
Online narrative guides for illuminating tissue atlas data and digital pathology images  

 

Rumana Rashid1,2,3, Yu-An Chen1, John Hoffer1, Jeremy L. Muhlich1, Jia-Ren Lin1,2, Robert Krueger1,4, 

Hanspeter Pfister4, Richard Mitchell3, Sandro Santagata1,2,3,* and Peter K. Sorger1,2,5,*  

 

Harvard Tissue Atlas Program 

1Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 

2Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA 

3Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 

4School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 

5Department of Systems Biology, Harvard Medical School, Boston, MA 

 

* Co-corresponding authors:  

Peter K. Sorger, Harvard Medical School, 200 Longwood Avenue, Warren Alpert Building, Room 440, 

Boston, MA 02115; Telephone: 617-432-6901; email: peter_sorger@hms.harvard.edu; 

sorger_admin@hms.harvard.edu 

 

Sandro Santagata, Brigham and Women’s Hospital, 60 Fenwood Road, HBTM 8002P, Boston, MA 

02115; Telephone: 617-525-5686; email: ssantagata@bics.bwh.harvard.edu 

 

Running Title: A Web-based viewer for tissue images 

 

Competing interests 

P.K.S. is on the SAB of RareCyte, Inc., whose product was used to acquire some of the image data in 

this perspective, and Glencoe Software, Inc., whose product was used to visualize some of the image 

data in this perspective. S.S. is a consultant for RareCyte, Inc. 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.03.27.001834doi: bioRxiv preprint 

mailto:peter_sorger@hms.harvard.edu
mailto:ssantagata@bics.bwh.harvard.edu
https://doi.org/10.1101/2020.03.27.001834
http://creativecommons.org/licenses/by-nc/4.0/


ABSTRACT 

The recent development of highly multiplexed tissue imaging promises to substantially 

accelerate research into basic biology and human disease. Concurrently, histopathology in a clinical 

setting is undergoing a rapid transition to digital methods. Online tissue atlases involving highly 

multiplexed images of research and clinical specimens will soon join genomics as a systematic source of 

information on the molecular basis of disease and therapeutic response. However, even with recent 

advances in machine learning, experience with anatomic pathology shows that there is no immediate 

substitute for expert visual review, annotation, and description of tissue images. In this perspective we 

review the ecosystem of software available for analysis of tissue images and identify a need for 

interactive guides or “digital docents” that allow experts to help make complex images intelligible. We 

illustrate this idea using Minerva software and discuss how interactive image guides are being integrated 

into multi-omic browsers for effective dissemination of atlas data. 
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MAIN TEXT 

Light microscopy, most commonly transmission microscopy of specimens stained with 

colorimetric dyes, is a traditional, powerful, and widely used method for diagnostic pathology and for 

studying tissues in research. The relatively recent introduction of highly multiplexed tissue imaging1–4 

now makes it possible to conduct deep molecular profiling of tissues and tumors at subcellular 

resolution while preserving native tissue architecture5. Multiplexed, high resolution imaging greatly 

facilitates the study of cell states, cell-cell interactions, and tissue architecture in normal and disease 

conditions. A common application of tissue imaging in oncology, for example, is identifying and 

enumerating immune cell types and mapping their locations relative to tumor and stromal cells5. Such 

spatially-resolved data is pertinent to understanding the mechanisms of action of immunotherapies (e.g., 

anti-PD1 or PDL1 immune checkpoint inhibitors)6 that function by blocking juxtracrine signaling 

between immune and tumor cells. Tissue images are complex however: biologically relevant structures 

range in size by over five orders of magnitude from subcellular vesicles and nuclear granules at micron 

scales to configurations of cells in blood and lymphatic vessels at millimeter scales to interactions 

among endothelia, epithelia, muscle and other cell types to form functioning tissues at centimeter scales.  

A variety of multiplexed tissue imaging methods has been described over the last few years. 

These include Imaging Mass Cytometry (IMC)1 and Multiplexed Ion Beam Imaging (MIBI)2, which 

detect antigens using metal isotope-labeled antibodies, tissue ablation, and atomic mass spectrometry. In 

contrast, methods such as MxIF3, CODEX7, t-CyCIF4, multiplexed IHC8,9, and immuno-SABER10, use 

fluorescently-labelled (or enzyme-linked) antibodies followed by imaging on microscopes. These 

methods differ in the number of antigens they can routinely detect on a single tissue section (currently 

~12 in the case of multiplexed IHC to ~40-60 in the case of IMC or t-CyCIF). Some methods are 

restricted to selected fields of view (e.g., ~500 µm square for MIBI and IMC) whereas others can 

perform whole slide imaging (WSI) on areas ~400-1,000 times larger (e.g. –CyCIF or CODEX). Most 

multiplexed tissue imaging methods are in active development and their strengths and limitations with 

respect to speed, sensitivity, resolution, etc. remain to be determined. However, they all generate 

multiplexed 2D images of cells and supporting tissue structures in situ. When data are collected using 

high resolution microscopes it is also possible to generate 3D images by optical sectioning and tissue 

clearing methods11.  

