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ABSTRACT 50 
 51 
Cancer researchers use cell lines, patient derived xenografts, and genetically engineered mice 52 

as models to investigate tumor biology and to identify therapies. The generalizability and power 53 

of a model derives from the fidelity with which it represents the tumor type of investigation, 54 

however, the extent to which this is true is often unclear. The preponderance of models and the 55 

ability to readily generate new ones has created a demand for tools that can measure the extent 56 

and ways in which cancer models resemble or diverge from native tumors. Here, we present a 57 

computational tool, CancerCellNet, that measures the similarity of cancer models to 22 naturally 58 

occurring tumor types and 36 subtypes, in a platform and species agnostic manner. We applied 59 

this tool to 657 cancer cell lines, 415 patient derived xenografts, and 26 distinct genetically 60 

engineered mouse models, documenting the most faithful models, identifying cancers 61 

underserved by adequate models, and finding models with annotations that do not match their 62 

classification. By comparing models across modalities, we find that genetically engineered mice 63 

have higher transcriptional fidelity than patient derived xenografts and cell lines in four out of 64 

five tumor types. We have made CancerCellNet available as freely downloadable software and 65 

as a web application that can be applied to new cancer models.  66 
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INTRODUCTION 81 

Models are widely used to investigate cancer biology and to identify potential therapeutics. 82 

Popular modeling modalities are cancer cell lines (CCLs)1, genetically engineered mouse 83 

models (GEMMs)2, and patient derived xenografts (PDXs)3.These classes of models differ in the 84 

types of questions that they are designed to address. CCLs are often used to address cell 85 

intrinsic mechanistic questions4, GEMMs to chart progression of molecularly defined-disease5, 86 

and PDXs to explore patient-specific response to therapy in a physiologically relevant context6. 87 

Models also differ in the extent to which the they represent specific aspects of a cancer type7. 88 

Even with this intra- and inter-class model variation, all models should represent the tumor type 89 

or subtype under investigation, and not another type of tumor, and not a non-cancerous tissue. 90 

Therefore, cancer-models should be selected not only based on the specific biological question 91 

but also based on the similarity of the model to the cancer type under investigation8,9. 92 

 Various methods have been proposed to determine the similarity of cancer models to 93 

their intended subjects. Domcke et al devised a 'suitability score' as a metric of the molecular 94 

similarity of CCLs to high grade serous ovarian carcinoma based on a heuristic weighting of 95 

copy number alterations, mutation status of several genes that distinguish ovarian cancer 96 

subtypes, and hypermutation status10. Other studies have taken analogous approaches by 97 

either focusing on transcriptomic or ensemble molecular profiles (e.g. transcriptomic and copy 98 

number alterations) to quantify the similarity of cell lines to tumors11–13. These studies were 99 

tumor-type specific, focusing on CCLs that model, for example, hepatocellular carcinoma or 100 

breast cancer. More recently, Yu et al compared the transcriptomes of CCLs to the Cancer 101 

Genome Atlas (TCGA) by correlation analysis, resulting in a panel of CCLs recommended as 102 

most representative of 22 tumor types14. While all of these studies have provided valuable 103 

information, they leave two major challenges unmet. The first challenge is to determine the 104 

fidelity of GEMMs and PDXs and whether there are stark differences between these classes of 105 

models and CCLs. The other major unmet challenge is to enable the rapid assessment of new, 106 
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emerging cancer models. This challenge is especially relevant now as technical barriers to 107 

generating models have been substantially lowered15,16, and because each PDX can be 108 

considered a distinct entity requiring individual validation17.  109 

 To address these challenges, we developed CancerCellNet (CCN), a computational tool 110 

that uses transcriptomic data to quantitatively assess the similarity between cancer models and 111 

22 naturally occurring tumor types and 36 subtypes in a platform- and species-agnostic manner. 112 

Here, we describe CCN’s performance, and the results of applying it to assess 657 cancer cell 113 

lines, 415 patient derived xenografts, and 26 distinct genetically engineered mouse models. 114 

This has allowed us to identify the most faithful models currently available, to document cancers 115 

underserved by adequate models, and to find models with inaccurate tumor type annotation. 116 

Moreover, because CCN is open-source and easy to use, it can be readily applied to newly 117 

generated cancer models as a means to assess their fidelity.  118 

 119 

RESULTS 120 

CancerCellNet classifies samples accurately across species and technologies  121 

Previously, we had developed a computational tool using the Random Forest 122 

classification method to measure the similarity of engineered cell populations to their in vivo 123 

counterparts based on transcriptional profiles18,19. More recently, we elaborated on this 124 

approach to allow for classification of single cell RNA-Seq data in a manner that allows for 125 

cross-platform and cross-species analysis20. Here, we used an analogous approach to 126 

quantitatively compare cancer models to naturally occurring patient tumors (Fig 1A). In brief, we 127 

used TCGA RNA-seq expression data from 22 solid tumor types to train a top-pair multi-class 128 

Random forest classifier. We combined training data from Rectal Adenocarcinoma (READ) and 129 

Colon Adenocarcinoma (COAD) into one COAD_READ category because READ and COAD 130 

are considered to be virtually indistinguishable at a molecular level21. We included an ‘Unknown’ 131 
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category trained using randomly shuffled gene-pair profiles generated from the training data of 132 

22 tumor types to identify query samples that are not reflective of any of the training data.   133 

We assessed the performance of this approach by computing the area under the 134 

precision recall (AUPR) curves derived by 50 iterations of cross validation (Fig 1B, Supp Fig 135 

1A). In the cross validations, the mean AUPR exceeded 0.95 in most of the tumor types. In 136 

addition to achieving high mean AUPRs on held-out TCGA data, we found that CCN also 137 

achieved high AUPR (above 0.9) when we applied it to independent testing data from the 138 

International Cancer Genome Consortium (ICGC) consisting of RNA-Seq data from 886 tumors 139 

across 5 tumor types (Supp Fig 1B)22.  140 

 As one of the central aims of our study is to compare distinct cancer models, including 141 

GEMMs, our method needed to be able to classify samples from mouse and human samples 142 

equivalently. We used the Top-Pair transform20 to achieve this and we tested the feasibility of 143 

this approach by assessing the performance of a normal (i.e non-tumor) cell and tissue classifier 144 

trained on human data as applied to mouse samples. Consistent with prior applications23, we 145 

found that the cross-species classifier performed well, achieving mean AUPR of 0.96 when 146 

applied to mouse data (Supp Fig 1C).   147 

 To evaluate cancer models at a finer resolution, we also developed an approach to 148 

perform tumor subtype classifications (Supp Fig 1D). We constructed 11 different cancer 149 

subtype classifiers based on the availability of expression or histological subtype 150 

information21,24–34. We also included non-cancerous, normal tissues as categories for several 151 

subtype classifiers when sufficient data was available: breast invasive carcinoma (BRCA), 152 

