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Abstract
The use of population encoding models has come to dominate the study of human visual neuroscience,

serving as a primary tool for making inferences about neural code changes based on indirect measure-
ments. A popular approach in computational neuroimaging is to use such models to obtain estimates of
neural population responses via inverted encoding modeling. Recent research suggests that this approach
may be prone to identifiability problems, with multiple mechanisms of encoding change producing similar
changes in the estimated population responses. Psychophysical data might be able to provide additional
constraints to infer the encoding change mechanism underlying some behavior of interest. However, com-
putational work aimed at determining to what extent different mechanisms can be differentiated using
psychophysics is lacking. Here, we used simulation to explore exactly which of a number of changes
in neural population codes could be differentiated from observed changes in psychophysical thresholds.
Eight mechanisms of encoding change were under study, chosen because they have been proposed in the
previous literature as mechanisms for improved task performance (e.g., due to attention or learning):
specific and nonspecific gain, specific and nonspecific tuning, specific suppression, specific suppression
plus gain, and inward and outward tuning shifts. We simulated psychophysical thresholds as a function
of both external noise (TvN curves) or stimulus value (TvS curves) for a number of variations of each one
of the models. With the exception of specific gain and specific tuning, all studied mechanisms produced
qualitatively different patterns of change in the TvN and TvS curves, suggesting that psychophysical
studies can be used as a complement to inverted encoding modeling, and provide strong constraints on
inferences based on the latter. We use our results to provide recommendations for interested researchers
and to re-interpret previous psychophysical data in terms of mechanisms of encoding change.

Introduction
The use of population encoding models has come to dominate the study of human visual neuroscience, serving
as a primary tool for making inferences about neural code changes based on indirect measurements, such as
psychophysical [e.g., 1, 2, 3, 4, 5, 6, 7, 8] and neuroimaging measures [e.g., 9, 10, 11, 12, 13, 14, 15]. One
of the primary benefits of these models is that they can be applied to understand the neurocomputational
mechanisms of perceptual processes when more invasive methods are not easily available, as is the case in
most human neuroscience studies. Population encoding models make a number of assumptions that constrain
the space of possible inferences that one can make from limited data [13]. Researchers use these models to
make inferences about how neural codes change from a baseline state during and after certain cognitive
events [15].

The standard population encoding model (see Figure 1a, under the title “Encoder”, [16, 17, 18, 4]) consists
of a population of neural channels (representing a neuron or a population of neurons with similar selectivity),
each characterized by a tuning function that responds more strongly to stimuli that have features similar to
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its preferred stimulus (i.e., a specific orientation). When a stimulus is presented to the encoder, the set of
channels outputs a population response (i.e., a vector of response rates; see Figure 1a), which is affected by
internal noise (error bars in the figure). Information about the stimulus is distributed across neural channels
in the population response, so that when it is needed for a behavioral task, a decoder must integrate it and
recover it (see Figure 1a, Decoded Stimulus).
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Figure 1: (a) Encoding and decoding of grating orientation. The target stimulus is encoded by a population
of neural channels to produce a noisy population response (the error is reported in standard deviations),
which is then decoded to produce a single, noisy stimulus estimate. (b) Using optimal decoding, stimulus
estimates from many presentations of the same stimulus will be normally distributed around the true stimulus
value. The width of the distribution represents decoding imprecision.

An important problem is exactly how the brain decodes stimulus information from distributed population
responses, when such information is needed for a behavioral task. There are many possible decoding schemes
[e.g., 19, 20, 21, 22], and some choices lead to an inherent ambiguity in whether a behavioral observation
is due to encoding changes versus decoding changes [23]. Confronted with this dilemma, many authors
assume optimal decoding via maximum likelihood estimation (MLE; e.g., [1, 24, 3, 4, 7, 6]). There is usually
a single optimal solution for a well-posed statistical problem, and thus this solves the issue of ambiguity
regarding whether a change in behavior is due to changes in encoding versus decoding processes. There
are two additional advantages of using an optimal decoder. First, its use has proven to be fruitful in
the previous literature, allowing researchers to make links between psychophysical measures and known
properties of neural encoding [e.g., 6]. Second, the choice of an optimal decoder facilitates linking neural
encoding mechanisms to psychophysical measures, particularly when signal detection theory is used as a
measurement framework. More specifically, because neural noise influences the population response shown
in Figure 1a, the decoded stimulus estimate is also noisy, following a particular probability distribution, as
shown in Figure 1b. When using optimal decoding through MLE, this is a normal distribution centered at
the true stimulus value and having a standard deviation, or width, that represents decoding imprecision (see
Figure 1b).

The properties of the encoding channels directly affect the population response to a particular stimulus,
which in turn affects decoding imprecision; thus, decoding imprecision is linked to the attributes of the
encoding channels (see Figure 2). Changes to neural codes produce concomitant changes in the precision
of decoding, and therefore the discriminability of stimuli from the point of view of signal detection theory.
Depending on how the neural codes are altered, they can worsen or improve the discriminability of stim-
uli differently across the stimulus domain. For example, increasing the responsiveness of channels at the
target usually improves the discriminability around the target and for nearby stimuli. On the other hand,
decreasing the width of channels at the target may improve the discriminability around the target, but
decrease discriminability for nearby stimuli. Because different neural changes produce different outcomes,
our goal here was to determine through simulation whether the different mechanisms of change proposed in
the neuroscientific literature could be distinguished using psychophysics. While previous researchers have
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distinguished between a couple of mechanisms [3], nobody has attempted to distinguish among all of those
often proposed in the literature.
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Figure 2: Relation between properties of neural encoding and decoding imprecision. Columns represent 1)
the encoding channels, 2) the resulting population response, and 3) the final distribution of decoded stimuli,
when the target stimulus presented is at zero. Compared to a baseline homogeneous condition (top, in
blue), an increase in responsiveness of neural channels around the target stimulus (bottom, in orange) leads
to a stronger population response and to more precise decoding (as measured by the red bar representing
full-width at half-maximum of the distribution of stimulus estimates).

As indicated earlier, there have been two main ways in which researchers have applied the encod-
ing/decoding model presented in Figure 1. First, they have used the encoding model to infer properties
of neural representations from neuroimaging data. For example, inverted encoding modeling [10, 15, 13]
assume a homogeneous population encoding model, like that presented in blue in the top-left panel of Figure
2. A range of stimuli are presented to the model to obtain average population responses, like those presented
in the middle panel of Figure 2. Such responses are then used as predictors of neuroimaging data using
multivariate linear regression and, after inversion of the model, new datasets are used to recover estimates of
population responses under multiple conditions [15]. For example, a model trained with neuroimaging data
during a no-task baseline (i.e., only stimuli are presented) could be used to recover and compare population
responses from the no-task and a task condition (e.g., stimuli must be attended, categorized, etc.).

Despite its successes, inverted encoding modeling makes rather strong implicit assumptions about encod-
ing (e.g., homogeneous population codes, normal neural noise) and about the link between neural activity
and neuroimaging measures (a linear measurement model with additive normal noise at each measurement,
and independent across measurements) [see 14, 8]. In addition, the approach has known identifiability prob-
lems. Some researchers [12] have pointed out that inverted encoding modeling sometimes cannot tell apart
different changes at the level of encoding channels (see Figure 2, left panel), which produce similar changes
at the level of recovered population responses. Others [15] have pointed out that the approach is aimed
at studying the level of population responses (see Figure 2, middle panel), and not the level of underlying
mechanisms of encoding change. However, one may be interested in selecting among a limited number of
possible mechanisms of encoding change, and reach conclusions that can be linked to work using direct
measures of neural activity. In that case, the goal would be to use recovered population responses to make
inferences about the underlying code.

A second way in which the encoding/decoding model can be used to study human vision is by inferring
properties of neural representations from psychophysical data. As indicated above, changes in neural encod-
ing produce concomitant changes in the precision of neural decoding. Psychophysical thresholds can provide
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estimates of such precision, and obtaining thresholds as a function of some stimulus property or condition
might provide strong constraints on mechanisms of encoding change. For example, (author?) [3] obtained
psychophysical thresholds for the detection of motion direction across levels of external noise, to distinguish
whether changes in height or tuning of population responses underlie selective attention. Their application
of the encoder/decoder model is particularly interesting, as their goal was essentially the same as the stated
goal of inverted encoding modeling [15].

Unfortunately, many other psychophysical studies have been much less clear about their inferential goals.
A common problem is that several techniques have been developed to estimate psychophysical functions that
look similar to either neural channel tuning functions or population responses. Indeed, some researchers
highlight analogous findings in the psychophysical and neurophysiological literatures, directly comparing
properties (e.g., width) of behavioral tuning functions against similar properties of tuning functions obtained
from single-neuron electrophysiology [e.g., 25, 26, 27].

To summarize, a mechanism of encoding change produces changes at the three levels shown in Figure 2: at
the level of neural channel tuning functions (left panel in the figure), at the level of the population response to
a stimulus (middle panel in the figure), and at the level of decoding precision measured through psychophysics
(right panel in the figure). Until recently, most researchers in both the neuroimaging and psychophysical
literatures have been unclear about exactly what level is the target of their inferences, although in some
exceptional cases researchers make clear that this is the level of population responses [3, 15]. An open
question is whether different mechanisms of encoding change (i.e., at the level of neural channels) that
have been highlighted in the literature may produce different patterns of results at the level of population
responses and/or decoding precision (i.e., psychophysical thresholds).

