
Determination of highly heterogeneous molecular structures 1 

Title: CryoDRGN: Reconstruction of heterogeneous structures from cryo-electron micrographs 

using neural networks  

Authors: Ellen D. Zhong1,2, Tristan Bepler1,2, Bonnie Berger2,3*, Joseph H. Davis1,4* 

 

Author information: 1Computational and Systems Biology, 2Computer Science and Artificial 

Intelligence Laboratory, 3Department of Mathematics, 4Department of Biology, Massachusetts 

Institute of Technology, Cambridge, MA 02139.  

*Correspondence: bab@mit.edu, jhdavis@mit.edu  

 

 
Running Title: Determination of highly heterogeneous molecular structures. 

 

Keywords: cryo-electron microscopy, macromolecular complexes, structural biology, machine 

learning. 

 

27,212 characters (including spaces), 3,891 words, 6 figures, 7 supplemental figures 

 

  



Determination of highly heterogeneous molecular structures 2 

Abstract 

Cryo-EM single-particle analysis has proven powerful in determining the structures of rigid 

macromolecules. However, many protein complexes are flexible and can change conformation and 

composition as a result of functionally-associated dynamics. Such dynamics are poorly captured 

by current analysis methods. Here, we present cryoDRGN, an algorithm that for the first time 

leverages the representation power of deep neural networks to efficiently reconstruct highly 

heterogeneous complexes and continuous trajectories of protein motion. We apply this tool to two 

synthetic and three publicly available cryo-EM datasets, and we show that cryoDRGN provides 

an interpretable representation of structural heterogeneity that can be used to identify discrete 

states as well as continuous conformational changes. This ability enables cryoDRGN to discover 

previously overlooked structural states and to visualize molecules in motion. 
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Main 1 

Single particle cryo-electron microscopy (cryo-EM) is a rapidly maturing method for high-2 

resolution structure determination of large macromolecular complexes1,2. Major advances in 3 

hardware3-5 and software4-9 have streamlined the collection and analysis of cryo-EM datasets, such 4 

that structures of rigid macromolecules can routinely be solved at near atomic resolution10,11. 5 

However, a major computational bottleneck remains when conformational or compositional 6 

heterogeneity is present in the sample. 7 

The crux of cryo-EM structure determination is the computational task of reconstruction, 8 

where algorithms must learn the 3D density or densities from the recorded dataset of 2D particle 9 

images12. While the standard formulation of reconstruction assumes that each 2D image is 10 

generated from a single, static structure, in reality, each image contains a unique snapshot of the 11 

molecule of interest. While this heterogeneity complicates reconstruction, it presents an 12 

opportunity for single particle cryo-EM to reveal the conformational landscape of dynamic 13 

macromolecular complexes.  14 

Existing tools for heterogeneous reconstruction often make strong assumptions on the type 15 

of heterogeneity in the dataset. Most commonly, heterogeneity is modeled as though it originates 16 

from a small number of independent, discrete states13-16, consistent with molecules undergoing 17 

cooperative conformational changes. However, because the number of underlying structural states 18 

are unknown, such discrete classification approaches are error-prone and often result in the 19 

omission of potentially relevant structures. Moreover, this approach fails to model molecules that 20 

undergo continuous conformational changes. In these conformationally heterogeneous systems, 21 

user-defined masks have been employed to resolve isolated rigid-body motions17, but these 22 

approaches require assumptions on the types and location of molecular motions. Additionally, new 23 
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theoretical methods have been proposed to model global continuous heterogeneity18-20, however 24 

no such tools have been made available. 25 

Here, we present cryoDRGN (Deep Reconstructing Generative Networks), a cryo-EM 26 

reconstruction method that uses a deep neural network to directly approximate the molecule’s 27 

continuous 3D density function (Fig. 1a). We designed this tool based on the reasoning that deep 28 

neural networks, which are known for their ability to model continuous, nonlinear functions, might 29 

effectively capture dynamical structures. We show that this neural network representation of 30 

structure, which we call a deep coordinate network, can efficiently learn heterogeneous ensembles 31 

of high-resolution structures from single particle cryo-EM datasets21.  32 

To learn this representation, cryoDRGN introduces an image-encoder/volume-decoder 33 

framework to learn a latent representation of heterogeneity from single particle cryo-electron 34 

micrographs. Once trained, users can visualize the dataset in the low-dimensional latent space, 35 

which we find reflects the structural heterogeneity of the imaged molecule. This structural 36 

heterogeneity can then be interrogated by generating 3D density maps at an arbitrary number of 37 

desired positions within the latent space, which can be used to visualize continuous structural 38 

trajectories.  39 

CryoDRGN is a powerful and general approach for analyzing heterogeneity in imaging 40 

datasets and can be used to reconstruct both compositionally and conformationally heterogeneous 41 

structures. We demonstrate its efficacy by reconstructing and analyzing structures of the 42 

eukaryotic ribosome, the assembling bacterial ribosome, and the pre-catalytic spliceosome 43 

complex. In these machines, we discover new conformational states and observe dynamic 44 

molecular motions. CryoDRGN is distributed as an open-source tool22 that can be easily integrated 45 

in existing pipelines and is freely available at cryodrgn.csail.mit.edu. 46 

Results 47 
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CryoDRGN architecture and training 48 

CryoDRGN performs heterogeneous reconstruction by learning a neural network 49 

representation of 3D structure from single particle cryo-EM micrographs. In contrast to traditional 50 

reconstruction algorithms, which represent the 3D density map on a discretized voxel array, 51 

cryoDRGN uses a neural network to predict density as a function of 3D Cartesian coordinates. We 52 

call this architecture23-25 a deep coordinate network. To model heterogeneity, the deep coordinate 53 

network can be extended to predict density as a function of both 3D coordinates and continuous 54 

latent variables, 𝑧, which define a n-dimensional manifold of heterogeneous structures (Fig. 1a). 55 

Coordinates are featurized with a positional encoding function before they are input to the deep 56 

coordinate network (Methods). This choice of model assumes that structures can be embedded 57 

within a continuous low-dimensional space, i.e. the latent space, where the dimensionality of the 58 

latent space is defined by the user. 59 

To train this neural network representation of 3D structure from a single particle cryo-EM 60 

dataset, we develop an encoder–decoder architecture based on the Variational Autoencoder 61 

(VAE)26,27 (Fig. 1b). The structure is represented in the Fourier domain in order to relate 2D 62 

images as central slices out of a density map according to the Fourier slice theorem28.  For a given 63 

image, 𝑋, the encoder neural network predicts a distribution of possible latent variable values, 64 