COAD_READ, head and neck squamous cell carcinoma (HNSC), kidney renal clear cell 153 

carcinoma (KIRC) and uterine corpus endometrial carcinoma (UCEC). The 11 subtype 154 

classifiers all achieved high overall average AUPRs ranging from 0.75 to 0.99 (Supp Fig 1E). 155 

 156 

Fidelity of cancer cell lines 157 
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Having validated the performance of CCN, we then used it to determine the fidelity of 158 

CCLs. We mined RNA-Seq expression data of 657 different cell lines across 20 cancer types 159 

from the Cancer Cell Line Encyclopedia (CCLE) and applied CCN to them, finding a wide 160 

classification range for cell lines of each tumor type (Fig 2A, Supp Tab 1). To verify the 161 

classification results, we applied CCN to CCLE expression profiles generated through 162 

microarray expression profiling35. To ensure that CCN would function on microarray data, we 163 

first tested it by applying a CCN classifier created to test microarray data to 720 expression 164 

profiles of 12 tumor types. The cross-platform CCN classifier performed well, based on the 165 

comparison to study-provided annotation, achieving a mean AUPR of 0.944 (Supp Fig 2A). 166 

Next, we applied this cross-platform classifier to microarray expression profiles of CCLE (Supp 167 

Fig 2B). From the classification results of 571 cell lines that have both RNA-seq and microarray 168 

expression profiles, we found a strong positive association between the classification scores 169 

from RNA-seq and those from microarray (Supp Fig 2C). This comparison supports the notion 170 

that the classification scores for each cell line are not artifacts of profiling methodology. 171 

Moreover, this comparison shows that the scores are consistent between the times that the cell 172 

lines were first assayed by microarray expression profiling in 2012 and by RNA-Seq in 2019. 173 

We also observed high level of correlation between our analysis and the analysis done by Yu et 174 

al14(Supp Fig 2D), further validating the robustness of the CCN results.  175 

Next, we assessed the extent to which CCN classifications agreed with their nominal 176 

tumor type of origin. We annotated cell lines based their CCN score profile as follows. 'Correct' 177 

Cell lines with CCN score > 0.3 for the tumor type of origin were annotated 'correct'. Those with 178 

CCN scores > 0.3 in the tumor type of origin and at least one other tumor type were annotated 179 

as 'mixed'. Cell lines with CCN scores > 0.3 for tumor types other than that of the cell lines origin 180 

were annotated as 'other', and those lines that did not received a CCN score > 0.3 for any tumor 181 

type were annotated as 'none' (Fig 2B).  We selected a decision threshold of 0.3 based on the 182 

average of the threshold that produced the highest Macro F1 measure, harmonic mean of 183 
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precision and recall, across 50 cross validations. We found that majority of cell lines originally 184 

annotated as Breast invasive carcinoma (BRCA), Cervical squamous cell carcinoma and 185 

endocervical adenocarcinoma (CESC), Skin Cutaneous Melanoma (SKCM), Colorectal Cancer 186 

(COAD_READ) and Sarcoma (SARC) fell into the 'correct' category (Fig 2B). On the other 187 

hand, no Esophageal carcinoma (ESCA) or Brain Lower Grade Glioma (LGG) were classified as 188 

'correct', demonstrating the need for more transcriptionally faithful cell lines that model those 189 

general cancer types.  190 

There are several possible explanations for cell lines not receiving a 'correct' 191 

classification. One possibility is that the sample was incorrectly labeled in the study from which 192 

we harvest the expression data. Consistent with this explanation, we found that colorectal 193 

cancer line NCI-H68436,37, a cell line labelled as liver hepatocellular carcinoma (LIHC) by CCLE, 194 

was classified strongly as COAD_READ (Supp Tab 1). Another possibility to explain low CCN 195 

score is that cell lines were derived from subtypes of tumors that are not well-represented in 196 

TCGA. To explore this hypothesis, we first performed tumor subtype classification on the CCLE 197 

lines from 11 tumor types for which we had trained subtype classifiers (Supp Tab 2). We 198 

reasoned that if a cell was a good model for a rarer subtype, then it would receive a poor 199 

general classification but a high classification for the subtype that it models well. Therefore, we 200 

counted the number of lines that fit this pattern. We found that of the 223 lines with no general 201 

classification, 54 (24%) were classified as a specific subtype, suggesting that derivation from 202 

rare subtypes is not the major contributor to the poor overall fidelity of CCLs.  203 

  Another potential contributor to low scoring cell lines is intra-tumor stromal and immune 204 

cell impurity in the training data. If impurity were a confounder of CCN scoring, then we would 205 

expect a strong positive correlation between mean purity and mean CCN classification of CCLs 206 

per general tumor type. However, the Pearson correlation coefficient between the mean purity 207 

of general tumor type and mean CCN classification scores of CCLs in the corresponding 208 
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general tumor type was low (0.059), suggesting that tumor purity is not a major contributor to 209 

the low CCN scores across CCLE (Supp Fig 2E).  210 

 To more directly assess the impact of intra-tumor heterogeneity in the training data on 211 

evaluating cell lines, we constructed a classifier using cell types found in human melanoma and 212 

glioblastoma scRNA-seq data38, 39. Previously, we have demonstrated the feasibility of using our 213 

classification approach on scRNA-seq data23. Our scRNA-seq classifier achieved a high 214 

average AUPR (0.95) when applied to held-out data (Supp Fig 3A-B). Comparing the CCN 215 

score from bulk RNA-seq general classifier and scRNA-seq classifier, we observed a high level 216 

of correlation (Pearson correlation of 0.89) between the SKCM CCN classification scores and 217 

scRNA-seq SKCM malignant CCN classification scores for SKCM cell lines (Fig 2C, Supp Fig 218 

3C). Among the 37 SKCM cell lines that were classified as SKCM in general classification, 36 219 

SKCM cell lines were also classified as SKCM malignant cells in scRNA-seq classifier. 220 

Interestingly, we also observed a high correlation between the SARC CCN classification score 221 

and scRNA-seq cancer associated fibroblast (CAF) CCN classification scores (Pearson 222 

correlation of 0.89). Six of the 10 SKCM cell lines that had been classified as SARC by CCN 223 

were classified as CAF by the scRNAseq classifier (Fig 2D, Supp Fig 3C), which suggests the 224 

possibility that these cell lines were derived from CAF or other mesenchymal populations, or 225 

that they have acquired a mesenchymal character through their derivation. The high level of 226 

agreement between scRNA-seq and bulk RNA-seq classification results shows that 227 

heterogeneity in the training data of general CCN classifier has little impact in the classification 228 

of SKCM cell lines. 229 

In contrast, we observed a weaker correlation between GBM CCN classification scores 230 

and scRNA-seq GBM neoplastic CCN classification scores (Pearson correlation of 0.58) for 231 

GBM cell lines (Fig 2E, Supp Fig 3D). Of the 32 GBM lines that were not classified as GBM 232 

with CCN, 26 were classified as GBM neoplastic cells with the scRNAseq classifier. Among the 233 

