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Abstract 

Visual object recognition in humans and nonhuman primates is achieved by the ventral visual 

pathway (ventral occipital-temporal cortex: VOTC). A classical debate is whether the seemingly 

domain-based structure in higher-order VOTC simply reflects distributional patterns of certain visual 

features. Combining computational vision models, fMRI experiments using a parametric-modulation 

approach, and natural image statistics of common objects, we depicted the neural distribution of a 

comprehensive set of visual features in VOTC, identifying voxel sensitivities to specific feature sets 

across geometry/shape, Fourier power, and color. We found that VOTC’s sensitivity pattern to these 

visual features fully predicts its domain-based organization (adjusted R2 around .95), and is partly 

independent of object domain information. The visual feature sensitivity pattern, in turn, is 

significantly explained by relationships to types of response/action computation (Navigation, Fight-

or-Flight, and Manipulation), more so than the “object domain” structure, as revealed by behavioral 

ratings and natural image statistics. These results offer the first comprehensive visual featural map in 

VOTC and a plausible theoretical explanation as a mapping onto different types of downstream 

response systems.  
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Significance Statement 

Human higher-order ventral visual pathway (VOTC) has a well-documented object domain 

organization (animate vs. inanimate), but the underlying mechanisms remain debated. Combining 

computational vision, functional neuroimaging and behavioral rating experiments, we depicted a first 

comprehensive visual featural map in VOTC, which almost perfectly explained classical object-domain 

organization, and was partly independent of object domain information. We further showed that one 

factor that may explain why the visual feature sensitivities distribute in VOTC this way is how they 

associates with computations for salient types of responses/actions (Navigation, Fight-or-Flight, and 

Manipulation). That is, the mappings onto downstream response systems are a key driving force that 

shape the neural sensitivity in the visual cortex.  
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Introduction 

Ventral occipital-temporal cortex (VOTC), which underlies visual object recognition in humans 

and nonhuman primates, has a hierarchical architecture, from a retinotopic organization of simple 

features in the early visual cortex to a domain-based (e.g., faces, scenes/places/large objects, animate 

vs. inanimate) organization in higher-order visual cortex (1–4). An ongoing debate concerns whether 

this latter organization reflects a real, possibly innate, domain-based structure or if it instead reflects 

distributional patterns of low- or mid-level visual features that systematically correlate with domain 

(5, 6, see ref. 2 for a review). This debate has led to many studies about the properties of VOTC (7–9, 

see reviews in ref. 10, ref. 11), which are important in understanding the transition from simple 

feature processors to higher-order recognition mechanisms. 

The distributions of two specific types of visual features in higher-order VOTC have been very 

recently demonstrated in humans and nonhuman primates. One type is the mid-level shape contrast 

between rectilinear and curved features. High rectilinearity, especially right angles, is more prevalent 

in images of scenes and places and activates scene-preferring regions including the parahippocampal 

place area (PPA) and transverse occipital sulcus more strongly than curved lines in humans (12). Low 

rectilinearity, or high curvature, tends to be associated with animate items (13, 14), which tend to 

activate regions close to the face patches in the macaque brain (15). The other visual feature of recent 

interest in the VOTC is color. Different colors have been shown to associate with objects versus their 

backgrounds, and with animate versus inanimate objects (16). Three VOTC patches were identified in 

the macaque monkeys to be sensitive to color and the more anterior medial patch showed both a 

yellow/red preference and face/body preference (17). These studies focus on individual visual 

features, and the effects may be driven by other features that correlate with them. More importantly, 
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if there is a systematic pattern of various visual feature sensitivity across VOTC, what are the 

organizational principles of this organization? While there are no explicit hypotheses about the 

organization of visual features in VOTC, predictions might be inferred from broader hypotheses about 

the driving forces and computational purpose of this cortical territory. One hypothesis states that 

domain categorization serves visual object recognition (2). Another, non-mutually exclusive, 

hypothesis states that the organization arises due to mapping onto various action/response systems 

such as Navigation, Fight-or-Flight and Manipulation (11, 18, 19). Both hypotheses predict that the 

visual feature distribution is not random, but rather associates with major domain and/or response 

systems, respectively.  

We aimed to depict a comprehensive topographical map of visual features across VOTC, taking 

into consideration their correlational nature in the context of common objects. We combined 

computational vision modelling and parametric modulation analysis on fMRI responses. The 

parametric modulation approach exploits the natural variation in salience of various visual features 

across object images (obtained from computation vision modelling) and identifies brain regions 

responsive to each feature or combination of features by computing the degree of association 

between brain response and image feature weights. The obtained visual feature maps were 

compared to the domain distributions, and an additional experiment using isolated visual features 

was conducted to examine the relationship between object domain effects and feature effects. Two 

hypotheses about the driving forces of the VOTC organization – object domain and response mapping 

– were tested to explain the visual feature topography of VOTC. 

 

Results 
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Twenty visual features covering a broad range of shape, spatial frequency, orientation, and color 

information were tested, and their weights were extracted for each of 95 object images using 

computational vision models (see Materials and Methods and Fig. S1 for details) (12, 15, 20–24). fMRI 

responses for these images were also obtained from 26 participants, and parametric modulation 

models were used to compute the effects of visual features across VOTC voxels, taking into 

consideration their inter-correlations (Object Experiment; see Fig. 1). Then the relation between 

domains and features in VOTC were investigated (Object Experiment and Isolated-Features 

Experiment). Finally, two theoretical models of VOTC computation (by object domain and by response 

mapping) were examined in terms of their explanatory power for the VOTC visual feature patterns. 

 

Computation of visual feature weights in object images 

A set of 95 real object images (28 large nonmanipulable objects, 32 animals, and 35 small 

manipulable objects) were analyzed using computational vision models to obtain their properties for 

20 visual features (see Materials and Methods): in geometry/shape space these features were right 

angle, curvature, number of pixels and elongation; in Fourier power space high/low spatial 

frequencies and four orientations (0, 45, 90, 135o); in color space eight hues, luminance, and chroma. 

The descriptive statistics, including distribution plots for each feature across the whole image set, as 

well as the mean and standard deviation (SD) by domains, are shown in Fig. S2. The correlations 

(Pearson) among features are shown in Fig. S3. As often observed, we found significant differences 

(FDR corrected q < .05) among the three object domains across some visual features: right angle 

(F(2,92) = 6.77, p = .002), number of pixels (F(2,92) = 16.37, P = 8.27× 10-7) and elongation (F(2,92) = 

15.47, p = 1.61 × 10-6) in geometry/shape space; low spatial frequency (F(2,92) = 6.59, p = .002), 0o 
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orientation (F(2,92) = 6.21, p = .003), 90o orientation (F(2,92) = 5.08, p = .008) and 135o orientation 

(F(2,92) = 8.06, p = .001) in Fourier power space; orange (F(2,92) = 5.11, p = .008) and yellow (F(2,92) 

= 5.43, p = .006) in color space. The post-hoc comparisons across domain pairs are shown in Table S1. 