𝑞(𝑧|𝑋). The image’s oriented 3D pixel coordinates are computed from the image’s pose 65 

assignment provided by a previously determined consensus reconstruction. Then, given a sample 66 

from the encoder distribution 𝑧	~	𝑞(𝑧|𝑋) and the 3D coordinates of the slice, the image is 67 

reconstructed pixel-by-pixel through the deep coordinate network. The networks are trained jointly 68 

using an objective function that seeks to optimize a variational upper bound on the data likelihood 69 

as in standard VAEs25. This objective function consists of the image reconstruction error and a 70 
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regularization term on the latent space. The parameters of the neural networks are iteratively 71 

updated by gradient descent on this objective function. 72 

After training, the encoder network is used to map images into the low-dimensional latent 73 

space, where we define �̂� = 𝑎𝑟𝑔𝑚𝑎𝑥0	𝑞(𝑧|𝑋) as each image’s “latent encoding” (Fig. 1c). The 74 

full distribution of latent encodings can then be visualized to study the latent space data manifold. 75 

To explore the ensemble of structures, the deep coordinate network can directly reconstruct a 3D 76 

density map given a desired value of the latent variable 𝑧 and the 3D coordinates of a voxel array. 77 

Deep coordinate networks can learn static structures from homogeneous datasets 78 

To test the efficacy of neural networks in representing 3D structure, we first trained a deep 79 

coordinate network with no latent variable input to learn the homogenous structure of the 80 

Plasmodium falciparum 80S (Pf80S) ribosome from the EMPIAR 10028 dataset29. The network 81 

was trained on full resolution images (D=360, Nyquist limit of 2.7 Å), where image poses were 82 

obtained from a consensus reconstruction in cryoSPARC30. We found that the deep coordinate 83 

network produced a structure qualitatively matching the traditional reconstruction (Fig. 2a) at 84 

resolutions up to ~4.0 Å at an FSC=0.5 threshold (Fig. 2b).  85 

As neural networks have a fixed capacity for representation that is constrained by their 86 

architecture, we compared architectures of different sizes to evaluate the tradeoff between 87 

representation power and training speed. We found that larger architectures converged to lower 88 

values of the objective function (Fig. 2c) and correlated with the traditionally reconstructed map 89 

at higher resolution (Fig. 2b). These improvements in the resulting structure came at the cost of 90 

extended training times, suggesting that the architecture and the image size should be tuned to suit 91 

the desired balance of training speed and achievable resolution (Supplementary Fig. 1).  92 

CryoDRGN models both discrete and continuous structural heterogeneity 93 
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We next used simulated single particle cryo-EM datasets to test if the complete cryoDRGN 94 

framework could perform heterogeneous reconstruction. This simulation-based approach allowed 95 

us to quantitatively evaluate the method’s performance by comparing the reconstructed density 96 

maps to the ground truth density maps. To simulate continuous motions, we constructed an atomic 97 

model of a hypothetical protein complex and iteratively rotated one bond’s dihedral angle, 98 

resulting in a series of 50 distinct but closely-related atomic models. We then generated density 99 

maps along this reaction coordinate to serve as the ground truth density maps (Fig. 3a). Cryo-EM 100 

micrographs were generated by projecting the ground truth maps with random poses, followed by 101 

application of the contrast transfer function (CTF) and the addition of noise (see Methods). To 102 

simulate a compositionally heterogeneous dataset, this procedure was repeated by mixing images 103 

generated from the bacterial 30S, 50S, and 70S ribosomal density maps (Fig. 3d). The cryoDRGN 104 

networks were then provided these simulated images and their corresponding poses, and were 105 

trained with 1-dimensional (1D) latent variable models. 106 

When trained on the dataset with continuous heterogeneity, we found that cryoDRGN 107 

accurately modeled the full continuum of structures as assessed by two criteria. First, the latent 108 

encoding of each image produced by the encoder network correlated well with the dihedral angle 109 

of the underlying model (Spearman 𝑟	 = 	−0.996), which we characterize as the ground truth 110 

reaction coordinate (Fig. 3b). Second, when provided a series of latent variable values, the deep 111 

coordinate network produced structures that correlated with the ground-truth maps (Fig. 3c). We 112 

note that the deep coordinate network can generate an arbitrary number of conformations along 113 

the trajectory, and found that for 100 images equally spaced along the reaction coordinate, the 114 

generated structure at each image’s predicted latent encoding correlated well with its ground truth 115 

map (Supplementary Fig. 2). 116 
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When cryoDRGN was trained on the compositionally heterogeneous dataset, we observed 117 

that the encoder network mapped particles to three distinct clusters in latent space (Fig. 3e). These 118 

clusters aligned with the ground truth class assignments from the 30S, 50S, and 70S ribosome 119 

(classification accuracy of 99.9%), and the appropriate ribosomal structures were generated by the 120 

deep coordinate network when provided with latent variable values at the corresponding cluster 121 

centers (Fig. 3f, Supplementary Fig. 2). 122 

CryoDRGN uncovers residual heterogeneity in a high-resolution cryo-EM reconstruction 123 

We next evaluated cryoDRGN’s ability to learn heterogeneous structures from real cryo-124 

EM data, which contains structured noise and imaging artifacts that are difficult to simulate. When 125 

analyzing a homogeneous reconstruction of the Pf80S ribosome, Wong et al. observed flexibility 126 

in the small subunit head region and missing density for peripheral rRNA expansion segment 127 

elements that prevented completion of an atomic model in these regions29. To explore if this 128 

unresolved density resulted from residual heterogeneity, we trained a 10-dimensional (10D) latent 129 

variable model with cryoDRGN on their deposited dataset (EMPIAR-10028), using poses from a 130 

consensus reconstruction in cryoSPARC30. We then visualized the dataset’s latent encodings using 131 

principal component analysis (PCA) (Fig. 4a) and observed a subset of particles separated along 132 

PC1. A density map generated by the deep coordinate network from this region of latent space 133 

revealed a distinct conformation of the 40S subunit, which was rotated relative to the 60S subunit 134 

(Fig. 4b,c). Concomitant with the inter-subunit rotation, we observed the disappearance of the 135 

inter-subunit bridge formed by the C-terminal helix of eL8, which is consistent with Sun et al.’s 136 

characterization of Pf80S dynamics31. We further explored structural heterogeneity by performing 137 

k-means clustering of the latent encodings with k=20 clusters and subsequently generating 138 

structures at the cluster centers. We observed diverse structures including those bearing a rotated 139 
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Pf40S head group, those missing the head group, and those with clearly resolved rRNA helices 140 

that were absent from the homogeneous reconstruction (Fig. 4c).  141 

CryoDRGN automatically partitions assembly states of the bacterial ribosome 142 

Next, we assessed cryoDRGN’s ability to analyze and reconstruct density maps from a 143 

dataset known to contain substantial compositional and conformational heterogeneity. For this 144 

assessment, we investigated a highly heterogeneous mixture of assembly intermediates of the E. 145 

coli large ribosomal subunit (LSU). This dataset (EMPIAR 10076) had previously been analyzed 146 

through multiple expert-guided rounds of hierarchical 3D classification resulting in 13 discrete 147 

structures that were grouped into 4 major classes32. These particles were obtained by crudely 148 

fractionating a lysate with the explicit goal of imaging and later analyzing the full ensemble of 149 

cellular assembly intermediates. As such, a substantial fraction of the published particle stack 150 

corresponds to non-ribosomal impurities that were discarded during 3D classification in the 151 

