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Abstract

Understanding sub-cellular mechanics is crucial for a better understanding of a variety
of biological functions and dysfunctions. A structure-function analysis of the cytoskele-
tal protein networks provides not only ways to deduce from its structure insights into its
mechanical behaviour but potentially also new insights into sub-cellular processes such as
mechano-transduction, stiffness-induced cytoskeletal restructuring and stiffness changes, or
mechanical aspects of cell-biomaterial interactions. Recently, fluorescence imaging has be-
come a powerful tool to study protein network structures at high resolution. Yet, automated
tools for quantitative functional analysis of these complex structures, are missing. These,
however, are needed to relate structural characteristics to cellular functionality. Here, we
present a machine learning framework that combines 3D imaging and mechanical modelling
on the nano scale, enabling prediction of mechanical behaviour of protein networks and the
subsequent automatic extraction of structural features of which one can deduce mechani-
cal characteristics. This study demonstrates the method’s applicability to investigate the
skeleton’s functionality of the Filamentous Temperature Sensitive Z (FtsZ) family inside
organelles (here, chloroplasts) of the moss Physcomitrella patens.

Keywords: surrogate modelling, machine learning, finite element analysis,
structure-function relationship, plastoskeleton

1. Introduction

In biology, bio-polymer networks are pervasive as key promoters of strength, support and
integrity. This is true irrespectively of its scale, i.e., from the micro-scale of the cytoskeleton
to the macro-scale of connective tissues. As cells sense external physical signals and translate
them into a cellular responses, cellular mechanics has been proven to be crucial for a wide
range of biological functions and dysfunctions. In particular cytoskeletal protein networks
exhibit strong structure-function relationships, e.g., the role of microtubule network during
mitosis [1], cell movement with the help of actin assembly/disassembly [2] or utilizing inter-
mediate filament networks for stabilizing mechanical stresses [3]. Therefore, investigating the
structure of protein networks allows deeper insights into their functionality/dysfunctionality.

In the recent decades, taking advantage of new methodological developments in exper-
imental and computational physics and applying them to biological systems allowed sub-
stantial progress in elucidating particular mechanical phenomena to biological function. By
such new methods, researchers have shown that mechanical processes convey biochemical
signals and are therefore crucial for cell functions including proliferation, polarity, migration
and differentiation. Further, connections between the mechanical properties of cells, of its
initiation, or of its pathological progression such as it occurs in cancer, were established,
e.g., by Guck et al. [4] or Suresh et al. [5]. Suresh, for example, showed that the elasticity
of malaria-infected red blood cells exhibit higher stiffness than healthy ones [6]. Mendez
et al. [7] or Liu et al. [8] showed that the epithelial-to-mensenchymal transition leading to
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cancer metastasis are linked to changes in mechanical characteristics of the cytoskeleton in-
fluencing the vimentin network [7, 8] as well as the polarity of the cell [9]. Moreover, cancer
cells are typically found to be softer than normal cells. A decrease in the level of actin in
the cytoskeleton of cancerous cells was linked to changes in the mechanical properties of the
cell [10]. Such research underpins the importance of linking molecular changes within the
cytoskeleton to structural and functional changes of the entire cell and therefore changes to
the tissue.

In summary, in-depth knowledge of cellular and sub-cellular mechanics might allow the
identification and classification of cells at different physiological and patho-physiological
stages. However, to do so, new methods and approaches need to be developped that are ca-
pable of simultaneously performing structural and mechanical analysis of sub-cellular struc-
tures in a (semi-)automated way. Such methods do not exist. Therefore, the link between
the mechanical stability and its contribution to shaping processes on the molecular scale
are far from being completely understood. Further, it is not clear, if mechanical processes,
besides conveying biochemical signals, also purely convey mechanical signals to invoke struc-
tural changes. The concept of the cytoskeleton as a shape-determining scaffold for the cell
is well established [11], however, the tight coupling of actin, microtubule and intermediate
filament networks impedes a separate analysis. To date, computer models of cytoskeletal
biopolymer networks are based on models that represent the geometry in a (strongly) sim-
plified way, see, for example, [12–16]. In depth analysis of structure-function relationships,
however, require detailed structural and functional modelling.

Development of such models requires a protein network with similar structural func-
tionality to cytoskeletal networks while being structurally less complicated allowing a semi-
manual validation of the derived results. Proteins homologous to tubulin, which is part of
the eukaryote cytoskeleton, such as the Filamentous Temperature Sensitive Z (FtsZ) pro-
tein family in the chloroplasts of the moss Physcomitrella patens are excellent examples for
this purpose. They generate complex polymer networks, showing striking similarity to the
cytoskeleton, and hence were named plastoskeleton [17]. In bacteria, FtsZ is a part of the
bacterial cytoskeleton providing a scaffold for cell division [18–20]. Coassembly experiments
provide evidence that FtsZ2 controls filament morphology and FtsZ1 promotes protofila-
ment turnover. It is suggested, that in vivo, FtsZ2 forms the chloroplast Z-ring backbone
while FtsZ1 facilitates Z-ring remodeling [21]. Moreover, as chloroplasts in loss-of-function
mutants show distinct shape defects, FtsZ networks might provide scaffolds that ensure
the stability and structural integrity of the chloroplasts [22]. Additionally, gene knock-out
experiments has shown that the FtsZ network is capable of undergoing large deformations
upholding its structural integrity [23]. This adaptive stability is presumably linked to the
developed structural characteristics of FtsZ network; making the cytoskeletal FtsZ network
an ideal first application for introducing and testing a simulation-based method that aims
to identify the link between structural features of a cytoskeletal network and its mechanical
functions.