In the present project, we were particularly interested in the less explored area of psychophysics, as
knowledge about exactly what inferences can be made about mechanisms of encoding change from such
data is useful in two ways. First, because psychophysical data may be used as a supplement to inverted
encoding modeling of neuroimaging data, helping to narrow down the range of possible models underlying a
particular behavior. This is specially true when multiple mechanisms can give rise to similar patterns in the
neuroimaging data [12]. Second, because such knowledge could help in the interpretation of psychophysical
results in terms of changes in neural encoding. As indicated earlier, although it is common for researchers to
draw links between psychophysics and neural codes, in many cases this is not done using a formal framework.
One of our goals was to provide general guidelines to choose psychophysical design and interpret their results
in terms of mechanisms of encoding change. Such guidelines could also apply to the re-interpretation of
previous psychophysical results, from studies that were either not focused on encoding mechanisms [e.g.,
28, 29], limited the number of mechanisms of encoding change explored [e.g., 3], or did not use a formal
framework to link psychophysical functions with properties of neural codes [e.g., 25, 27].

We used simulation work to explore exactly which of a number of changes in neural population codes
could be differentiated from observed changes in psychophysical thresholds. We focus on the simple encod-
ing/decoding model presented in Figure 1, which has been the focus of much previous research. We simulate
a variety of encoding changes from a homogeneous population baseline, while assuming an optimal decoder.
We focus on whether changes in that baseline can be detected through a variety of psychophysical measures.

Figure 3 provides one example for each of the mechanisms of encoding change that were explored in
the current simulation work. In this and all other figures, we refer to the main stimulus of interest as the
target (i.e., we assume that it is specifically targeted by some experimental manipulation, such as training
or cueing), which in all cases has a value of zero. In each simulation, the baseline encoding population (i.e.,
the blue homogeneous population in the top-left panel of Figure 2) was modified by a different mechanism of
encoding change. Each mechanism affects one of the three parameters of the tuning function (width, height,
and center or position; see Figure 4) differently. While specific gain, nonspecific gain, and specific suppression
all affect the height of tuning functions, specific gain boosts the height for channels with position nearest to
the target more than others, specific suppression decreases the height of channels farthest from the target
more than others, and nonspecific gain indiscriminately boosts the height of all channels. Specific tuning
and nonspecific tuning narrow the width of the tuning functions, but specific tuning narrows the width of
channels nearest to the target more than others, while nonspecific tuning indiscriminately narrows the width
of all channels. Inward and outward tuning shifts affect the position parameters of the tuning functions;
they are “specific” mechanisms insofar as they move each channel’s position depending on its distance from
the target. Specific suppression plus nonspecific gain implements both mechanisms simultaneously.
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Figure 3: In addition to the homogeneous baseline depicted in the top-left panel of Figure 2, there were
eight different mechanisms of encoding change from baseline under study. Each mechanism is expected to
produce unique patterns of thresholds in psychophysical experiments.

Figure 4: Gaussian curves are used to describe the shape of channel tuning functions. These are defined by
three parameters: width (standard deviation), height (maximum average responsiveness, in Hz), and center
or position (mean).

These mechanisms of encoding change were selected because they have been proposed in the previous
literature to improve task performance in at least some circumstances. Both gain and tuning have been
discussed in the attention, conditioning, and category learning literatures [25, 30, 9, 31, 32, 33, 34, 35,
36]. Specific suppression and specific suppression plus gain have been proposed as external noise reduction
mechanisms of attention [37, 26]. Outward tuning shifts have been suggested as mechanisms for improving the
performance around category bounds during category learning [38]. Inward tuning shifts have been suggested
as a mechanism of associative learning [39, 40] that causes conditioned stimuli to be over-represented.
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Results
In this study, we used an encoding-decoding observer model (see Figure 1) to simulate how a number of
mechanisms of encoding change (see Figure 3) would affect decoding imprecision, as measured through
sensitivity thresholds. We used Gaussian tuning functions to represent the selectivity of encoding channels
to different stimuli, independent Poisson neural channel noise, and statistically optimal decoding through
maximum likelihood estimation (MLE). The Gaussian tuning functions had three parameters (width, height,
and center or position; see Figure 4), which were each influenced differently by the mechanisms of encoding
change. The width is implemented as the standard deviation of the Gaussian, the height is the average
responsiveness at the preferred stimulus, and the position represents the preferred stimulus, implemented
as the mean of the Gaussian. We created a baseline, homogeneous population encoding model, which had
tuning functions with a width of 12 degrees, a height of 10 Hz, and positions evenly spread along a circular
stimulus domain [-90,90). We simulated both a sparse population with 10 channels and a dense population
with 20 channels. Neural channel noise was simulated using independent Poisson noise, a common choice
in the previous literature [e.g., 1, 3, 4]. Statistically optimal decoding was implemented via MLE, which
produces a normal distribution of stimulus estimates, centered at the true stimulus value and with a standard
deviation proportional to the sensitivity threshold (see Figure 1b; for more details, see The encoding-decoding
observer model in the Methods section).

Starting from the homogeneous baseline, we implemented eight different mechanisms of encoding change,
which include nonspecific gain, nonspecific tuning, specific gain, specific tuning, inward tuning shift, outward
tuning shift, specific suppression, and specific suppression plus gain (the only combination of mechanisms).
The effect of each one of these mechanisms on the tuning functions of the population of channels is exemplified
in Figure (3). We ran a total of 244 simulations, each characterized by a different population encoding model.
Monte Carlo simulations were used to estimate each threshold, with 50,000 iterations used per threshold. In
one set of simulations, we manipulated the external noise (0 to 0.5) to influence the thresholds, and in the
other set of simulations, we manipulated the presented stimulus (-90 to 90) to affect the thresholds. For more
details on the implementation of each model, the Monte Carlo estimation, and experimental manipulations,
see the Methods section.

For each set of simulations, we assessed under what conditions the simulated thresholds fell above or
below those of the baseline. We expected each neural change to create a qualitatively different pattern
of thresholds in our simulated experimental paradigms (explained below). We assumed that increasing or
decreasing the magnitude of any given neural change would only affect the magnitude of the differences with
baseline.

Population Response Curves
As indicated earlier, one goal of our work was to encourage researchers that use inverted encoding modeling
to supplement their studies with psychophysical data, as a way to narrow down the the range of possible
models underlying a particular behavior of interest. To frame our work in those terms, we started by checking
to what extent the different mechanisms of encoding change under study could be differentiated via inverted
encoding modeling.

As indicated above, the main goal of inverted encoding modeling is to obtain estimates of population
responses [15], such as those shown in the middle panels of Figure 2. For this reason, we started by obtaining
such population responses after presentation of the target stimulus, from each one of the models under study.
The obtained responses are shown in Figure 5. Note that these are the true mean population responses
without any noise, and thus what inverted encoding models aim to estimate.
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Figure 5: Population responses obtained from each of the encoding models under study. Blue curves cor-
respond to baseline models, orange curves to encoding changes implemented in a dense population (20
channels), and green curves to encoding changes implemented in a sparse population (10 channels).

Each one of the population responses shown in Figure 5 were fitted to a model of the population response
curve (see Equation 8), which has the Gaussian function as a special case, but that can also produce curves
with lower or higher curvature at the peak, including exponential functions (without any curvature at the
peak). The fitted curve is similar to that used in previous inverted encoding modeling [e.g., 38], in that it
allows to obtain separate estimates of the population response’s height and width, but also provides estimates
of the curvature (i.e. width) of the curve at the peak. The fit of the population response curve was in most
cases excellent. Figure 6 shows that fit for responses obtained from sparse models. The inserts at the top-left
of each plot show the distributions of r2 values obtained for that model, with dots representing individual
values, and the diamond representing the mean value. The main plot shows an example comparison between
a fine-detail population response and the prediction from the population curve fitted to sparse data, for the
model closest to the mean.

First, note that most of the r2 values are higher than 0.99, indicating excellent fits. Only specific tuning
and nonspecific tuning provide relatively lower values, which never drop below an r2 of 0.96. The values
obtained from dense population models (20 channels) were all so high that were rounded up to 1.00 due to
machine precision. This indicates that, in most cases, our model of the population curve provided a good
description of population response obtained from the models and we can interpret the shape of population
responses through the recovered parameters.

Such recovered parameters were subtracted from the corresponding parameters obtained from baseline
models, and the distribution of such differences are shown in Figure 7. We must first note that many
applications of inverted encoding modeling focus simply on whether the population response changes in
height versus width in a given experimental condition (e.g., attention). It can be seen from the Figure that
while an increase in height of the curve was always diagnostic of a gain mechanism at the neural encoding
level (specific gain, nonspecific gain, or specific suppression plus gain), changes in the width of a curve are
not very diagnostic of changes at the neural encoding level. We see narrowing of the curve width due both
to changes in tuning (specific and nonspecific) and other mechanisms (specific gain, specific suppression
plus gain, specific suppression). This mirrors the point made by previous simulation work [12] showing that
changes in tuning of recovered population responses are not diagnostic of changes in tuning of encoding
neural channels. A final result is that tuning shifts (i.e., changes in the preferred stimuli of individual
channels) cannot be directly observed from population responses, which look identical to those observed
during baseline. This observation is in line with published results, which showed that recovered population
responses do not reveal an outward tuning shift, but that such a mechanism can be inferred by using special
data analyses [38] (we return to this study in the discussion section).
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Figure 6: Fit of the population response curve to the mean population responses obtained from the models.
The main plots compare the smooth population response obtained from a model with high density of channels
(see Figure 8) in the x -axis, against the predicted values for the same population response obtained from
a curve fitted to a sparse population response, with low density of channels. The inserts at the top-left
of each plot show the distributions of r2 values obtained for that model, with dots representing individual
values, and the diamond representing the mean value. Axes of the main plots have been re-scaled to ease
comparison across models.