original analysis (26,575 out of 131,899 images). Despite this heterogeneity, a homogeneous 152 

reconstruction of the full dataset produced a consensus structure of the mature LSU (GSFSC 153 

resolution of 3.2 Å), suggesting that even in the presence of these impurities, the heterogeneous 154 

ribosomal particles could be aligned to the rigid core of the LSU, which enabled analysis using 155 

cryoDRGN. 156 

To assess the degree of heterogeneity in the data, we first trained a 1D latent variable model 157 

on down-sampled images (D=128, Nyquist limit of 6.6 Å) using image poses from a consensus 158 

reconstruction. After model training, the encoder network was used to predict the latent encoding 159 

for each particle, and the resulting histogram of the full dataset’s encodings revealed five distinct 160 

peaks. Four of the peaks corresponded to each of the four major classes of the LSU, and the fifth 161 

peak near 𝑧	 = 	−2 captured particles that were unassigned by Davis et al. (Fig. 5a)32. This clear 162 

separation in latent space suggested that cryoDRGN can identify sample impurities without 163 



Determination of highly heterogeneous molecular structures 10 

supervision. When using the subset of particles from this region (assigned 𝑧 ≤ −1), neither 2D 164 

class averages nor a traditional 3D reconstruction produced structures consistent with assembling 165 

ribosomes (Supplementary Fig. 3). As we do not wish to model these impurities, we filtered the 166 

dataset by the latent variable, keeping 101,604 images with 𝑧	 > 	−1 for further analysis.  167 

To explore the heterogeneity within these major assembly states, we trained a 10D latent 168 

variable model on the remaining high-resolution images (D=256, Nyquist limit of 3.3 Å). We 169 

visualized the resulting 10D latent encodings using UMAP33, and observed particle super-clusters 170 

corresponding to major classes of LSU assembly (Fig. 5b) and sub-clusters that aligned with Davis 171 

et al.’s minor class assignments (Supplementary Fig. 4)32. We found that when provided latent 172 

codes from these clusters, the decoder network generated structures matching the major (Fig. 5c) 173 

and minor (Supplementary Fig. 5) assembly states of the LSU. With the 10D latent variable 174 

model, we also noted a clearly separated cluster of particles assigned to class A, and structures 175 

sampled from this region of latent space reconstructed the 70S ribosome, an impurity in the dataset 176 

(Supplementary Fig. 6). Finally, we identified a small cluster of ~1,200 particles in latent space 177 

adjacent to the class C cluster whose particles were classified into class E by Davis et al. 178 

(Supplementary Fig. 4). The density map reconstructed by the deep coordinate network from this 179 

region revealed a previously unreported assembly intermediate that we newly call class C4. Like 180 

the other class C structures, class C4 lacked the central protuberance, but bore clearly resolved 181 

density for helix 68, which was only present in classes E4 and E5 from Davis et al32. Traditional 182 

voxel-based back-projection of the particle images constituting this cluster reproduced a similar, 183 

albeit lower-resolution structure, confirming the existence of this structural state in the original 184 

dataset (Supplementary Fig. 6). 185 

CryoDRGN reveals dynamic continuous motions in the pre-catalytic spliceosome 186 
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Finally, we evaluated the performance of cryoDRGN in analyzing micrographs of the pre-187 

catalytic spliceosome (EMPIAR 10180)34. Plaschka et al. employed extensive expert-guided 188 

focused classifications to reconstruct a composite map for this complex and suggested that the 189 

complex sampled a continuum of conformations34. To understand how cryoDRGN would encode 190 

such continuous structural heterogeneity in latent space, we first trained a 10D latent variable 191 

model on the downsampled images (D=128, Nyquist limit of 8.5 Å) using image poses derived 192 

from a consensus reconstruction. Multiple clusters were observed in the latent space encodings 193 

(Fig. 6a). After sampling structures from the latent space, we observed expected spliceosome 194 

conformations from the largest cluster, poorly resolved structures from the leftmost cluster, 195 

structures lacking density for the SF3b domain from a third cluster, and additional density 196 

consistent with particle aggregation from the uppermost cluster (Fig. 6b). To focus our analysis 197 

on bone-fide pre-catalytic spliceosome particles, we leveraged the latent space representation to 198 

eliminate any particles that mapped to the undesired clusters from two replicate runs, which 199 

resulted in a final particle stack of 150,098 images.  200 

With the filtered particle stack, we trained a 10D model on higher resolution images 201 

(D=256, Nyquist limit of 3.4 Å), and visualized the dataset’s latent encodings in 2D using PCA 202 

and UMAP (Fig. 6a,c). The visualized data manifold was unfeatured, consistent with a molecule 203 

undergoing non-cooperative conformational changes. By generating structures along the first 204 

principal component of the latent space encodings, we reconstructed a trajectory of the SF3b and 205 

helicase domains in motion (Fig. 6d), which smoothly transitioned from an elongated state to one 206 

compressed against the body of the spliceosome. A similar traversal along the second PC produced 207 

a continuous trajectory of the SF3b and helicase domains moving in opposition (Supplementary 208 

Fig. 7). This anticorrelated motion of the SF3b and helicase domains in PC2, together with their 209 

correlated motion in PC1, suggested that the two domains move independently in the imaged 210 
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ensemble. Finally, although trajectories along latent space PCs provide a summary of the extent of 211 

variability in the structure, cryoDRGN can also generate structures at arbitrary points from the 212 

latent space. By traversing along the k-nearest neighbor graph of the latent encodings and 213 

generating structures at the visited nodes, cryoDRGN generated a plausible trajectory of the 214 

conformations adopted by the pre-catalytic spliceosome (Supplemental Movie 1), highlighting 215 

the potential of single particle cryo-EM to uncover the conformational dynamics of molecular 216 

machines. 217 

Discussion 218 

This work introduces cryoDRGN, a new method using neural networks to reconstruct 3D 219 

density maps from heterogeneous single particle cryo-EM datasets. The power of this approach 220 

lies in its ability to represent heterogeneous structures without simplifying assumptions on the type 221 

of heterogeneity. In principle, cryoDRGN is able to represent any distribution of structures that 222 

can be approximated by a deep neural network, a broad class of function approximators35. This 223 

flexibility contrasts with existing methods that impose strong assumptions on the types of 224 

structural heterogeneity present in the sample. For example, traditional 3D classification assumes 225 

a mixture of discrete structural classes, whereas multibody refinement assumes conformational 226 

changes are composed strictly of rigid-body motions. Although these approaches have proven 227 

useful, they are inherently unable to model true structural heterogeneity and thus often introduce 228 

bias into reconstructions. In contrast, we empirically show that deep coordinate networks can 229 

model both discrete compositional heterogeneity and continuous conformational changes without 230 

the aforementioned assumptions. For example, by using this less biased approach, we discovered 231 

heterogeneous states of the Pf80S ribosome that were originally averaged out of the homogeneous 232 

reconstruction. When analyzing the assembling E. Coli LSU dataset, cryoDRGN learned an 233 

ensemble of LSU assembly states without a priori specification of the number of states as is 234 
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required for 3D classification. Finally, when analyzing the pre-catalytic spliceosome, we found 235 

that the continuous conformational changes cryoDRGN reconstructed lack the rigid-body 236 

boundary artifacts introduced from multibody refinement’s mask-based approach17. 237 