State-of-the-art microscopy imaging techniques permit resolving micro-structural details
of protein networks. Computational analysis of acquired images facilitates the quantification
of components and its assembly to networks [24], and may allow tracking structural changes
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of the network assembly triggered by internal or external stimuli, i.e., connecting the struc-
ture to functionality or distinguishing between network types [25]. Machine learning (ML)
algorithms have proven to be remarkably capable for automating such complex image anal-
ysis tasks [26] and of correlating image content to biological structural functionality [27–29].
Recently the concept of ML-based surrogate models has proven to be highly advantageous in
accelerating the performance of numerical simulations of complex mechanical environments
[30] as well as predicting material properties [31]. A ML-based approach could link struc-
tural features to mechanical characteristics and would provide a way to answer questions like
those posed in the abstract, e.g. "How are FtsZ biopolymers capable of exhibiting adaptive
stability?" or "Interplay of which structural changes in the cytoskeleton of a cancerous cell
leads to adapting stiffness?"

To overcome the challenge of relating structure to function of cytoskeletal protein net-
works, we present an automated ML approach applied to 3D live laser scanning confocal
microscopy images. The outcome is an end-to-end tool that links structural features associ-
ated with the cytoskeletal network type to its mechanical behaviour and therefore enables
an online evaluation of structure-function relations on the sub-cellular scale. This is carried
out by combining an in silico mechanical characterization of protein networks through 3D
micro finite element modeling and an automatic mapping of structural features to the me-
chanical network responses. The introduced method (1) classifies protein networks based
on their structural features exploiting a random forest model and (2) creates an in silico
surrogate model to predict the sub-cellular mechanical responses of the network. Analyzing
the prediction process of the surrogate model based on the structural feature allows us to
deduct the presumed structure-function relationship. The method is tested and applied to
elucidate isoform-specific structure-function relationships of FtsZ networks. While the two
FtsZ isoforms, FtsZ1-2 and FtsZ2-1, were selected in this work as a first application to
perform a proof-of-concept study, future applications will address more complex networks.

2. Materials and Methods

2.1. Materials
The “Gransden 2004” ecotype of the moss Physcomitrella patens ((Hedw.) Bruch &

Schimp., IMSC accession number 40001) was cultivated in bioreactors [32].

2.2. Molecular Biology and Moss Transfection
RNA isolation, molecular cloning and moss transfection were described previously in de-

tail [24, 25] and are therefore given here only in a shortened version. Total RNA was isolated
from wild type Physcomitrella patens protonema using TRIzol Reagent (Thermo Fisher Sci-
entific) and used for cDNA synthesis using Superscript III reverse transcriptase (Life Tech-
nologies, Carlsbad, CA, USA). The coding sequences of PpFtsZ1-2 and PpFtsZ2-1 were
PCR-amplified from this cDNA and cloned into the reporter plasmid pAct5::Linker:EGFP-
MAV4 (modified from [33]) to generate the fusion constructs PpAct5::PpFtsZ1-2::linker::EGFP-
MAV4 and PpAct5::PpFtsZ2-1::linker::EGFP-MAV4. Moss protoplasts were isolated and
transfected with 50µg of each of these plasmids, according to the protocol described by
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Hohe et al. [34]. The transfected protoplasts were incubated for 24 h in the dark, subse-
quently being returned to normal conditions (25.1◦C; light-dark regime of 16 : 8h light flux
of 55µmol s−1m−2 from fluorescent tubes, Philips TL - 19 - 65W/25).

2.3. Laser Scanning Confocal Microscopy Imaging
In 4− 7 days after transfection, the protoplasts were concentrated to a volume of 100µl,

and 20µl of this protoplast suspension was used for imaging. Confocal microscopy images
(n = 37, i.e., 21 FtsZ2-1 and 16 FtsZ1-2 isoforms) were taken with a Leica TCS SP8
microscope (Leica Microsystems, Wetzlar, Germany), using the HCX PL APO 100x/1.40 oil
objective and applying the microscopy conditions described previously [24, 25]. A selection of
images visualising FtsZ networks is depicted in Fig. 1a. To summarise, the zoom factor was
10.6, the voxel sizes were 0.021µm in the X−Y dimensions and 0.240µm in the Z dimension
and the pinhole was adjusted to 0.70AU (66.8µm). For the excitation, a WLL laser was
applied at 488nm with an intensity of 4%. The detection ranges were set to 503− 552nm
for the EGFP fluorescence and 664−725nm for the chlorophyll autofluorescence. All images
were deconvolved using Huygens Professional version 17.04 (Scientific Volume Imaging, The
Netherlands).

2.4. Image Processing to Extract Structural Features
A set of 26 structural features describing the assembly of protein networks from global

and local perspectives is extracted from each network. Here, only a short description of the
workflow steps and features are given, details as well as a validation have been reported
previously [24].

2.4.1. Image Pre-processing
Networks are extracted from the images using an adaptive local threshold, T = m +

k
√

1
NP

∑NP
i=1(pi −m)2, with NP = 10∗ 10∗ 10 being the local window size, m is the average

pixel intensity in the window, pi denotes the intensity of pixel i and a constant value k =
10. Next, by calculating the convex hull of the segmented network a solid outer surface
representing the volume enclosing the network is determined. To extract the structural
features of the network, a transformation to a spatial graph consisting of points, nodes and
segments is performed. This transformation consists of following steps: 1. determining the
centerline of each filament based on calculating a distance map for each foreground voxel
from the edge voxels, and 2. placing points at the centerline of the filaments where either
thickness or the direction of the filament changes. The resulted hierarchy of structural
elements of the spatial graph reads as: 1. points, 2. elements as the connection between
points, 3. nodes, as points that are connected to more than two other points, 4. segments as
summation of elements from one node to another (filaments), 5. connections as the meeting
points of filaments in a node. This resulting numerical representative in form of a spatial
graph allows determination of structural features (Fig. 1b).
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Figure 1: End-to-end prediction of FtsZ mechanical behavior from CLSM images. a) Sample 3D CLSM
images of FtsZ1-2 and FtsZ2-1 networks in a cell (two left images) and single FtsZ1-2 and 2-1 networks
(two right images), respectively. b) Sample of a 3D segmented image and its spatial graph, convex hull and
mesh. c) The 26 shape and element descriptors that are extracted and used as input features to train a
random forest model for classifying FtsZ1-2 and FtsZ2-1 isoforms. d) A second random forest model (multi
output regression) is trained on the structural features to predict the results of the mechanical simulation
of compressing the network in its principal directions (3 Eigenvectors).
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2.4.2. Features Describing 3D Network Morphology
A set of seven shape descriptors, which were determined from a simultaneous analysis

