices and/or the secretion of growth 
factors. Regardless of its source or regularity, 
coexisting cancer cells experience considerable 
temporal variability in opportunities and hazards 
that likely create good and bad periods in terms 
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of their proliferation and survival rates, setting 
the potential for the storage effect to promote 
diversity of cancer cells within tumors.  

 

Proliferative and Non-proliferative Life 
History States in Nature and in Cancer 
 
 In response to fluctuations that generate 
good and bad periods, many organisms have 
evolved different life history states; one that is 
best at exploiting the good times and the other 
best at surviving the bad times.  Many single-
celled protists have a proliferative state that 
allows the cell to feed, move and proliferate15. 
This state however may not be able to survive 
bad periods when their pool of water dries up or 
the environment offers only toxins and no 
nutrients.  Such protists also have an encysted 
state. This state, while unable to proliferate, is 
highly resistant to desiccation, toxins and 
nutrient deprivation. This state may be the only 
way the protist survives through bad periods. 
Having a fraction of the protist population in an 
encysted state means that some opportunities are 
lost during good periods, but survival is insured 
during the bad. Baker's yeast is a classic 
example. The dry packet of encysted yeast can 
survive for years without opportunity for growth 
and reproduction. Upon activation and favorable 
conditions these yeast enter a feeding and 
proliferative state.  Among species in nature, 
“quiescence” or “dormancy” refers to a range of 
cellular or organismal states characterized by 
slowed metabolism and relatively high 
resistance to hardships from their surrounding 
environment16–21. 
 
 In cancer, cells that are reversibly 
arrested in the G0 phase of the cell cycle are 
referred to as quiescent, whereas “cell 
dormancy” typically refers to a long-term 
quiescence22. Many cancer cells respond to 
hypoxia by becoming quiescent and 
upregulating autophagy to survive lower levels 

of nutrients and oxygen13. Cancer cells may 
survive harsh environments (e.g., hypoxia, low 
pH, toxins) by forming poly-aneuploid cancer 
cells (PACCs) (also referred to in the literature 
as polyploid giant cancer cells (PGCCs)), a 
population of reversibly quiescent cells that 
form rapidly (within 72 hours) in response to 
environmental stress and later divide 
asymmetrically to repopulate a tumor with cells 
of normal ploidy that have increased resistance 
to chemotherapy23,24. In their non-proliferative 
state, dormant or quiescent tumor cells are able 
to evade treatments that preferentially target 
highly proliferative cells. After treatment, these 
cells can resume proliferation which can result 
in tumor growth and relapse.  Quiescent states 
are ubiquitous in cancer and can be associated 
with metastasis and relapse of cancerous 
growth25. As such, dormancy and quiescence 
challenge our ability to treat, control, or 
moderate cancer.  
 

In nature, quiescent and resistant states 
can have a powerful effect. They can allow 
populations to survive despite exposure to 
conditions that limit or preclude population 
growth. They can buffer populations against 
variation in favorability for growth on many 
time scales, including seasonal, annual, and 
multiannual; they can contribute to more diverse 
communities than would exist without 
them9,10,26–28. Given how common 
dormancy/quiescence is in cancer, we expect to 
find similar ecological effects of these life-
history stages for the cancer ecosystem. 
Quiescent or dormant states could maintain 
diverse cancer phenotypes that may proliferate, 
coexist, or displace each other over the course of 
time within the patient. For instance, 
disseminated cancer cells that stay dormant, 
sometimes for many years, and then reemerge as 
metabolically active cells that proliferate, often 
leading to death of patients. These emergent 
metastases appear to result from enhanced cell 
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lineage persistence through dormancy23–25,29,30. 
The movement of cells into and out of 
dormancy, as the environment around them 
changes, could affect what clones co-occur in a 
tumor or in a patient by changing the ways in 
which cell-cell interactions such as competition 
play out at the level of populations of different 
cell types. The presence of quiescent and 
dormant, resistant states of cancer cells sets the 
potential for the storage effect to promote 
diversity of cancer cells within tumors. These 
possibilities have clear relevance for cancer 
control.   
 