Interpretation of the latent space 238 

A key feature of cryoDRGN is its ability to provide a low-dimensional representation of 239 

the dataset’s heterogeneity, which is given by each particle’s latent encoding. Subject to 240 

optimization, cryoDRGN organizes the latent space such that structurally related particles are in 241 

close proximity. Thus, visualization of the distribution of latent encodings can be informative in 242 

understanding the structural heterogeneity within the imaged ensemble. In both simulated and real 243 

datasets we find that continuous motions are embedded along a continuum in latent space (Fig. 244 

3b, 6c) and that compositionally distinct states manifest as clusters (Fig. 3e, 5b). This observation 245 

suggests an interpretation of the latent encodings as an approximate conformational landscape,  246 

with regions of high-particle occupancy corresponding to low-energy states, and regions of lower-247 

particle occupancy denoting higher energy states. We note however that structures reconstructed 248 

from unoccupied regions will not in general correspond to true physical intermediates, as 249 

cryoDRGN optimizes the likelihood of the observed data and these intermediates are not observed. 250 

Finally, in real datasets, there may exist images that do not originate from the standard single 251 

particle image formation model, for example, false positives encountered during particle picking9. 252 

We demonstrated the utility of the latent space encodings in identifying such impurities, ice 253 

artifacts, and other such out-of-distribution particles that may be filtered out in subsequent analyses 254 

(Fig. 5a, 6a).  255 

Visualizing structural trajectories 256 

In addition to encoding particles in an unsupervised manner, cryoDRGN can reconstruct 257 

3D density maps from user-defined positions in latent space. Because cryoDRGN learns a 258 
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generative model for structure, an unlimited number of structures can be generated and analyzed, 259 

thus enabling visualization of structural trajectories. By leveraging the latent encodings of the 260 

particle images, users can directly traverse the data manifold and only sample structures from 261 

regions of latent space with significant particle occupancy. Indeed, we applied a well-established 262 

graph-traversal algorithm36 to visualize a data-supported path of the Pf80S ribosome, bL17-263 

independent assembly of the bacterial ribosome, and the pre-catalytic spliceosome (Supplemental 264 

Movies 1,2,3,4).  265 

Practical considerations in choosing training hyperparameters  266 

Although this method emphasizes an unsupervised approach to analyzing structural 267 

heterogeneity, cryoDRGN does require that the user define the dimensionality of the latent space 268 

and the architecture of both the encoder and decoder networks. We find that in practice, a 1D latent 269 

space is effective at distinguishing bona-fide particles from contaminants and imaging artifacts 270 

(Fig. 5a), and we recommend users initially employ such a model to filter their dataset. 271 

Additionally, we find that in our tested datasets, a 10D latent space provides sufficient 272 

representation capacity to effectively model structural heterogeneity, and that this 10D space can 273 

be readily visualized with PCA or UMAP. Notably, we recommend the use of such as 10D latent 274 

space instead of lower dimensional space as we have found that 10D spaces result in much more 275 

rapid overall training, which is consistent with similar observations of related overparameterized 276 

neural network architectures37,38. Finally, users must specify the number of nodes and layers in the 277 

neural networks. Here, we find an inverse relationship between neural network size and the 278 

achievable resolution of a given structure (Supplemental Fig. 1). Training larger networks on 279 

larger images is significantly slower, and we recommend that users perform an initial assessment 280 

using down-sampled images and relatively small networks before proceeding to high-resolution 281 

reconstructions.  282 
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Discovering new states using cryoDRGN 283 

CryoDRGN can be used to identify novel clusters of structurally-related particles, which 284 

can then be visualized by sampling a 3D structure from that region of latent space. Indeed, in 285 

analyzing the bL17-depleted LSU assembly dataset, we noted a completely new structural class, 286 

which like the C-classes, lacked the central protuberance, but like the most mature E classes, 287 

clearly bore a functionally critical inter-subunit helix (h68). This state was completely missed in 288 

traditional hierarchical classification32, and provides structural evidence that this vital intersubunit 289 

helix can dock in a native conformation in the absence of the central protuberance 290 

(Supplementary Fig. 6). Notably, we could validate the existence of this class by performing 291 

traditional back-projection using ~1,000 particles from this cluster (Supplementary Fig. 6). 292 

In future work, we envision using cryoDRGN to reveal the number of discrete classes, their 293 

constituent particles, and to produce initial 3D models that could be used as inputs for a traditional 294 

3D reconstruction. Given the mature state of such tools39,40, this unbiased classification approach 295 

followed by traditional homogeneous reconstruction, particle polishing, and higher order image 296 

aberration correction, has the potential to produce very high-resolution structures of the full 297 

spectrum of discrete structural states without the need for expert-guided classification. 298 

Fully unsupervised 3D reconstruction 299 

As implemented, cryoDRGN uses pose estimates resulting from a traditional consensus 3D 300 

reconstruction. In analyzing three publicly available datasets, we found that such consensus pose 301 

estimates were sufficiently accurate to generate meaningful latent space encodings and to produce 302 

interpretable density maps of distinct structures. It is clear, however, that this approach will fail if 303 

the degree of structural heterogeneity in the dataset results in inaccurate pose estimates. For 304 

example, a mixture of structurally unrelated complexes will align poorly to a consensus structure, 305 

and thus produce poor pose estimates. Notably, our framework is differentiable with respect to 306 
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pose variables, which, in principle, should allow for on-the-fly pose-refinement or de novo pose 307 

estimation25, and future work will explore the efficacy of incorporating such features. 308 
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Methods 309 

The cryoDRGN method 310 

Deep coordinate networks to represent 3D structure 311 

The cryoDRGN method performs heterogeneous cryo-EM reconstruction by learning a 312 

neural network representation of 3D structure. In particular, we use a neural network to 313 

approximate the function 𝑉:ℝ=>? → ℝ, which models structures as generated from an n-314 

dimensional continuous latent space. We call this architecture1-3 a deep coordinate network as we 315 

explicitly model the volume as a function of Cartesian coordinates.  316 

Without loss of generality, we model volumes on the domain [−0.5,0.5]=. Instead of 317 

directly supplying the 3D Cartesian coordinates, k, to the deep coordinate network, coordinates 318 

are featurized with a fixed positional encoding function consisting of sinusoids whose wavelengths 319 

follow a geometric progression from 1 up to the Nyquist limit: 320 
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𝑝𝑒(GH)I𝑘KL = sinP𝑘K𝐷𝜋 S
2
𝐷T