27 GBM lines that were classified as SARC with CCN, 15 cell lines were classified as CAF (Fig 234 
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2F), and 10 of 15 lines were classified as both GBM neoplastic and CAF in the scRNA-seq 235 

classifier. Similar to the situation with SKCM lines that classify as CAF, this result is consistent 236 

with the possibility that  some GBM lines classified as SARC by CCN could be derived from 237 

mesenchymal subtypes exhibiting both strong mesenchymal signatures and glioblastoma 238 

signatures or that they have acquired a mesenchymal character through their derivation40. The 239 

lower level of agreement between scRNA-seq and bulk RNA-seq classification results for GBM 240 

models suggests that the heterogeneity of glioblastomas41 can impact the classification of GBM 241 

cell lines, and that the use of scRNA-seq classifier can resolve this deficiency.  242 

 Next, we explored the subtype classification of CCLs from three general tumor types in 243 

more depth, focusing first on UCEC. The histologically defined subtypes of UCEC, endometrioid 244 

and serous, differ in prevalence, molecular properties, prognosis, and treatment. For instance, 245 

the endometrioid subtype, which accounts for approximately 80% of uterine cancers, retains 246 

estrogen receptor and progesterone receptor status and is responsive towards progestin 247 

therapy42,43. Serous, a more aggressive subtype, is characterized by the loss of estrogen and 248 

progesterone receptor and is not responsive to progestin therapy42,43. CCN classified the 249 

majority of the UCEC cell lines as serous except for JHUEM-1 which is classified as 250 

endometrioid (Fig 3A). The preponderance CCLE lines of serous versus endometroid character 251 

may be due to properties of serous cancer cells that promote their in vitro propagation, such as 252 

upregulation in cell adhesion44. Some of our subtype classification results are consistent with 253 

prior observations. For example, HEC-1A, HEC-1B, and KLE were previously characterized as 254 

type II endometrial45. On the other hand, our subtype classification results contradict prior 255 

observations in at least one case. For instance, the Ishikawa cell line was derived from type I 256 

endometrial cancer (endometrioid histological subtype)45,46, however CCN classified a derivative 257 

of this line, Ishikawa 02 ER-, as serous. The high serous CCN score could result from a shift in 258 

phenotype of the line concomitant with its loss of estrogen receptor (ER) as this is a 259 
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distinguishing feature of type II endometrial cancer (serous histological subtype)42. Taken 260 

together, these results indicate a need for more endometroid-like CCLs.  261 

 Next, we examined the subtype classification of Lung Squamous Cell Carcinoma 262 

(LUSC) cell lines (Fig 3C). We found that of the 22 lines unclassified or misclassified in the 263 

general classifier, 6 (27%) were classified as a subtype. Among the LUSC cell lines that were 264 

classified as unknown in the general classifier and classified with a subtype, several cell lines 265 

had general classification scores modestly below the threshold. All the LUSC lines with at least 266 

one subtype classification had an underlying primitive subtype classification. This is consistent 267 

either with the ease of deriving lines from tumors with a primitive character, or with a process by 268 

which cell line derivation promotes similarity to more the primitive subtype, which is marked by 269 

increased cellular proliferation26. Some of our results are consistent with prior reports that have 270 

investigated the resemblance of some lines to LUSC subtypes. For example, HCC-95, classified 271 

as classical and primitive subtype, has previously been characterized as classical26,47. Further, 272 

LUDLU-1, classified as a primitive subtype, has classification signal in classical subtype which 273 

was previously characterized as resembling classical47. Likewise, although EPLC-272H was 274 

also classified as primitive subtype, it has relatively high CCN score in the basal subtype, which 275 

corresponds to its previous characterization as basal47. Lung Adenocarcinoma (LUAD) cell lines 276 

had classification results similar to LUSC: most lines did not classify as LUAD in the general 277 

classifier (66 of 76) (Fig 3B). The cell lines that were classified as a subtype were either 278 

classified as proximal inflammation, proximal proliferation or a mix of the two. RERF-LC-Ad1 279 

had the highest general classification score and the highest proximal inflammation subtype 280 

classification score. Taken together, these subtype classification results have revealed an 281 

absence of cell lines models for basal, classical, and secretory LUSC, and for the Terminal 282 

respiratory unit (TRU) LUAD subtype. 283 

Finally, we sought to measure the extent to which cell line transcriptional fidelity related 284 

to model use. We used the number of papers in which a model was mentioned, normalized by 285 
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the number of years since the cell line was documented, as a rough approximation of model 286 

usage. To explore this metric, we plotted the normalized citation count versus general 287 

classification score, labeling the highest cited and highest classified cell lines from each general 288 

tumor type (Fig 3D). For most of the general tumor types, the highest cited cell line is not the 289 

highest classified cell line except for Hep G2 and ML-1, representing liver hepatocellular 290 

carcinoma (LIHC) and thyroid carcinoma (THCA), respectively. On the other hand, the general 291 

scores of the highest cited cell lines representing BLCA, SKCM, BRCA, PRAD and 292 

COAD_READ fall below the classification threshold of 0.3. Notably, each of these tumor types 293 

have other lines with scores exceeding 0.7, which should be considered as more faithful 294 

transcriptional models when selecting lines for a study (Supp Table 1 and 295 

http://www.cahanlab.org/resources/cancerCellNet_results/).  296 

 297 

Evaluation of patient derived xenografts 298 

 Next, we sought to evaluate a more recent class of cancer models: PDX. To do so, we 299 

subjected the RNA-Seq expression profiles of 415 PDX models from 13 different types of 300 

cancer types generated previously17 to CCN. Similar to the results of CCLE, the PDXs exhibited 301 

a wide range of classification scores (Fig 4A, Supp Tab 3). By categorizing the CCN scores of 302 

PDX based on the proportion of samples associated with each tumor type that were correctly 303 

classified, we found that SARC, SKCM, COAD_READ and BRCA have higher proportion of 304 

correctly classified PDX than those of other cancer categories (Fig 4B). In contrast to CCLE, we 305 

found a higher proportion of correctly classified PDX in Stomach adenocarcinoma (STAD) and 306 

KIRC (Fig 4B). However, similar to CCLE, no ESCA PDXs were classified as such. This held 307 

true when we performed subtype classification on PDX samples: none of the PDX in ESCA 308 

were classified as any of the ESCA subtypes (Supp Tab 4). UCEC PDXs had both 309 

endometrioid subtypes, serous subtypes, and mixed subtypes, which provided a broader 310 

representation than in CCLE (Fig 4C). Many LUSC PDXs that were classified as a subtype 311 
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were also classified as Head and Neck squamous cell carcinoma (HNSC) (Fig 4D). This could 312 

be due to the similarity in expression profiles of basal and classical subtypes of HNSC and 313 

LUSC26,48, which is consistent with the observation that these PDXs were also subtyped as 314 

basal and classical. No LUSC PDXs were classified as the secretory subtype. While eight of the 315 