What is most revealing about the results shown in Figure 7 is that they do reveal some information about
the underlying mechanisms of encoding change, even though they provide that information only indirectly.
For example, nonspecific gain produces in all cases a very specific pattern, with both width parameters
identical to those seen at baseline, and the curve height parameter higher than baseline. However, most
cases do seem difficult to tell apart from one another, which seems to be in line with the recommendation of
not making inferences about underlying channel tuning functions from recovered population responses [15].

On the other hand, we would be amiss if we did not point out that the inverted encoding modeling
approach has more potential to provide information about encoding changes than what current practice
permits. First, note that the parameters provided in Figure 7 were obtained from population responses to a
single target stimulus. In real applications, multiple stimuli with different values in the dimension of interest
are presented, the population responses are estimated for each one of them, shifted to have a common zero
mean, and averaged to obtain a single estimate of the population response. This practice allows to obtain
better estimates of the population response only when nonspecific mechanisms are involved. To understand
why this is the case, Figure 8 shows the population responses obtained by presenting seven evenly-spaced
stimuli, starting from the target and moving towards the right side of the dimension, to an ultra-dense version
of the population encoding models used here. This allowed to obtain smooth population responses showing
all the information ideally available from an inverted encoding modeling experiment. Note first that when
nonspecific gain or tuning are involved, all population responses have the same shape and their average is
a good estimate of that curve. For all other cases, population responses vary with presented stimulus. For
example, in specific gain population responses drop in height as the stimulus gets away from the target, in
specific tuning population responses widen as the stimulus gets away from the target, and so on.
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Figure 7: Distributions of parameters recovered from the population response to the target stimulus,
presented separately for each model under study. The values represent the difference in estimated parameter
between a particular model and its corresponding baseline, with values higher than zero representing “taller”
or “wider” curves, and values below zero representing “shorter” or “narrower” curves. Each dot represents a
different model variation and the red diamond represents the mean of the distribution.

Thus, the common practice of averaging shifted estimates of population responses has three undesirable
consequences. First, when a specific mechanism is involved, averaging produces biased estimates of any of the
true underlying population responses. Second, averaging may reduce the size of the effect of an experimental
factor on population responses, and in some cases it might even artificially get rid of such effect (e.g., when
averaging responses higher and lower from baseline, in the case of specific suppression plus gain). Finally,
averaging discards an important amount of information about the underlying mechanism of encoding change.
For example, the parameters recovered from a single curve in Figure 7 cannot distinguish between specific
gain and specific suppression plus gain, but the latter mechanism is the only one that produces suppressed
population responses away from the target in Figure 8. Similarly, specific suppression, specific tuning, and
nonspecific tuning cannot be distinguished from the parameters shown in Figure 7, but they clearly produce
different patterns of population responses as a function of stimulus value in Figure 8.
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Figure 8: Idealized population responses obtained from ultra-dense population encoding models. They show
that the current practice of averaging population responses from different stimuli reduces the information
available about underlying mechanisms of encoding change.

Thus, it seems like the inability to differentiate mechanisms of encoding change using inverted encoding
modeling is in part due to the practice of averaging population responses obtained by presentation of different
stimuli. A much better approach to differentiate between the different mechanisms in Figure 3 would be to
estimate a different population response for a number of stimulus values along the dimension. This, however,
would require many times the amount of data that is usually obtained in inverted encoding modeling studies,
and might not solve other identifiability issues highlighted by recent research [12]. In addition, traditional
inverted encoding analyses cannot provide information about tuning shift mechanisms, and it is not clear
whether special analyses proposed to obtain such information for outward tuning shifts [38] would similarly
work to infer inward tuning shifts.

Thus, we now turn to the main question of our current research, which is whether or not mechanisms of
encoding change can be distinguished from one another based on psychophysical data alone.

Threshold vs Noise (TvN) Curves
The equivalent-noise paradigm [41] is a widely-used psychophysical tool that involves measuring the sensi-
tivity of the visual system to changes in a given variable (e.g., grating orientation) at many different values
of external noise that is added to the stimulus. Sensitivity is usually measured via thresholds, which as indi-
cated earlier are estimates of decoding imprecision. Figure 9 shows an explanation of the resulting Threshold
versus external Noise (TvN) curve (also sometimes called TvC curve, where C stands for “Contrast Noise”).
The typical shape of this TvN curve has a flat section at low levels of external noise, where performance is al-
most exclusively limited by internal sources of noise, such as neural noise in our simulations. This is followed
by a curved section where external noise starts exerting its influence, and ends with a linearly-increasing
section where performance is almost exclusively determined by the level of external noise.

TvN curves have been used in the past to characterize psychophysical observer models [42], as well as
encoding/decoding observer models like the one presented in the introduction [e.g., 1, 3]. In the context
of our study, the TvN curve has been shown to provide useful information about mechanisms of change in
encoding populations. The reason for its usefulness is that different changes in encoding should produce
different changes in the curve, depending on whether they affect internal or external noise. For example,
(author?) [3] found through simulations that a nonspecific gain mechanism of attention would specifically
suppress internal noise, making the TvN curve drop only at low levels of external noise (green area in Figure
9). On the other hand, a “tuning” mechanism of attention (what we have called specific suppression with
nonspecific gain) would specifically suppress external noise, making the TvN curve drop only at high levels
of external noise.
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Figure 9: Explanation of a Threshold versus external Noise (TvN) curve.

The goal of the present set of simulations was to expand previous work [1, 3] and determine how all
the changes in population codes shown in Figure 3 affect the shape of the TvN function. The obtained
TvN curves are shown in Figure 10, with each panel representing a different mechanism of encoding change.
Baseline curves are shown in blue, whereas curves obtained from the models in Figure 3 are shown in either
orange (dense population) or green (sparse population). In the rest of this section, we describe the results
shown in Figure 10 in detail for each model.

From the point of view of the decoder, information about differences in stimulus values comes from
differences in the responses of each channel. The slope of the tuning function at a particular value of the
stimulus determines its sensitivity to changes in the stimulus (i.e., how different will be the response as a
function of a small change in the stimulus). For a range of values, such slope can increase by increasing the
height or decreasing the width of the tuning function.

Broadband noise involves adding random stimulation across all neural channels. Again, the slope of the
tuning function determines to what extent small changes in random stimulation produce a large change in
the channel’s response. In this case, however, a higher slope for channels other than those responding to a
target stimulus means more influence of small variations in random noise, which decreases the precision of
decoding for that target.

In “nonspecific” mechanisms of encoding change, the slope of tuning functions is affected equally across
all channels. At low levels of external noise, this improves decoding precision, but at high levels of external
noise, the effect of the noise on channels surrounding the target is stronger, worsening decoding precision.
On the other hand, in “specific” mechanisms of encoding change, the slope of channels that respond to the
target stimulus is affected more than the slope of surrounding channels that respond to noise, producing an
overall improvement in performance across all noise levels.

The TvN curve produced after applying specific gain is consistently more precise (i.e., lower threshold)
than that of the baseline across all levels of external noise. The increased responsiveness of channels around
the target leads to steeper slopes in their tuning functions, This improves the channels’ sensitivity to stimulus
changes around the target exclusively, without increasing sensitivity to stimulation due to external noise in
off-target channels; thus, compared to baseline, the precision is improved across all levels of external noise.

The TvN curve produced after applying nonspecific gain is initially more precise than that of the baseline
during the flat and curved sections, but precision converges with the baseline by the end of the linearly-
increasing section. During the flat section, much like specific gain, increased responsiveness leads to steeper
slopes along channels surrounding the target, improving decoding precision. However, unlike specific gain, the
responsiveness of the channels were indiscriminately increased; thus, during the linearly-increasing section,
when the strength of the external noise becomes more comparable to that of the target stimulus, response
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to noise at the off-target channels is amplified and there isn’t an improved effect compared to baseline.

Figure 10: TvN curves are depicted for each mechanism of neural code change. Blue curves correspond to
baseline models, orange curves to encoding changes implemented in a dense population (20 channels), and
green curves to encoding changes implemented in a sparse population (10 channels).

The TvN curve produced after applying specific suppression is higher than baseline (more imprecise)
during the flat section, crosses baseline during the curved period, and it becomes lower than baseline (more
precise) during the linearly-increasing section. The general effect of specific suppression is to decrease
sensitivity to noise in the off-target channels. The level of suppression determines to what extent this also
affects the channels close to the target. With high levels of suppression, the responsiveness of channels
surrounding the target is reduced, which reduces their slope and precision of decoding at low levels of noise.
The improvements in precision in the linearly-increasing section are due to the relatively stronger reduction
of slopes in off-target channels, which makes them less sensitive to broadband noise. Figure 10 also shows an
exception to the general pattern, in which specific suppression increases decoding precision in the flat part
of the TvN curve. This happens when suppression is strong enough to reduce the influence of internal neural
noise from channels surrounding the target, but weak enough to not disrupt the slope of those channels too
strongly.

The TvN curve produced after applying specific suppression with nonspecific gain is generally more
precise than that of the baseline across all levels of external noise. While the basic features are consistent
with specific gain and specific tuning, the slope of the linearly-increasing section is more gradual along
specific suppression’s TvN curve compared to baseline: both specific gain and tuning run in parallel to the
baseline throughout the linearly-increasing section. Mechanistically, the improvement at high external noise
levels is due to reduction of slopes in off-target channels, as in specific suppression. To this, non-specific
gain adds an improvement at low external noise levels, due to an overall increase in slopes. Whether or
not this improvement is enough to bring imprecision to a level lower than baseline depends on the balance
between gain and suppression. As the nonspecific gain decreases, it becomes more similar to regular specific
suppression; thus, the nonspecific gain is too low to represent a meaningful improvement from specific
suppression. This explains some exceptions in Figure 10, in which imprecision is higher than baseline at the
lowest levels of external noise.