Pairs of highly-correlated visual features (Pearson r > 0.85) were collapsed into one by taking the 

means (cyan/indigo, r = 0.92, red/purple, r = 0.86). To reduce chances of multicollinearity, low spatial 

frequency was further excluded from the full parametric modulation model analysis because it had a 

variance inflation factor (VIF) > 10 (VIF = 48.25; other features’ VIFs are within the range of 1.26 – 

5.41)(25). Thus, 17 features were retained for the subsequent parametric modulation analysis, with 

pairwise correlations within the range of -.56 to .64. 

 

Visual feature topography in VOTC: Results of the Object Experiment  

For all fMRI analyses below, we adopted a threshold of cluster-level FWE corrected p < .05 within 

the VOTC mask(26), with voxel-wise p < .001 unless explicitly stated otherwise.  

The results of the full model analysis, where the 17 visual feature weights were entered into the 

parametric modulation model for BOLD activity estimates, are shown in Fig. 2. In higher-order VOTC, 

for geometry/shape-space features, right angle modulated responses in bilateral medial fusiform 

gyrus (medFG) and left lateral occipital temporal cortex (LOTC); number of pixels modulated 

responses in left medFG. For Fourier-power-space features, high spatial frequency modulated 

responses in bilateral medFG; 0o orientation modulated responses in right medFG and bilateral LOTC; 

oblique orientations (45o, 135o) modulated responses in right lateral fusiform gyrus (latFG) and 

orientation 135o additionally modulated responses in left latFG. For color-space features, red/purple 

and green modulated broad regions in bilateral FG; and luminance modulated responses in bilateral 
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latFG. Red/purple additionally modulated responses in left LOTC.  

Independent models, in which each feature was entered into the parametric modulation model 

separately without considering the correlations among features, were also performed and are shown 

in Fig. S4. Here more commonalities across features can be observed, with most features showing 

regions largely consistent with those obtained in the full model above with effects covering broader 

regions in higher-order VOTC. Five features showed differences between the two analyses: The effects 

of elongation (in left LOTC), 90o orientation (in bilateral medFG), and blue (in bilateral medFG) were 

significant in the independent model but not in the full model; the effects of 0o orientation (in bilateral 

LOTC) and luminance (in bilateral latFG) were significant in the full model but not in the independent 

model. These differences are likely due to their correlations with other features (see Fig. S3).  

 

Featural effects in accounting for the domain effects in VOTC 

To what extent can the classical object domain distribution in VOTC be explained by visual feature 

effects? We carried out the following two analyses, one across all VOTC voxels, one in classical 

domain-preferring clusters. 

How much of VOTC voxels’ domain-selectivity is explained by the visual feature effects? We 

constructed a multiple linear regression model using the visual feature sensitivity patterns to predict 

selectivity strength for a given domain across all VOTC voxels. That is, the 17-feature sensitivity maps 

in VOTC from the full parametric modulation model were taken as the independent variables. The 

dependent variable was the VOTC domain-selectivity strength map, which was computed separately 

for each object domain by contrasting the brain responses (beta values) to images from one domain 

to those of the other two. (Note that this analysis does not involve double dipping as the visual-

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.009498doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.27.009498
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

feature maps were generated completely independently of the domain information of each image.) 

The results (Fig. 3A) show almost perfect explanatory powers of the linear regression models: for 

large nonmanipulable object selectivity, adjusted-R2 = 0.946; for animal selectivity: adjusted-R2 = 

0.957; for small manipulable object selectivity: adjusted-R2 = 0.973. That is, how much a voxel prefers 

each of the three object domains was perfectly predicted by its sensitivity pattern to the 17 visual 

features. 

Do domain-preferring regions overlap with the feature maps? We localized classical domain-

preferring regions in VOTC and checked for visual features showing effects in these clusters. In the 

VOTC mask, we contrasted each object domain to the other two domains, which yielded clusters 

highly correspondent to those observed in the literature (Fig. 3B)(18, 27): large nonmanipulable 

objects correspond to clusters in bilateral PPA (cluster-level FWE corrected p < .05 within the VOTC 

mask, voxel-wise p < .0001); animals in bilateral latFG (cluster-level FWE corrected p < .05 within the 

VOTC mask, voxel-wise p < .0001); and small manipulable objects in left LOTC (cluster-level FWE 

corrected p < .05 within the VOTC mask, voxel-wise p < .01). The overlapping voxels between the 

domain preferring regions and the visual feature modulation clusters in the full model analysis were 

counted, and those greater than 10 voxels were considered. Results (Fig. 3B) showed that the PPA-

large nonmanipulable object region overlapped with right angle (424 voxels), high spatial frequency 

(257 voxels), red/purple (103 voxels), green (92 voxels), 45o orientation (33 voxels), number of pixels 

(31 voxels), luminance (18 voxels) and 0o orientation (10 voxels); the latFG-animal region overlapped 

with 135o orientation (46 voxels), red/purple (45 voxels), green (40 voxels), luminance (23 voxels) and 

45o orientation (18 voxels); and finally the LOTC-small manipulable object region overlapped with 

red/purple (21 voxels) and right angle (19 voxels).  
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Featural effects independent of object domain information 

The above findings showed a strong association between effects of visual features and object 

domains in VOTC. In this section we test whether there are feature effects independent of the object 

domains. 

Visual feature effects regressing out the domain model. We first re-tested the visual feature 

effects in the feature-domain overlap ROIs by running the full parametric modulation model analysis 

using feature weights, with domain structure regressed out (see Materials and Methods). The ROIs 

were defined as the overlapping voxels between the domain preferring regions and the significant 

clusters of each feature modulation. There were 15 ROIs in total (Fig. 3B) and all effects remained the 

same to those before regressing out the domain model (Fig. S5, FDR corrected q < .05), indicating the 

featural effects exist independently from object domain. 

Visual feature effects in the non-preferring domains. We further examined the visual feature 

effects using object images belonging to the non-preferring domains to fully exclude any potential 

domain effects. In each feature-domain overlap ROI, we excluded stimuli from the corresponding 

object domain and re-ran the full model analysis. (Note that in this analysis one third of the data was 

not used, lowering the statistical power.) For example, we tested whether the right-angle effect in 

PPA, the large nonmanipulable object-preferring region, remained when participants were looking at 

images of animals and small manipulable objects. The results (Fig. 4A, FDR corrected q < .05) showed 

that effects in 10 of the 15 ROIs remained stable, again confirming the relative independence of visual 

featural effects from object domain.  