of the segmented network, and its convex hull quantitatively describe the morphology of
the network [24]. These features consist of: 1. enclosed volume of the network, VEN , as
the volume of the convex hull, 2. network volume, VPN , as the volume of the segmented
protein network, and 3. the network volume density, ρPN , as the ratio of enclosed volume
to network volume. Furthermore, a shape matrix representing the covariance of the convex
hull is calculated. Building upon the eigenvalues of the shape matrix, the 4. greatest and 5.
smallest diameters of the network, dmaxPN and dminPN . 6. stretch of the network, StPN , and 7.
oblateness of the network, ObPN are determined.

2.4.3. Features Describing Network Structure
A set of 19 local structural features calculated from the spatial graph of the network

consists of nodal features (1. number of nodes, Nn, 2. thickness of nodes, thn, 3. node
density, ρn, 4. node-to-node distance, dnn, 6. node-to-surface distance, dns, 6. node-to-
centre distance, dnc, 7. number of open nodes, Nop. 8. compactness, CPN , defined as
CPN = (dnc − dns)/dnc. 9. node-to-surface to node-to-center ratio), segment features (10.
number of segments, Ns, 11. segment length, Ls, 12. segment curvature, κs, 13. mean
segment thickness, ths, 14. segment inhomogeneity, Is, 15. segment point-to-point distance,
dpp), and connection feature (16. mean number of connections per node, nc 17. percentage of
open nodes, noe, 18./19. mean angles between segments in a connection with 3/4 filaments
meeting, θ3 and θ4). The morphological and structural features are calculated by a set of
in-house Matlab codes (Matlab 2019a, MathWorks, USA).

2.5. Mechanical nano-FE modeling
To investigate the mechanical response of the protein networks to external load, we

designed a generic in-silico experiment reflecting a compression against a plate, hence, a
scenario that is typically also used to experimentally investigate the mechanical behaviour
of whole cells [35]. To capture the overall mechanical behavior of each network in a compar-
ative manner, compression tests along the three principal axis of each system were modeled
employing a nano-FE approach. All simulations were done with the finite element analysis
software Abaqus 6.14 (Dassault Systèmes, France). It is important to note that, the goal
of this setup is to depict the mechanical behavior of the protein network morphology rather
than replicating the real physical condition and dynamics of the biopolymers in their bio-
logical roles. Such a task would require consideration of highly complicated interactions of
the network with its surrounding, which are not completely understood to date.

2.5.1. 3D Protein Network Model Generation
For all samples, protein network surface meshes were defined from the segmented images

using a triangular approximation algorithm coupled with a best isotropic vertex placement
algorithm to achieve high triangulation quality [36]. The surface area of the resulting sur-
face mesh was calculated and further remeshed using nt = ρtAt triangles for the remeshed
surface, where ρt = 900 [triangles/µm2] is the constant surface mesh density and At denotes
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the surface area. Furthermore, the remeshed surface was smoothed by shifting the vertices
towards the average position of its neighbours. The enclosed surfaces were filled with vol-
umetric tetrahedral elements, resulting in an adaptive multi-resolution grid (Fig. 1b) using
FEI Amira 6.3.0 (Thermo Fisher Scientific, USA).

The principal directions of a network were determined based on its convex hull and shape
matrix. The eigenvectors of the shape matrix (EV 1, EV 2 and EV 3), which are orthogonal
to each other, represent the network’s principal directions, Vi (i = 1, 2, 3). The mesh is then
transformed to the coordinate system spanned by Vi. Afterwards, along each Vi, the pair of
nodes exhibiting the largest distance in-between the two points and in the direction of Vi
were determined and named Ni1 and Ni2 and i = 1, 2, 3, respectively.

For each considered protein network, the geometry of the protein network was imported
to Abaqus 6.14 (Dassault Systèmes, France). For each network, three compression simu-
lations (one per direction d) were carried out. For each simulation, the initial set-up was
determined by first identifying the initial position of two parallel rigid plates, which are
defined for each simulation in direction d by its normal vector

−−−−−→
Nd1Nd2 (with d = 1, 2, or 3),

and the respective nodal points Nd1 and Nd2 (cf. Fig. 2a, 2b, and 2c).

2.5.2. Governing equations
The simulations were carried out by solving the balance of linear momentum in an explicit

manner (Eq. 1),
ρv̇ −∇ · σ − ρb = 0, (1)

where ρ is the mass density, v denotes the velocity, σ describes the Cauchy stress, and b are
the body forces. The contact between the protein network and the rigid plates was chosen
as a rough contact meaning that any two points, which come in contact, will stick together
with a relative penetration tolerance of 1 e−3. The governing equation is discretised using
the FE method and choosing tetrahedral elements and linear spatial Ansatz functions.

2.5.3. Boundary Conditions
The generic boundary conditions for each simulation setup (one simulation for each pri-

mary directions: EV 1, EV 2 and EV 3) consist of applying displacement boundary conditions
at node Nd1 to mimic compression experiments. The displacement itself is applied in the
EVd =

−−−−−→
Nd1Nd2 direction and in fractions (α) of the initial distance, ‖

−−−−−→
Nd1Nd2‖, between

the two plates (cf. Fig. 2). Therefore, the amount of displacement along the respective
Eigenvector EV1 is defined by Ud = α · ‖

−−−−−→
Nd1Nd2‖.