Evidence for Population-Specific 
Behaviors and Trade-offs in the Way 
Cancer Cells Experience Good and Bad 
Times 
 

As in nature, where a year with plentiful 
but not excessive water would be expected to be 
generally a good year for vegetation, cancer 
cells also would share many environmental 
needs and so experience good and bad times in 
part together. However, as with plants that differ 
in tolerance to low water availability or high 
temperatures, cancer cells differ in their 
sensitivities to hypoxia, low pH, immune 
infiltration, absence of growth factors, and the 
stromal (created by normal cells) architecture of 
their microenvironment, generating potential for 
trade-offs that make some periods better for 
some cell clones and others better for other 
clones. The heterogeneity of cancer cells in 
many features, including their proliferative 
potential, hormone receptor expression, 
immunogenicity, sensitivity to drugs, motility, 
and angiogenic potential31 enables cancer cells 
to have population-specific environmental 
responses, an essential component of the storage 
effect. For example, in stage 2 invasive breast 
cancers, cells on the tumor edge tend to have an 
acid-producing invasive, proliferative phenotype 
whereas those in the hypoxic tumor core have a 

less proliferative phenotype32. Tumors also have 
metabolic heterogeneity in the form of acid-
resistant or glycolytic phenotypes33. 
Mathematical models of cancer evolution 
suggest that high nutrient variability (cycling 
hypoxia) gives a competitive advantage to 
cancer cells that have a higher rate of phenotypic 
transition, which promotes high levels of 
phenotypic heterogeneity34.  
 

Cancer cells have a wide range of 
behaviors associated with entering and exiting 
from non-proliferative states, which provide the 
buffering life history stage that enables a storage 
effect. Cancer cells may remain in these states 
for times ranging from the very short (one to 
several days) to the very long (decades, as 
observed for emergence of metastatic cancer 
growth after years of healthy remission)25,35.  In 
fibroblasts, cells move deeper into quiescence 
following longer durations of serum starvation 
or contact inhibition and require a stronger 
growth stimulation to exit quiescence compared 
to cells in shallow quiescence36. Time of exit 
from quiescence exit can vary within a clonal 
population, even when cultured in the same 
growth conditions37. Dormant cells awaken due 
to environmental changes. Bone is highly 
dynamic, undergoing constant remodeling, 
which can reawaken dormant cancer cells 38. The 
growth of new blood vessels provokes sufficient 
change to the microenvironment to reactivate 
breast cancer cells39,40. Age-related inflammation 
promotes the outgrowth of dormant cells in 
pancreatic ductal adenocarcinoma liver 
metastases41.  PACCS emerge from quiescence 
after removal of chemotherapy and they do so 
after a range of quiescence durations (Sarah 
Amend, PhD, email communication, February 
2020). Drug resistance is associated with a 
heterogeneous population of non-proliferative 
cells, including drug-tolerant persisters, therapy-
induced senescent cells, hypoxic drug resistant, 
and disseminated tumor cells. These populations 
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differ in their propensities to remain in or exit 
the growth arrested state22. 
 

A Simple Model of the Storage Effect in 
Cancer 
 

Mathematical models have been useful 
to understand cancer biology and to help test 
what treatment strategies might improve patient 
outcomes over standard of care. Many model 
types have been used, including game theory 
models42–49, agent based models (ABMs)33,50–55, 
and Lotka-Volterra type dynamical models that 
consider cancer clonal cells as interacting 
populations56,57. So far, very few of these models 
consider variation in the environment of cancer 
cells in time. It is unsurprising that temporal 
variation in the tumor environment has had little 
attention in dynamical models. This was long 
the case in models of natural ecosystems, and 
the data available for cancer tend to be static 
snapshots of a tumor. Radiographic and 
histologic images show cancer at a point in time. 
Although they reveal, and provide data for, 
modeling spatial heterogeneity in cancer, they 
do not capture or inform the potential variation 
in time that small-scale physiological studies 
indicate is there as well 12,14,58.  
 