Visual feature effects without object contexts (Isolated-Features Experiment). To test whether the 
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observed visual feature effects in higher-order VOTC remain without object contexts, we conducted 

a second fMRI experiment in which the stimuli were arrays of lines and random dot patterns varying 

in hue (see Fig. 4B for sample stimulus shapes). We also included a functional localizer run with 

images of scenes, animals and small manipulable objects. As shown in Fig. 4B, semicircles, compared 

to horizontal/vertical lines, or to right angles, activated bilateral or right latFG close to animal-

preferring clusters. Right angles compared to semicircles activated bilateral medFG corresponding to 

PPA only at a lenient threshold (voxel-wise p < .05, uncorrected). No effects of horizontal or vertical 

lines greater than semicircles were found in the FG. For dot patterns rendered with different hues 

(red, orange, green, cyan, and blue) compared to grayscale dot patterns, weak activations (voxel-wise 

p < .05, uncorrected) were observed posterior to the domain-preferring clusters or sandwiched 

between latFG and PPA. In summary, when presented as isolated single-feature stimuli without object 

contexts, the effects of right angles in PPA and curvature in right latFG tended to remain; the effects 

of right angles in LOTC, and of hues and orientations broadly, disappeared.  

Across experiments, the effect of right angle in PPA was reliable across all domain-independent 

analyses – it is present when the domain structure was regressed out, when participants were looking 

at non-preferring domains (animal and small manipulable objects), and when presented in isolation 

from object contexts. The effects of right angle in LOTC and of different hues and orientations (at least 

in part) in VOTC remained whether or not domain information is taken out (by regressing out domain 

structure or excluding preferring domain items), but disappeared when participants were looking at 

isolated featural stimuli, indicating that their effects may be linked to other visual features and/or 

object contexts. 
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Factors driving the feature distribution patterns in VOTC voxels 

We have described the distributional topography of a comprehensive set of visual features in 

VOTC, identifying voxels by their sensitivities to specific feature sets. We also demonstrated that each 

voxel’s sensitivity pattern to feature sets almost perfectly accounts for its domain-selectivity and that 

certain features like right angle continue to produce effects in isolation. To understand why visual 

features distribute in this way, we examined whether the visual feature topography can be explained 

by two hypotheses about the computational purpose of VOTC: object domain categorization 

(potentially for more specific downstream object recognition), or mapping with downstream 

response computations, by examining the correlation between “prototypical” visual feature vectors 

based on these two hypotheses (Fig. 5A) and the observed neural visual feature vector in VOTC.  

Relationship between observed VOTC voxel feature vectors and domain-feature vectors. We first 

generated “prototypical” visual feature vectors associated with the three object domains (i.e., 

domain-feature vectors) based on natural image statistics to approximate the feature-domain 

association profile in the natural world. For this purpose, we used a broader image set containing 767 

images, which included the 95 images from the current Object Experiment and 672 images (isolated 

objects with clear domain membership on white background) selected from three previous studies 

(28–30). Three binary domain vectors were then constructed (e.g., animal vector: animals = 1, others 

= 0). For each image, weights on visual features were obtained using the identical computational 

vision models mentioned above. Logistic regression was conducted between each binary domain 

vector and each of visual feature weights, and the resulting beta values were taken as a prototypical 

domain-feature vector for each domain. This vector reflects the visual feature patterns that best 

distinguish each domain from the others in natural object images. The results (FDR corrected q < .05) 
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are shown in Fig. 5B left; see Table S2 for  and p-values).  

We then tested whether the VOTC voxels’ visual feature sensitivity profile reflects these domain-

feature vectors. For each VOTC voxel, we correlated its neural-feature-vector (obtained by the 

independent parametric modulation model; Fig. S4) and each of the three prototypical domain-

feature-vectors based on natural image statistics, resulting in a correlation map for each domain (Fig. 

5B right). Note that the independent parametric modulation model results were used (with 18 visual 

features), because the beta weights were more transparently interpretable and the results were also 

largely consistent with those of the full model (17 features, with “low spatial frequency” excluded 

due to high VIF). The large nonmanipulable object domain-feature-vector was significantly positively 

correlated with the neural-feature vector of VOTC voxels in 3 clusters located in bilateral medFG and 

left middle occipital cortex. The animal domain-feature-vector was significantly correlated with the 

neural-feature vector of VOTC voxels in one cluster located in right lateral occipital cortex. The small 

manipulable object domain-feature-vector was significantly correlated with the neural- feature vector 

of VOTC voxels in 2 clusters located in LOTC and left lingual gyrus. These results suggest that VOTC 

voxels’ feature-sensitivity patterns are associated with the natural image statistics of three major 

object domains. 

 Relationship between observed VOTC voxel feature vectors and response-feature vectors. 

Here we obtained prototypical visual feature vectors associated with three hypothesized response 

systems (i.e., response-feature vector): Navigation, Fight-or-Flight and Manipulation (11, 18, 19), by 

first asking an independent group of participants to rate each object image on its relevance to each 

response (see Materials and Methods for details). Linear regression was conducted between the 

rated value for each response system and each of the 18 visual feature weights; the resulting beta 
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values were used as the prototypical response-feature vector for each response system in natural 

object images. The results (FDR corrected q < .05) are show in Fig. 5C left (see Table S2 for  and p-

values). 

Similar to above, for each VOTC voxel we correlated its neural-feature vector (Fig. S4) with each 

of the three prototypical response-feature-vectors, resulting in 3 VOTC correlation maps (Fig. 5C right). 

The navigation-response-feature vector was significantly correlated with the neural-feature vector in 

clusters located in bilateral medFG, bilateral middle occipital gyrus and right lingual gyrus. The 

fight/flight-response-feature vector showed no significant correlations at the standard threshold. 

When we lowered the threshold (voxel-wise p < .01, uncorrected), it correlated with the neural-

feature-vector of VOTC voxels in bilateral lateral occipital cortex, right latFG and bilateral occipital 

pole. The manipulation-response-feature vector was significantly correlated with the neural-feature-

vector of VOTC voxels in clusters located in left LOTC and left lingual gyrus. 