H
UVGWXYZ , 𝑖 = 0,… ,

𝐷
2 − 1; 𝑘K ∈ 𝒌 321 

𝑝𝑒(GH>X)I𝑘KL = cosP𝑘K𝐷𝜋 S
2
𝐷T

H
UVGWXYZ , 𝑖 = 0,… ,

𝐷
2 − 1; 𝑘K ∈ 𝒌 322 

where D is set to the image size1 used in training. Empirically, we found that excluding the highest 323 

frequencies of the positional encoding led to better performance when training on noisy data, and 324 

we provide an option to modify the positional encoding function by increasing all wavelengths by 325 

a factor of 2𝜋. 326 

Training system 327 

This parametric representation of 3D structure is learned via an image-encoder/volume-328 

decoder architecture based on the variational autoencoder (VAE) 4,5. We follow the standard image 329 

formation model in single particle cryo-EM3 where observed images are generated from 330 

projections of a volume at a random unknown orientation, 𝑅 ∈ 	𝑆𝑂(3). We use an additive 331 

Gaussian white noise model. Volume heterogeneity is generated from a continuous latent space, 332 

modeled by the latent variable 𝒛, where the dimensionality of 𝒛	is a hyperparameter of the model.  333 

Given an image 𝑋, the variational encoder, 𝑞g(𝒛|𝑋), produces a mean and variance, 	𝜇𝒛|i 334 

and Σ𝒛|i, statistics that parameterize a Gaussian distribution with diagonal covariance, as the 335 

variational approximation to the true posterior 𝑝(𝒛|𝑋). The prior on the latent variable is a standard 336 

normal distribution 𝒩(0, 𝐈). The deep coordinate network architecture is used as the probabilistic 337 

decoder, 𝑝m(𝑉|	𝒌, 𝒛), and models structures in frequency space. Given Cartesian coordinate 𝒌 ∈338 

	ℝ= and latent variable 𝒛, the probabilistic decoder predicts a Gaussian distribution over 𝑉(𝒌, 𝒛). 339 

                                                
1 Number of pixels along one dimension of the image, i.e. a 𝐷 × 𝐷	image 
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The encoder and decoder are parameterized with fully connected neural networks with parameters 340 

𝜉 and 𝜃, respectively.  341 

Since 2D projection images can be related to volumes as 2D central slices in Fourier space6, 342 

oriented 3D coordinates for a given image can be obtained by rotating a 𝐷 × 𝐷 lattice spanning 343 

[−0.5,0.5]G  originally on the x-y plane by 𝑅, the orientation of the volume during imaging. Then, 344 

given a sample out of 𝑞g(𝒛|𝑋) and the oriented coordinates, an image can be reconstructed pixel-345 

by-pixel through the decoder. The reconstructed image is then translated by the image’s in-plane 346 

shift, and the CTF is applied before it is compared to the input image. The negative log likelihood 347 

of a given image under our model is computed as the mean square error between the reconstructed 348 

image and the input image. Following the standard VAE framework, the optimization objective is 349 

the variational lower bound of the model evidence: 350 

ℒ(𝑋; 𝜉, 𝜃) = 𝐸st(𝒛|i)[log 𝑝(𝑋|𝒛)] − 𝐾𝐿I𝑞g(𝒛|𝑋)‖𝑝(𝒛)L 351 

where the first term is the reconstruction error estimated with one Monte Carlo sample and the 352 

second term is a regularization term on the latent representation. By training on many 2D slices 353 

with sufficiently diverse orientations, the 3D volume can be learned through feedback from the 2D 354 

views. For further details, we refer the reader to a preliminary version of the method described in 355 

the proceedings of the International Conference for Learning Representations3. The results 356 

presented here employ the training regime described in Zhong et al. using previously determined 357 

poses from a consensus reconstruction3. 358 

Datasets 359 

Simulated homogeneous dataset generation  360 

The 50S subunit of the E. coli ribosome was extracted from PDB 4YBB in PyMOL7. A 361 

density map was generated from the atomic model using the molmap command in Chimera8 at a 362 

grid spacing of 1.5 Å/pix and a resolution of 4.5 Å. The resulting volume was padded to a box size 363 
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of D=256, where D is the width in pixels along one dimension. Simulated micrographs were 364 

generated with custom Python scripts as follows: 50k projection images were generated by rotating 365 

the density map with a random rotation sampled uniformly from SO(3), projecting along the z-366 

axis, and shifting the image with an in-plane translation sampled uniformly from [-20,20]2 pixels. 367 

Projection images were multiplied with the CTF in Fourier space, where the CTF was computed 368 

from defocus values randomly sampled from those given in EMPIAR-10028, no astigmatism, an 369 

accelerating voltage of 300 kV, a spherical aberration of 2mm, and an amplitude contrast ratio of 370 

0.1. An envelope function with a B-factor of 100 Å2 was applied. Noise was added with a signal 371 

to noise ratio (SNR) of 0.1 where the noise-free signal images were defined as the entire DxD 372 

image. To generate the dataset with D=128, the D=256 noiseless projection images of the 50S 373 

were downsampled by Fourier clipping, followed by addition of CTF and noise as above. 374 

Discrete3 heterogeneous dataset generation 375 

To generate the “Discrete3” dataset, 10k, 15k, and 25k simulated micrographs of the 30S, 376 

50S, and 70S ribosome, respectively, were combined. 15k micrographs from the homogeneous 377 

50S dataset were used, and micrographs of the 30S and 70S ribosome were generated using the 378 

same procedure starting from the atomic model extracted from PDB 4YBB, and extracting either 379 

the 30S or 70S subunits. Images were downsampled to D=128, corresponding to a Nyquist limit 380 

of 6 Å. 381 

Linear1D heterogeneous dataset generation 382 

To generate the “Linear1D” dataset, 50 density maps were generated along a reaction 383 

coordinate defined by rotation of a dihedral angle in an atomic model of a hypothetical protein 384 

complex. Each model was generated at 0.03 radian increments of the bond rotation, leading to a 385 

total range of 1.5 radians. Density maps were generated in Chimera at a grid spacing of 6 Å/pix 386 

and resolution of 12 Å, and padded to a box size of D=128. 1000 projection images were generated 387 
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with random orientations and in-plane translations from [-10,10]2 pixels for each map leading to a 388 

final particle stack of 50k images. CTF and noise at an SNR=0.1 were added using the same 389 

procedure described above. 390 

Real cryo-EM datasets 391 

Processed shiny particles and the star file containing CTF parameters were downloaded 392 

from the Electron Microscopy Public Image Archive (EMPIAR) 9 for datasets EMPIAR-10028, 393 

EMPIAR-10076, and EMPIAR-10180. Particle images were resized to either D=96, 128, or 256 394 

by clipping in Fourier space with a custom Python script. These various images sizes resulted in 395 

the following Nyquist limits: 396 

Dataset name EMPIAR ID Image size, D 
(pixels) 

Nyquist limit 
(Å) Figure 

80S ribosome 10028 96 10.1 N/A 
80S ribosome 10028 256 3.8 4 
Assembling LSU ribosome 10076 128 6.6 5 

Assembling LSU ribosome 10076 256 3.3 5 

Pre-catalytic spliceosome 10180 128 8.5 6 
Pre-catalytic spliceosome 10180 256 4.3 6 