 

Tissue and tumor atlases 
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 International projects are currently underway to create publicly accessible atlases of normal 

human tissues and tumors. These include the Human Cell Atlas12, the Human BioMolecular Atlas 

Program (HuBMAP)13 and the Human Tumor Atlas Network (HTAN)14. For example, HTAN is 

envisioned to be a spatially resolved counterpart of the well-established Cancer Genome Atlas 

(TCGA)15 and Encyclopedia of DNA Elements (ENCODE)16 (Figure 1). HTAN atlases aim to combine 

the genetic and molecular precision of dissociative single-cell methods such as single-cell RNA 

sequencing with morphological and spatial information obtained from tissue imaging and spatial 

transcriptomics13,14. At their inception, the imaging components of these atlases are likely to contain data 

acquired from one or a few individuals but they will ultimately merge multiple specimens into common 

reference systems13. Conceptually, integration across samples and data types is easiest to imagine at the 

level of derived features, such as a census of cell types and positions (from imaging data) or transcript 

levels (from scRNA-Seq). Adding meso-scale information from images such as the number and 

arrangement of supporting stroma, membranes, blood and lymphatic vessels, etc. is a greater challenge. 

It is not yet known how best to capture such spatial information computationally; insights gleaned from 

centuries of study of tissue by anatomic pathologists therefore remain essential. Studies are underway to 

better understand how pathologists make diagnoses from tissue specimens17 and to quantify connections 

between features computed from cellular neighborhoods and clinical outcome18. However, human 

inspection of tissue images will almost certainly remain essential for relating morphology to physiology 

and pathophysiology and also for assessing the quality of image processing algorithms, training 

classifiers, etc. We therefore require software that allows atlas users to benefit from the expertise of 

pathologists who currently work almost entirely with physical specimens on glass slides (typically, with 

the goal of making real-time diagnostic decisions). We envision software interfaces that serve as digital 

docents that guide users through an expert description of a specimen while also facilitating access to 

quantitative information derived from computational analysis. 

 

Tissue imaging in a clinical setting 

The introduction of multiplexed tissue imaging in a research setting is occurring concurrently 

with an accelerating transition to digital technologies19 in clinical histopathology (Figure 1). While 

genetics is pertinent to disease diagnosis, particularly in cancer and inherited diseases, histology and 

cytology remain the central pillars of routine clinical work and are one of the primary diagnostic 

modalities for most diseases. In current practice, tissue samples recovered by biopsy or surgical 

resection are formaldehyde-fixed and paraffin embedded (FFPE), sliced into 5µm sections, and stained 
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with hematoxylin and eosin (H&E). Samples for immediate study, when a patient is still undergoing 

surgery for example, are frozen, sectioned, and stained (these are often called OCT samples based on the 

“optimal cutting temperature” medium in which they are embedded). Liquid hematologic samples are 

spread on a slide to create blood smears, which are also stained with colorimetric dyes (Romanowsky–

Giemsa staining). H&E staining imparts a characteristic pink to blue color on cells and other structures 

and pathologists review these specimens using simple bright-field microscopes; other stains are analyzed 

in a similar way. Some clinical samples are also subjected to immunohistochemistry (IHC) to obtain 

information on the expression of one or a small number of protein biomarkers per slide20. While cost-

effective and widely used, many histopathology methods were developed over a century ago, and IHC is 

itself 75 years old21. Moreover, diagnoses based on these techniques generally do not capture the depth 

of molecular information needed to optimally select targeted therapies. The latter remains the purview of 

mRNA and genome sequencing which, in a clinical setting, often involves exome sequencing of selected 

genes. 

Recently, pathologists have started to leverage machine learning to assist with pattern 

recognition from histologic data and potentially extract deeper diagnostic insight. Digital analysis of 

histological specimens first became possible with the introduction of bright-field WSI instruments 

twenty years ago22,23, but it was not until 2016 that the FDA released guidance on the technical 

requirements for use of digital imaging in diagnosis24 (Figure 1). Digital pathology instruments, 

software, and startups have proliferated over the past few years fueled in large part by the development 

of machine learning algorithms capable of assisting in the interpretation of H&E stained slides25, which 

histopathology services must process in very high volume (often >1 million slides per year in a single 

hospital). Machine learning on images has proven successful in several areas of medicine26,27 and 

promises to assist practitioners by increasing the efficiency and reproducibility of pathologic 

diagnosis25. The pathology departments at several NCI comprehensive cancer centers have recently 

introduced multiplexed image-based immunoprofiling services to identify patients most likely to benefit 

from immune checkpoint inhibitors. Nonetheless, in most hospitals, the vast majority of diagnostic 

pathology still involves visual inspection of physical specimens; only a minority of slides are scanned 

and digitized for concurrent or subsequent review on a computer screen. This is widely anticipated to 

change over the next decade and several European countries are implementing national digital pathology 

programs. As clinical pathology incorporates new measurement modalities and becomes increasingly 

digital, it is highly desirable that software and standards developed for clinical and research purposes be 

compatible and interoperable; this is likely to be particularly important in the conduct of clinical trials. 
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From a technical perspective, standards such OME-TIFF developed for pre-clinical research work well 

with multiplexed images from clinical services. However, software for clinical use requires security, 

workflow and billing features that are not components of research systems. 