The TvN curve produced after applying specific tuning is consistently more precise than that of the
baseline across all levels of external noise. The TvN curves are seemingly identical to those produced
after applying specific gain, and the underlying mechanism is again an increase in slopes for tuning functions
surrounding the target. Due to the specificity of this mechanism, the change improves the channels’ sensitivity
to stimulus changes around the target exclusively, without increasing sensitivity to stimulation due to external
noise in off-target channels, producing a constant improvement in decoding along the linearly-increasing
section of the TvN curve.

The TvN curve produced after applying nonspecific tuning is more precise than that of the baseline
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during the flat section, but decreases in precision during the curved section and the majority of the linearly-
increasing section before finally matching the baseline. While the channels near the target have increased
their sensitivity by aligning their steepest points to the target (explaining the flat section’s improvement),
external noise is no longer uniquely beneficial at the target location as it was with specific tuning, and the
indiscriminately improved sensitivity to stimuli (including external noise) is detrimental during the linearly-
increasing section.

The TvN curve produced after applying an outward tuning shift is in most cases more imprecise than
that of the baseline across all levels of external noise. In the general case, moving channels away from the
target decreases the slopes of tuning functions at the target. This in turn decreases the channels’ sensitivity
to stimuli near the target and reduces precision. The decreased channel sensitivity applies across all three
sections of the curve: adding noise just makes it worse. The single exception among our simulations is one
in which an improvement in target decoding is seen at low levels of external noise. We believe this to be
an artifact of our simulation parameters. This effect is observed when the shift in tuning is so large that
only a channel with the target as its preferred stimulus is left unshifted. The center of the tuning shift
and the preferred stimulus of one channel must perfectly match for this to happen. Under such conditions,
our assumption of a near-equal variance SDT model fails, because decoding precision is high exactly at
the target (a maximum response value corresponds only to the target) but quickly decreases at stimulus
values slightly off-target (due to symmetry in the tuning function, a given response value corresponds to two
possible stimulus values).

The TvN curve produced after applying an inward tuning shift is generally more imprecise than that of the
baseline during the flat and curved sections, but the precision improves during the linearly-increasing section
(much like the pattern produced after applying specific suppression). During the linearly-increasing section,
precision increases because the responses of the channels near the target are increased disproportionately by
the high broadband noise compared to distal channels; furthermore, the coverage of the distal channels is
decreased, reducing the effects that broadband noise can have there. During the flat section, imprecision of
the target increases because the slopes of the shifted channels are flatter at the target.

Generally speaking, TvN curves are able to differentiate nonspecific gain, nonspecific tuning, and outward
tuning shifts from all other models. Unfortunately, the TvN curves from inward tuning shifts are very
similar to those of specific suppression, and populations affected by specific gain, specific tuning, and specific
suppression plus nonspecific gain produce highly similar TvN curves as well.

Threshold vs Stimulus (TvS) Curves
Differences in the number and properties of neurons encoding a particular dimensional value should produce
differences in the precision with which that dimensional value can be decoded. In general, decoding from
neurons which are more numerous, more finely tuned, and have a larger range of responses (i.e., difference
between baseline and maximum firing rate) is more precise. For example, (author?) [6] showed that the
precision with which orientation can be decoded from a neural population strongly depends on the number
of cells encoding such variable. Due to the cortical magnification factor in V1, the number of cells encod-
ing orientation drops with eccentricity, and this drop provides an excellent fit to estimates of orientation
thresholds as a function of eccentricity.

The different mechanisms of change in population codes shown in Figure 3 should therefore produce
concomitant changes in thresholds measured at different values of the stimulus dimension. An experiment
measuring thresholds at many different “pedestal” values of the dimension should produce a Threshold versus
Stimulus (TvS) curve that would provide important information about underlying changes in population
codes. A TvS curve is also much easier to interpret than many other possible psychophysical functions.
Sections of the curve with higher values represent more imprecise decoding estimates, which result from
neurons that are relatively fewer in number, more broadly tuned, or with a smaller response range. Sections
of the curve with lower values represent more precise decoding estimates, which result from neurons that are
relatively more in number, more finely tuned, or with a larger response range.
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Figure 11: Division of the stimulus dimension into regions as a function of their distance from the target
stimulus. The division is rather arbitrary, and we propose it here mostly as a way to interpret the simulated
TvS curves shown in Figure 12.

As shown in Figure 11, the sections of the TvS function are loosely categorized based on their distance
from the target. Given that our simulations focus on circular dimensions, such as orientation, stimuli farthest
from the target are shown on the left and right side: the distal section. The target itself and nearby stimuli
fall under the target section. The remaining cases fall under the intermediate section. The TvS functions
were all acquired in the absence of external noise, which means the target section should correspond to the
initial flat region of the TvN curves.

Figure 12: TvS curves are depicted for each mechanism of neural code change. Blue curves correspond to
baseline models, orange curves to encoding changes implemented in a dense population (20 channels), and
green curves to encoding changes implemented in a sparse population (10 channels).

The TvS function produced after applying specific gain is generally more precise than that of the baseline,
but gradually approaches the baseline precision as the effect dissipates toward the distal section. The
sensitivity of the channels are increased most in the target region (due to increased slopes of tuning functions
in that region) and least in the distal region, explaining the effect.

The TvS function produced by applying nonspecific gain is always more precise than that of the baseline.
The channels’ slopes are increased indiscriminately, allowing the effect observed in specific gain to be applied
across the stimulus domain. The level of gain directly determines the degree of the increase in decoding
precision. Without the interference of external noise, the increase in responsiveness is useful for all values of

14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.26.010900doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.010900


the stimulus domain.
The TvS function produced by applying specific suppression is always more imprecise than that of the

baseline. The imprecision increases toward the distal sections. Specific suppression produces flatter slopes
across tuning functions of all channels, reducing decoding precision, but the effect is stronger the farther
away a channel is from the target.

The TvS function produced by applying specific suppression plus gain is more precise than the baseline at
the target and intermediate sections, but more imprecise in the distal section. The shape of the TvS function
matches specific suppression exactly, but its vertical position is determined by the level of nonspecific gain:
adding enough nonspecific gain can lead to a TvS curve exactly like that of specific gain, and adding too
little leads to a TvS curve exactly like that of specific suppression. However, if enough gain was modeled to
match or surpass baseline along all sections, the mechanism would not truly qualify as involving suppression.

The TvS function produced after applying specific tuning is more precise than baseline in the target
section. Within the target section especially, the slopes of tuning functions are increased, which accounts
for the corresponding improvements in precision. In 50% of the simulations, specific tuning caused the
TvS function to increase imprecision above the baseline during the intermediate and/or distal sections.
Finding such “shoulders” in the TvS function would differentiate specific tuning from specific gain, but not
finding them is insufficient to differentiate this mechanism from specific gain (this comparison is particularly
important, as TvN curves for these two models are also indistinguishable). For the rest of the simulations,
five of them (27.8%) involved a change in tuning so small that no change was visible in the TvS curve except
for a very small increase in performance for all values of the stimulus. The last three cases involved curves
similar to those observed for specific gain. Thus, there are cases in which the TvS function for specific tuning
mimics that observed for specific gain.

The TvS function produced after applying nonspecific tuning is more precise than baseline across all
sections. As another flat line, the function is seemingly identical to the nonspecific gain function. The
uniform precision increments are due to the indiscriminate increase in slopes across tuning functions. As
shown in the corresponding TvN curve, the improvement only applies without the interference of external
noise.

The TvS function produced after applying an outward tuning shift is generally less precise than baseline
at the target section, and the precision generally improves at the distal section. Shifting of tuning functions
away from the target tends to concentrate slopes in the farthest area, where more precise decoding is made
possible. The intermediate channels, which move the most, also cannot assist with decoding stimuli in
the target region. The redistribution of slopes seems beneficial to decoding only starting at intermediate
distances from the target (i.e., around +/-50), but is detrimental to decoding at values closer to the target.

The TvS function produced after applying an inward tuning shift is less precise at the target region, more
precise in the intermediate region, and again less precise in regions farthest from the target. Shifting of tuning
functions towards the target tends to concentrate slopes in the intermediate area, with the consequence of a
lower concentration of slopes in the region closest to and farthest from the target.

Generally speaking, TvS functions are able to differentiate specific suppression, specific suppression plus
gain (when parameters do not make either of the two mechanisms dominate), outward shift, and inward
shift from all other models. Unfortunately, the TvS functions for specific gain and tuning were too similar to
each other to distinguish them, and the functions for nonspecific gain and nonspecific tuning were practically
identical. However, TvS functions allow researchers to still narrow down the type of change in encoding to
either a specific or nonspecific mechanism. If a nonspecific mechanism is found, then gain and tuning can
be further separated by using TvN functions, as shown in the previous section.

Discussion
We performed a large number of simulations to determine what types of neural encoding changes could be
differentiated through psychophysical threshold experiments. A summary with the most common patterns
of results observed in our simulations is shown in Table 1. The results suggest that, by gathering thresholds
along the stimulus domain (i.e., TvS curves), it is possible to distinguish four of the eight types from all other
mechanisms: specific suppression, specific suppression plus gain (as long as both mechanisms have a balanced
contribution), outward tuning shift, and inward tuning shift. From the remaining four mechanisms, the pair
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of nonspecific mechanisms (gain and tuning) can be distinguished from the pair of specific mechanisms
(gain and tuning) by how much thresholds for stimuli outside the target area are affected. If the candidate
mechanisms are nonspecific, then an additional experiment that manipulates external noise (i.e. TvN curves)
could help finalize the selection. If the candidate mechanisms are specific, then an increase in thresholds
for intermediate and/or distal regions of the TvS curve is indicative of a specific tuning mechanism. In a
minority of cases (3/18 of the simulations), a specific tuning mechanism produced a TvS curve mimicking
that of a specific gain mechanism, and thus both cannot be separated unless other sources of information
are taken into account (e.g., inverted encoding modeling).