Stochastic dynamic models of 
interacting populations of cancer cells are a 
straight-forward way to incorporate temporal 
environmental variation and are the class of 
models that have primarily been used to develop 
understanding of the storage effect. The simple 
Lotka-Volterra type population models so far 
used to study cancer are not sufficient to capture 
coexistence mechanisms such as the storage 
effect because they do not incorporate a non-
proliferative life history state nor do they 
incorporate species-specific demographic 
responses to a varying environment3,59,60. 
Variation in the environment can be proxied as 
stochastic variation in demographic parameters, 

such as entry to and exit from quiescence and 
rates of growth, reproduction, or survival if 
cancer cells.  
 
 To show how coexistence can occur via 
the storage effect we construct a simple discrete-
time stochastic model that includes two species, 
each with two life history stages (proliferative 
and quiescent), and stochastic variation in good 
and bad periods.    
 
Illustrating the Storage Effect 
 

The plausibility of the storage effect 
promoting the coexistence of different cell types 
within a tumor microenvironment emerges from 
1) temporal variability in blood flow, immune 
infiltration, stromal architecture, and physical 
conditions, and 2) the widespread use of cell 
arrest, quiescence, and/or dormancy that allows 
cancer cells to exist in two states – proliferative 
and non-proliferative.  Coexistence can occur if 
there is a tradeoff in how two cell types 
experience good and bad periods.   
 

To illustrate how storage effects can 
work we propose a simple model that aims to 
keep assumptions to a minimum while 
containing the essential elements.  We imagine 
that each cancer cell type has two stages: an 
arrested state, and a proliferative state. A 
fraction of cells, θ, leave the arrested state 
during each period. Those that enter the 
proliferative state suffer a mortality rate that 
depends on whether it is during a "good" or 
"bad" period.  These periods could represent a 
microenvironment of a tumor where fluctuations 
in blood flow, hypoxia and/or growth factors 
contribute to times of plenty and times of 
famine. Upon emerging from the arrested state, 
cells successfully survive to proliferate at 
fraction s. Let sg >> sb be these survival rates 
during good and bad periods, respectively.  
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The biology here is that if a cell 
attempts to be proliferative it may lack key 
resources even as the cell commits to cell 
division. The consequence is cell mortality that 
would not have happened had the cell remained 
in an arrested state. For example, providing 
estrogen to breast cancer cells that otherwise 
have no other nutrients can cause mortality, as 
cells are tricked into trying to proliferate (Robert 
Gatenby, MD, email communication, February 
2020). Those cells that survive produce a 
maximum number of daughter cells, f, that 
declines with competition from other cells in a 
proliferative state. We use a Ricker model to 
describe the competition between proliferative 
cells for resources.  In the absence of 
competitors, a proliferative cell produces its 
maximum number of daughter cells; with 
competitors, the production of daughter cells 
declines exponentially with the density of other 
proliferative cells.  We imagine that f can take 
on a positive value that represents the expected 
number of daughter cells that might accrue 
during a period sufficiently long to permit one or 
more rounds of cell division. At the end of the 
period, daughter cells enter the pool of cells in 
an arrested state.  
 

Now let there be two cell types that are 
equal in all ways except that they do not always 
experience good and bad periods in the same 
way.  While unlikely that two cell types would 
be identical, this assumption allows us to 
illustrate coexistence that only manifests 
because of the storage effect.   
 

For cancer cell types, it is likely that 
what is good for one is, in part, good for the 
other type. However, differences in nutrient 
metabolism, sensitivity to growth factors, 
resistance to hypoxia, ability for immune 
evasion, and/or physical conditions like pH 
means that at times one cell type may experience 
a bad period while the other a good period.  Let 

q be the probability of a good period, and let 0 < 
r < 1 represent the degree to which the two cell 
types experience good and bad periods similarly.  
The term (1-r) then represents the probability 
that the two cell types are experiencing the type 
of period independently of each other.  Thus, the 
probabilities of both experiencing good periods 
(pGG), both experiencing bad periods (pBB), type 
1 experiencing good and type 2 experiencing 
bad (pGB), and vice versa (pBG) are given by: 
 

 
 
As they must pGG, pBB, pBG and pGB sum to 1.   
  