 

Accessing and sharing imaging data in tissue atlases 

Algorithms, software, and standards for high-dimensional image data28 remain under-developed 

relative to tools for almost all types of genomic information. Moreover, with sequencing data, the 

information present in primary data files (e.g., FASTQ files) are fully retained (or enhanced) when reads 

are aligned or count tables generated; it is rarely necessary to re-access the primary data. In contrast, 

methods to extract features from tissue images are immature, and visual inspection by knowledgeable 

viewers as well as development and testing of new algorithms requires access to image data at native 

resolution. Unfortunately, the software and computational resources needed to make cell and tissue 

images broadly available have been slow to develop. 

As far back as 2008, the Journal of Cell Biology worked with the founders of the Open 

Microscopy Environment (OME)29 to deploy a JCB DataViewer30 that provided direct access to 

primary, high-resolution microscopy data (much of it from tissue culture cells and model organisms). 

Economic pressures ended this ambitious effort31, emphasizing that funds have long been available to 

purchase expensive microscopes, but not to distribute the resulting data. Currently, most H&E, IHC, and 

multiplexed tissue images are shared only as figure panels in manuscripts, a form that typically provides 

access to a few selected fields of view at a single resolution. In the best case these data might be 

available via Figshare32 although the European Bioinformatics Institute Image Data Resource (IDR) is a 

notable exception; IDR uses the OME-compatible OMERO server to provide full-resolution access to 

selected microscopy data33. The importance of sharing image data is particularly pronounced in the case 

of research biopsies, including those being used to assemble tumor atlases. These biopsies are obtained 

to advance scientific knowledge rather than inform the treatment of individual patients and there is an 

ethical obligation for the resulting data (appropriately anonymized) to be made available in an open and 

useful form that accelerates scientific discovery34. This principle is widely recognized in genomics35,36 

but has only recently been addressed in the area of tissue imaging37. More generally, digital pathology 

and tissue imaging are disciplines in which the goal of making research Findable, Accessible, 

Interoperable, and Reusable (FAIR)38 is highly relevant, but the necessary computational infrastructure 

is deficient. 
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Software for image analysis, management, and interpretation  

To a first approximation, the wide variety of academic and commercial microscopy software 

currently available has been implemented either as a desktop system focused on data analysis or, like 

OMERO, as a client-server relational database management system (RDBMS) system focused on image 

management (Figure 2a; see Box 1 and Box 2 for details). Desktop software is particularly good for 

interactive image analysis because it exploits graphics cards for rapid image rendering and high-

bandwidth connections to local data for computation. RDBMS systems are ideal for data management 

because they enable relational queries, support multiple simultaneous users, ensure data integrity, and 

effectively manage access to large-scale local and cloud-based compute resources (a more detailed 

comparison of available software is provided in Figure 2b).  

However, as the first high-plex, whole-slide tissue images have become available it has become 

clear that a new type of software will be required to guide users through the extraordinary complexity of 

images that encompass multiple square centimeters of tissue, 105-107 cells, and upwards of 100 

channels. We envision a key role for “interpretative guides” (digital docents) that help walk users 

through a series of human and machine-generated annotations about an image in much the same way 

that the results section of a paper guides users through a multi-panel figure. Genomic science faced an 

analogous need for efficient and intuitive visualization tools a decade ago and this lead to the 

development of the highly influential Integrative Genomics Viewer39 and its many derivatives. 

Interactive guides of images have proven highly successful in other fields, as exemplified by 

Project Mirador (https://projectmirador.org/). Project Mirador focuses on the development of web-

based interpretative tours of cultural resources such as art museums, illuminated manuscripts, and 

culturally or historically significant cities. In such online tours, a series of waypoints and accompanying 

text direct users to areas of interest while also allowing free exploration and a return to the narrative. 

This mimics the functionality of museum guides and docents. Interactive narration (also known as 

digital storytelling or visual storytelling) has also demonstrated strengths as a pedagogical tool that 

enhances comprehension40 and memory formation41. Multiple studies have identified benefits associated 

with receiving complex information in a narrative manner, and digital storytelling has been applied to 

several areas of medicine and research including oncology42, mental health43, health equity44, and 

science communication45,46. 