LUAD PDX samples were classified as the unknown subtype class classification, the remaining 316 

six classified as proximal proliferative or proximal inflammatory (Fig 4E). Finally, similar to the 317 

CCLE, there were no TRU subtypes in the PDX cohort. In summary, we found that while 318 

individual PDXs can reach extremely high transcriptional fidelity to both general tumor types and 319 

subtypes, many PDXs were not classified as the general tumor type from which they originated. 320 

 321 

Evaluation of GEMMs 322 

 Next, we used CCN to evaluate GEMMs of six general tumor types from nine studies for 323 

which expression data was publicly available49–57. As was true for CCLs and PDXs, GEMMs 324 

also had a wide range of CCN scores (Fig 5A, Supp Tab 5). We next categorized the CCN 325 

scores based on the proportion of samples associated with each tumor type that were correctly 326 

classified (Fig 5B). In contrast to CCLs and PDXs, the GEMM dataset included multiple 327 

replicates per model, which allowed us to examine intra-GEMM variability. Both at the level of 328 

CCN score and at the level of categorization, GEMMs were highly invariant. For example, 329 

replicate of UCEC GEMMs driven by Prg(cre/+)Pten(lox/lox) received almost identical general 330 

and subtype classification profiles (Supp Fig 4, Supp Tab 6). GEMMs sharing genotypes 331 

across studies such as LUAD GEMMs driven by Kras mutation and loss of p5349,55,57 received 332 

similar general and subtype classification scores (Fig. 5A,B,D). Even GEMMs with mixed 333 

classifications received consistent CCN scores. For example,  LGG GEMMs, generated by Nf1 334 

mutations expressed in different neural progenitors in combination with Pten deletion56, 335 

consistently received mixed classification as both LGG and GBM (Fig 5A).   336 
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 To explore the extent to which driver genotype impacted subtype classification, we 337 

examined two general tumor types in which there were GEMMs with different tumor drivers: 338 

LUSC and LUAD. The LUSC GEMMs were generated using loss of Lkb1 and either 339 

overexpression of Sox2 (via two distinct mechanisms) or loss of Pten55. Although most of the 340 

lenti-Sox2-Cre-infected;Lkb1fl/fl and Rosa26LSL-Sox2-IRES-GFP;Lkb1fl/fl samples were 341 

classified as unknown, their general LUSC CCN scores were only modestly lower than the 342 

decision threshold and consistently throughout (Fig 5C). Those two models also classified 343 

mostly as secretory subtype of LUSC. The consistency is not surprising given both models 344 

overexpress Sox2 and lose Lkb1. Most of the Lkb1fl/fl;Ptenfl/fl GEMMs received unknown general 345 

classifications with general LUSC CCN scores substantially lower than those of lenti-Sox2-Cre-346 

infected;Lkb1fl/fl samples and Rosa26LSL-Sox2-IRES-GFP;Lkb1fl/fl samples. Moreover, our 347 

subtype classification indicated that this GEMM was mostly classified as unknown, in contrast to 348 

prior reports suggesting that it is most similar to a basal subtype58. The lenti-Sox2-Cre-349 

infected;Lkb1fl/fl samples received high secretory subtype scores, whereas the Rosa26LSL-350 

Sox2-IRES-GFP;Lkb1fl/fl samples were classified as a more balanced mix of secretory and 351 

primitive subtypes. None of the three LUSC GEMMs have strong classical or basal sub-type 352 

CCN scores.   353 

All of the LUAD GEMMs, which were generated using various combinations of activating 354 

Kras mutation, loss of Trp53, and loss of Smarca4L49,55,57, were correctly classified (Fig 5D). 355 

There were no substantial differences in general, or subtype classification across driver 356 

genotypes. Notably, the subtypes tended to have CCN scores in mixture of proximal 357 

proliferation, proximal inflammation and TRU. Taken together, this analysis suggests that there 358 

is a degree of similarity, and perhaps plasticity between the primitive and secretory (but not 359 

basal or classical) subtypes of LUSC. On the other hand, while the LUAD GEMMs classify 360 

strongly as LUAD, do not have strong particular subtype classification -- a result that does not 361 

vary by genotype. 362 
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 363 

Comparison of CCLs, PDXs, and GEMMs  364 

 Finally, we sought to estimate the comparative transcriptional fidelity of the three cancer 365 

models modalities, limiting our comparison to those five general tumor types for which there 366 

were at least two examples per modality: UCEC, Pancreatic adenocarcinoma (PAAD), LUSC, 367 

LUAD, and LIHC.  We compared the general CCN scores of each model on a per tumor type 368 

basis (Fig 6A). In the case of GEMMs, we used the mean classification score of all samples 369 

with shared genotypes. We found that GEMMs had the highest median general classification 370 

scores in four out of the five tumor types. However, some PDXs achieved the highest 371 

classification scores. In UCEC, LUAD and LIHC, the maximum classification score of PDXs 372 

exceeded 0.75 and were thus comparable to the majority of scores on held out TCGA data, 373 

highlighting the potential for PDXs to mirror the transcriptional state of natural tumors (Fig 6A). 374 

Because the CCN score is based on a moderate number of gene pairs (i.e. 1647) relative to the 375 

total number of protein-coding genes, it is possible that a cancer model with a high CCN score 376 

might not have a high global similarity to a naturally occurring tumor. Therefore, we also 377 

calculated the GRN status,  a metric of the extent to which tumor-type specific gene regulatory 378 

network is established18, for all models (Supp Fig 5). We observed high level of correlation 379 

between the two similarity metrics, which suggests that although CCN classifies on a selected 380 

set of genes, its scores are highly correlated with global assessment of transcriptional similarity. 381 

 We also sought to compare model modalities in terms of the diversity of subtypes that 382 

they represent (Supp Fig 6). As a reference, we also included in this analysis the overall 383 

subtype incidence, as approximated by incidence in TCGA. In models of UCEC, there is a 384 

notable difference in endometroid incidence, and the proportion of models classified as 385 

endometroid, with only PDX having any representatives (Fig 6B). The vast majority of CCLs 386 

and all of the GEMM models of PAAD have an unknown subtype classification. However, the 387 

majority of PDXs are subtyped as either a mixture of basal and classical, or basal and classical 388 
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alone. LUSC have proximal inflammation and proximal proliferation subtypes modelled by CCLs 389 

and PDX, and TRU subtype modelled by GEMMs exclusively (Fig 6B). Likewise, LUAD have 390 

basal, classical and primitive subtypes modelled by CCLs and PDXs, and secretory subtype 391 

modelled by GEMMs exclusively (Fig 6B). Taken together, these results demonstrate the need 392 

to carefully select different model systems to more suitably model certain cancer subtypes.  393 