 397 

Traditional homogeneous reconstruction 398 

3D reconstruction of the 80S ribosome (EMPIAR-10028) was performed in cryoSPARC 399 

v2.410 using the ab-initio reconstruction job followed by the homogeneous refinement job with 400 

default parameters. The final reconstruction reported a GSFSC0.14311 resolution of 3.1 Å with a 401 

tight mask and 4.1 Å unmasked. The density map was sharpened using the published B-factor of 402 

-80.1 Å2 for visualization. 403 

Homogeneous 3D reconstruction of the L17-depleted ribosome assembly intermediates 404 

(EMPIAR 10076) was performed as above, leading to a final structure with a GSFSC0.14311 405 

resolution of 3.2 Å with a tight mask and 4.8 Å unmasked. 406 
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Deep coordinate network training on homogeneous structures 407 

For each dataset and for each architecture, a separate deep coordinate network with no 408 

latent variable was trained for 25 epochs, where an epoch is defined as one pass through the dataset. 409 

The tested architectures were fully connected networks with ReLU activations, where the network 410 

size was either 3 layers of dimension 128 (128 nodes/layer x 3 layers), 3 layers of dimension 256 411 

(256x3), 3 layers of dimension 1024 (1024x3), or 10 layers of dimension 1024 (1024x10). Image 412 

poses were set to either the ground truth poses for the simulated datasets, or poses obtained from 413 

a traditional homogeneous reconstruction in cryoSPARC. Networks were trained on minibatches 414 

of 8 images using the Adam12 optimizer with a learning rate of 0.0001. Once training completed, 415 

the deep coordinate network was evaluated on the 3D coordinates of a 𝐷 × 𝐷 × 𝐷 voxel array 416 

spanning [-0.5,0.5]3, where D is the image size in pixels along one dimension. The density map 417 

was sharpened using the published B-factor of -80.1 Å2 for visualization13. 418 

Map-to-map FSC 419 

Fourier shell correlation curves were computed between the ground truth density maps and 420 

the neural network reconstructed density maps using a custom Python script. For the homogeneous 421 

reconstruction of EMPIAR 10028, the map-to-map FSC was computed between the neural 422 

network structure and the traditional homogeneous reconstruction in cryoSPARC after applying a 423 

real space mask and with phase randomization at frequencies above 3.1 Å, the GSFSC0.143 of the 424 

cryoSPARC reconstruction. The real space mask was defined by first thresholding the volume at 425 

half of the 99.99th percentile density value. The mask was then dilated by 15 Å from the original 426 

boundary, and a soft cosine edge was used to taper the mask to 0 at 25 Å from the original 427 

boundary. 428 

CryoDRGN heterogeneous reconstruction 429 
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CryoDRGN encoder-decoder networks were trained from their randomly initialized values 430 

for each single particle cryo-EM dataset. Unless otherwise specified, all networks were trained on 431 

minibatches of 8 images using the Adam optimizer with a learning rate of 0.0001. After training, 432 

the dataset was evaluated through the encoder, and the maximum a posteriori value of 𝑞(𝒛|𝑋) was 433 

defined as the latent encoding for each image. Visualization of the latent encodings with PCA and 434 

UMAP and analysis with k-means clustering was performed with scikit-learn14. Density maps were 435 

generated by evaluating the decoder on a desired value of the latent variable 𝑧 and the 3D 436 

coordinates of a 𝐷 × 𝐷 × 𝐷 voxel array spanning [-0.5,0.5]3.  437 

Heterogeneous reconstruction of simulated datasets 438 

For each simulated heterogeneous dataset, a 1D latent variable model was trained for 100 439 

epochs. The encoder architecture was 256x3 (nodes/layer x layers) and the decoder architecture 440 

was 512x5. The image poses used for training were the ground truth image poses. Structures shown 441 

in Figure 3b were generated at the 5th, 23rd, 41st, 59th, 77th, and 95th percentile values of the 442 

latent encodings, and sharpened by a B-factor of -100 Å2. Structures shown in Figure 3e were 443 

generated at the k-means cluster centers after performing k-means clustering with k=3 on the latent 444 

encodings, and sharpened by a B-factor of -100 Å2. 445 

Heterogeneous reconstruction of the 80S ribosome (EMPIAR-10028) 446 

Pilot experiments: A 10D latent variable model was trained on downsampled images 447 

(D=96, 4.91Å/pix) from EMPIAR-10028 for 50 epochs. The encoder and decoder architectures 448 

were 128x10, and the mini-batch size was 5. Image poses were obtained from a traditional 449 

homogeneous reconstruction in cryoSPARC.  450 

Particle filtering: After training, k-means clustering with k=20 was performed on the 451 

predicted latent encodings for the dataset. One cluster contained 860 particles that were outliers 452 

when viewing the projected encodings along the first and second principle component. This 453 
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observation was reproducible, and the particles belonging to the outlier cluster from either of two 454 

replicates (960 particles in total) were removed from the dataset.  455 

High resolution training: After particle filtering, a 10D latent variable model was trained 456 

on the remaining 104,280 images (D=256, 1.84 Å/pix) for 150 epochs. The encoder and decoder 457 

architectures were 1024x3.  458 

Analysis: After training, k-means clustering with k=20 was performed on the predicted 459 

latent encodings for the dataset, and volumes were generated at the cluster centers using the 460 

decoder network. Representative structures were manually selected for visualization in Figure 4. 461 

Heterogeneous reconstruction of the L17-depleted ribosome assembly intermediates (EMPIAR-462 

10076) 463 

Pilot experiments: A 10D latent variable model was trained on downsampled images 464 

(D=128, 3.3 Å/pix) from EMPIAR 10076 for 50 epochs. The encoder and decoder architectures 465 

were 256x3. Image poses were obtained from a traditional homogeneous reconstruction in 466 

cryoSPARC.  467 

Particle filtering: Particles with 𝒛 ≤ −1 were removed from subsequent analysis.  468 

High resolution training: A 10D latent variable model was trained on the remaining 469 

101,604 images (D=256, 1.7 Å/pix) for 50 epochs. The encoder and decoder architectures were 470 

1024x3.  471 

Analysis: After training, the dataset’s latent encodings were viewed in 2D with UMAP15. 472 

Density maps corresponding to the major and minor assembly states were generated at the mean 473 

latent encoding for each class, i.e. 𝒛z{ = X
|{|
∑ 𝒛HH∈{ , where M is the set of particles assigned to a 474 

given class in the published 3D classification. Instead of evaluating the volume decoder at 𝒛z{, we 475 

find the latent encoding of the dataset closest in Euclidean distance to 𝒛z{ as the “on data” 476 

representative encoding. 477 
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New assembly state: Particles corresponding to the new assembly state (C4) were manually 478 

selected from the UMAP embeddings with an interactive lasso tool in a custom visualization script. 479 