Comparison between domain-driven and response-driven hypotheses. Because the prototypical 

domain-feature vectors and prototypical response-feature vectors were highly correlated (Pearson rs: 

large nonmanipulable objects with navigation response = .84; animals with fight-or-flight response 

= .80; small manipulable objects with manipulation response = .87) and showed similar relationship 

patterns in VOTC (Fig. 5B & 5C), we directly compared the explanatory power of these two types of 

feature vectors. To do this, we first generated a domain-driven maximum R map by selecting the 

highest R value for each voxel out of the three domain-driven R maps in Fig. 5B, and generated the 

response-driven maximum R map in the same way using the three maps in Fig. 5C. Then the two max 

R maps were Fisher-z transformed and compared by paired t-test. Results showed that the “response-

driven” map was significantly higher than the “domain-driven” map (global mean Rs ± SD: 0.57 ± 0.27 
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vs. 0.54 ± 0.28, t (3914) = 12.21, p = 1.07 X 10-33). 

 

Discussion 

Combining computational vision models, a parametric modulation analysis of fMRI data, and 

natural image statistics, we depicted the distributional topography of a comprehensive set of visual 

features in VOTC, identifying voxels’ sensitivities to specific feature sets. We demonstrated that the 

sensitivity pattern across geometry/shape, Fourier power, and color (visual feature vectors) almost 

perfectly predicts each voxel’s domain-selectivity strength for large nonmanipulable objects, animals, 

and small manipulable objects. Some features (e.g., right angle in PPA) also produce effects when 

isolated from other features and/or object contexts. We also demonstrated that two organizational 

principles – for domain categorization and for efficient response mapping – may drive visual features’ 

distribution, with the response mapping principle having slightly but significantly more explanatory 

power. 

By contrast to recent studies that focused on one or two specific visual features, our approach 

tested a much more comprehensive set of visual features and correlations among them. Our finding 

that natural image statistics are associated with object domains is consistent with a set of recent 

studies, including those showing that large nonmanipulable objects tend to have more right angles 

(12) and animals tend to have more yellow colors (16). Our results with combinations of multiple 

features highlight the importance of not only positive associations but also negative ones in informing 

about domains, e.g., animals do not have right angles whereas large nonmanipulable objects are not 

likely to be elongated.  

Remarkably, we found an almost-perfect association between the domain selectivity patterns 
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and visual feature sensitivity patterns in VOTC. Previous studies have shown associations between 

certain visual feature and domain preferences: A preference for rectilinearity, high spatial frequency, 

and cardinal orientation features was observed in regions preferring scenes/large objects (12, 22, 31, 

32) and a preference for high curvature, low spatial frequency, and red/yellow hues was observed in 

regions preferring faces (15, 17, 22, 33). However, it has been questioned whether VOTC domain 

preferences can be fully explained by the effects of these visual features, given that the selectivity 

strengths for features are lower than for the corresponding domains (34), the anatomical overlap 

between feature effects and domain effects is far from perfect (15), and the domain preferences are 

still present when visual shape are controlled (7). Here, by incorporating the combinational effects of 

multiple visual features together, we showed remarkably high explanatory power of visual features 

to domain-preference: Voxels’ visual-feature-preference vectors accounted for about 95% of VOTC’s 

variance in selectivity for animals, large nonmanipulable objects, and small manipulable objects.  

Although strongly associated with the domain-preference effects in VOTC, not all feature effects 

were dependent on the presence of object domain information. The effect of right angle in bilateral 

medFG (aligning with the PPA) was present when the features are shown in isolation without object 

contexts and/or other features, and even during presentation of objects from non-preferring domains 

(i.e., when objects are small manipulable objects and animals). The effects of other features like hue 

and orientation were only observed when presented within objects and disappeared when shown in 

isolation, showing that they are processed in combination with other visual features and/or object 

contexts in VOTC (35).  

Showing the robustness of visual feature combinations in explaining domain preferences does 

not imply that domains are not a productive or accurate way to conceptualize the organization of 
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VOTC. The hard question remains: Why does VOTC have this specific type of visual feature topography? 

Why do specific VOTC regions prefer specific combinations of visual features? We considered two 

(related) hypotheses of VOTC organization, one classically-embraced stating that object domain 

categorization is in the serve of more-specific object recognition (2), and one more recently 

articulated stating that the organization arises due to how visual properties map onto different types 

of responses systems (11, 18, 19). We tested whether either or both principles explain the VOTC 

feature sensitivity patterns by correlating each VOTC voxel’s visual-feature vector with prototypical 

visual-feature vectors corresponding to object domains and response systems. We found that indeed 

both principles significantly explain the VOTC’s feature sensitivity patterns: large nonmanipulable 

object domain-vectors and navigation response-vectors were associated with bilateral medFG; animal 

domain-vectors and fight-or-flight response-vectors with right lateral occipital cortex; and small 

manipulable object domain-vectors and manipulation response-vectors with left LOTC. These two 

principles (domain-categorization and response-mapping) are intrinsically correlated, as the 

evolutionary saliency of domains has been proposed to reflect the fact that different object domains 

entail different brain connectivity with downstream action computations (11, 18, 19). In this sense, 

the salient “domain” structures are vaguely defined and may be understood as proxy terms for 

different vision-response mappings. Indeed, we showed that the response-relevance-feature vectors 

have a slight but significant advantage in explaining the VOTC voxels’ visual-feature-sensitivity 

patterns, providing support for response-mapping as the critical driving force for VOTC organization. 

Taking all the results together, the following picture of VOTC properties emerges: 1) VOTC’s 

seemingly domain-related organization can be fully explained by voxel sensitivity patterns to a 

comprehensive set of visual features; 2) The specific VOTC visual feature sensitivity pattern associates 
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with the object domain structure but is better explained by how features map onto different types of 

responses; 3) Although the feature sensitivity structure may be intrinsically driven by response 

mapping (through evolution and/or individual level experiences), the resulting VOTC may behave as 

general feature-, rather than domain- processors, as at least some features were effective even in the 

absence of the corresponding object domain information. 

There are two caveats to consider. One is that the visual features we tested are based on 

knowledge and algorithms from computational vision practice. There is always a possibility that other 

relevant types of visual features were missed, and that the algorithm choice was not optimal. For 

instance, the current curvature computation considers 5 arbitrarily-selected concavity features, and 

its effects on VOTC based on this computation were not significant yet were visible when using a 

direct contrast (top 25% amount of curvature – top 25% amount of right angle, Fig. S6), which is more 

in line with studies using subjective curvature ratings, which may reflect a composite index of various 

types of curvatures (36). However, our results that the feature combination model explains the 

domain-preference strength in VOTC voxels almost perfectly indicate the power of the included 

features. Second, we only examined three major object domains, not testing other classical domains 

for VOTC: scenes and faces. The current framework makes the same predictions about preferences 

for these two types of images, which remain to be empirically tested.  