Let xk(t) be the number of cells of type k 
in an arrested state following time period t, 
where k=1 or 2. The two species growth 
equations take on the following form: 
 

 
 
where i, j = g or b, and d is the mortality rate of 
cells in an arrested state per period, and R scales 
the limits to growth by representing some 
measure of resources available to cells that are 
in a proliferative state.   
 

The above model easily generates a 
coexistence via a storage effect.  This can be 
seen by showing how either species 1 or 2 can 
invade a resident population of the other, and 
that when together they settle on a dynamic 
equilibrium but with more or less temporal 
variation in the frequency of the two cell types 
within a micro-environment (Fig. 1).  When 
averaged over many micro-environments the cell 
type frequencies might appear relatively stable 
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across time.  If a storage effect is operating 
within a tumor, then there may be surprisingly 
large fluctuations in cell composition at the level 
of small neighborhoods of cancer cells. 
 

 
Figure 1: Invasion of resident population. 
Parameters: sg=0.8, sb=0.1, R=100, d=0.05, θ=0.2, 
f=5, q=0.4, r=0.8, x1(0)=100, x2(0)=0, x2(250)=1. 
 

The storage effect is not possible in the 
absence of an arrested state. For θ = 1, the two 
cancer cell types exist as a stochastic random 
walk with neither one having an advantage.  An 
arrested state buffers a cell type when it 
experiences a bad period while the other 
experiences a good period.  Similarly, if r = 1, 
then a storage effect is not possible, as both cell 
types perceive good and bad years identically.  
The two will simply experience a stochastic 
random walk of population sizes with neither 
experiencing an advantage when rare.  Once r < 
1 and θ < 1, coexistence of cell types by the 
storage effect will happen, but the strength of 
this will increase as r approaches 0.  The 
advantage that a cell type gains when it is rare 
(thus driving it to increase in time at the expense 
of the other cell type) derives from the 
occurrence of periods where the rare species 
experiences a good and the resident cell type 
experiences a bad period, giving the rare species 
opportunity to realize the high growth potential 
of a good period without strong depression by 
competition. This is maximized when r = 0 and 
when q = 0.5 (good and bad periods are equally 

likely).  Furthermore, as a long-term dynamic 
equilibrium, the average tumor burden increases 
as r goes from 1 to 0; and as q goes from 0 to 1 
(Fig. 2).   
 

 
Figure 2: Average number of arrested cells as a 
function of q and r. Each combination represents an 
average of 10 simulations. Parameters: sg=0.8, sb=0.1, 
R=100, d=0.05, θ=0.2, f=5, x1(0)=100, x2(0)=100, 
number of timesteps=104. 
 
How Might Consideration of the Storage 
Effect Inform Cancer Therapy? 
 

The existence of the storage effect 
contributing to diversity in cancer would have 
consequences for clinical treatments. While 
intratumor heterogeneity is established as a 
marker for poor prognosis, an underlying storage 
effect dynamic would present new challenges. 
The presence of a storage effect presents a 
double challenge for therapy.  First is the task of 
targeting quiescent cells, and second is the 
challenge of finding drugs effective on each or 
all of the cancer cell types. 
 

Quiescence or dormancy now appears to 
be a major mechanism by which cancers evade 
drug therapies and initiate metastases23–25, so 
there is great interest in whether quiescent or 
dormant cells can be targeted by therapies61. 
This paper argues that we must also consider 
that there may be many coexisting clonal 
lineages of cancer cells that differ in 
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physiologies of their non-proliferative and 
proliferative life history states. If cancer cell 
types coexist via the storage effect, then one is 
not targeting just a single cell type, but a 
diversity of cell types with potentially differing 
susceptibilities to therapy. 
  