How might these lessons be applied to tissue images? At the very least they teach us that it is 

insufficient to simply make gigapixel-sized images available for download and analysis on desktop 

software. Instead, we require an easy way to guide users through the salient features of an image with 
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associated annotation and commentary. Watching a pathologist describe a specimen to a colleague 

provides additional insight. She or he typically uses a multi-head microscope to pan across an image and 

switch between high and low power fields (magnifications), thereby studying cells in detail while also 

placing them in the context of the overall tissue.  In this process, key features are often highlighted using 

an LED pointer. With multiplex images, it is also necessary to toggle channels on and off so that the 

contribution of specific antibodies to the final image can be ascertained. 

 

Software-based interpretive guides for sharing tissue images 

With these requirements in mind, we asked how interpretive guides for tissue images might be 

implemented. One obvious possibility is as an OMERO client. OMERO is the most widely deployed 

open source image informatics system and it is compatible with a range of software clients. However, an 

OMERO client requires access to an OMERO database and, as images get larger, the server becomes 

substantially loaded, limiting the number of concurrent sessions. We therefore settled on a database-

independent viewer based on the open source OpenSeadragon47 platform used by Project Mirador and 

other software tools. OpenSeadragon makes it easy to zoom and pan across images in manner similar to 

Google Maps48. The resulting Minerva software49, is a single-page web application that uses client-side 

JavaScript and is easily deployable on standard commercial clouds (e.g., Amazon Web Services - AWS; 

Figure 3) or on local computing servers that support Jekyll50. OpenSeadragon has been used previously 

for displaying H&E images51, but in Minerva it is paired with narrative features, interactive views of 

derived single-cell features within the image space, a lightweight implementation, and the ability to 

accommodate both bright-field and multiplexed immunofluorescence images.  

Minerva is OME- and BioFormats-compatible and therefore usable with images from virtually 

any existing microscope or slide scanner. There is no practical limit to the number of users who can 

concurrently access narrative guides developed in Minerva and no requirement for specialized servers or 

relational database, keeping complexity and costs low. Anyone familiar with GitHub and AWS or 

similar cloud services can deploy a Minerva story in a few minutes, and new stories can then be 

generated by individuals with little expertise in software or computational biology. Developers can also 

build on the Minerva framework to develop narration tools for other applications such as protein 

structures or complex high-dimensional datasets. Viewers such as Minerva are not intended to be all-in-

one solutions to the many computational challenges associated with processing and analyzing tissue 

data. Instead, they are specialized browsers that perform one task well: in the case of Minerva, by 

providing an intuitive, interpretative approach to image data. This liberates images from static and 
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‘postage-stamp’ representations in journals. Genome browsers are similar: they do not perform 

alignment and data analysis, but they make it possible to interact with processed sequences effectively. 

Within a Minerva window on a standard Web browser, a narration panel directs a user’s attention 

to particular regions of an image and specific channel groupings, accompanied by text description 

(which Minerva can read aloud) as well as image annotations involving overlaid rectangles, polygons, 

arrows, text, etc. (Figure 4). Each image can be associated with more than one narrated story and with 

different ways of viewing the same type of data. A fundamental aspect of narrative guides is that 

individuals with expertise in a particular disease or tissue, such as a pathologist, create narratives used 

by others to assist in understanding the morphology of a specimen. Creating narrations requires an 

authoring tool such as Minerva Author. Minerva Author is a desktop application (in JavaScript React 

with a Python Flask backend) that converts images in OME-TIFF52 format into pyramidal form and 

assists with the addition of waypoints and text annotations. Minerva Author supports RGB images 

(brightfield, H&E, immunohistochemistry, etc.) as well as multi-channel images (immunofluorescence, 

CODEX, CyCIF, etc.). After specifying rendering settings and writing the waypoints in Minerva Author, 

a user receives a configuration file and image pyramids to deploy to AWS S3 or another Web-based 

storage location (Figure 3). Stories can be as simple as a single panel with a short introduction or a 

multi panel narration enriched with a series of views with detailed descriptions, changes in zoom level, 

and associated data analysis. We find that it takes users a few hours to learn the software and then 30 

minutes to a few hours to create a story, about the same time required to create a good static figure panel 

for a journal and much less time than data collection, image registration, segmentation, and data 

analysis. 

 

Using interactive guides to explore a human tumor 

As a use case for interactive tissue guides, we used Minerva Story to mark up a large human lung 

adenocarcinoma specimen (tinyurl.com/MinervaLungHistology). This primary tumor measured ~ 5 mm 

x 3.5 mm and was imaged at subcellular resolution using 44-plex t-CyCIF53; multiple fields were then 

stitched into a single image as described in detail in a recent publication54 (the image is referred to as 

“LUNG-3-PR”). There is no single best way to analyze an image containing several hundred thousand 

cells and we therefore created two guides focused on (i) histologic review of regions of interest and 

specific immune and tumor cell types and (ii) presentation of quantitative data analysis in the context of 

the original image (Figure 4a). The name of the samples, links to related stories, a table of contents, and 

navigation tools are found in a panel to the left of the Minerva Story window (outlined in orange in 
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Figure 4a). Another navigation panel, focused on channel selection, is found on the right of the window 

(outlined in pink); channels and channels groups, as well as the cell types they define, can be pre-

specified. We typically link each protein (antigen) name to an explanatory source of information such as 

the GeneCards55 database, but a more customized annotation of markers specific to a particular tissue 

would be preferable and is under development.  