In summary, we report the first comprehensive visual feature map in human VOTC. We showed 

that visual-feature-sensitivity patterns fully explain domain-selectivity patterns in VOTC. Finally, we 

conclude that the mappings onto downstream response systems are a key driving force for the 

observed VOTC feature distribution patterns.  

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.009498doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.27.009498
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

Materials and Methods  

Participants 

Twenty-nine participants (age range 19-25 years; 20 females) participated in the Object 

Experiment. An independent group of 19 participants (age range 19-29 years; 11 females) 

participated in the Isolated-Features Experiment. An independent group of 20 participants (age range 

18-29 years, 14 females) participated in the rating study. All participants had no history of 

neurological or psychiatric impairment, had normal or corrected-to-normal vision, were native 

Chinese speakers, and provided written informed consent. The Object Experiment was approved by 

the Institutional Review Board of the State Key Laboratory of Cognitive Neuroscience and Learning, 

Beijing Normal University. The Isolated-Features Experiment was approved by the Institutional 

Review Board of Department of Psychology, Peking University. 

 

fMRI stimuli 

Stimuli in the Object Experiment consisted of 95 colorful real-world objects centered on a white 

background belonging to three common domains: large nonmanipulable objects (28 images), animals 

(32 images), and small manipulable objects (35 images). Images of large nonmanipulable objects 

included buildings, furniture, appliances, communal facilities and large transport. Images of animals 

included mammals, birds, reptiles and insects. Images of small manipulable objects included common 

household tools, kitchen utensils, stationery and accessories. These images were obtained from the 

Internet and resized to 400 x 400 pixels (10.5° x 10.5° of visual angle). 

Stimuli in the Isolated-Features Experiment consisted of 112 images from 14 conditions (see Fig. 

4B for sample stimulus shape). Nine conditions were individual visual features: 4 different line-based 
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features as shape arrays (8 arrays of right angles; 8 arrays of semicircles; 8 arrays of horizontal lines; 

8 arrays of vertical lines), and the remaining 5 were hue-based features (40 random dot patterns in 

each of: red, orange, green, cyan, and blue). Another condition of grayscale random dot patterns was 

included as controls for hue-based features. The remaining conditions (non-cardinal lines, phase-

scrambled images of non-cardinal lines, and two types of combination of multiple visual features) 

were designed for other research purposes. Only the nine conditions of individual features and the 

grayscale random dot pattern condition were analyzed here. Each shape array contained 40 elements, 

and all the shape arrays were located randomly within a virtual circular limit (radius = 200 pixels) 

(constructed largely following previous studies (12)). Orientations of shape arrays except for 

horizontal and vertical lines were not cardinal and varied semi-randomly to minimize orientation 

biases. Images of dot patterns were randomly distributed small dots (< 0.1°) rendered with gray or 

different color hues. For the colored dot patterns, we sampled 8 equally spaced points in (CIE) L*C*H 

space (Commission Internationale de l’Eclairage), that started from h = 0, at L* = 69, c* = 36, and for 

the following 5 hues: red (h = 0°), orange (h = 45°), green (h = 135°), cyan (h = 180°), blue (h = 270°). 

All stimuli had equal number of pixels and were presented against a Gaussian noise background (using 

the Matlab function imnoise). The SHINE toolbox (37) was used to match spatial frequency and 

luminance across all stimuli and to match the Fourier spectrums across dot conditions.  

The Isolated-features Experiment included further domain-functional localizer runs that included 

90 black-and-white images taken from a previous study (38), including scenes (30 images), animals 

(30 images) and small manipulable objects (30 images). All images subtended 7.6° x 7.2° of visual 

angle (400 x 400 pixels). 
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Computation of visual feature weights in object images 

The weights of 20 visual features covering a broad range of shape, spatial frequency, orientation, 

and color properties were extracted using computational vision models for each of 95 object images 

(see Fig. S1 for schematic modelling steps).  

Geometry/shape space We examined four geometry/shape features: number of pixels, right 

angle, curvature, and elongation. For number of pixels, a binary object mask (defined as pixels with 

grayscale values lower than 240) was created and each pixel in the mask was counted. Overall right 

angle and curvature information was measured largely following previous approaches with some 

modification (12, 15, 20). Specifically, for right angle, 64 right-angle Gabor filters (using an absolute 

function (12)) were constructed using 4 spatial scales (1/5, 1/9, 1/15, and 1/27 cycles per pixel) and 

16 orientations (22.5°-360° in 22.5° steps). Images were converted to grayscale and edge maps were 

constructed using Canny edge detection at a threshold of 0.1 (39). Each edge map was convolved with 

64 Gabor filters of different spatial scales and orientations. This produced 64 Gabor coefficient images, 

which were then normalized by dividing by the mean magnitude of each Gabor filter. For each spatial 

scale, the largest magnitude across the 16 coefficient images of different orientations was extracted 

for each pixel to obtain a peak Gabor coefficient image, which was then averaged across all pixels of 

each image and z-scored across the image set. The resulting Gabor coefficient values for each image 

were finally averaged across 4 spatial scales and z-scored to provide a single value for each image to 

represent the amount of right-angle information in that image. For curvature, the same procedure 

was used using the bank of 320 curved Gabor filters (using a square root function (40), composed of 

4 spatial scales, 16 orientations, and 5 levels of curvature (π/256, π/128, π/64, π/32, π/16), to 

generate a single value for the amount of overall curvature information for each image. Elongation 
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was measured as the aspect ratio of the rectangle that encloses the object parallel to the object’s 

longest axis.  

Fourier power space Images were converted to grayscale and submitted to a 2D fast Fourier 

transform (built-in MATLAB function fft2). The high/low spatial frequency and 4 orientations (0, 45, 

90 and 135°) were measured based on previous approaches (22, 23, 31) to parameterize energy 

variation in Fourier power space. The overall energy of high and low spatial frequency was calculated 

by averaging the energy of the high (>5 cycles/degree) and low (<1 cycles/degree) band for each 

image (22). For orientations, we selected four directions which centered on vertical (0°), left oblique 

(45°), horizontal (90°), and right oblique (135°) with a bandwidth of 20° (23). For each orientation 

range, the energy across spatial frequencies was averaged. 

Color space Three main perceptual dimensions of color—luminance, chroma, and hue—were 

quantified using (CIE) L*C*H space following previous studies (16, 24). Pixel colors in each image were 

converted from RGB space into (CIE) L*C*H space using the MATLAB “colorspace” package (41). The 

white point for the transformation of the image colors was set to D65 (the standard illumination for 

noon daylight). The luminance and chroma of each image were calculated by averaging these values 

across pixels within the object. The hue space was divided into 8 bins with equal width, which started 

from the 338°-23° bin, in 45° steps, and roughly corresponded to red, orange, yellow, green, cyan, 

indigo, blue, and purple (24). The number of pixels in each bin was then counted as the hue-specific 

measures; pixels that did not belong to objects or were ambiguous (defined as luminance or chroma 

values less than 10) were excluded.  