Model Name PR TvN TvS
Specific Gain +/-/- --- --=

Nonspecific Gain +/=/= --= ---
Specific Suppression Plus Gain +/-/- --- -=+

Specific Suppression =/-/- +=- +++
Specific Tuning =/-/- --- --=

Nonspecific Tuning =/-/= -+= ---
Outward Shift =/=/= +++ ++-
Inward Shift =/=/= +=- +-+

Table 1: Most common patterns of results observed in our simulations, with symbols representing changes
from baseline. Values higher, equal, and lower than baseline are represented by +, =, and -, respectively.
Symbols in the Population Response (PR) column represent difference with baseline in the three parameters
of a curve fitted to the population response to the target: curve height, curve width, and peak curvature, in
that order. Symbols in the Threshold versus Noise (TvN) column represent difference with baseline in the
flat, curved, and linearly increasing sections of the curve, in that order. Symbols in the Threshold versus
Stimulus (TvS) column represent difference with baseline in the area around the target, in the intermediate
section, and the distal section, in that order.

While TvN and TvS alone could not dissociate every mechanism (i.e., specific gain and specific tuning
produced qualitatively identical patterns), the addition of other data may allow to infer the true mechanism
of encoding change. For example, it is possible to estimate population responses from neuroimaging data
using inverted encoding modeling. In addition, additional psychophysical studies may be able to differentiate
between the two mechanisms, as they should differ in the overall level of activity produced by presenting
the target. Assuming that the overall level of activity elicited by a stimulus determines its relative salience,
producing bottom-up attention, then a target under specific gain should capture attention more easily in
visual search tasks than a target under specific tuning [43]. More generally, at the heart of our approach is
the idea that no single study allows one to infer the correct mechanism of encoding change underlying some
behavior of interest. Rather, a combination of multiple studies, all linked together through the same model,
provides a much stronger approach to the problem.

A number of assumptions were made in this simulation work, which are listed in what we perceive
is their order of importance in Table 2. First, because there is inherent ambiguity in linking the neural
and psychophysical levels, such that any changes in thresholds could be attributable to either encoding or
decoding changes [23], we started by assuming an optimal decoder. This is a rather strong assumption, but
is also standard in the prior literature [e.g., 1, 24, 3, 4, 7, 6], where it has proven to be useful. In addition,
biologically plausible mechanisms for optimal decoding in the brain have been proposed in the literature
[24]. Second, we also assumed independent Poisson neural noise, which facilitates maximum likelihood
estimation and is also a common assumption in the literature [e.g., 1, 24, 3, 4, 7, 6]. The strongest part of
this assumption is that noise is independent, although we have no reason to expect that correlated noise
would change our general conclusions. Third, we assumed that decoding noise is similar in neighboring
areas of the stimulus dimension. Once again, this is a common assumption in the literature linking neural
encoding with psychophysics [1, 3], made mostly for convenience as it substantially reduces the computational
cost of simulations. We believe that this assumption also seems valid, as there is little reason to expect
large differences in decoding precision in a small area of the stimulus domain. Fourth, we assumed a bell-
shaped tuning function, which as far as we know is the only type of function used in research applying
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inverted encoding modeling [e.g., 9, 38, 31, 15, 13, 11, 12, 10]. For other stimulus dimensions, such as those
characterized by monotonically increasing or decreasing tuning functions (e.g., face dimensions; [44, 5, 45,
43]), new simulations would be required. Finally, we assumed a homogeneous encoding population for the
baseline condition. This is a common assumption in inverted encoding modeling, and we don’t think that
changes in this assumption would change any of our conclusions. This is because, regardless of what baseline
is assumed, changes in encoding relative to that baseline should result in similar changes in decoding precision
relative to the baseline.

As we have indicated, some of the assumptions in Table 2 are rather strong. However, we do not
believe that they are stronger than the assumptions implicit to inverted encoding modeling, discussed in the
introduction section. Again, we believe that the weaknesses of each approach can be overcome by a research
approach that combines different sources of data (which require different sets of assumptions) within a single
modeling framework.

Assumptions
Optimal MLE Decoding

Independent Poisson Neural Noise
Equivalent Noise Variance in Neighboring Areas of Stimulus Dimension

Bell-Shaped Tuning Function
Homogeneous Encoding Baseline*

Table 2: List of assumptions made in the present simulation work, ordered from strongest to weakest.

Re-interpreting results in the literature
As indicated in the introduction, we have focused here on those mechanisms of encoding change that have
been proposed to improve task performance in the previous literature, making them candidates to explain
the effects of learning and attention on perceptual processing. Although no prior experiment has attempted
to distinguish between multiple mechanisms using both TvS and TvN functions, several experiments have
gathered thresholds either at the target stimulus (i.e., the stimulus involved in learning or attention), across
different values of the stimulus dimension (i.e., similar to a TvS function), or across different levels of external
noise (i.e., a TvN function). The results of some of these studies can be re-interpreted in the light of our
current simulations.

For example, several studies have shown that aversive Pavlovian conditioning involving a particular
stimulus (the conditioned stimulus, or CS+, which is paired with an aversive stimulus, such as electric
shock) produce increments in thresholds for that stimulus [46, 47, 29]. Figure 12 shows that only a few
mechanisms can produce this increase in thresholds at the target: specific suppression, outward shift, or
inward shift. However, other evidence suggest that, among these candidates, the most likely mechanism is
one of inward shift. First, neurophysiological studies in auditory aversive conditioning with rodents have
shown evidence that individual neurons shift their preferred stimulus towards the CS+ after training (for
reviews, see [39, 40]). Second, there are multiple reports that an aversive CS+ captures attention in search
tasks [48, 49, 50, 51]. A reasonable assumption is that bottom-up attentional capture depends on the
overall level of neural activity that the CS+ produces in comparison with concurrently-presented stimuli
that compete for attention [43]. If we think of that overall level of neural activity as the result of both the
number of neurons selective for the CS+ as well as their firing rates, we see that both suppression and outward
shift are mechanisms likely to reduce the overall level of neural activity produced by the CS+, whereas an
inward shift is likely to produce the opposite effect. In sum, both neurophysiological and psychophysical
data suggest that the most likely change in stimulus encoding produced by aversive conditioning is an inward
shift towards the CS+. This hypothesis could be easily tested by estimating TvS functions from participants
before and after conditioning. Based on our results, we would predict that the post-learning TvS function
would look like the inward shift function in Figure 12.

Another form of learning known to produce changes in dimension discriminability is category learning,
although such changes have usually been measured using a measure of sensitivity (i.e., d′) rather than sen-
sitivity thresholds. In particular, several studies have shown that categorization training produces increased
discriminability along the category-relevant stimulus dimension [52, 53, 54, 55, 56, 57, 58], an effect that can
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be sometimes stronger for stimuli that cross the category boundary [55, 56]. On the other hand, a recent
study using inverted encoding modeling [38] has found evidence supporting the operation of an outward tun-
ing shift mechanism during categorization of oriented gratings. These two results are difficult to interpret
together. In particular, Figure 12 shows that the outward shift mechanism found by Ester et al. in most cases
would lead to a reduction in stimulus discriminability (i.e., increased thresholds, or decoding imprecision)
around the bound (which in this case corresponds to the target at zero). Improvements in discriminability
should be reliably observed only for stimuli that are relatively far from the bound. In line with this idea, Van
Gulick et al. [58] report some evidence of a stronger effect on discriminability away from the category bound
than at the category bound. On the other hand, Goldstone [55] reports the opposite pattern of results,
and others [52, 53] report equivalent improvements in discriminability across the dimension. What all these
studies have in common is that they report an increment in discriminability for stimuli around the category
bound, which is difficult to explain by an outward shift mechanism.

It is possible that a precisely-tuned outward shift can produce this result, if the shifts place the slopes
of several tuning functions around zero. In any case, an outward shift mechanism predicts a loss in discrim-
inability in some areas of the dimension, which has not yet been observed. Because a tuning shift necessarily
increases discriminability in some areas at the cost of a reduction in discriminability in other areas, we
predict that if an outward shift is the mechanism underlying perceptual effects of categorization, then a
fine-grained TvS curve should reveal areas in which the category-relevant dimension shows a reduction in
stimulus discriminability.

Another possibility is that the precise mechanism of encoding change produced by categorization learning
is dependent on properties of the neural population encoding a particular stimulus dimension. More precisely,
Ester et al. [38] used orientation of lines and gratings as their stimuli, and orientation is known to be encoded
in early visual cortex through tuning functions similar to those used in the present study. On the other
hand, the majority of the psychophysical research has used either highly complex shape and object stimuli
[52, 53, 54, 57, 58] or simple dimensions other than orientation [55, 56]. The tuning functions used by the
brain to encode such dimensions might be different than what is represented by the standard population
model used here. For example, face features are thought to be encoded through monotonic tuning functions
(e.g., sigmoidal; see [5, 45, 43]). Using computational modeling and visual adaptation, it has been found that
the effects of categorization on perception of face identities along the category-relevant dimension [59, 60, 61]
can be best explained using a specific gain mechanism [45]. It is currently unknown exactly how the complex
shape and object stimuli used in some studies are encoded, but encoding that is different from that of
orientation might be at the heart of the results obtained with such dimensions.

Other studies have reported TvN curves to characterize the effects of learning in terms of psychophysical
observer models [62]. The results of such studies can be re-interpreted in terms of the encoding/decoding
observer model studied here (Figure 1). For example, perceptual learning results in TvN curves that drop
from baseline at all levels of external noise [63, 64, 65]. This result is consistent with multiple mechanisms
of encoding change (see Figure 10): specific gain, specific tuning, and specific suppression plus gain. Inter-
estingly, all these mechanisms are in line with the well-known stimulus specificity of perceptual learning. To
distinguish among these different potential mechanisms, more information can be obtained through a TvS
curve, but additional steps might be required to differentiate between specific gain and tuning (see section
Recommendations for researchers below).