To investigate anisotropy in the mechanical response of the network, compression tests
along all three primary directions were performed and compared. Furthermore, for analyz-
ing changes in the structural behavior with increasing deformation grade, we increased the
displacement of the plate gradually in steps of δα = 0.02. We applied a total of 10 steps,
which is equivalent to α = 0.20. Due to no apparent significant differences in the mechanical
behaviour of the network between the three directions at α = 0.20 and the required compu-
tational resources, we chose to focus only on one direction to continue the simulations for
α = 0.02→ 0.20.

8

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.011239doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.27.011239
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Simulation setups. a-c) Initial set-up for virtual compression experiments of a sample protein
network in primary directions EV1, EV2 and EV3, respectively. d-f) Stress distribution after applying a
displacement (α = 0.02) to the upper plate in EV1, EV2 and EV3 directions, respectively. The displacements
are scaled by a factor of 5.

2.5.4. Constitutive Law and Material Parameters
Employing the concept of linear elasticity, the stress tensor σ is given by

σ = λ tr(ε) I + 2µε, (2)

where ε denotes the strain tensor and I is the second-order identity tensor. Further, λ and
µ are the first and the second Lamé coefficients, respectively. The Lamé coefficients are
related to Young’s modulus E and Poisson’s ratio ν by

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (3)

In clasical continuum mechanics, the material parameters (here λ and µ or E and ν) are
obtained by making a constitutive assumption, i.e., selecting a particular phenomenologi-
cal constitutive law (here the form of σ) and ensuring that the computed stresses match
the experimental ones. The mechanical behavior of filamentous biopolymers is, however,
commonly quantified by means of the flexural rigidity, κ [37–39], which is the force couple
required for one unit of curvature [40]. The flexural rigidity, κ, is defined as κ = EI, where
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I is the second moment of inertia. In the context of protein filament mechanics, the flexural
rigidity is calculated as κ = kBT lp, where kB = 1.38 · 10−23 J/K is the Boltzmann constant,
T defines the temperature, and lp denotes the corresponding thermal persistence length. For
the persistence length of FtsZ filaments, there exist multiple atomic force microscopy studies
[41–44]. Turner et al. report, for example, for the persistence length and flexural rigidity of
FtsZ filaments κ = 4.7± 1.0× 10−27 Nm2 and lp = 1.15± 0.25µm [45], respectively. These
values have also been commonly used in other research, see, e.g., [46]. The average thickness
of filamentous elements of the FtsZ network is 117 ± 28 nm [25]. Assuming circular cross
sections, I equals 1.81× 10−29 m4 [47]. Based on these values, we set within our simulations
the elasticity modulus to E = 2.6 × 102 Pa and the Poisson’s ratio to ν = 0.5, i.e., assume
incompressibility [46, 48, 49].

2.5.5. Calculated Mechanical Parameters
We performed a total of 111 simulations (3 simulations per network) on a CPU cluster

with 32 cores (4 AMD Opteron Socket G34 Eight-Core 6328, 3.2 GHz, 8C, Abu Dhabi). One
simulation took on average 19±7 hours (for the entire 20% compression). To quantitatively
assess the mechanical behavior of the protein networks, we determined the mean stress and
strain of the networks, σ̄ and ε̄, respectively, as the average of the L1 norms of the von Mises
stresses and principal strains.

Cytoskeletal structures are reported to fail by buckling or rupture [50]. We therefore,
further analyzed the structural stability of the network by calculating a buckling failure
factor based on critical stresses σcrit and a rupture failure factor based on critical strains εcrit.
Buckling of a single filament is assumed to happen if local von Mises stresses exceed a critical
value. A filament is assumed to rupture, if strains locally exceed a critical strain value. To
our knowledge, data for σcrit and εcrit do not exist for FtsZ in the literature. However, despite
fundamental structural differences, F-actin and FtsZ show similar mechanical behavior. The
rigidity of F-actin is assumed to be κ = 7.5 · 10−26 Nm2 [37, 51] whereas the rigidity, which
we assume for FtsZ filaments, is κ = 4.7± 1.0× 10−27 Nm2 (lp of F-actin: 1.77µm and lp of
FtsZ: 1.15µm [37, 45]). Therefore, we use the values reported for F-actin (σcrit = 3.2Pa and
εcrit = 0.2 [49, 51]). Since a local failure might not lead to a collapse of the whole network
structure, we define failure factors based on the assumption that if a certain portion m of
all elements (m ·nelemall ) exhibit stresses or strains above the critical stress or strain value, the
whole structure will fail by buckling or rupture of an individual or several segments, This
assumption has also been made for other biological materials [35, 52]. For protein networks,
these threshold values have not been experimentally investigated yet. Therefore, we report
only the portion of elements that exceed a particular critical stress or strain value, i.e., the
higher the values the higher the failure probability. We define the buckling failure factor as
FB = nelemσcrit

/nelemall , and the rupture failure factor as FR = nelemεcrit
/nelemall , where nelemall is the

total number of elements, nelemσcrit
and nelemεcrit

are the number of elements with stress and strain
exceeding the critical buckling or rapture values, respectively.
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2.6. Data-driven Analysis using Machine Learning
To relate the mechanical functionality of protein networks to their structure, we utilize

a ML approach. This allows us to 1) find the characteristics that distinguishes two FtsZ
isoforms, and 2) extract structural features correlated to the mechanical behavior of the
networks. Analyzing the extracted features empowers us to identify design approaches de-
veloped by nature for carrying out mechanical functionality. To do so, we trained two sets
of ML models on the 26 calculated structural features of the protein networks. The aim of
these ML models is to 1) perform an end-to-end classification of the networks as well as an
analysis of the structural features dominating the decision process and 2) map the structural
features of the network to its mechanical behavior by employing a regression model. This
further allows us to identify the most dominant structural features contributing to specific
mechanical traits of the network.