Stories progress from one waypoint to the next (the analogy is to numbers used by museum 

audio guides) and each waypoint can involve a different field of view, magnification, and set of 

channels, as well as arrows and text describing specific features of interest (marked in gray). At any 

point, users can diverge from a story by panning and zooming around the image or selecting different 

channels, and then return to the narrative by clicking on the appropriate waypoint in the table of 

contents. The field shown in Figure 4a, (waypoint one) shows pan-cytokeratin positive tumor cells 

growing in chords and clusters at the tumor-stromal interface. This region of the tumor is characterized 

by an inflammatory microenvironment as evidenced by the presence of a variety of lymphocyte and 

macrophage populations distinguishable by expression of cell surface markers. Using the panel on the 

right, users can toggle these markers on and off to explore the images and data themselves and evaluate 

the accuracy of classification. The remainder of the story explores the expression of PD-L1 

(Programmed death-ligand 1), an immune checkpoint protein and drug target, and localization of 

lymphocyte and macrophage populations. 

 Narrative guides are also useful in showing the results of quantitative data analysis in the context 

of the original image (this constitutes the second story about the lung adenocarcinoma). Data analysis of 

high-plex tissue images typically involves measuring the expression of multiple cell type markers (e.g., 

immune linear markers) in single cells and using this data to identify cell types. Analysis of cell state, 

morphology, and neighborhood relationships are also common. Within Minerva Story it is possible to 

link representations of quantitative data directly to the image space. For example, when data are 

captured in a two-dimensional plot, such as a UMAP (Figure 4b), clicking on a data point takes the user 

directly to the corresponding position of the cell in the image (which is denoted with an arrow). This is a 

standard feature in desktop software such as HistoCat and Facetto and greatly enhances a user’s 

understanding of the relationship between images and image-derived features. Display of segmentation 

masks as overlays is similarly useful for troubleshooting and assessing data quality; in Figure 4c, 

unwanted fusion and fission events are highlighted by arrows, both of which result from errors in 

segmentation. Additionally, users can interactively highlight areas of interest, add notes, and generate 
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sharable links that allow others to navigate to the same position in the image and view any added 

annotations and text (Figure 4d; in this case a high magnification view is shown with a T-cell labelled). 

 

Narrative guides as a medical education tool 

Teaching is another application for narrative tissue guides. Histology is challenging to teach in 

an undergraduate setting56 and, in the case of medical students and residents, changes in curriculum have 

resulted in much less time in front of a microscope. On-line collections of tissue images are a frequent 

substitute. However, studies have shown that pairing classroom instruction with dynamic viewing and 

flexible interaction with image data are essential for learning57. We have therefore created a narrative 

guide to H&E images of specimens from the heart of a patient who experienced multiple episodes of 

myocardial infarction prior to death (Figure 5). An introductory panel depicts the overall structure of the 

heart and the positions from which various specimens were resected. These images reveal the histologic 

hallmarks of ischemic heart disease such as severe coronary artery atherosclerosis, plaque rupture, 

stunned myocardium, reperfusion injury, and the early, intermediate, and late features of myocardial 

tissue infarction. The interactive narration of this common clinical syndrome provides a context for 

developing a more nuanced understanding of cardiac pathophysiology than looking at snippets in a 

textbook or poorly annotated on-line images.  

As the practice of digital pathology continues to grow, we anticipate that uptake of software such 

as Minerva Story in the medical education community could help with the creation of interactive 

textbooks. With relatively little effort, existing text can be hyperlinked to stories and waypoints and 

students can use image annotation features to take notes and ask questions. Audio based narration is also 

advantageous in this context as it allows students to receive lecture content while simultaneously 

concentrating on an image. 

 

Outlook 

Multiplex tissue imaging methods generate images that are data-rich but the potential for this 

data to inform basic, translation, and clinical research remains largely untapped, in large part because the 

complexity and size of such images makes them difficult to process and share. Demand for data access 

will grow as atlases come on-line and the first papers using atlas data are published. Software is 

therefore required to capture and disseminate images in an interactive form, similar to the time-honored 

practice of a pathologist sitting down with a colleague or student to describe a specimen, while also 

enabling free data exploration. With cloud-based storage of pre-rendered narrative guides, there is no 
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real limit to the number of people who can view an image and costs for data providers are low. These 

possibilities are illustrated by Minerva and the OpenSeadragon platform on which it is based. Minerva is 

also capable of displaying images on a cell phone, which is useful in both educational and clinical 

environments. 