Pseudo-resistance 
 

Heterogeneity in quiescence could 
obscure detection of resistance to treatment 
through the phenomenon of pseudo-resistance, a 
situation where an otherwise treatment-sensitive 
population of cancer cells appears to be 
resistant.  Pseudo-resistance could result from 
temporal variation that selects for cell lineages 
that maintain a high fraction of cells within a 
quiescent state. Many cytotoxic chemotherapies 
target proliferating cells that are actively 
dividing, and non-proliferative cells may be 
insensitive to these therapies. Those parts of a 
tumor that experience the greatest temporal 
variability may have the greatest fraction of non-
proliferative cells. In this case, therapy may 
appear effective in eliminating tumor cells, but 
continued efficacy may slow, as the remaining 
cancer clonal populations have lower fractions 
of cells in a proliferative state.  The storage 
effect, by maintaining the coexistence of cancer 
clones that vary in their propensity for remaining 
quiescent or arrested, could exacerbate pseudo-
resistance.  

 
With pseudo-resistance, continuing the 

same drug regimen would continue to cull 
cancer cells as they emerge into a proliferative 
state. However, the fraction of cancer cells killed 
with each dosing would decline, generating the 
appearance of declining tumor burden, but 
without entirely eradicating the tumor. 
Prolonging the therapy may increase the 
likelihood of true resistance emerging from the 
surviving cancer cells and also may induce 
undue toxicities to the patient. The possibility 

that pseudo-resistance might reflect a storage 
effect would suggest novel therapeutic 
strategies. One approach might be to maintain 
the ongoing therapy, but reduce dosage or make 
it more intermittent (akin to maintenance 
therapy for patients in remission).  Frequent and 
accurate measures of tumor burden might 
identify breakpoints in the rate of tumor burden 
decline, which would indicate the presence of 
different clones with different propensities to 
remain quiescent.  A second therapeutic 
approach could be to include in tandem an 
intervention designed to amplify the rate at 
which cancer cells return from quiescence into a 
proliferative state. It also might be useful to 
begin with the first therapy and then add to it, 
rather than replace it with, additional therapies; 
if possible, the second therapy would be chosen 
for toxicity to quiescent cells.  
 
The Storage Effect and Multi-drug Therapies 
 

Existence of a storage effect implies that 
additional data is needed to predict tumor 
progression. Knowing to what extent the 
variability that one sees in space also occurs in 
time at each spot becomes a valuable and critical 
piece of information. There is recognition of the 
need for serial histologies, but the destructive 
nature of histological sampling means exact 
resampling is impossible. Variable temporal 
dynamics means that local fluctuations could 
work against traditional therapies. An 
underlying storage effect would indicate that cell 
types differ in their dependence on or sensitivity 
to specific micro-environmental conditions that 
are fluctuating.  Each of them could have an 
Achilles’ heel. If one can identify or suggest the 
tradeoff promoting a storage effect, then a 
background therapy targeting quiescent cells 
could be combined with a standard 
chemotherapy and a therapy known to target the 
specific attributes of the cancer cell types. 
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Summary 
 

Here, we have described the diversity-
promoting mechanism known as the storage 
effect and suggested that the conditions that 
make the storage effect relevant to ecosystems in 
nature also are found in cancer. Research is 
needed to better identify and quantify the 
features of cancer that characterize the storage 
effect. These features include population-
specific responses to the environment, which 
could give differential use of conditions in time 
by different cancer cell populations; and 
behaviors associated with entry into, exit from, 
and duration of quiescence in cancer cells, 
which could enable buffering of those 
populations to environmental fluctuations, 
allowing them to evade losses in bad times and 
realize strong growth in good times. The 
possibility that the storage effect is involved in 
the clonal ecological heterogeneity and 
quiescence/dormancy of cancer cells, both of 
which pose serious conundrums for cancer 
therapies, dictates that more attention should be 
paid to understanding the temporal dimensions 
of cancer. To do this, both the data and the 
models that inform our understanding of cancer 
must be expanded to better reveal and account 
for temporal variation.  If temporal variation in 
environmental suitability for growth contributes 
significantly to population interactions within 
the cancer ecosystem, the implications to how 
we understand and treat cancer would be 
substantial.  
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