Finally, There are multiple studies that have estimated TvN curves under different attentional demands.
The study that is closest to our work was performed by Ling et al. [? ], who specifically sought out to
dissociate between nonspecific gain and specific suppression with nonspecific gain as mechanisms of attention.
The authors chose those two mechanisms because they would specifically reduce thresholds in the early
(internal noise suppression) and late (external noise suppression) parts of the TvN curve, respectively. Our
simulations have confirmed that, among all the mechanisms of encoding change studied, these two are the
only ones that seem to uniquely affect internal or external noise. Thus, our results support the methodology
used by Ling et al. [? ], although it must be noted that specific suppression plus gain must be finely tuned
in order to produce no effect in the early part of the TvN curve. In most cases, the TvN curve drops below
baseline at low levels of external noise (see Figure 10).

The results reported by Ling et al. suggest that the mechanism of encoding change underlying spatial
attention is nonspecific gain, which is in line with other reports [66]. On the other hand, feature-based
attention produced a drop in the TvN function at all levels of external noise, which as mentioned earlier is
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consistent with multiple mechanisms. None of those mechanisms were considered as plausible hypotheses by
Ling et al., who instead preferred to interpret their results as suggesting a combination of specific suppression
with nonspecific gain (“tuning”), and an independent mechanism of nonspecific gain (“gain”). We believe that
this combination of mechanisms is a less parsimonious explanation for their results than any of the models
producing an overall drop in the TvN curve shown in Figure 10.

An important note of caution is necessary when reinterpreting some TvN results from the attention
literature. In many cases, the TvN curves presented do not represent the presence and absence (i.e., baseline)
of an attentional effect. Rather, they represent a comparison between two different attention effects, such as
valid versus invalid cues [67] or pre-cueing versus simultaneous cueing [68]. Such results are more difficult
to interpret than the simpler case in which a baseline (i.e., absence of any task feature or experimental
manipulation) is compared against a simple manipulation (i.e., the presence of a task feature or experimental
manipulation), and the simulations presented here can only provide information about this latter, simpler
case.

Recommendations for researchers
When measuring participants’ psychophysical thresholds, we recommend using sensitivity thresholds (a stim-
ulus value related to a specific value of d′) rather than the more commonly-used accuracy thresholds (a
stimulus value related to a specific proportion of correct responses). While accuracy thresholds would be
contaminated with bias, sensitivity thresholds take response bias into account. There are currently methods
available to estimate sensitivity thresholds using both yes/no and 2AFC tasks [69]. An important theoreti-
cal reason to prefer sensitivity thresholds is that the theory links them directly to decoding precision in the
encoder/decoder observer model.

Also, we found that obtaining estimates at the target stimulus, with or without the inclusion of external
noise (i.e., TvN curve), is insufficient to distinguish between all of the mechanisms of encoding change. Thus,
we recommend gathering estimates for stimuli surrounding the target as well (i.e., TvS curve), to elucidate
the neural mechanisms at work.

No singular experiment could distinguish every possible change in neural codes. We recommend acquiring
thresholds as a function of multiple factors throughout multiple experiments, but if manipulating only one
factor is possible, then measuring thresholds along the stimulus domain seems to be very effective (showing
unique patterns in all cases, except to distinguish some cases of gain versus tuning). On the other hand, if a
researcher is interested in telling apart a specific mechanism of encoding change from all others, then it could
be wiser to obtain a TvN curve instead. For example, either nonspecific gain or nonspecific tuning can be
separated from all other mechanisms using a TvN curve, but not a TvS curve. When faced with uncertainty
between two candidate models, a good approach might be to fit the models to the observed data and perform
formal model selection [70, 71, 72], although this would be a computationally intensive procedure employing
the Monte Carlo technique used here to obtain thresholds from the model.

It is also important to note that these models were differentiated under specific assumptions about
encoding and decoding; therefore, we recommend that researchers carefully consider what assumptions they
will be able to justify (i.e., adaptation researchers cannot justify the use of an “aware” optimal decoder;
see [7]). However, we must note that the assumptions necessary to make inferences about mechanisms of
encoding change from psychophysics do not seem stronger than equivalent assumptions necessary for the
application of inverted encoding modeling of neuroimaging data (normal neural noise, additive independent
measurement noise, linear measurement model).

Here, we have focused mostly on basic mechanisms of encoding change, meaning mechanisms that alter
a single aspect of the population of tuning curves. Caution should be maintained when combining basic
mechanisms into more complex ones. In our simulations, specific suppression plus gain was consistently an
interpolation between specific suppression and specific gain. If it is necessary to test models implementing
combinations of these mechanisms of encoding change, the parameters need to be balanced to avoid am-
biguity. In our example, specific suppression plus a very small gain looks very similar to ordinary specific
suppression, whereas large gain with small specific suppression looks very similar to ordinary nonspecific
gain.

In the future, a powerful methodology would involve using both psychophysics and neuroimaging data
together to infer changes in encoding, perhaps using hierarchical Bayesian modeling, in which multiple
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types/sources of data for each participant can be used simultaneously to make inferences about a single set
of model parameters [73].

A warning regarding “behavioral tuning curves” obtained through pattern mask-
ing
Pattern masking experiments involve the presentation of a target stimulus combined with a pattern stimulus
that “masks” or interferes with the perception of the target [74]. It is possible to measure sensitivity to
a constant target as a function of changes in some property of the mask pattern. Sensitivity is measured
via thresholds, which as before estimate the imprecision of target decoding. Figure 9 shows a sketch of the
typically-found function, which here we will call a Threshold versus Pattern Masking (TvP) curve. As shown
in the figure, the typical pattern is one in which masking becomes greater (i.e., thresholds or imprecision
becomes higher) as the mask becomes closer to the target in orientation (or any other feature).

Pattern Mask Orientation: 5o 15o 25o 35o 45o 55o
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Figure 13: Explanation of a Threshold versus Pattern Mask (TvP) curve.

The TvP curve is thought to reveal the shape of a “psychophysical filter” used to detect the target
[25, 74]. The width of the non-flat part of the curve (i.e., blue area in Figure 13) represents the area where
the mask interacts with such filter, and it can be widened or narrowed [27]. The height of the curve may also
change, both across all values of the pattern mask [25, 37, 27] as well as in specific values [25], representing
corresponding increments or decrements in the amount of interaction between a mask and the target.

TvP curves resemble tuning functions of neurons in visual cortex, and their bandwidth may also reflect
properties of such tuning functions [26]. For this reason, many researchers interpret them as if they represent
a form of “behavioral tuning curve” that can be directly linked to neural mechanisms of change in population
codes [e.g., 25, 26]. However, it is important to underscore that TvP curves do not provide estimates of
either neural tuning functions or of population responses such as those shown in Figure 1. In fact, we will
argue that TvP curves cannot be studied using the theoretical framework used here.

Indeed, the likely mechanisms behind pattern masking experiments go beyond the standard population
encoding model that is the focus of the present and prior research (see Figure 1). TvP curves can be obtained
using at least two procedures. The first is to use a mask composed of two orthogonal components, and ask
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participants to discriminate between the mask presenting a target versus the mask presenting no target (see
Orthogonal Components Mask in Figure 13; [25]). In V1, the effect of superimposing a mask grating on top
of a stimulus with the neuron’s preferred orientation is a reduction in responding known as cross-orientation
suppression [75, 76], and its mechanism is thought to involve interactions between several neurons with
overlapping receptive fields [75, 77]. In the simple standard population encoding model, the responses of
neural channels are independent from one another. This facilitates simulation in simple conditions, but
means that the cross-orientation suppression present in pattern masking experiments cannot be simulated
without a substantially more complex model [e.g., 2].

A second procedure used to obtain a TvP curve is to use a large background composed of multiple stimulus
components, embed the target somewhere in this background, and ask participants to indicate where the
target has been presented (see Multiple Components Background in Figure 13; [37, 27]). Because the target
has some level of transparency, cross-orientation suppression is also involved in this type of experiment. In
addition, we can expect the presence of orientations surrounding the target to produce additional effects,
which can be either suppressive or facilitatory in nature [78]. That is, this second type of experiment,
involving cross-orientation suppression as well as surround suppression/facilitation, is absolutely beyond the
scope of the simple standard population encoding model.

The previous considerations suggest that the TvP is not an estimate of either classical neural channel
tuning functions or population responses, and simple interpretations of the TvP curve in those terms [e.g.,
25, 26] are not appropriate. In line with this idea, we attempted simulating TvP curves in many different
ways using the framework presented here, but our simulations never captured even the basic shape of the
curve. The reason is simple: as a mask that only includes stimulation within a certain range of stimuli is
moved closer to the target stimulus, the likelihood of the target and the precision of decoding increases (i.e.,
the opposite of the pattern of results shown in Figure 13). That is, the mask provides a boost in activity at
the target, similar to a mechanism of specific gain. The model cannot capture the interference between mask
and target, because such interference involves mechanisms beyond the classical tuning functions represented
in the standard population model.

What about other encoding and decoding models?
For orientation stimuli, we chose to model channels as symmetrical Gaussians with Poisson noise based on
previous literature, but there are other ways to characterize tuning functions that may be more appropriate
for other types of stimuli. For example, face dimensions are often modeled using asymmetric sigmoidal
tuning functions [44, 5, 45, 43]. Also, another common assumption for neural channel noise is that it follows
a Gaussian distribution [e.g., 6, 7], a common assumption implicit in inverted encoding modeling analyses
of neuroimaging data [see 8, 14].