Distribution of visual features across and within domains Distribution plots of z-transformed 

visual feature weights across 95 images were plotted and the mean and standard deviation (SD) by 
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domains were calculated (Fig. S2). One-way ANOVA was used to test whether there were significant 

differences among domains for each feature and multiple comparisons were corrected using FDR. For 

the features showing domain differences, Tukey's HSD post hoc comparison was conducted. The 

analysis was conducted using SPSS Statistics Software version 26 (IBM). Pairwise Pearson correlations 

between visual features were also computed across the 95 stimulus images. 

 

fMRI Experiment Design 

In the Object Experiment, participants named the 95 object images overtly and as quickly and 

accurately as possible. There were 6 runs, each lasting for 528 s. Each image (0.5 s fixation followed 

by 0.8 s image) was presented once per run. Inter-trial intervals ranged from 2.7-14.7 s. The order of 

stimuli and length of ITI were optimized using optseq2 (http://surfer.nmr.mgh.harvard.edu/optseq/). 

The order of items was randomized across runs. Each run started with 10 s of blank screen. 

In the Isolated-Features Experiment, participants viewed images of isolated shape arrays and dot 

patterns (described above). There were 7 runs in total, each lasting for 236 s. The stimuli were 

presented in 8-s blocks, separated by 8 s of fixation. Each block consisted of 8 images, each presented 

for 0.8 s and separated by 0.2 s of blank screen. Each condition appeared once in each run and the 

order of conditions was randomized. Each run started and ended with 10 s of fixation. Participants 

were instructed to pay attention to the stimuli and to press a button when a white dot (< 0.5°) 

appeared in the center of the screen, which occurred 0, 1 or 2 times per block with equal possibility. 

Six of the 19 participants also participated in a second scanning session of 9 runs on a separate day; 

we thus analyzed 16 runs for those 6 participants.  

After the isolated-feature runs, 2 domain localizer runs were conducted, in which participants 
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viewed images from 3 domains (scenes, animals, and small manipulable objects). Images were 

presented in 24-s blocks, separated by 8 s of fixation. Each block consisted of 30 images, each 

presented for 0.3 s and separated by 0.5 s blank screen. Each condition was repeated 3 times per run. 

During the localizer, participants performed a 1-back repetition detection task, pressing a button 

using their right index finger whenever two consecutive images were the same. There were 0, 1, or 2 

times repetitions per block (same frequency for each condition).  

 

MRI acquisition and data preprocessing 

The Object Experiment was conducted at the Beijing Normal University Neuroimaging Center 

using a 3T Siemens Trio Tim scanner. Functional data were collected using an EPI sequence (33 axial 

slices, TR = 2000 ms, TE = 30 ms, flip angle = 90°, matrix size = 64 𝗑 64, voxel size = 3 𝗑 3 𝗑 3.5 mm with 

gap of 0.7 mm). T1-weighted anatomical images were acquired using a 3D MPRAGE sequence: 144 

slices, TR = 2530 ms, TE = 3.39 ms, flip angle = 7°, matrix size = 256 𝗑 256, voxel size = 1.33 𝗑 1 𝗑 1.33 

mm. 

The Isolated-Features Experiment was conducted at the Imaging Center for MRI Research, Peking 

University, using a Siemens Prisma 3-T scanner with a 64-channel phase-array head coil. Functional 

data were collected with a simultaneous multi-slice (SMS) sequence (62 slices, multi-band factor = 2; 

TR = 2000 ms; TE = 30 ms; flip angle = 90°; matrix size = 112 𝗑 112; voxel size =2 𝗑 2 𝗑 2 mm with gap 

of 0.3 mm). T1-weighted anatomical images were acquired using a 3D MPRAGE sequence: 192 sagittal 

slices; 1 mm thickness; TR = 2530 ms; TE = 2.98 ms; inversion time = 1100 ms; flip angle = 7°; FOV = 

256 × 224 mm; voxel size = 0.5 × 0.5 × 1 mm, interpolated; matrix size = 512 × 448. 

Functional images were preprocessed and analyzed using Statistical Parametric Mapping (SPM12, 
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http://www.fil.ion.ucl.ac.uk/spm), Statistical Non-parametric Permutation Testing Mapping (SnPM13, 

http://warwick.ac.uk/snpm), and DPABI (42). The first 5 volumes in each run of the Object Experiment 

and Isolated-Features Experiment were discarded. Image preprocessing included slice time correction, 

head motion correction, and normalization to the Montreal Neurological Institute (MNI) space using 

unified segmentation (resampling voxel size = 3 𝗑 3 𝗑 3 mm in the Object Experiment; 2 𝗑 2 𝗑 2 mm in 

the Isolated-Features Experiment), and spatial smoothing with a Gaussian kernel of 6 mm full width 

at half maximum. Three participants in the Object Experiment were excluded from analyses due to 

excessive head motion (>3 mm maximum translation or 3° rotation).  

Statistical analyses were carried out within a bilateral VOTC mask (containing 3915 voxels for 3-

mm voxel size) constructed in our previous study (26), which was defined as brain regions activated 

by the contrast of all objects versus fixation in an object picture perception task in the ventral 

occipitotemporal cortex. Activation maps for parametric modulation and contrasts between 

conditions (see below for details) were first created in individual participants and then submitted to 

group-level random-effects analyses using SnPM13. No variance smoothing was used and 5,000 

permutations were performed. A conventional cluster extent-based inference threshold (voxel level 

at p < .001; cluster-level FWE corrected p < .05 within VOTC mask) was adopted unless stated explicitly 

otherwise.  

 

Visual feature topography in VOTC: Object Experiment 

To identify brain regions associated with each feature, parametric modulation was employed to 

investigate the correlations between activity levels and feature weights across the 95 stimulus images 

in the Object Experiment. For the full model that considers the correlations among multiple features, 
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the variance inflation factor (VIF) for each feature was calculated using SPSS Statistics Software 

version 26 (IBM) and features with VIF above 10 was excluded from analysis to reduce 

multicollinearity (25). Then the preprocessed functional images of each participant were entered into 

a General Linear Model (GLM), which included the onsets of items as one regressor, all features’ 

weights for each image in the parametric modulation module, and 6 head motion regressors for each 

run. A high-pass filter cutoff was set at 128 s. Contrast images for each feature versus baseline were 

then calculated and submitted for random-effects analyses. Because there is no a priori expectation 

that any brain region should become “less” active as the processing demands for a given feature 

increase, making the interpretation of negative correlations speculative, only positive modulations 

were reported. To obtain raw feature maps without considering correlations among features, we also 

conducted parametric modulation analyses for each feature by including one feature at a time in the 

GLM. 