With respect to data analysis, a long-term goal in computational biology is to have one copy of 

the data in the cloud and then move computational algorithms to the data. At present however, local 

analysis of images remains the dominant approach, particularly for interactive tasks such as optimizing 

segmentation, training machine learning algorithms, performing and validating clustering, etc. This 

requires local access to full-resolution primary data. With commercial cloud services, data egress 

(download) is the primary expense, and can be substantial for multi-terabyte datasets. A likely solution 

is the use of “requester pays” buckets available on Amazon, Google, and other cloud services. These 

allow a data generator to make even large datasets publicly available by requiring the requester to cover 

the cost of data transfer. In the short term, we envision an ecosystem in which web clients for databases 

such OMERO provide some interactive analysis of primary data, with private datasets allowing for more 

functionality than public datasets because demand on the server can be better managed. This ecosystem 

would include lightweight viewers such as Minerva that provide access to published and processed data 

– and make data intelligible to non-experts – and requester pays cloud buckets allowing computational 

biologists to access primary data and perform novel analysis locally. 

In the longer term, these functions are likely to merge, with OMERO providing sophisticated 

cloud-based processing of data and Minerva serving as a means to access data either in OMERO or a 

static file system virtually cost-free. One obvious extension of Minerva is to add tools that facilitate 

supervised machine learning; in this application, a Minerva variant provides an efficient way of adding 

the labels to data needed to train classifiers and neural nets. The results of machine classification can 

also be checked in Minerva, whose lightweight implementation facilitates crowdsourcing. With these 

possibilities in mind a key question is whether tools such as Minerva should expand to include 

sophisticated image processing functions. We think not; instead we believe the narrative guides built 

using Minerva (or other tools to be developed) should be optimized for image review, publication, and 

description. Analysis will continue to be performed using other (interoperable) software tools. These can 

be joined together into efficient workflows as needed using software containers (e.g. Docker)58 and 

pipeline frameworks such as Nextflow59. As described in Box 2, this approach is not perfect60, but it 

cannot reasonably be replaced by all-in-one commercial or academic software. 
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Recent interest in single-cell tissue biology derives not only from advances in microscopy but 

also from the widespread adoption of single cell sequencing61,62. Comprehensive characterization of 

normal and diseased tissues will almost certainly involve the integration of data from multiple analytical 

modalities, including imaging, spatial transcript profiling63,64, mass spectrometry imaging of metabolites 

and drugs65,66, and computational registration of dissociated scRNA-seq67 with spatial features. Minerva 

cannot handle all of these tasks but it can be readily combined with other tools to create the multi-omic 

viewers needed for tissue atlases. An immediate goal is adding narrative tissue guides to widely used 

genomics platforms such as cBioPortal for Cancer Genomics68 to create environments in which genomic 

and multiplexed tissue histopathology can be viewed simultaneously. Better visualization will also help 

with the more conceptually challenging task of integrating spatio-molecular features in multiplex images 

with gene expression and mutational data. With respect to clinical applications, the biomedical 

community needs to ensure that digital pathology systems do not become locked behind proprietary data 

formats based on non-interoperable software. OME and BioFormats for microscopy and DICOM for 

radiology69 demonstrate that it is possible for academic developers, commercial instrument 

manufactures and software vendors to work together for mutual benefit. Easy to use software such as 

Minerva will make the results of research widely accessible and easy to understand, helping to realize a 

FAIR future for tissue imaging and digital pathology 

 

Box 1: Software for Managing and Visualizing Image Data 

The OME-based OMERO70 server remains the most widely used image informatics system for 

microscopy data in a research setting; it is the foundation of the European Bioinformatics Institute 

(EBI)-based Image Data Resource (IDR)33, a prominent large-scale publicly accessible image 

repository, as well as more specialized repositories such as Pancreatlas71. OMERO has a client-server 

(three-tier) architecture involving a relational database, an image server, and one or more interoperable 

user interfaces. OMERO is well suited to managing image data and metadata and organizing images so 

that they can be queried using a visual index or via search72 (Figure 2a). In its current form, it does not 

perform sophisticated image analysis and no current browser is specialized for the creation of narrative 

guides. 

A range of other software is available for static or partially interactive visualization of H&E and 

IHC images in a Web browser, including caMicroscope73 which is used to organize IHC and H&E 

images for The Cancer Genome Atlas (TCGA)15, The Cancer Imaging Archive (TCIA),74 Digital Slide 
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Archive37, PathPresenter75, and Aperio76 (Figure 2b). Interested readers are referred to a recent White 

Paper from the Digital Pathology Association that discusses tools being developed to view bright-field 

digital pathology data51. However, such H&E and IHC viewers are not generally compatible with multi-

channel images or to integrate different types of omics data. 