2.6.1. Classification of FtsZ Isoforms
We employed a random forest model to perform the classification task based on the

extracted features (Fig. 1c), which is the state-of-the-art method for classification based on
a set of unstructured features [53, 54]. The dataset containing the 26 structural features was
randomly divided eight times into training (n = 30) and testing (n = 7) sets. Due to the
strong law of large numbers guaranteeing the absence of over-fitting [55], no validation set is
needed. Each testing sets consisted of at least three samples of each isoform. For each data
division, a random forest classification model was built upon the extracted structural features
with the isoform (FtsZ1-2 or FtsZ2-1) as output class. This allows refuting dependency of
the classification results on the train/test dataset division. The Gini index was used as
attribute selection measure [53, 56]:

GCi
=

∑∑
j 6=i

(f(Ci, T )/|T |)(f(Cj, T )/|T |), (4)

with (f(Ci, T )/|T |) determining the probability of the selected cases belonging to the class
Ci (FtsZ1-2 or FtsZ2-1) for the given training set T .

2.6.2. Surrogate Mechanical Model for Predicting Function from Structure
To investigate the structural approach(es) employed by nature to provide networks with

specific mechanical functionality, i.e., adaptive stability, a set of surrogate models is de-
signed. The surrogate models serve as a tool to map the structural features of the protein
networks to their mechanical behavior. First, four multi-output-regression-random-forest
models, as introduced by Breiman et al. [54] were trained by forming trees mapping the
26 structural feature on the calculated mechanical parameters (σ̄, ε̄, FB and FR, cf. 2.5.5).
This is done for all three primary directions (EV 1, EV 2 and EV 3) and 2% compression
(Fig. 1d). Second, based on the simulation results for compressing the protein network by
20% in the EV3-direction, we trained a set of single-output-regression-random-forest models
for each of the calculated mechanical parameters (σ̄, ε̄, FB and FR; four models per me-
chanical parameter). For each ML model, a random dataset division with 32 and 5 networks
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was carried out for training and testing purposes (enforcing that at least 2 networks from
each isoforms were considered). All random forest algorithms were implemented using the
machine learning library Scikit-learn in Python 3.7 [57].

2.6.3. Analyzing Feature Importance
We determined the importance of each structural feature in both the classifier and the

surrogate mechanical models. To do so, each feature is noised up and the plurality of out-
of-bag vote and the reality are determined allowing to measure a wrong prediction rate [54]
for each feature.

2.6.4. Statistical Analysis
To distinguish the mechanical behavior of FtsZ1-2 isoforms from FtsZ2-1 isoforms, sta-

tistical analysis of σ̄, ε̄, FB and FR was performed using repeated measures ANOVA and
paired or unpaired student’s t-tests, as appropriate, followed by Bonferroni corrections for
multiple comparisons. All values are presented as mean ± standard deviation and statistical
significance was set to p < 0.05.

2.7. Assessing Machine Learning Model Performance
The performance of the classifier model is evaluated by calculating the F1-score and the

area under the receiver operating characteristic (ROC) curve [58]. The performance of each
surrogate model is assessed by calculating R2-values between the model predictions and sim-
ulation results. To further measure the differences between the surrogate model predictions
and the true values of simulation results, we calculated the coefficient of determination (R2

E)
of the linear fit for scattered data of model predictions vs. simulation results. In addition,
we define Ea = |1 − aSM | as the difference of first derivative of the linear fit to one, with
Ea = 0 denoting a perfect surrogate model.

3. Results

3.1. Effect of Load Direction on Mechanical Response
N = 16 FtsZ1-2 and n = 21 FtsZ2-1 isoforms images (see examples in Figure 3a, e)

were processed. For each protein network, the image processing resulted in distinct spatial
graphs (Fig. 3b, f), convex hulls (Fig. 3c, g), and FE meshes (Fig. 3d, h).

All mechanical parameters (σ̄, ε̄, FR and FB) were affected by load direction as well
as isoform type (ANOVA, p < 0.01). σ̄, in the FtsZ1-2 isoform, was significantly lower for
the EV2 load case than for the other two load cases (p = 0.01, Fig. 4a). For the FtsZ2-1
bucking failure (FR) was significantly lower for EV1 load case if compared to the EV3 load
casa (p < 0.01, Fig 4d). Comparing the mechanical parameters (x, ε̄, FR, FB) between
the isoforms revealed that all mechanical parameters of the FtsZ2-1 isoform were for the
EV2 loading case significantly higher than for the FtsZ1-2 isoform (p ≤ 0.04; Fig. 4a-d).
Additionally, FtsZ2-1 responded to compression in EV3 direction with a significant higher
ε̄ than FtsZ1-2 (p = 0.049; Fig. 4b).
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Figure 3: Image pre-processing of FtsZ1-2 (a-d) and FtsZ2-1 (e-h) isoforms. a) Sample 3D CLSM image of
FtsZ1-2 isoform, b) resulting spatial graph, c) resulting convex hull and d) resulting volume mesh. e) Sample
3D CLSM image of FtsZ2-1 isoform, f) resulting spatial graph, g) resulting convex hull and h) resulting
volume mesh.

Figure 4: Mechanical responses to small deformations (2% compression). a) σ̄. b) ε̄. c) FR d). FB.
Data is shown as mean±standard deviation. * denotes a significant difference between load directions
(student’s t-test, Bonferroni correction), X denotes a significant difference between isoforms. Data is shown
as mean±standard deviation.
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3.2. Effect of displacement on mechanical response
Here we focus only on one direction due to four reasons: 1) the similar mechanical

response at 2% displacement for all loading cases, 2) according to calculations in [24], vari-
ations of the two significant different parameters for all three principal directions (FtsZ1-2:
σ̄ = 55% and FtsZ2-1: FB = 35%) can be explained by differences in stretch (FtsZ1-2
St = 0.76 ± 0.11, FtsZ1-2 St = 0.67 ± 0.20, p = 0.05), 3) the need of significant computa-
tional resources and 4) EV3 has the overall highest (combining FtsZ2-1 and FtsZ1-2) mean
values at 2% plate displacement in all four parameters (σ̄ = 1.7± 1.3Pa; ε̄ = 0.7± 0.6 e−3;
FR = 1.6 ± 3 e−3; FB = 4.2 ± 1.9 e−1). Therefore, we decided to restrict ourselves to
investigating the mechanical response of the system for only EV3 principal direction.