In addition, we chose an optimal decoder that would be considered “aware” [7]. That is, we assumed that
the decoder had complete knowledge of the statistics of each encoding model, before and after application of
a given mechanism of encoding change. It is known that this assumption is unlikely to hold for short-term
neural code changes, such as those underlying adaptation [7]. However, we think that an aware decoder
provides a better assumption for situations involving encoding changes that are predictable due to extensive
prior experience, such as those produced by learning and other cognitive mechanisms.

In addition, although optimal decoding through MLE has been widely used, other decoding schemes
are possible. For example, it is possible to use simpler linear decoders, or if the population’s channels are
dense enough, a max response decoder. However, MLE is biologically plausible [24] and provides a more
meaningful benchmark due to it being optimal for the task.

Conclusion
Psychophysical thresholds can help researchers infer the mechanisms of encoding change due to cognitive
states of interest. Together, the TvS and TvN functions can differentiate six of the eight mechanisms under
study here (in some cases, seven). Assessing the decoding precision through thresholds is a useful tool
to supplement inverted encoding models obtained from neuroimaging to estimate the population response.
Because any quantifiable stimulus dimension can be used to produce a TvS or TvN function, this approach can
be applied to a variety of high- and low-level stimuli to answer a plethora of questions in vision neuroscience.
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Methods

The encoding-decoding observer model
In the computational neuroscience literature, population encoding models (see Figure 1) are used to formally
describe how populations of neurons represent a stimulus through their patterns of activity [17, 16, 79]. In
the case of stimulus dimensions, an encoding model represents how changes in a dimension of interest are
related to changes in neural responses. The response of each neural channel (i.e., neuron or population of
neurons with similar properties) can be described by a tuning function. A commonly chosen tuning function
fc(s) to represent the mean response of each channel (c) to any presented stimulus value (s) is a Gaussian
curve, where rmax

c represents the maximum height of the channel, ωc represents the the standard deviation
of the curve (i.e., width), and sc represents the channel’s preferred stimulus:

fc(s) = rmax
c exp

(
−1

2

(
s− sc
ωc

)2
)

(1)

However, channels’ responses can be influenced by neural noise, which here we describe using a Poisson
distribution, independently for each channel [17, 18].

p(rc|s) =
fc (s)

rc exp (−fc (s))
rc!

. (2)

When a stimulus with a given value in the dimension s is presented to the model, the output of the
population encoding model is a vector of neural responses r, which implicitly encodes information about
that stimulus value. As in previous research [e.g., 1, 24, 3, 4, 7, 6] we assume that such information is
recovered through optimal decoding via maximum likelihood estimation (MLE).

Generally speaking, the ML estimate is obtained by finding the value of s that maximizes the probability
of the population response (r) given a fixed encoding model:

ŝ = argmaxsp (r|s, θ)

, where θ represents a vector with all the fixed model parameters. When neural noise is independent,
p(r|ŝ, θ) =

∏N
c=1 p(rc|ŝ, θ), and the sum of the logarithms can be maximized instead:

ŝ = argmaxs

N∑
c=1

ln p (rc|s, θ) (3)

For a model with independent Poisson noise and Gaussian tuning functions, when homogeneous popula-
tions are involved, there are closed-form expressions [80] as well as simple algorithms [17] to solve Equation 3.
However, several of our simulations involve non-homogeneous populations, and thus we obtained optimally
decoded stimuli by finding the value of s that maximizes the following equation:

ŝ = argmaxs

N∑
c=1

rc ln (fc (s))−
N∑
c=1

fc (s)

ŝ =
N∑
c=1

rc

(
ln (rmax

c )− 1

2

(
s− sc
ωc

)2
)
−

N∑
c=1

rmax
c exp

(
−1

2

(
s− sc
ωc

)2
)

(4)

Numerical maximization of equation 4 requires providing a starting value for the optimization algorithm.
We started the optimization at s, to increase speed and precision, as we know that ŝ must be in the vicinity
of the true stimulus value s.

A property of MLE is that as the number of neural channels increases, the distribution of the decoded
stimulus estimate becomes well-approximated by a Gaussian distribution with a mean of s and variance
equal to:

σ2
ŝ = I (ŝ)

−1
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where I(ŝ) is the Fisher information at the ML estimate. For complex, non-homogeneous encoding
populations, σ2

ŝ can be estimated through Monte Carlo simulations [1, 3]. At each repetition m = 1, 2, ...M ,
the model is presented with a given stimulus and the noisy population response is used to decode an estimate
of the stimulus value ŝm. Using all M repetitions, one can obtain an estimate of the variance of the
distribution of ŝ through the following equation:

σ2
ŝ =

∑M
m=1 (ŝm − s)

2

M
(5)

Link to sensitivity thresholds
The encoding/decoding observer model presented in the previous section can be linked to signal detection
theory (SDT) if one assumes that the decision variable in SDT is determined by decoding a population
response. The decoded stimulus value ŝ corresponds to SDT’s decision variable, which is compared to a
decision criterion (c) to produce a decision. Because the MLE estimate ŝ follows a Gaussian distribution
with mean s and variance σ2

ŝ , one can write the following definition of sensitivity:

d′ =
δs√
σ2
ŝ

(6)

, where δs refers to a small change in the dimension required to detect a change in the target stimulus s
with a sensitivity equal to d′. Note that this difference is small enough that we assume an SDT model with
a common noise variance for both stimuli, σ2

ŝ . Re-arranging Equation 6 provides an equation to obtain a
sensitivity threshold δs associated with a given value of d′:

δs =

√
σ2
ŝ

d′
(7)

In our simulations, we use d′ = 1, a case in which thresholds are equivalent to the standard deviation of
MLE estimates around s (see Figure 1b).

Model Variations Under Study
All our simulations follow a similar pattern: starting with a homogeneous baseline set of encoding channels,
we generated several variants of the encoding model, each representing a different mechanism of encoding
change, and simulated psychophysical functions involving sensitivity thresholds obtained through Equation
7). In this section, we describe how we obtained all the tested population encoding models, and later discuss
the simulation procedures in more detail.

To focus on changes in the psychophysical functions that were reliably produced by each mechanism
of encoding change, several versions of each model were simulated, and they differed in the magnitude
of the effect on encoding and/or the concentration of the effect around the target stimulus. Three effect
magnitudes were simulated for each model, and the parameters used to obtain them are summarized in Table
3 and described in more detail below for each model. In addition, for all mechanisms of encoding change
classified as “specific,” meaning that their effect was strongest at the target stimulus and gradually decreased
with distance from the target, we included three additional variants that differed on the concentration of the
effect around the target stimulus. In those cases, the “magnitude” variants were factorially combined with
the “concentration” variants, to obtain 9 possible versions of each model.
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Code Change Variant A Variant B Variant C
Nonspecific Gain (height) 1.3 1.4 1.6
Specific Gain (height) 1.3 1.4 1.6

Nonspecific Tuning (width) 0.6 0.75 0.9
Specific Tuning (width) 0.3 0.4 0.6

Inward Tuning Shift (center) -10 (-5) -15 (-7.5) -20 (-10)
Outward Tuning Shift (center) 10 (5) 15 (7.5) 20 (10)

Specific Suppression 0.77 0.71 0.63
Specific Suppression plus Nonspecific Gain 0.63, 1.4 0.63, 1.3 0.63, 1.2

Table 3: Parameters used to obtain different effect magnitude for each mechanism of encoding change under
study. In addition, every “Specific” variation, including the tuning shifts, had 3 additional variants where the
effect falloff was increased (1.0, .667, .333—.333 caused the effect to falloff most quickly, 1.0 caused the effect
to falloff at the ’edge’ of the circular domain—the farthest points from the target). For tuning shifts, the
dense populations had reduced parameters (in parentheses) to prevent channels from crossing/overshooting
the target. Specific suppression was implemented as a combination of Specific Gain and Nonspecific Gain.

As shown in Table 3, we studied 8 different mechanisms of encoding change: specific/nonspecific multi-
plicative scaling, specific/nonspecific bandwidth narrowing, inward/outward tuning shifts, as well as specific
suppression with and without nonspecific multiplicative scaling (the latter being the only combination of
two basic mechanisms, included because it was suggested in the prior literature as a mechanism involved in
selective visual attention [3]). For an explanation of why these specific mechanisms were selected, see the
Introduction section.

Mechanisms of encoding change categorized as “specific” (including tuning shifts) had a target stimulus
for which the effect was strongest, and from which the effect gradually spread to other dimensional values.
In our simulations, this target stimulus was always at the center of the dimension, which was labeled a zero
degrees. The strength of each specific effect decayed linearly with the distance from the target, starting at
the target and ending at 1, 2/3, or 1/3 of the half-range of the stimulus dimension. We call this value the
scaling width, and it represents the inverse of the concentration of the effect around the target. The closer
the scaling width is to 1, the more spread out the effect is towards the end points of the dimension. On the
other hand, nonspecific changes apply evenly across the domain.

The baseline homogeneous Population

The baseline for all of the simulations was a homogeneous population of channels with ωc = 12 and rmax = 12.
We assumed a circular stimulus domain varying in degrees, as with grating orientation, so the channels
placement ranged from [-90,90) (note, however, that multiple other stimulus dimensions are described by such
circular domains). There were two versions of the baseline homogeneous population, and all the encoding
changes specified below were applied to each model. The sparse baseline had 10 channels, placing the
channels’ centers sc at -90, -72, -54, -36, -18, 0, 18, 36, 54, and 72. The dense baseline had 20 channels,
placing the channels’ centers sc at -90, -81, -72, -63, -54, -45, -36, -27, -18, -9, 0, 9, 18, 27, 36, 45, 54, 63, 72,
and 81.