The mean latent encoding of the resulting 1,211 selected particles was used to generate the 480 

structure representative for this new assembly state.  481 

Voxel-based back-projection: The particles associated with class C4 and their 482 

corresponding poses were used to reconstruct a structure via traditional voxel-based back-483 

projection using a custom Python script. In this simplified implementation, images were first phase 484 

flipped to correct for the CTF. Then each image was centered by its in-plane translation and aligned 485 

in 3D space based on its 3D rotation. The density for each voxel was computed using a linear 486 

interpolation kernel. The structure was then low-pass filtered to 8 Å for visual clarity.  487 

Heterogeneous reconstruction of the pre-catalytic spliceosome (EMPIAR-10180) 488 

Pilot experiments: A 10D latent variable model was trained on downsampled images 489 

(D=128, 4.25 Å/pix) from EMPIAR 10180 for 50 epochs. The encoder and decoder architectures 490 

were 256x3. Poses were obtained from the consensus reconstruction values given in the 491 

consensus_data.star deposited to EMPIAR 10180.  492 

Particle filtering: The UMAP embeddings showed multiple clusters where the largest 493 

cluster corresponded to fully formed pre-catalytic spliceosomes. Particles corresponding to other 494 

clusters were removed from subsequent analyses by first performing k-means clustering with k=20 495 

on the latent encodings, and removing k-means clusters whose structure did not resemble the fully 496 

formed pre-catalytic spliceosome (11 out of 20 k-means clusters in one replicate, and 10 out of 20 497 

in a second replicate).  498 

High resolution training: A 10D latent variable model was trained on the remaining 499 

150,098 images (D=256, 2.1 Å/pix) for 50 epochs. The encoder and decoder architectures were 500 

1024x3. 501 
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Analysis: After training, the dataset’s latent encoding was viewed in 2D with UMAP (Fig. 502 

6a) and PCA (Fig. 6c). Density maps in Figure 6d were generated at the latent encoding values 503 

that traverse PC1 at five equally spaced points between the 5th and 95th percentile of PC1 values. 504 

Density maps in Extended Fig. 7 were generated at the latent encoding values that traverse PC2 at 505 

five equally spaced points between the 5th and 95th percentile of PC2 values.  506 

Latent space graph traversal for generating trajectories 507 

 Trajectories were generated by first creating a nearest-neighbors graph from the latent 508 

encodings of the images, where a neighbor was defined if the Euclidean distance was below a 509 

threshold computed from the statistics of all pairwise distances. We choose a value such that the 510 

average number of neighbors across all nodes is 5. Edges were then pruned such that a given node 511 

does not have more than 10 neighbors. Then, Djikstra’s algorithm was used to find the shortest 512 

path along the graph connecting a series of anchor points, and density maps were generated at the 513 

𝒛 value of the visited nodes. Anchor points were set to be the “on-data” cluster centers after 514 

performing k-means clustering of the latent encodings with k=20. Instead of using the mean value 515 

of each k-means cluster, we define the latent encoding closest in Euclidean distance to the k-means 516 

cluster center as the “on-data” cluster center. 517 

To generate Supplemental Movie 1 of the 80S ribosome, 113 density maps were generated 518 

by following the protocol above, and we visualized a representative sequence of 60 density maps 519 

that contained the 40S rotated state. To generate Supplemental Movies 2 and 3 of the assembling 520 

bacterial LSU, anchor points were manually chosen from an interactive tool provided in 521 

cryoDRGN to create a path along the C-class assembly pathway and the D-class assembly 522 

pathway. To generate Supplemental Movie 4 of the pre-catalytic spliceosome, 132 density maps 523 

were generated following the above protocol.  524 

2D class averages 525 
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2D classification was performed in cryoSPARC10 using all default options except for the 526 

number of 2D classes, which was set to 20. 527 

Data availability 528 

Trained cryoDRGN models for all experiments, simulated datasets, and indices of filtered 529 

particles of EMPIAR-10028, EMPIAR-10076, and EMPIAR-10180 are available upon request. 530 

Software availability  531 

All software and analysis scripts are implemented in custom Python code using PyTorch16 532 

and are available at cryodrgn.csail.mit.edu. 533 
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 534 

Figure 1. The cryoDRGN method for heterogeneous single particle cryo-EM reconstruction. 535 

a) A deep coordinate network approximates a molecule’s density as a function of featurized 3D 536 

Cartesian coordinates and continuous latent variables, 𝑧, which define a continuous manifold of 537 

heterogeneous structures. b) The overall cryoDRGN training framework consists of two neural 538 

networks structured in an encoder/decoder architecture. Data is represented in the Fourier domain 539 

in order to relate 2D images as slices out of the 3D density map. During training, an input image 540 

is encoded in latent space by the encoder network (E). A 2D lattice is rotated by the image’s 541 

previously determined pose, 𝜙, to represent the 3D coordinates of the image slice. Given the 542 

coordinates and a sample of the predicted latent variable 𝑧, the image is reconstructed pixel-by-543 

pixel through the decoder (D), i.e. the deep coordinate network. The loss function is a variational 544 

upper bound on the data likelihood and consists of the image reconstruction error and latent loss 545 

(red arrows), which is used to update neural network weights by stochastic gradient descent (blue 546 

arrows). c) After training, the encoder can be used to visualize the dataset’s distribution in latent 547 

space (manifold visualization), and the decoder can be used to directly reconstruct structures at 548 

arbitrary points from the latent code. Example micrographs and reconstructed density maps from 549 

EMPIAR 1007632. 550 
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 551 

Figure 2. Deep coordinate network representation of static structure. a) Reconstructed density 552 

map produced by a deep coordinate network with 10 hidden layers of dimension 1024 trained on 553 

particle images from EMPIAR 1002829 (D=360, Nyquist limit of 2.7 Å) and a traditional 554 

homogeneous reconstruction in cryoSPARC29. b) Fourier shell correlation (FSC) curves between 555 

the density map produced by deep coordinate networks of varying architectures (nodes x hidden 556 

layers) and the traditional homogeneous reconstruction in (a) after 25 epochs of training. c) 557 

Average loss over the dataset during training deep coordinate networks of varying architectures 558 

on EMPIAR 1002829. 559 
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 563 

Figure 3. CryoDRGN heterogeneous reconstruction of simulated datasets with continuous 564 

and discrete heterogeneity. a) Ground truth density maps sampled along a reaction coordinate 565 

that describes the transition from the leftmost to rightmost structure used to simulate a dataset with 566 

continuous heterogeneity. b) Predicted latent encoding for each image of the dataset from (a) after 567 

training a cryoDRGN 1D latent variable model versus the ground truth reaction coordinate 568 

describing the motion (Spearman 𝑟 = −0.996). c) Reconstructed structures at specified values of 569 

the latent variable, shown as dotted lines in (b). d) Ground truth density maps of the bacterial 30S, 570 

50S, and 70S ribosome used to simulate a dataset with discrete heterogeneity. e) Predicted latent 571 

encoding for each particle image of (d) variable after training a cryoDRGN 1D latent variable 572 

model vs. its ground truth class assignment (classification accuracy of 99.9%). f) Reconstructed 573 

structures at specified values of the latent variable from (e).  574 
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 575 