 

Feature effects in accounting for the domain effects in VOTC 

How much of the VOTC voxels’ domain selectivity is explained by visual feature effects? To test 

how much variance in domain selectivity in VOTC voxels could be explained by visual features, we 

built a multiple linear regression model across VOTC voxels for each domain, using the data from the 

Object Experiment. Using the conventional contrast approach, a GLM was built including three 

regressors, each per domain, as well as 6 head motion regressors for each run. A high-pass filter cutoff 

was set at 128 s. The beta values contrasting one domain with the other two (e.g., for the animal 

domain: animal – [large nonmanipulable & small manipulable objects]) were computed in each 

participant and then averaged across participants to construct the domain selectivity VOTC maps. In 
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the linear regression model for each domain (in SPSS), the domain selectivity VOTC map was treated 

as the dependent variable and the full-model visual feature maps were included as independent 

variables. The adjusted R-squared of each model was reported. 

Do domain-preferring regions overlap with feature maps? To investigate the overlap between 

domain preferring regions and brain regions significantly modulated by each feature, we localized 3 

domain-preferring regions by thresholding the group-level activation maps at cluster-level FWE-

corrected p < .05 within the VOTC mask with voxel-wise p < .0001 for large nonmanipulable objects 

and animals, and voxel-wise p < .01 for small manipulable objects. The details of the identified regions 

were as follows: for large nonmanipulable objects > others, the bilateral parahippocampal place area 

(PPA), 464 voxels; for animal > others, the bilateral lateral fusiform gyrus (latFG), 51 voxels; and for 

small manipulable objects > others, the left lateral occipital temporal cortex (LOTC), 93 voxels. These 

domain-preferring regions were then overlaid on each feature map and overlapping clusters 

containing more than 10 voxels were reported.  

 

Feature effects independent of object domain information 

Visual feature effects regressing out the domain model. To test the independence of visual 

feature from domain effects in the ROIs showing feature and domain overlap (see above), we 

regressed out dummy-coded domain vectors (assigning items from the corresponding domain as 1 

and other items as 0) from each feature vector and re-ran the full model parametric modulation 

analysis using feature residuals as the modulating parameters. This procedure statistically eliminates 

the shared variance between feature weights and domains. The resulting parameter estimates for 

each feature in each ROI were averaged across voxels and compared with zero across participants 
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using one-tailed one-sample t-tests, followed by FDR correction for multiple comparisons.  

Visual feature effects in non-preferring domains. To further exclude any potential domain effects 

on visual feature effects, the full model parametric modulation analysis was re-run using items from 

non-preferring domains. At the individual participant level, GLMs were built including two regressors 

coding stimuli as “preferring domain” items and “non-preferring domain” items, and for the “non-

preferring domain” condition, visual feature weights were entered for the full parametric modulation 

analysis. As above, the resulting parameter estimates for each feature in the ROIs showing feature 

and domain overlap were averaged across voxels and compared with zero across participants using 

one-tailed one-sample t-tests, followed by FDR correction for multiple comparisons. 

Visual feature effects without object contexts (Isolated-Features Experiment) In the analysis of 

the Isolated-Features Experiment, all 14 stimulus conditions were included in the GLM as predictors, 

along with head motion regressors. The following contrasts were examined: dot patterns in different 

hues vs. gray-scale dots, right angles vs. semicircles, horizontal lines vs. semicircles, and vertical lines 

vs. semicircles. The group-level domain-preferring regions were identified using the two localizer runs. 

At the conventional threshold, the effects of animals and large nonmanipulable objects in this 

experiment spread to early visual cortex, so the localization of PPA and animal-latFG were constrained 

in an anatomical mask including bilateral fusiform gyrus and parahippocampal gyrus in the Harvard-

Oxford atlas (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases).  

 

Factors driving the feature distribution patterns in VOTC voxels 

To test the organizational principles of the observed voxel feature distribution patterns, 

prototypical visual-feature vectors for domains/responses based on natural image statistics were 
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constructed and compared with feature distribution patterns in the VOTC. To gain an unbiased 

understanding of feature distribution among objects, we built a larger object image dataset 

containing 767 images from three previous image sets (28–30) and the 95 images from the current 

Object Experiment. We used these image sets because they had isolated objects presented on a white 

background (Twenty-six images from Brodeur et al., 2014 were excluded for lack of clear domain 

membership, e.g., pillow). One object image was the same in our current experiment and in Downing 

et al. 2006 and thus only one was included. There were 419 animals (e.g., mammals, marine creatures, 

birds, insects, fish, reptiles), 168 large nonmanipulable objects (e.g., buildings, furniture, appliances, 

communal facilities, large transportation), and 180 small manipulable objects (e.g., common 

household tools, kitchen utensils, stationery, accessories). All images were resized to 256 𝗑 256 pixels 

with 72 DPI using Adobe Photoshop CS6. For each image, the feature weights were measured using 

computational vision models, as described above for the Object Experiment stimuli. 

Prototypical visual-feature vectors for domains and response systems. For domain-driven 

prototypical visual-feature vectors, we constructed three binary domain vectors (e.g., animal vector: 

animals = 1, others = 0) and performed pairwise logistic regression analyses between each domain 

vector and each of visual features, resulting in 3 domain-feature beta vectors. For response-driven 

prototypical visual-feature vectors, we examined 3 theorized response systems: Navigation, Fight-or-

Flight and Manipulation (11, 18, 19). The relevance of the 767 images (set described above) to each 

response system was rated by an independent group of participants (N = 20, age range 18-29 years, 

14 females) on a 1 – 5 scale. For Navigation, the participants were asked to rate “to what extent the 

object depicted in image could offer spatial information to help you explore the environment.” For 

Fight-or-Flight, the participants were asked to rate “to what extent the object depicted in image would 
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make you to show a stress response, e.g., run away, attack, or freeze.” For Manipulation, the 

participants were asked to rate “to what extent the object depicted in image can be grasped easily 

and used with one hand.” The ratings were averaged across participants to get one relevance index 

for each image to each response. Then pairwise linear regression analyses were conducted between 

each response relevance type and each visual feature, resulting in 3 response-feature beta vectors. 