 394 

DISCUSSION 395 

A major goal in the field of cancer biology is to develop models that mimic naturally occurring 396 

tumors with enough fidelity to enable therapeutic discoveries. However, methods to measure 397 

the extent to which cancer models resemble or diverge from native tumors are lacking. This is 398 

especially problematic now because there are many existing models from which to choose, and 399 

it has become easier to generate new models. Here, we present CancerCellNet (CCN), a 400 

computational tool that measures the similarity of cancer models to 22 naturally occurring tumor 401 

types and 36 subtypes. Because CCN is platform- and species-agnostic, it can be applied 402 

across many model modalities, including CCLs, PDXs, and GEMMs, and thus it represents a 403 

consistent platform to compare models across modalities. Here, we applied CCN to 657 cancer 404 

cell lines, 415 patient derived xenografts, and 26 distinct genetically engineered mouse models. 405 

Several lessons emerged from our computational analyses that have implications for the field of 406 

cancer biology. 407 

 First, CancerCellNet indicates that GEMMs are transcriptionally the most faithful models 408 

of four out of five general tumor types for which data from all modalities was available. This is 409 

consistent with the fact that GEMMs are typically derived by recapitulating well-defined driver 410 

mutations of natural tumors, and thus this observation corroborates the importance of genetics 411 

in the etiology of cancer59. Moreover, in contrast to most PDXs, GEMMs are typically generated 412 

in immune replete hosts. Therefore, the higher fidelity of GEMMs may also be a result of the 413 

influence of a native immune system on GEMM tumors60. Second, PDXs and CCLs have lower 414 
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scores that are comparable to each other. This is consistent with the observation that PDXs can 415 

undergo selective pressures in the host that distort the progression of genomic alterations away 416 

from what is observed in natural tumors61. Furthermore, the observation that a few PDXs have 417 

very high classification scores, approaching a level that is indistinguishable from held out TCGA 418 

data, suggests that under certain conditions, PDX can almost perfectly mimic natural tumors 419 

transcriptionally. It is unclear what are these conditions; it may be that these few PDXs were 420 

profiled prior to the acquisition of non-typical genomic alterations. Third, we have found that 421 

none of the samples that we evaluated here are transcriptionally adequate models of ESCA, 422 

and therefore this tumor type requires further attention to derive new models. Fourth, we found 423 

that in several tumor types, GEMMs tend to reflect mixtures of subtypes rather than conforming 424 

strongly to single subtypes. The reasons for this are not clear but it is possible that in the cases 425 

that we examined the histologically defined subtypes have a degree of plasticity that is 426 

exacerbated in the murine host environment. We have made the results of our analyses 427 

available online so that researchers can easily explore the performance of selected models or 428 

identify the best models for any of the 22 general tumor types and the 36 subtypes presented 429 

here.    430 

 Currently, there are several limitations to our CCN tool, and caveats to our analyses 431 

which indicate areas for future work and improvement. First, CCN is based on transcriptomic 432 

data but other molecular readouts of tumor state, such as profiles of the proteome62,  433 

epigenome63, non-coding RNA-ome63, and genome59 would be equally, if not more important, to 434 

mimic in a model system. Therefore, it is possible that some models reflect tumor behavior well, 435 

and because this behavior is not well predicted by transcriptome alone, these models have 436 

lower CCN scores. To both measure the extent that such situations exist, and to correct for 437 

them, we plan in the future to incorporate other omic data into CCN so as to make more 438 

accurate and integrated model evaluation possible. A second limitation is that in the cross-439 

species analysis, CCN implicitly assumes that homologs are functionally equivalent. The extent 440 
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to which they are not functionally equivalent determines how confounded the CCN results will 441 

be. This possibility seems to be of limited consequence based on the high performance of the 442 

normal tissue cross-species classifier and based on the fact that GEMMs have the highest 443 

median CCN scores. Finally, the TCGA training data is made up of RNA-Seq from bulk tumor 444 

samples, which necessarily includes non-tumor cells, whereas the CCLs are by definition cell 445 

lines of tumor origin. Therefore, CCLs theoretically could have artificially low CCN scores due to 446 

the presence of non-tumor cells in the training data. This problem appears to be limited as we 447 

found no correlation between tumor purity and CCN score in the CCLE samples. However, this 448 

problem is related to the question of intra-tumor heterogeneity. We demonstrated the feasibility 449 

of using CCN and single cell RNA-seq data to refine the evaluation of cancer cell lines 450 

contingent upon availability of scRNA-seq training data. As more sufficient training single cell 451 

RNA-Seq data accrues, CCN would be able to not only evaluate models on a per cell type 452 

basis, but also based on cellular composition. 453 

  To ensure that CCN is widely available we have developed a free web application, 454 

which performs CCN analysis on user-uploaded data and allows for direct comparison their to 455 

the cancer models evaluated here.  We have also made the CCN code freely available under an 456 

Open Source license and as an easily installed R package, and we are actively supporting its 457 

further development. The documentation describes how to analyze model(s) and compare the 458 

results to the panel of models that we evaluated here, thereby allowing researchers to 459 

immediately compare their models to the broader field in a comprehensive and standard 460 

fashion. 461 

 462 

Online Methods 463 

Training General CancerCellNet Classifier 464 

To generate training data sets, we downloaded 8991 patient tumor RNA-seq expression 465 

count matrix and their corresponding sample table across 22 different tumor types from TCGA 466 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.012757doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.27.012757
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 18

using TCGAWorkflowData, TCGAbiolinks64 and SummarizedExperiment65 packages. We used 467 

all the patient tumor samples for training the general CCN classifier. Later, we found the 468 

intersecting genes between TCGA dataset and all the query samples (CCLs, PDXs, GEMMs), 469 

and used them as features for the feature engineering and selection process of building the 470 

classifier. To train the top pair Random Forest classifier, we used a method similar to our 471 

previous method23. CCN first normalized the training counts matrix by down-sampling the 472 

counts to 500,000 counts per cell. To significantly reduce the time and resource of generating 473 

gene pairs for all possible genes, CCN then selected 30 up-regulated genes, 30 down-regulated 474 

genes and 30 least differentially expressed genes for each of the 23 cancer categories using 475 

template matching66 as the genes to generate top scoring gene pairs. In short, for each tumor 476 

type, CCN defined a template vector that labelled the training tumor samples in cancer type of 477 

interest as 1 and all other tumor samples as 0 CCN then calculated the Pearson correlation 478 

coefficient between template vector and gene expressions for all genes. The genes with strong 479 

match to template as either upregulated or downregulated had large absolute Pearson 480 

correlation coefficient. CCN chose the upregulated, downregulated and least differentially 481 

expressed genes based on the magnitude of Pearson correlation coefficient.  482 

After CCN selected the genes for each cancer type, CCN generated gene pairs among 483 

those genes. Gene pair transformation was a method inspired by the top-scoring pair classifier67 484 

to allow compatibility of classifier with query expression profiles that were collected through 485 

different platforms (e.g. microarray query data applied to RNA-seq training data). In brief, the 486 

gene pair transformation compares 2 genes within an expression sample and encodes the 487 

“gene1_gene2” gene-pair as 1 if the first gene has higher expression than the second gene. 488 

Otherwise, gene pair transformation would encode the gene-pair as 0. Using all the gene pair 489 

combinations generated through the gene sets across all cancer types, CCN then selected top 490 