 

Box 2: Software for Analysis of Image Data 

Multiple software suites have been developed for analysis of high-dimensional image data 

including CellProfiler77, histoCAT78, Facetto79, QuPath80, Orbit81, Mantis82, and ASAP83; many but not 

all run locally on the desktop (Figure 2b). These software systems generally perform image 

segmentation to identify individual cells or tissue-level features, determine cell centroids and shape 

parameters (e.g., area and eccentricity), and compute staining intensities in designated regions of an 

image and across all channels. The resulting vectors can then be processed using standard tools for high-

dimensional data analysis such as supervised and unsupervised clustering, t-SNE84, or UMAP85 to 

identify cell types and study cell-cell interactions86. While some tools support segmentation, others 

require pre-generated segmentation masks and single-cell feature tables. As an alternative, emerging 

approaches analyze tissues at the level of individual pixels using machine learning and CNNs87. This 

approach potentially bypasses the need to segment individual cells from densely packed tissues in which 

cells can vary dramatically in size. A key feature of software such as histoCat78 or Facetto88 is 

integration of an image viewer and feature-based representations of the same data. This is essential for 

training and testing classifiers, quality-controlling image processing routines, and obtaining insight into 

spatial characteristics.  

Commercial companies are also developing cloud-based computing platforms for digital 

pathology, including HALO (Indica Labs), Visiopharm (Visiopharm), and PathViewer (Glencoe 

Software, the commercial developer of OMERO). Academic (public domain) efforts include the Allen 

Cell Explorer89 and napari90 and build on highly successful open source software platforms such as 

ImageJ91. Napari will be particularly attractive to many computational biologists because it is based 

entirely in Python programming language and has both UI elements and a console. Commercial tools 

often strive for an all-in-one approach to analysis and visualization, but this comes at the cost of 

complexity, proprietary implementation, and licensing fees. It also ignores one of the primary lessons 

from genomics: progress in research rarely involves the use of a single integrated software suite, but 

instead an ecosystem of interoperable tools specialized to specific tasks.  
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DATA AVAILABILITY 

Source code for Minerva Story can be found at https://github.com/labsyspharm/minerva-story and 

detailed documentation and user guide at https://github.com/labsyspharm/minerva-story/wiki. 

 

FIGURE LEGENDS 

Figure 1. Timeline of milestones in development of human atlases, histopathology, and 

multiplexed tissue imaging technologies. The upper timeline depicts the establishment of publicly 

available atlases of human tissues, tumors, and cell types (gray denotes genome-focused atlases and blue 

denotes atlases with a substantial imaging component). Each dot represents the year that one new large-

scale atlas was established. The number of atlases is increasing, as is the emphasis on imaging data. The 

lower timeline depicts the evolution of methods used for histology and anatomical pathology, with an 

accelerating trend towards digital methods occurring in parallel with growth of multiplexed imaging and 

atlases. AI: Artificial intelligences; IHC: immunohistochemistry; FDA: Food and Drug Administration; 

GPU: graphics processing unit; TCGA: the Cancer Genome Atlas; IDx-DR: an AI-based diagnostic for 

diabetic retinopathy from www.eyediagnosis.net. 

 

Figure 2. Software used to visualize, analyze, manage, and share tissue images. A variety of 

software is available for processing tissue image data, each with strengths and weaknesses. We expect 

them to co-evolve as part of an ecosystem held together by common data standards and interoperable 

application programming interfaces (APIs). (a) Desktop applications such as histoCat provide 

sophisticated tools for interactive quantification and analysis of image data and effectively exploit 

embedded image rendering capabilities. Many desktop applications can be run in a “headless” 

configuration on compute farms to accelerate analysis of large images. They can also fetch images from 

OMERO. Three-tier client server systems such as OMERO involve a relational database management 

system (RDMS), an image server, and one or more browser-based and desktop clients; such systems 

provide a full-featured approach to organizing, visualizing, and sharing large numbers of images but 

they typically support only limited data processing. The Minerva application described in this 

perspective is optimized for data sharing and interpretative image viewing: within Minerva detailed 

narration of images and derived data is possible. Pre-rendering of stories with multiple waypoints in an 

image mimics the insight provided by an expert “docent”.  Public access to large-scale primary data is 
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typically limited with all of these systems because of the costs of data transfer. In some OMERO 

configurations (e.g. the Image Data Resource) primary data can be downloaded from the same file 

system. Another approach to primary data access being used by HTAN involves “requester pays” cloud-

based storage (e.g., an Amazon Web Service S3 bucket). Minerva Author is currently being extended so 

it can access data stored in OMERO. (b) The range of commercial and academic software suitable for 

viewing image data with key features described. While each tool has its strengths and weaknesses, none 

of these tools comprehensively satisfies all of functions needed for image analysis. We expect data 

generators and consumers to rely on a suite of interoperable desktop and server or cloud-based software. 

 

Figure 3. A system for generating and viewing on-line narrative guides to complex tissue images. 