Increasing the compression of the isoforms from 2% to 20% (Fig. 5)revealed that, at all
displacement steps, no significant difference between the two isoforms in the four calculated
mechanical parameters exists (Fig. 5c-f). For mean stress, mean strain and rupture failure
factor (Fig. 5c-e), a gradual increase in both network types was detected with increasing
displacements. In contrast, with increasing compression, FB converges toward a buckling
failure factor of 1% (Fig. 5f).

Comparing the mechanical responses at 20% displacement shows no significant difference
between the two FtsZ isoforms (Fig. 5h). At 20% displacement, the buckling failure factor
(FtsZ1-2: 1.0% and FtsZ2-1: 1.0 ± 0.1%) is significantly higher than the rapture failure
factor (FtsZ1-2: 0.4±0.2% and FtsZ2-1: 0.5±0.2%, p ≤ 0.01). However, the first derivative
of the failure factors with respect to the displacement (FR: FtsZ1-2: 0.02, FtsZ2-1: 0.03
and FB: FtsZ1: 0.00, FtsZ2-1: 0.00) shows that with increasing displacement, FR would
presumably become the dominating failure factor.

3.3. End-to-end Isoform Classification based on Structural Features
All of the 8 classifier models trined on the 26 structural features (cf. 2.6.1) reached 6

out of 7 correct predictions (Fig. 6a). The classifier models reached an average F1-score of
0.83± 0.11 and an area under the ROC curve of 0.86± 0.08 (Fig. 6b). A correctly classified
FtsZ2-1 isoform and a correctly classified FtsZ1-2 isoform, as well as the wrongly classified
isoform (FtsZ1-2) are depicted in Fig. 6c-e, respectively. . The classification took on average
5.1 s.

Analyzing the importance of each of the structural features in the classification mod-
els reveals which of the features contribute most and which least in terms of classifying
isoform-inherent structural properties. The five most important structural features are the
percentage of open ends (19±5%, p < 0.01), segment curvature (12±9%, p = 0.05), network
volume density (8± 4%, p = 0.03), compactness (6± 3%, p = 0.24), and the mean segment
thickness (5± 7%, p = 0.01). These have in total 50% of the overall importance in the clas-
sification models (Fig. 7). Interestingly, the number of open ends and the smallest network
diameter were significantly different between the two isoforms, but of less importance for its
classification.
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Figure 5: Changes in mechanical response with increasing compression. a, b) Stress distributions at 20%
displacement in sample networks of FtsZ1-2 an FtsZ2-1, respectively. c) σ̄EV 3. d) ε̄EV 3. e) FREV 3. f)
FBEV 3. g) Mean stress vs mean strain in EV3 direction. h) Calculated mechanical parameters (σ̄EV 3, ε̄EV 3,
FREV 3 and FBEV 3 respectively) at the 20% displacement step. Results are presented as mean±standard
deviations. * denotes a significant difference based on student’s t-test (p < 0.05) between FtsZ1-2 (gray)
and FtsZ2-1 (green). Displacement step size 2%, minimum displacement 2%, maximum displacement 20%.

3.4. End-to-end Mechanical behavior Prediction based on Structural Features
The trained surrogate model predicted the mechanical response (simulation results) for

small (2%) and large (20%) deformations purely based on structural features with high
correlations between simulated and predicted mechanical parameters. In case of small de-
formations, the predictive models show high accuracy for predicting stresses, σ̄ (R2 = 0.90,
Ea = 0.03 and R2

E = 0.83; Fig. 8a) and strains, ε̄ (R2 = 0.81, Ea = 0.04 and R2
E = 0.45;

Fig. 8b). However, for predicting failure due to rupture FR (R2 = 0.69, Ea = 0.04 and
R2
E = 0.69; Fig. 8c) and buckling FB (R2 = 0.72, Ea = 0.06 and R2

E = 0.60; Fig. 8d) the
surrogates’ model to predict these mechanical parameters are slightly lower. In case of large
deformations, however, all four mechanical parameters are predicted with high accuracy.
The best performing of the 4 trained surrogate models shows great prediction metrics for σ̄
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Figure 6: End-to-end classification of isoforms. a) Confusion matrix of prediction performance with 3 out
of 3 correct predictions for FtsZ1-2 and 3 out of 4 correct predictions for FtsZ2-1. b) ROC curve of model
prediction. c) A sample spatial graph of correctly classified FtsZ2-1. d) A sample spatial graph of correctly
classified FtsZ1-2. e) A sample spatial graph of wrongly classified FtsZ1-2.

Figure 7: Mean classification importance for the structural features as well as normalized feature values
(normalized to maximum of each feature). Data shown as mean ± standard deviation. * indicates a
significant difference between isoform (un-paired students’ t-test).