75 discriminative gene pairs for each category using template matching (with large absolute 491 

Pearson correlation coefficient) described above.  492 
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After the top discriminative gene pairs were selected for each cancer categories, CCN 493 

concatenate all the gene pairs into a vector and gene pair transformed the training samples into 494 

a binary matrix with all the discriminative gene pairs as row names and all the training samples 495 

as column names. Using the binary gene pair matrix, CCN randomly shuffled the binary values 496 

across rows then across column generating random profiles that should not resemble training 497 

data from any of the cancer categories. CCN then sampled 70 random profiles, annotated them 498 

as “Unknown” and appended them to the training gene pair binary matrix as training data for the 499 

“Unknown” category.  500 

Using gene pair binary training matrix, CCN constructed a multi-class Random Forest 501 

classifier of 2000 trees and used stratified sampling of 60 sample size to ensure balance of 502 

training data in constructing the decision trees. The specific parameters for the final CCN 503 

classifier using the function “broadClass_train” in the package cancerCellNet are in Supp Tab 504 

7. The gene-pairs are in Supp Tab 8. 505 

 506 

Validating General CancerCellNet Classifier 507 

2/3 of patient tumor data from each cancer type were randomly sampled as training data 508 

to construct a CCN classifier. After the classifier was built, 35 held-out samples from each 509 

cancer categories were sampled and 40 “Unknown” profiles were generated for validation. CCN 510 

gene pair transformed the held-out data for assessment based on the top gene-pairs selected to 511 

construct the classifier. The process of randomly sample training set from 2/3 of all patient 512 

tumor data, train classifier and validate using validation set was repeated 50 times to have a 513 

more comprehensive assessment of the classifier. We used precision-recall curve and area 514 

under the precision-recall curve (AUPR) as our metric of assessing the classifiers. 515 

 516 

Classifying Query Data into General Cancer Categories 517 
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We downloaded the RNA-seq cancer cell lines expression profiles and sample table 518 

from (https://portals.broadinstitute.org/ccle/data), and microarray cancer cell lines expression 519 

profiles and sample table from Barretina et al 35. We received PDX expression estimates and 520 

sample annotations from the authors of Gao et al 17. We gathered GEMM expression profiles 521 

from 9 different studies49–57. To use CCN classifier on GEMM data, the mouse genes from 522 

GEMM expression profiles were converted into their human homologs. The query samples were 523 

gene pair transformed using gene pairs selected from the training step, and then inputted into 524 

CCN classifier for classification. Each query classification profile was labelled as one of the four 525 

classification categories: “correct”, “mixed”, “none” and “other” based on classification profiles. If 526 

a sample has a CCN score higher than the decision threshold (0.3) in the labelled cancer 527 

category, we assign that as “correct”. If a sample has CCN score higher than the decision 528 

threshold in labelled cancer category and in other cancer categories, we assign that as “mixed”. 529 

If a sample has no CCN score higher than the decision threshold in any cancer category or has 530 

the highest CCN score in ‘Unknown’ category, then we assign it as “none”. If a sample has CCN 531 

score higher than the decision threshold in a cancer category or categories not including the 532 

labelled cancer category, we assign it as ”other”. We analyzed and visualized the results using 533 

R and R packages pheatmap68 and ggplot269.  534 

 535 

Cross-Species Assessment  536 

To assess the performance of cross-species classification, we downloaded 1003 537 

labelled human tissue/cell type and 1993 labelled mouse tissue/cell type RNA-seq expression 538 

profiles from Github (https://github.com/pcahan1/CellNet). We first converted the mouse genes 539 

into human homologous genes. Then we found the intersecting genes between mouse 540 

tissue/cell expression profiles and human tissue/cell expression profiles. Limiting the input of 541 

RNA-seq profiles to the intersecting genes, we trained a CCN classifier with all the human 542 

tissue/cell expression profiles. The parameters used for the function “broadClass_train” in the 543 
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package cancerCellNet are in Supp Tab 7. After the classifier was trained, we randomly 544 

sampled 75 samples from each tissue category in mouse tissue/cell data and applied the 545 

classifier on those samples to assess performance.  546 

 547 

 Cross-Technology Assessment  548 

To assess the performance of CCN in applications to microarray data, we gathered 549 

6,219 patient tumor microarray profiles across 12 different cancer types from more than 100 550 

different projects (Supp Tab 9). We found the intersecting genes between the microarray 551 

profiles and TCGA patient RNA-seq profiles. Limiting the input of RAN-seq profiles to the 552 

intersecting genes, we created a CCN classifier with all the TCGA patient profiles using 553 

parameters for the function “broadClass_train” listed in Supp Tab 7.  After the microarray 554 

specific classifier was trained, we randomly sampled 60 microarray patient samples from each 555 

cancer category, and applied CCN classifier on them as assessment of the cross-technology 556 

performance in Supp Fig 3A. The same CCN classifier was used to assess microarray CCL 557 

samples Supp Fig 3B.  558 

 559 

Training and validating scRNA-seq Classifier  560 

We extracted labelled human melanoma and glioblastoma scRNA-seq expression 561 

profiles38,39, and compiled the two datasets excluding 3 cell types T.CD4, T.CD8 and Meyloid 562 

due to low number of cells for training. 60 cells from each of the 11 cell types were sampled for 563 

training a scRNA-seq classifier. The parameters for training a general scRNA-seq classifier 564 

using the function “broadClass_train” are in Supp Tab 7.  25 cells from each of the 11 cell types 565 

from the held-out data were selected to assess the single cell classifier. Using the PR curve and 566 

maximizing Macro F1 measure, we selected the decision threshold of 0.255. We then applied 567 

the scRNA-seq classifier on SKCM CCLs and GBM CCLs.  568 

 569 
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Training Subtype CancerCellNet 570 

We found 11 cancer types (BRCA, COAD, ESCA, HNSC, KIRC, LGG, PAAD, UCEC, 571 

STAD, LUAD, LUSC) which have meaningful subtypes based on either histology or molecular 572 

profile and have sufficient samples to train a subtype classifier with high AUPR. We also 573 

included normal tissues samples from BRCA, COAD, HNSC, KIRC, UCEC to create a normal 574 

tissue category in the construction of their subtype classifiers. Training samples were either 575 

labelled as a cancer subtype for the cancer of interest or as “Unknown” if they belong to other 576 

cancer types. Similar to general classifier training, CCN performed gene pair transformation and 577 

selected the most discriminate gene pairs for each cancer subtype. In addition to the gene pairs 578 

selected to discriminate cancer subtypes, CCN also performed general classification of all 579 

training data and appended the classification profiles of training data with gene pair binary 580 

matrix as additional features. The reason behind using general classification profile as additional 581 

features is that many general cancer types may share similar subtypes, and general 582 

classification profile could be important features to discriminate the general cancer type of 583 

interest from other cancer types before performing finer subtype classification. The specific 584 

parameters used to train individual subtype classifiers using “subClass_train” function of 585 