Nonspecific gain

If the height of the tuning functions is uniformly altered by a scaling factor across the entire stimulus domain,
then the change is referred to as nonspecific gain (see Figure 3). The changes in height directly correspond to
changes in the average maximum responsiveness for the channels (i.e., multiplication by rmax at all channels).
The scaling factors we tested were all above 1 because increases in responsiveness are expected to improve
thresholds; thus, we tested: 1.3, 1.4, and 1.6.

Specific gain

If the heights of channels that are closest to a target stimulus are increased more than distal channels, then
the change is referred to as specific gain (see Figure 3). At the target, rmax was multiplied by the the same
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scaling factors as used for nonspecific gain (see above), but for non-target stimuli the scaling factor was
linearly reduced with distance from the target, as described in the introduction to this section.

Nonspecific tuning

If the width of the tuning functions is uniformly narrowed across the entire stimulus domain, then the change
is referred to as nonspecific tuning (see Figure 3). We tested scaling factors of 0.6, 0.75, and 0.9, which simply
multiplied the parameter ωc for all channels.

Specific tuning

If the widths of channels that are closest to a target stimulus are narrowed more than distal channels, then
the change is referred to as specific tuning (see Figure 3). At the target, ωc was scaled by factors of 0.3, 0.4,
and 0.6, but for non-target stimuli the scaling factor was linearly reduced with distance from the target, as
described in the introduction to this section.

Inward tuning shift

If each channel’s preferred stimulus moves toward the target stimulus, then the change is referred to as an
inward tuning shift (see Figure 3). The shifting of the parameter sc for a channel exactly next to the target
were -10, -15, and -20 for simulations involving the sparse population, and -5, -7.5, and -10 for simulations
involving the dense population, where the “-” sign refers to shift towards the target. The dense populations
had reduced parameters to prevent channels from crossing/overshooting the target. With a circular domain,
there are no true “nonspecific” tuning shifts, as the movement of channels toward the target must necessarily
remove channels in areas away from the target. Thus, we simulated only “specific” versions of tuning shift,
in which the magnitude of the shift in sc was linearly reduced with distance from the target, as described in
the introduction to this section.

Outward tuning shift

If each channel’s preferred stimulus moves away from the target stimulus, then the change is referred to as
an outward tuning shift (see Figure 3). The shifting of the parameter sc for a channel exactly next to the
target were +10, +15, and +20 for simulations involving the sparse population, and +5, +7.5, and +10 for
simulations involving the dense population, where the “+” sign refers to shift away from the target. With
a circular domain, there are no true “nonspecific” tuning shifts, as the movement of channels away from
the target must necessarily concentrate channels in areas away from the target. Thus, we simulated only
“specific” versions of tuning shift, in which the magnitude of the shift in sc was linearly reduced with distance
from the target, as described in the introduction to this section.

Specific suppression

If the height of tuning functions for channels that are closest to the target stimulus are decreased less than
for distal channels, then the change is referred to as specific suppression (see Figure 3). Specific suppression
can be thought of as the inverse of specific gain: while the target channel’s responsiveness is unaffected,
the maximum responses of the remaining channels are reduced as a function from their distance to the
target (with a larger distance leading to greater suppression). At the target, rmax was left the same, but
for channels with non-target preferred stimuli the scaling factor was linearly reduced with distance from the
target, as described in the introduction to this section. An additional scaling parameter was necessary to
determine the maximum level of suppression in rmax (or, conversely, the minimum value toward which rmax

was linearly reduced). These scaling parameters were obtained by inverting the corresponding values used
for the gain simulations (i.e., 1/1.3, 1/1.4, 1/1.6; see rounded values in Table 3).

Specific suppression plus gain

Specific suppression plus gain is the only combination of two mechanisms of encoding change that we im-
plemented in our simulations (see Figure 3). The reason was that it has been specifically proposed in the
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literature as a way in which selective attention improves stimulus encoding [3]. To implement this combina-
tion, we used the highest level of suppression from the previous simulation (i.e., 1/1.6 = 0.63) and used three
different levels of nonspecific gain: 1.4, 1.3, and 1.2.

Simulated Psychophysical Functions
Threshold vs Noise (TvN) curve In these simulations, we obtained thresholds from each model under
study as explained above. At each repetition m = 1, 2, ...M , we presented the model with both the target
stimulus and a pattern of external noise with a certain magnitude . We assumed that the pattern of external
noise had two effects on the response of the model. First, because a pattern of external noise can sometimes
approximate each channel’s preferred stimulus to a certain extent, we stimulated each channel with its
preferred stimulus and then scaled down the population response through a random weight. Each weight
was randomly sampled from a normal distribution with mean zero and a standard deviation σE , which was
varied to produce different levels of external noise. The second effect of the pattern of external noise would
be to degrade the presented target stimulus (e.g., see grating stimuli in Figure 9). Because the target cannot
be represented perfectly in the presence of external noise, its produced population response was also scaled
by a weight equal to 1− σE .

There were 375 levels for the external noise parameter σE , ranging from 0.0 (no external noise) to
approximately 0.5 (0.513 a point where the noise response vectors had approximately the same strength as
the target). The levels of external noise were evenly spaced along a log scale, meaning that values were closer
together around 0 and because increasingly more separated as they approached the maximum.

After obtaining thresholds at each of the 375 levels of external noise, B-spline smoothing was applied to
the resulting TvN curves, in an attempt to obtain better approximations to an “idealized” TvN curve from
each model. For all TvN curves, a smoothing parameter of 50 was selected. The goal behind parameter
selection was to represent the ideal (i.e., smooth) curve as closely as possible without disrupting the relative
threshold relations between the curves.

The dense population models in general produced lower thresholds than the sparse population models.
To aid comparison across models, we transformed the TvN curves obtained using sparse models, so that
they would be in the scale shown by curves obtained using dense models. We obtained a scaling vector by
dividing the sparse baseline TvN by the dense baseline TvN, after smoothing, at each of the 375simulated
levels of external noise. This scaling vector was then applied to every sparse TvN curve, by applying the
Hadamard product between both vectors.

Threshold vs Stimulus (TvS) curve

In these simulations, we presented 181 stimuli, ranging evenly from -90 to 90, to each variation of the
model. No external noise was presented, but neural noise was still present. As before, B-spline smoothing
was applied to the obtained TvS curves. Because the stimulus domain is circular, the thresholds also were
appended to both sides to prevent the B-splines from curling at the ends. We used different smoothing
parameters for different simulations, again with the goal of representing the ideal (i.e., smooth) curve as
closely as possible without disrupting the relative threshold relations between the curves. For the dense
populations, the standard smoothing weight was 3, but nonspecific tuning only needed a weight of 2, and
specific suppression needed a weight of 4. For the sparse populations, the standard smoothing weight was
6, but nonspecific tuning only needed a weight of 4, specific suppression needed a weight of 11, inward shift
needed a weight of 7, and specific gain needed a weight of 50.

To aid comparison across models, we transformed the TvS curves obtained using sparse models, so that
they would be in the scale shown by curves obtained using dense models, in the same way as described for
TvN curves above.

Curve-Fitting Analysis of Population Responses
For homogeneous populations, the population response has the same shape as the common channel tuning
function. However, with non-homogeneous populations such as those obtained after applying an encoding
change mechanism, it is possible that the population response might not be well-described by the function
used to model tuning functions. For this reason, we fitted population responses obtained from the model to
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a function which has the Gaussian as a special case, but that can also produce curves with lower or higher
curvature at the peak than the Gaussian (including exponential functions, when the curvature at the peak
is very low). The function is defined by the following equation:

fP (s) = rmin
P + rmax

P exp

(
−
∣∣∣∣ sωP

∣∣∣∣m) , (8)

where rmin
P is the baseline level of responding (set to zero, as no observed curves showed higher baseline),

rmax
P is the peak level of responding, ωP determines the width of the function (the inverse of its decay slope),
m determines the width of the function at the peak (with m = 2 representing a Gaussian function, and
m = 1 representing an exponential decay function), and s is the stimulus value. A similar function has been
fitted to estimates of population responses obtained using inverted encoding modeling [38].

The population curve in Equation 8 was fit to the population responses obtained from the model using
least squares estimation with the bound-constrained optimization method (L-BFGS-B) included with optim
in R v. 3.5.1. The lower bounds enforced for the three fitted parameters were as follows: rmax

P = 5,
ωP = 1, and m = 1. The same values were provided as starting parameters for the optimization algorithm.
Whenever the optimization algorithm did not converge, the optimization was performed again with a new set
of starting parameters, equal to the previous starting parameters plus random values obtained from a normal
distribution with mean zero and variance equal to five. This procedure was repeated until a satisfactory
converging solution to the minimization problem was obtained. The results from this analysis (Figure 7)
were plotted using ggplot2 v. 3.1.

The fitted population response curves were compared against smooth population responses directly ob-
tained from a model with an very dense population of 200 channels, with position parameters distributed
homogeneously along the stimulus dimension. We used the squared of the Pearson correlation, r2, be-
tween the two curves to evaluate how well the population curve fitted to sparse data captured features of a
fine-grained population response.

Simulation environment specifications
The simulations were run on a Titan W375 Workstation PC with 32 dual-core (64 cores and 128 threads
total) AMD EPYC 7551 2.0GHz (3.0GHz Turbo) 64MB Cache processors, running Ubuntu 18.04.4 LTS.
Simulations were programmed using Python 3.7.2, extended with numpy v. 1.15.4, scipy v. 1.1.0. For
parallelization, ipyparallel v. 6.2.3 was used in conjunction with jupyter-client v. 5.2.4 and notebook v.
5.7.4 integration. The pandas v. 0.23.4 module was used to save, read, and manage data, and matplotlib v.
3.0.2 was used to plot data. Python and all modules were obtained through the Anaconda distribution v.
4.5.12.
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