(R2 = 0.99, Ea = 0.03 and R2
E = 0.98; Fig. 8e), ε̄ (R2 = 0.98, Ea = 0.01 and R2

E = 0.98;
Fig. 8f), FR (R2 = 0.97, Ea = 0.01 and R2

E = 0.95; Fig. 8g) and FB (R2 = 0.99, Ea = 0
and R2

E = 0.98; Fig. 8h).
The analyzed structural features have different importance in predicting the mechanical

parameters in case of large deformations. For predicting the mean stresses, most important
features (50% of total importance) are segment inhomogeneity (IS: 17±5%), network density
(ρPN : 16± 9%), segment thickness (thS: 9± 3%) and number of open nodes (Nop: 8± 2%;
Fig. 8i). In case of predicting the mean strains, segment inhomogeneity (IS: 37 ± 18%),
number of open nodes (Nop: 12± 17%), network density (ρPN : 8± 12%) and oblateness of
the network (ObPN : 6 ± 10%) were the most important structural feature (Fig. 8j). The
prevailing structural features for predicting the rapture failure factor are network density
(ρPN : 18 ± 8%), segment inhomogeneity (IS: 13 ± 9%), node density (ρN : 9 ± 3%) and
segment thickness (thS: 8± 12%; Fig. 8k). In case of predicting the buckling failure factor,
node-node distance (dnn: 34 ± 20%), segment inhomogeneity (IS: 22 ± 12%), point-point
distance (dpp: 8±8%) and number of segments (NS: 5±7%) are the most important features
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Figure 8: Surrogate mechanical model. a-d) Surrogate model prediction vs. simulation results for the test
set networks for small deformation in each primary direction (EV1: blue, EV2: orange and EV3: gray.
a) σ̄. b) ε̄. c) FR. d) FB. Networks of FtsZ1-2 in the test set are shown as solid circles and FtsZ2-1
as circles with an outer ring. Dashed line represents a liner fit to the data points. e-h) Surrogate model
prediction vs. simulation of best performing model results for the test set networks for large deformation
in EV3 direction. e) σ̄. f) ε̄. g) FR. h) FB. Gray and green circle represent FtsZ1-2 and 2-1 respectively.
Black line represents a liner fit to the data points. i-l) Mean importance of structural features for the set of
surrogate model predicting each mechanical parameter, i) σ̄. j) ε̄. k) FR. l) FB. The orange line represents
cumulative importance.
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for the surrogate models (Fig. 8l).

4. Discussion

It is known that the structure and the functionality of cytoskeletal protein networks
are deeply linked [11, 59, 60]. Although the biochemical aspect of these protein networks
has been thoroughly studied, little is known about the interplay between the structural
characteristics of these networks and their mechanical functionality. Here we proposed
a data-driven approach to investigate the structure-function relationship in FtsZ protein
network.

4.1. Mechanical Response of FtsZ Isoforms
We were able to show that the mechanical response of a protein network to external loads

and that the precise structural response of FtsZ networks due to compression depend on the
load direction and is different for FtsZ1-2 and FtsZ2-1 isoforms. This is to our knowledge
the first detailed in silico investigation of the mechanical behaviour of cytoskeletal protein
structures. It allows for a virtual assessment of sample-specific responses to applied loads.
The identified isoform-specific mechanical responses support the assumption of potentially
different structural roles of these two main FtsZ isoforms [23]. Further, the isoform-specific
mechanical responses are in accordance with the functional- and morphological-related ob-
servations of these two isoforms in yeast cells [20, 21]. The dependency of the mechanical
response with respect to the load direction might be related to the previously reported
plate-like shapes of both isoforms, e.g., the negative oblateness as reported in Özdemir et
al. [25].

With an increasing amount of compression, differences in the mechanical behavior of the
two isoforms vanish (Fig 5c-f). This suggests that the isofroms contribute in response to
large chloroplast deformation in a similar (or combined) fashion to the plastid mechanics.
Moreover, FtsZ isoforms show a nonlinear increase in stress and strain with an increase in
network deformation. This is similar to previously reported behavior of microtubule [61, 62]
and actin filaments [63]. This points toward similar load-bearing functionality of FtsZ (as
plastoskeleton). Furthermore, for compressions up to 20%, buckling remains the prevailing
failure factor. The FB, which reaches its limit at about 1%, suggests that the network
minimizes the buckling probability indicating an adaptive stability of FtsZ networks. Such
a property was previously already suggested in [23, 64]. Although the rapture failure that
steadily increases with increasing compression, it remains significantly lower than the bulking
failure factor. This makes the rapture failure a less defining parameter for network failure.
One reason for this might be the fact that FtsZ filaments experiencing high strain values
lead to rapture only after buckling and at the location of bucking. This is similar to the
fragmentation of buckled actin filaments [65].

Previous studies employing simplified geometries, such as tensegrity models allowed the-
oretical studies of cellular mechanism e.g. as cell reorientation [12, 16]. More detailed FE
models have been developed to investigate the mechanical role of cytoskeletal components
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[14] and cell mechano-sensitivity [66]. However, the generic and strongly simplified geo-
metrical representation of the cells, e.g ellipsoid [67, 68] (even when cytoskeleton filament
directions were considered), potentially prevents comprehensive studies of the influence of
structural features in the mechanical behavior of cytoskeletal protein networks. Our ap-
proach of performing µFE simulations on segmented 3D network geometries of life networks
allows one to analyse structure-related aspects of protein network mechanics. Further, inves-
tigating the sub-cellular components separated from their surrounding allows one to decouple
protein network mechanics from whole cell mechanics. To date, contributions of cytoskele-
tal structures to whole cellular mechanics can up till now only be indirectly inferred from
experimental techniques such as AFM [69] and optical tweezers [70]. However, since the
mechanical behavior of a cellular structure is determined by many components, such as of
the structure of the cortical, intra-cellular (non-cortical) cytoskeletal, and nuclear networks,
as well as their distribution in space, decoupling the individual components remains chal-
lenging [14, 71, 72]. It has been suggested that AFM measurements with sharp tips tend
to emphasize biomechanical properties of the cell cortex, whereas AFM measurements with
round-tips tend to emphasize stiffness of the intra-cellular network [72]. Combing such mea-
surements with a structural detailed models, as shown here, would possibly further advance
the understanding of cellular mechanics.