CancerCellNet package can be found in Supp Tab 7 and the gene pairs are in Supp Tab 8.  586 

 587 

Validating Subtype CancerCellNet 588 

 Similar to validating general class classifier, we randomly sampled 2/3 of all samples in 589 

each cancer subtype as training data and sampled an equal amount across subtypes in the 590 

held-out data for assessing subtype classifiers. We repeated the process 20 times for more 591 

comprehensive assessment of subtype classifiers.  592 

 593 

Classifying Query Data into Subtypes 594 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.012757doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.27.012757
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 23

We assigned subtype to query sample if the query sample has CCN score higher than 595 

the decision threshold. If a query sample has CCN scores higher than decision threshold, which 596 

was chosen through maximizing Macro F1 measure. The table of decision threshold for subtype 597 

classifiers are in Supp Tab 10. If a query sample with no CCN score higher than decision 598 

threshold in any subtype or has the highest CCN score in ‘Unknown’ category, then we 599 

assigned that sample as ‘Unknown’. Analysis and visualizations were done in R and 600 

ComplexHeatmap package70.   601 

 602 

Tumor Purity Analysis  603 

 We used the R package ESTIMATE71 to calculate the ESTIMATE scores from TCGA 604 

tumor expression profiles that we used as training data for CCN classifier. To calculate tumor 605 

purity we used the equation described in YoshiHara et al., 201371: 606 

 Tumour purity � cos �0.6049872018 � 0.0001467884 �  ESTIMATE score  

 607 

Extracting Citation Counts  608 

 We used the R package RISmed72 to extract the number of citations for each cell line 609 

through query search of “cell line name[Text Word] AND cancer[Text Word]” on PubMed. The 610 

citation counts were normalized by dividing the citation counts with the number of years since 611 

first documented.  612 
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 613 

GRN construction and GRN Status  614 

 GRN construction was extended from our previous method18. 80 samples per cancer 615 

type were randomly sampled and normalized through down sampling as training data for the 616 

CLR GRN construction algorithm. Cancer type specific GRNs were identified by determining the 617 
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differentially expressed genes per each cancer type and extracting the subnetwork using those 618 

genes.  619 

 To extend the original GRN status algorithm18 across different platforms and species, we 620 

devised a rank-based GRN status algorithm. Like the original GRN status, rank based GRN 621 

status is a metric of assessing the similarity of cancer type specific GRN between training data 622 

in the cancer type of interest and query samples. Hence, high GRN status represents high level 623 

of establishment or similarity of the cancer specific GRN in the query sample compared to those 624 

of the training data. The expression profiles of training data and query data were transformed 625 

into rank expression profiles by replacing the expression values with the rank of the expression 626 

values within a sample (highest expressed gene would have the highest rank and lowest 627 

expressed genes would have a rank of 1). Cancer type specific mean and standard deviation of 628 

every gene’s rank expression were calculated using training data. The modified Z-score values 629 

for genes within cancer type specific GRN were calculated for query sample’s rank expression 630 

profiles to quantify how dissimilar the expression values of genes in query sample’s cancer type 631 

specific GRN compared to those of the reference training data: 632 

� � ����	��	
	 ����� = 633 

� 0,  �� � � ����	 �� �������	 �

 ��	 �	
	 �� ���

 ��  	 ���	�����	
0,  �� � � ����	 �� 
	�����	 �

 ��	 �	
	 �� ���

 ��  	 
�!
�	�����	
� ��� � ����	�,  ���	�!��	 

" 634 

If a gene in the cancer type specific GRN is found to be upregulated in the specific 635 

cancer type relative to other cancer types, then we would consider query sample’s gene to be 636 

similar if the ranking of the query sample’s gene is equal to or greater than the mean ranking of 637 

the gene in training sample. As a result of similarity, we assign that gene of a Z-score of 0. The 638 

same principle applies to cases where the gene is downregulated in cancer specific subnetwork.  639 

GRN status for query sample is calculated as the weighted mean of the �1000 �640 

�����	��	
	 ������ across genes in cancer type specific GRN. 1000 is an arbitrary large 641 
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number, and larger dissimilarity between query’s cancer type specific GRN indicate high Z-642 

scores for the GRN genes and low GRN status. 643 

$%& � '�1000 � �����	��	
	 ������!	�������� �

�

�	


 

%$� &����� � $%&∑ !	�������� �
�
�	


 

The weight of individual genes in the cancer specific network is determined by the importance of 644 

the gene in the Random Forest classifier. We later normalize the GRN status in respect to the 645 

GRN status of the cancer type of interest and the cancer type with the lowest mean GRN status.  646 
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�����%$� �����������
 ���� ����
��� �  

Where “min cancer” represents the cancer type where its training data have the lowest mean 647 

GRN status in the cancer type of interest, and ����%$� ������ ��� �����
 � represents the 648 

average GRN status of cancer type with the lowest average GRN status in the “min cancer”. 649 

����%$� �����������
 ���� ����
���� represents average GRN status of the cancer type of interest 650 

in the training data.  651 

 652 

Code availability 653 

CancerCellNet code and documentation is available at GitHub: 654 

https://github.com/pcahan1/cancerCellNet 655 

 656 

FIGURE LEGENDS 657 

Fig. 1 CancerCellNet (CCN) workflow and performance. (A) Schematic of CCN training (top) 658 

and usage (bottom). CCN was designed to assess and compare the expression profiles of 659 

cancer models such as CCLs, PDXs, and GEMMs with native patient tumors. First, CCN takes 660 

patient tumor expression profiles of 23 different cancer types from TCGA to train a multi-class 661 
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Random Forest classifier and performs gene-pair transformation on tumor expression profiles. 662 

Then CCN selects the most discriminative gene pairs for each cancer type as features. Lastly, 663 

CCN trains a multi-class Random Forest classifier using gene-pair transformed training data 664 

and feature gene pairs. To use trained classifier, CCN inputs the query samples (e.g. 665 

expression profiles from CCLs, PDXs, GEMMs) and generates a classification profile for the 666 

query samples. The column names of the classification heatmap represent sample annotation 667 

and the row names of the classification heatmap represent different cancer types. Each grid is 668 

colored from black to yellow representing the lowest classification score (e.g. 0) to highest 669 

classification score (e.g. 1). (B) Mean and standard deviation of area under the precision recall 670 

curve (AUPR) of classifiers based on 50 iterations of cross-validation: random sampling of 671 

training data (2/3 of samples for each cancer category), training CCN classifiers using training 672 

data and testing the classifiers on held-out data (1/3 of samples for each cancer category). 673 

 674 

Fig. 2 Evaluation of cancer cell lines. (A) General classification heatmap of CCLs extracted from 675 

CCLE. Column annotations of the heatmap represent the labelled cancer category of the CCLs 676 

given by CCLE and the row names of the heatmap represent different cancer categories. CCLs’ 677 

general classification profiles are categorized into 4 categories: correct (red), correct mixed 678 