Figure 4. CryoDRGN heterogeneous reconstruction of the Pf80S ribosome. a) PCA projection 576 

of latent space encodings after training a 10D latent variable model on particle images from 577 

EMPAIR-1002829. b) Three representative density maps that were reconstructed at the points 578 

depicted in (a) are shown with a docked atomic model (PDB 3J79, 3J7A) of the 40S (blue). The 579 

red arrow highlights the missing 40S head group, and the blue arrow depicts the rotation of the 580 

40S relative to the 60S. c) Additional views of the structures shown in (b), with atomic model of 581 

the 60S colored in orange. The cyan arrow notes the presence of an additional RNA helix not 582 

present in the homogeneous reconstruction, and the red arrow notes the disappearance of the C-583 

terminus of eL8 in the rotated state.  584 
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 585 

Figure 5. CryoDRGN heterogeneous reconstruction of the assembling large ribosomal 586 

subunit from E. coli. a) Histograms of latent encodings of particle images from EMPIAR 1007632 587 

after training a cryoDRGN 1D latent variable model. Overlaid histograms are shown for particles 588 

from each published major class assignments from Davis et al31. A cutoff of 𝑧	 = 	−1 was used to 589 

filter impurities from the dataset for subsequent analyses. Example image of an ice artifact 590 

predicted at 𝑧	 = 	−2. b) UMAP visualization of latent encodings after training a cryoDRGN 10D 591 

latent variable model, colored by the published major class assignments32. c) CryoDRGN 592 

reconstructed density maps of the major assembly states of the LSU generated from points B-E 593 

shown in (b) along with a docked atomic model (PDB 4YBB). 594 
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 595 
Figure 6. CryoDRGN heterogeneous reconstruction of the pre-catalytic spliceosome. a) 596 

UMAP visualization of latent encodings after training a 10D latent variable model with cryoDRGN 597 

on EMPIAR 1018033, before (top) and after (bottom) particle filtering. b) Representative structures 598 

generated at points shown in (a) which depict the expected structures (i,ii), broken particles (iii), 599 

particles with apparent aggregation (iv), and the complex lacking the SF3b domain (v). c) PCA 600 

projection of latent space encodings after training a 10D latent variable model on the filtered 601 

images. d) Structures generated by traversing along PC1 of the latent space encodings at points 602 

shown in (c). 603 
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Supplementary Figure 1. Neural network training statistics for homogeneous reconstruction. 

a) Training time in minutes per 100k images for different architectures and image sizes on a single 

Nvidia V100 GPU. b) Loss curve for training deep coordinate networks of varying architectures 

on four different datasets: 50k simulated noiseless projection images of the 50S ribosome (D=128, 

Nyquist limit of 6 Å), 50k simulated micrographs of the 50S ribosome (D=128), 50k simulated 

micrographs of the 50S ribosome (D=256, Nyquist limit of 3 Å), and 104,249 micrographs of the 
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80S ribosome from EMPIAR 10028 (D=360, Nyquist limit of 2.68 Å). c) FSC curve between the 

ground truth density map and the learned density map after 25 epochs of training deep coordinate 

networks of varying architectures. d) FSC curve between the ground truth density map and the 

learned density map at different epochs of training a deep coordinate network with 3 hidden layers 

of dimension 512. We use the traditionally reconstructed map as the ground truth structure for 

EMPIAR 10028. 
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Supplementary Figure 2. FSC curves between ground truth maps and density maps from 

cryoDRGN trained on heterogeneous simulated datasets. a) 100 FSC curves between generated 

and ground truth density maps. The density maps are generated at the value of the latent variable 

predicted for a given image, and compared against the ground truth density map that generated the 

image. Images are uniformly sampled along the reaction coordinate. b) The predicted latent 

encoding for the 100 images along the ground truth reaction coordinate for the density maps in (a). 

c) FSC curve between the generated density maps shown in Figure 3f and the ground truth 30S, 

50S, and 70S density map. 
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Supplementary Figure 3. Filtering of particles from the assembling ribosome dataset. a) 2D 

class averages of discarded particles with 𝑧	£	 − 1 from Figure 5a. b) 2D class averages of kept 

particles with 𝑧	 > 	1 from Figure 5a.  c) CryoSPARC ab-initio reconstruction of kept particles 

(𝑧	 > 	−1) and d) of discarded particles (𝑧	£	 − 1) from Figure 5a. 
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Supplementary Figure 4. CryoDRGN latent encodings trained on the assembling ribosome. 

UMAP embedding of the latent space encodings of particle images after training a cryoDRGN 

10D latent variable model on EMPIAR 10076. Points are colored by the 3D classification labels 

corresponding to the minor states of LSU assembly from Davis et al.  
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Supplementary Figure 5. Minor LSU assembly states reconstructed from cryoDRGN trained 

on the assembling ribosome dataset. a) Front view and b) back view of minor state density maps 

after training a cryoDRGN 10D latent variable model on particle images from EMPIAR 10076 
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with the 50S crystal structure docked (PDB 4YBB). Each cryoDRGN structure is generated at the 

latent variable values shown in Supplementary Figure 4, which are computed from the mean latent 

encoding of particles with the corresponding class assignment from Davis et al. Views match 

perspectives from Figure 5d. 
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Supplementary Figure 6. Additional structures reconstructed from cryoDRGN trained on 

the assembling ribosome dataset. a) Density map of a new assembly state, class C4, produced 

by cryoDRGN. Helix 68 (red oval) was exclusively associated with mature classes E4 and E5 in 

Davis et al. The structure is generated from point C4 in latent space, which belongs to a small 

cluster proximal to class C that was classified into class E4 and E5 by Davis et al. b) The density 

map of the 70S ribosome reconstructed by cryoDRGN from point A in latent space. c) Voxel-array 

backprojection of the 1,211 particles contained in the latent space cluster corresponding to the new 

assembly state with atomic model docked and helix 68 highlighted (red oval). 
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Supplementary Figure 7. Additional structures of the pre-catalytic spliceosome 

reconstructed by cryoDRGN. a) PCA projections of the 10D latent encodings from cryoDRGN 

with 5 points along PC2 shown in orange. b) Density maps produced by cryoDRGN at the 5 

highlighted points from (a). 
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Supplemental Movie 1. Trajectory of the pre-catalytic spliceosome. Traversal in latent space 

(left) and corresponding structures generated from cryoDRGN (right). 

 

Supplemental Movie 2. Trajectory of the assembling ribosome along the D-class assembly 

pathway described in Davis et al. Traversal in latent space (left) and corresponding structures 

generated from cryoDRGN (right). 

 

Supplemental Movie 3. Trajectory of the assembling ribosome along the C-class assembly 

pathway described in Davis et al. Traversal in latent space (left) and corresponding structures 

generated from cryoDRGN (right). 

 

Supplemental Movie 4. Trajectory of the 80S ribosome. Traversal in latent space (left) and 

corresponding structures generated from cryoDRGN (right). 
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