4.2. Automatic Isoform Classification
Our ML-based end-to-end classification model trained on the extracted structural fea-

tures achieved high accuracy (6 out of 7 correct prediction for all 8 models, average F1-score
of 0.83). Moreover, our thorough validation step eradicated the dependency of classification
results on dataset division. Analyzing the feature importance in the classification task re-
veals the structural features that contribute most to the classification. Four out of five of
these distinguishing features also show significant different values in the two FtsZ isoforms
[25], which confirms, that the model automatically extracts the distinguishing features. Our
classification model achieved on par accuracy with deep learning based protein network
classification methods [73, 74], while adding the ability of extracting specific structural fea-
tures enabling the classification model to perform predictions. This may lead to a better
understanding of biological network design concepts.

4.3. Structure-function Relationship in FtsZ Network
Our mechanical surrogate model is capable of predicting the mechanical behavior of pro-

tein networks in response to external loading. This holds for 2% as well as 20% compression
(0.69 ≤ R2 ≤ 0.90 and 0.97 ≤ R2 ≤ 0.99, respectively). However, the relatively higher ac-
curacy for large network compression points toward higher correspondence of the extracted
structural features to the mechanical behavior of the network in response to large deforma-
tions. This specifically coheres to the hypothesis that these networks are able to undergo
large deformations without losing their structural integrity, as previously postulated [23];
hence, possessing structural features conforming to response in case of large deformations.
The high accuracy in mapping the structural features to the mechanical behavior of the
networks further demonstrates the potential load bearing functionality of FtsZ protein in
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chloroplasts. Furthermore, this shows that the capability of the network to keep its stability
by undergoing deformations relies not only on material properties of the biopolymer, but
probably more prominently on the structural features of the network. This is in accordance
with the effects of the network architecture on the overall mechanical behavior reported in
actin protein network [75]. In summary, to our knowledge, this is the first detailed investiga-
tion of these sample-specific structure-based mechanical analysis of performance correlations.
This enables us to not only have a image-based virtual mechanical testing method, but also
a method to investigate the manifestation of the mechanical characteristics of structural
network features.

By analyzing the importance of the features of the surrogate models in predicting stresses
and strains of the network, we could show that the structural characteristics of the fila-
ments (local changes of direction and thickness (IS), average thickness (thS) and open end
filaments(Nop)) as well as network overall morphology (network density (ρPN) and oblateness
(ObPN)) are the structural features mostly contributing to the large deformation mechan-
ical response of the networks. This can be interpreted as the network being capable of
stopping the increase in failure possibility because of buckling of its filaments by possessing
an arrangement of the nodes and filaments with the specific architecture that includes: av-
erage node-to-node distance, dnn in FtsZ1-2 and FtsZ2-1: 5.9µm), local changes of direction
and thickness of filaments (IS = 18.8), the distance between the local changes of filaments
(dpp = 60nn) and number of filaments in the network (NS = 207). This could potentially
be used to design adaptively stable structures capable of undergoing large deformations [76]
or mechanically optimized and synthetically engineered biomaterials [77, 78].

4.4. Limitations
Our study has also limitations. First, the imaging resolution might affect the simula-

tion results as well as the mapping of the surrogate models. However, we have previously
shown that our quantitative imaging method is capable of resolving the micro-structure
of FtsZ networks [25]. Second, the commonly used linear elastic material model in FE
simulations of cytoskeletons [14, 15, 66, 79] might not completely capture the mechanical
behavior of the network. However, to our knowledge, to date no constitutive law has been
developed for describing mechanical behavior of the FtsZ network. Although more com-
plicated constitutive laws for the mechanical behavior of single actin filaments have been
proposed [80–82], linear elasticity is the prevailing choice for cytoskeletal networks in whole-
cell models [14, 15, 66, 79]. Moreover, our focus was not necessarily to exactly match the
mechanical behaviour, but on the influences of structural features. Future studies should fo-
cus on combining our approach of precisely modeling the micro-structure with experimental
techniques, such as atomic force microscopy, to further investigate material properties of the
FtsZ-based plastoskeleton. Third, the loading conditions of our simulations are not an exact
duplication of reality where a combination of active dynamic forces [45] as well as osmotic
pressure [83] drive the morphological changes of the network. Moreover, the FtsZ isoform is
surrounded by other proteins as well as other materials such as inter-organelle fluids. Our
designed simulation setup provides a generic platform to investigate the structure-function
relationships in FtsZ protein network rather than a one-to-one simulation of dynamics of
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plastids. Finally, the failure criteria used in this study are experimentally derived from actin
filaments [49, 84], since no failure criteria has been experimentally derived for FtsZ to date.
However, due to the assumed similarity in structural functionality between the FtsZ network
and actin networks and the similarity of rigidity in FtsZ and actin filaments, actin failure
criteria might represent FtsZ behavior to a certain extent.

5. Conclusions

In this work, we showed that combing confocal microscopy imaging with µFE analysis
employing a machine learning framework allows for an image-based surrogate model capable
of predicting cellular mechanics. Additionally, by providing a way to identify structural
features determining the mechanical response with respect to a given stimulus, we were
able, for the first time, to directly investigate the structure-function relationship of individual
protein networks in a sample-specific manner. Our ML surrogate model trained on in-silico
data generates highly accurate and fast predictions of isoform classification prediction and
the mechanical behavior on the sub-cellular level. Our method provides a framework to
further investigate structural functionality of protein networks in plants as well as in humans.
It allows to monitor the structure-function relationships of cytoskeletal components during
morphological and, hence, time-dependent, changes, e.g., actin-driven cell shaping. This
may also lead to am improved understanding of the mechanical aspects of cell-biomaterial
interaction, and would provide the necessary insights into designing functionally optimal
biomaterials. Further, cytoskeletal changes, which have been shown to occur in certain
diseases, such as cancer and Alzheimer’s disease could be more precisely quantified and,
thus, more specifically target for future drug development.
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