(pink), no classification (light green) and other classification (dark green) based on the decision 679 

threshold of 0.3. (B) Bar plot represents the proportion of each classification category in CCLs 680 

across cancer types ordered from the cancer types with the highest proportion of correct and 681 

correct mixed CCLs to lowest proportion. (C) Comparison between SKCM general CCN scores 682 

from bulk RNA-seq classifier and SKCM malignant CCN scores from scRNA-seq classifier for 683 

SKCM CCLs. (D) Comparison between SARC general CCN scores from bulk RNA-seq 684 

classifier and CAF CCN scores from scRNA-seq classifier for SKCM CCLs. (E) Comparison 685 

between GBM general CCN scores from bulk RNA-seq classifier and GBM neoplastic CCN 686 

scores from scRNA-seq classifier for GBM CCLs. (F) Comparison between SARC general CCN 687 
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scores and CAF CCN scores from scRNA-seq classifier for GBM CCLs. The green lines 688 

indicate the decision threshold for scRNA-seq classifier and general classifier.  689 

 690 

Fig. 3 Subtype classification of CCLs. The heatmap visualizations represent subtype 691 

classification of UCEC CCLs (A), LUAD CCLs (B) and LUSC CCLs (C). The row names 692 

represent CCLs and column names represent cancer subtypes of UCEC, LUSC and LUAD. The 693 

bar plots to the right of the subclass heatmaps represent the general classification scores in cell 694 

lines’ annotated cancer category, and the color strips to the right of the subclass heatmaps 695 

represent subclass classification (left) and general classification (right). (D) Comparison of 696 

normalized citation counts and general CCN classification scores of CCLs. Labelled cell lines 697 

either have the highest CCN classification score in their labelled cancer category or highest 698 

normalized citation count. Hep G2 and ML-1 have both the highest CCN classification score in 699 

their labelled cancer category and the highest normalized citation count. Each citation count 700 

was normalized by number of years since first documented.  701 

  702 

Fig. 4 Evaluation of patient derived xenografts. (A) General classification heatmap of PDXs. 703 

Column annotations represent annotated cancer type of the PDXs, and row names represent 704 

cancer categories. (B) Proportion of classification categories in PDXs across cancer types is 705 

visualized in the bar plot and ordered from the cancer type with highest proportion of correct and 706 

mixed correct classified PDXs to the lowest. Subtype classification heatmaps of UCEC PDXs 707 

(C), LUSC PDXs (D) and LUAD PDXs (E).  708 

 709 

Fig. 5 Evaluation of genetically engineered mouse models. (A) General classification heatmap 710 

of GEMMs. Column annotations represent annotated cancer type of the GEMMs, and row 711 

names represent cancer categories. (B) Proportion of classification categories in GEMMs 712 

across cancer types is visualized in the bar plot and ordered from the cancer type with highest 713 
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proportion of correct and mixed correct classified GEMMs to the lowest. Subtype classification 714 

heatmap of LUSC GEMMs (C) and LUAD GEMMs (D). 715 

 716 

Fig. 6 Comparison of CCLs, PDXs, and GEMMs. (A) Box-and-whiskers plot comparing general 717 

CCN scores across CCLs, GEMMs, PDXs of five general tumor types. (B) Proportion of UCEC 718 

(top-left), PAAD (top-right), LUAD (bottom-left) and LUSC (bottom-right) subtypes across cancer 719 

model modalities and TCGA patient data. For GEMMs, all classification profiles of replicates 720 

with the same genotype from the same study are averaged into one classification profile when 721 

calculating the proportion.  722 

 723 

Supplementary Information 724 

Supplementary Figure 1 Assessment of CCN general classifier and subtype classifier. (A) 725 

Mean and range of CCN classifier’s PR curves from 50 cross validations. (B) AUPR of CCN 726 

classifier when applied to independent patient tumor data from ICGC. (C) AUPR of CCN human 727 

tissue classifier when applied to mouse tissue data. (D) The schematic of training a subtype 728 

classifier in CCN. CCN uses patient tumor expression profiles from cancer of interest as training 729 

data. CCN performs gene-pair transformation and selects the most discriminative gene pairs 730 

among the cancer subtypes from training data as features. CCN then applies the general 731 

classification on training data and uses the general classification profile as features in addition 732 

to gene pairs for training a Random Forest classifier. The weight of the general classification 733 

profiles as features can be tuned to maximize AUPR. (E) The mean and standard deviation of 734 

AUPR for 11 subtype classifiers based on 20 iterations of random sampling of training and held-735 

out data, training subtype classifier using training data, classification of held-out data, and 736 

calculation of recall and precision.  737 

 738 
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Supplementary Figure 2 Further validation of CCN and classification results. To validate the 739 

cross-platform classification performance of CCN, a new classifier specifically trained to classify 740 

microarray data was trained using RNA-seq data from TCGA as training data and intersecting 741 

genes between RNA-seq data and microarray data. (A) AUPR of CCN classifier when applied to 742 

primary microarray testing tumor data. (B) Classification heatmap of CCLs using microarray 743 

expression data. (C) Pearson correlation between CCN scores of CCLE lines generated from 744 

RNA-seq data and microarray data. (D) Comparison between CCLs’ CCN scores and the 745 

median correlation results from Yu et al. (E) Comparison of mean tumor purity of training data 746 

and mean CCN score of CCLs for each cancer category.  747 

 748 

Supplementary Figure 3 Single-cell classification of SKCM and GBM cell lines. (A) 749 

Classification heatmap of held-out scRNA-seq data. (B) AUPR of the scRNA-seq classifier 750 

when applied to scRNA-seq held-out data. (C) Single-cell classification of SKCM CCLs. (D) 751 

Single-cell classification of GBM CCLs.  752 

 753 

Supplementary Figure 4 Cancer subtype classification heatmap of UCEC GEMMs.  754 

 755 

Supplementary Figure 5 Correlation between cancer type subnetwork GRN status and general 756 
CCN scores.  757 
 758 
 759 
Supplementary Figure 6 Proportion of cancer subtypes in different cancer models and TCGA 760 
tumor data across 11 general cancer types.  761 
 762 
  763 
Supplementary Table 1 General classification profiles of CCLs.   764 
 765 
Supplementary Table 2 Subtype classification profiles of CCLs. 766 
 767 
Supplementary Table 3 General classification profiles of PDXs. 768 
 769 
Supplementary Table 4 Subtype classification profiles of PDXs. 770 
 771 
Supplementary Table 5 General classification profiles of GEMMs 772 
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 773 
Supplementary Table 6 Subtype classification profiles of GEMMs. 774 
 775 
Supplementary Table 7 Specific parameters used for training of all classifiers. 776 
 777 
Supplementary Table 8 Gene-pairs selected for final training of CCN general and subtype 778 
classifiers. 779 
 780 
Supplementary Table 9 Accessions of tumor microarray data used in validation. 781 
  782 
Supplementary Table 10 Decision thresholds for subtype classifiers.  783 
 784 
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