Comparison between domain-driven and response-driven hypotheses. We examined whether 

and how the VOTC voxels’ visual feature profiles could be explained by domain- or response-feature 

vectors based on natural image statistics. The VOTC voxels’ visual feature profile was generated by 

extracting group-averaged parameter estimates of each feature in independent models, which 

resulted in a feature beta-vector for each voxel. The independent model results were used here 

because the beta values were more transparently interpretable and the results of the independent 

models are largely consistent with those of the full model. Then the neural visual feature profiles 

were correlated with each of three domain- or response-driven feature vectors using Pearson 

correlation, resulting in six R maps. The significance of the R maps above zero (one-tailed) was 

thresholded at cluster-level FWE-corrected p < .05 within the VOTC mask with voxel-wise p < .001. To 

compare the explanatory powers between domain-driven and response-driven hypotheses, the three 

R maps derived from domain-feature vectors were collapsed by extracting the highest R value in each 

voxel in VOTC and the three R maps derived from response-feature vectors were also collapsed use 

the same method. The resulting two maximum R maps were then Fisher-Z transformed and compared 

using paired t-test across voxels.  
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Figures 

 

Figure 1. Schematic overview of the methods in Object Experiment. (A) Sample stimuli of the Object 

Experiment. Images of 95 common objects (28 large objects, 32 animals, and 35 small 

nonmanipulable objects) were used. (B) Visual feature construction from computational vision 

models. For each picture, computational vision models were used to obtain values of 20 visual 
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features, including geometry/shape (based on modified Gabor filters), Fourier power features (using 

2D fast Fourier transform), color (based on Cmmission Internationale de l’Eclairage (CIE) L*C*H space). 

See Fig. S1 and Materials and Methods for model construction method details. (C) fMRI experiment. 

In an event-related fMRI experiment, participants viewed and named these objects. (D) Parametric 

modulation analysis. Parametric modulation was used to estimate the degree of association between 

brain responses and visual feature weights across the whole VOTC.  
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Figure 2. Object visual feature topography in a full-model parametric modulation analysis. All visual 

feature weights were entered into the parametric modulation model for BOLD activity estimates, 

yielding an activation map for each visual feature in the VOTC mask. The maps are thresholded at 

cluster-level FWE corrected p < .05 within the VOTC mask, with voxel-wise p < .001. The outlines show 

the domain-preferring clusters for large objects (bilateral PPA), animals (bilateral latFG), and small 
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manipulable objects (left LOTC) localized by contrasting each object domain with the other two 

domains in Object Experiment (see Materials and Methods). 
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Figure 3. The association between visual feature topography and object domain effects. (A) Results 

of prediction analysis: A multiple linear regression model was constructed to predict domain 

selectivity strength for each domain, using 17 visual features’ beta values as predictors, across all 

VOTC voxels. The brain maps are the unthresholded activation maps for each domain, showing the 

group-averaged selectivity strength (beta values of target domain – those of other domains) for all 
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VOTC voxels. The scatter plots show correlations between predicted domain-selectivity strength using 

VOTC visual-feature maps and the observed domain-selectivity strength across all VOTC voxels. The 

radar chart shows the standardized beta weights of each visual feature in the regression model for 

each domain. All but the one labelled by the cross mark (curvature in predicting large selectivity) 

were significant at FDR corrected q < .05 for 51 comparisons. (B) Results of overlapping analysis: The 

classical object domain preference clusters were localized by contrasting each object domain with the 

other two domains (same as Fig. 2). The obtained domain-preference maps were overlapped with 

each visual feature map in full model analysis (cluster-level FWE-corrected p < .05 within the VOTC 

mask, voxel-wise p < .001; see Fig. 2). The overlapping voxels between the domain preferring regions 

and the visual feature modulation clusters were counted, and those greater than 10 voxels were 

considered, with the number of overlapping voxels shown in the bar plots. The pie charts show the 

percentage of overlapping voxels in domain preferring regions. 
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Figure 4. Visual feature effects independent of object domains. (A) Results of visual features in the 

non-preferring domains. In the parametric modulation analyses to obtain the visual feature effects, 

only object pictures belonging to the non-preferring domains were used. That is, for visual features 

significant in the large-object-preferring PPA, the parametric modulation model used pictures of 

animal and small manipulable objects. For visual features significant in animal-preferring latFG, the 
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parametric modulation model used pictures of large and small objects. For visual features in small-

object-preferring LOTC, the parametric modulation results used pictures of animals and large objects. 

Beta values were extracted from the clusters showing overlap between domain-preferring regions 

and each visual feature map obtained in full-model parametric modulation analysis (see Fig. 3B). The 

bar plots show the averaged beta values of visual features across subjects; error bars indicate 

standard error. Asterisks indicate that beta values were significantly greater than zero (one-tailed one-

sample t tests, FDR corrected q < .05). (B) Results of Isolated-Features Experiment. In the actual 

experiment, each array contained more elements/dots than the examples shown here (see Materials 

and Methods for details). The brain activity maps for the contrasts between horizontal/vertical lines 

and curvature were thresholded at cluster-level FWE-corrected p < .05 within the VOTC mask, voxel-

wise p < .001 and other contrast maps were thresholded at voxel-wise p < .05, uncorrected. The 

outlines show the domain-preferring clusters for large objects/scenes (bilateral PPA), animals 

(bilateral latFG), and small manipulable objects (left LOTC) localized by contrasting each domain with 

the other two domains in Isolated Features Experiment. 
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Figure 5. Relationship between domain-model, response-model, and visual featural effects. (A) 

Illustration of the construction scheme of prototypical vectors for the three domains and for the three 

response systems. In an image set of 767 images, visual feature weights for each image were obtained 

using computational vision models. For domain-driven “prototypical” feature vectors, we constructed 

three binary domain vectors (e.g., animal vector: animals = 1, others = 0) and performed logistic 
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regression analyses between each domain vector and each of the 18 visual feature weights, resulting 

in 3 domain-feature beta vectors. For response-driven “prototypical” visual feature vectors, we 

examined 3 theorized response systems (Navigation, Fight-or-Flight, and Manipulation) by asking 20 

participants to rate how strongly each object associates with each of the three response systems. 

Linear regression was conducted between each response vector and each visual feature weight, 

resulting in 3 response-feature beta vectors. In (B) and (C), the left column shows the “prototypical” 

visual feature vectors associated with each object domain (large nonmanipulable objects, animals, 

and small manipulable objects) or with each response system (Navigation, Fight-or-Flight, and 

Manipulation). Dots indicate that beta values were significant at FDR corrected q < .05 for 54 

comparisons. The right column shows the Pearson correlation coefficients between each of these 

“prototypical” vectors and VOTC voxels’ visual feature vector obtained from the fMRI parametric 

modulation analyses in independent models. The correlation maps are thresholded at cluster-level 

FWE corrected p < .05, voxel-wise p < .001. 
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