The architecture illustrated here is based on the OpenSeadragon viewer Minerva Story and the narration 

tool Minerva Author; the thickness of the arrows indicates the amount of data transferred. Whole slide 

images including bright field and multi-channel microscopy images in the standard OME-TIFF format 

are imported into Minerva Author by a user with expertise in tissue biology and image interpretation (the 

docent); in many cases this individual is a pathologist or histologist. The docent uses tools in Minerva 

Author to pan across the image and then set channel rendering values (background levels and intensity 

scale), specify waypoints, and add text and graphical annotations. Minerva Author then renders image 

pyramids for all channel groupings as JPEG files and generates a YAML configuration file that specifies 

waypoints and associated information. The rendered images are stored on a cloud host (e.g., Amazon 

Web Services S3) and accessed via a static web server supporting Jekyll, on GitHub for example. A user 

simply opens a web browser, clicks on a link, and Minerva Story launches the necessary client-side 

JavaScript (.JS), making it possible to follow the story and also freely explore the image through pan, 

zoom, and channel selection actions. Because interactivity is handled on the client, no special backend 

software or server is needed. Images rendered by Minerva Story are compatible with multiple devices, 

including cell phones.  

 

Figure 4. Minerva Story. The Minerva Story user interface showing key features. Note that this is a 

synthetic screenshot, and size and rendering of the text has been altered from the original to make the 

interface easier to understand in a figure panel. Two Minerva stories are available for this multiplexed 

image of a lung adenocarcinoma specimen. Story one, focusing on histology and immune populations, 

can be accessed at https://tinyurl.com/MinervaLungHistology and story two, focusing on data generation 

and analysis, at  https://tinyurl.com/MinervaLungData. (a) The home screen for Minerva story one. A 
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narration panel on the left-hand side shows the title and narrative text that can also be read aloud using 

the audio panel. The left panel also has links to related stories for the specimen and a table of contents 

listing each waypoint in the story (outlined in orange). Users can click the navigation arrows to step 

through each waypoint or skip to a waypoint of interest using the table of contents. On the right side is 

channel selection panel that users can use to change which channels are rendered (outlined in pink). At 

any point, users can depart from a story and freely pan and zoom in or out of the image using the mouse 

or the magnification icons in the navigation panel. Arrowheads, concentric circles, and other graphical 

elements can be used to annotate images and generate web URLs specific to the current rendering. The 

viewer also contains a scale bar that grows and shrinks as a user navigates across zoom levels (grey). 

Note that this synthetic screenshot includes only a subset of the waypoints and channel groups. 

Extensive information on these features can be found at https://github.com/labsyspharm/minerva-

story/wiki.  (b) Waypoint 6 from story two displays an interactive plot of a UMAP (Uniform Manifold 

Approximation and Projection for Dimension Reduction) performed on a random sample of 2,000 cells 

from the tissue. Users can click on any data point in the plot (each data point represents a single cell) 

and the browser will zoom to the position of that cell in the image and place an arrow. (c) Waypoint 3 

from story two shows each cell in the tissue overlaid with a segmentation mask in which the color 

denotes the cell type as determined by quantitative k-means clustering. This makes it possible for users 

to assess the accuracy and effects of segmentation on downstream cell type calling analysis. The reader 

can toggle the mask with immunofluorescence channels to view the quantitative and image data in the 

same view. The waypoint annotates two types of common segmentation errors. (d) Demonstration of on-

the-fly annotation tool; users can add annotations and enter text and then hit the blue button to generate a 

URL that allows anyone to render the same image and location with pan, zoom, marker group, and 

annotations preserved. 

 

Figure 5. An application of Minerva Story in medical education. Minerva Story can be used for 

multiple applications, including guided viewing of conventional H&E stained sections. In this example 

available at https://tinyurl.com/MinervaHeart, a Minerva story has been created to guide students 

through tissue specimens from different anatomical regions of a heart from a patient who suffered 

multiple myocardial infarcts. (a) An anatomic schematic of the heart indicates the regions from which 

tissue specimens in the Minerva story were collected. (b) Waypoint 1 shows a specimen sliced with a 

posterior view of the left ventricle with box, arrow, and text annotations of a few histologic features. (c) 

Waypoint 2 of the story in (b) showing a zoomed-in view of a papillary muscle characteristic of the left 
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ventricle with annotations indicating regions of tissue showing acute (~12 days old) and remote (>6 

weeks to years old) myocardial infarct. (d) Waypoint 3 and (e) Waypoint 4 guide the user to the remote 

infarct and acute infarct regions of the papillary muscle describing histologic hallmarks to distinguish 

the two types of infarcts. (f) Waypoint 5 depicts microscopic cellular structures of cardiomyocytes at 

high resolution in a region of the tissue with a late acute infarct. This Minerva story is available at 

https://tinyurl.com/MinervaHeart. 
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