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Abstract 

We present a comprehensive, computational method for tracking an entire colony of the honey bee Apis 
mellifera using high-resolution video on a natural honeycomb background. We adapt a convolutional 
neural network (CNN) segmentation architecture to automatically identify bee and brood cell positions, 
body orientations and within-cell states. We achieve high accuracy (~10% body width error in position, 
~10° error in orientation, and true positive rate > 90%) and demonstrate months-long monitoring of 
sociometric colony fluctuations. We combine extracted positions with rich visual features of organism-
centered images to track individuals over time and through challenging occluding events, recovering 
~79% of bee trajectories from five observation hives over a span of 5 minutes. The resulting trajectories 
reveal important behaviors, including fast motion, comb-cell activity, and waggle dances. Our results 
provide new opportunities for the quantitative study of collective bee behavior and for advancing 
tracking techniques of crowded systems.  

Introduction 

Among the rich phenomenology of organismal behavior, honey bees and other eusocial animals are 
distinguished by their remarkable, self-organizing, collective dynamics on the scale of an entire society. 
Functioning as a “super organism”, a honey bee colony can contain thousands of individuals whose 
intricate behavior results from a shared (though not clonal) genetic background and sophisticated social 
signals conveyed through multiple communication channels 1. The effect of these dynamics is to 
cooperatively divide and organize the effort necessary to maintain a well-functioning colony in response 
to external and internal environmental change, and to grow. A longstanding fascination with such 
behavior has driven substantial previous work (see e.g. 2) which includes examinations of collective 
behavior 3,4 also in combination with high-throughput sampling technologies such as gene expression 
sequencing 5–7. However, a full quantitative understanding of the colony behavior requires measuring 
the collective dynamics at single organism resolution as well as the spatiotemporal patterns of colony 
resources such as food and brood. Both of these challenges are now accessible through advances in 
machine vision. 
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A natural honey bee colony contains a high density of visually similar members, rapidly moving and 
occluding on the uneven and changing honeycomb surface, and whose numbers change in time. These 
factors present substantial difficulties for automated image analysis for which a common solution is to 
apply physical tags to some 8 or most 9,10 of  the colony members. Barcoded tags allow for the distinct 
marking of a sufficiently large number of individuals to track a naturally-sized colony and have been 
exploited to unravel important aspects of bee communication 8,11 and information spread 10. However, 
the burden of manually tagging hundreds or thousands of small insects, without harm or inhibition to 
their motion, carries severe limitations. For example, marking newly hatched bees requires either 
opening the hive or introducing marked newborns without letting any hatch inside, both of which disrupt 
the colony 9,11. Moreover, the recognition of markers fails when the tag is partially occluded or blurred. 
In the dense environment of a hive, even when confined to a 2D surface, partial occlusions are common. 
In particular, behaviors such as crawling inside of a honeycomb cell, or walking upside down on the 
glass of the observation hive, can hide the marker, thus limiting behavioral repertoires captured with a 
marker-based approach.  Physical tags cannot be used to identify brood, honey or pollen stores, and the 
difficulty and workload of manual tagging hinders the analysis of multiple colonies, as is routinely 
accomplished in behavioral studies of other organisms.  

Recent breakthroughs in image analysis using CNNs, including fast and accurate single and multiple 
object detection 12–14, posture quantification 15–18 and image and video appearance representation 19–21 , 
offer new inspiration and opportunities for extracting information directly from video data in dense-
animal contexts. However, most existing solutions and benchmark datasets for multi-object tracking as 
well as for posture and activity recognition, are dedicated to human behavior and crowds 22–25. In 
biological image data CNNs have been broadly exploited for cell or particle segmentation 26–29. 
Versatile, supervised CNN-based tools have also been proposed for animal posture quantification 17,18 
and have been successfully applied to the study of insect behavior 30–32. While facilitating important 
tasks in bioimage interpretation, these solutions are limited to behavior of few individuals and do not 
resolve challenges within the task of dense object detection and tracking in a bee colony. Importantly, 
previous work has shown that seemingly identical organisms do carry distinct visual features, which 
can be quantified and leveraged for markerless tracking 33–35. 

Here we harness machine vision through CNNs to capture, at single-organism resolution, the colony-
wide composition and behavior of the honey bee Apis mellifera. Our approach applies to images and 
video recordings of unmarked colonies and enables broad quantitative study without the burden of 
manual marking. We demonstrate our solution through the analysis of five long-term timelapse 
recordings, up to four months in duration (segmentation and sociometry), as well as of five short-time 
videos recorded at high frame rate for five-minutes (tracking and motion behavior). The data was 
collected at various locations on the campus of OIST Graduate University (Okinawa, Japan) with 
varying imaging arrangements. We infer the position, orientation and within-cell state of each bee 
together with the location of brood cells (Fig. 1A). Using these detection results we devised a neural 
network and an efficient training method for quantifying visual features capturing similarity among bee 
instances (Fig. 1B). We use this similarity to stitch bee detections into trajectories across difficult 
occlusion and touching events. We demonstrate our approach with long-term sociometric monitoring 
(detection) and with colony-wide exploration of individual behaviors (tracking). Along with this 
manuscript and associated code, our contribution includes the labeled image data of thousands of 
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trajectories of bees in dense configurations, a unique resource which offers new opportunities for both 
machine vision and biological research.  

Results 

Long-term colony sociometry 

To capture the long-term sociometric dynamics 36–39 of bee colonies, we devised a segmentation-based 
method for the detection of bees and brood in dense configurations within a 2D hive 13,35. For bee 
detection our solution is based on a modified segmentation CNN architecture 12 which exploits the 
temporal dimension of video data to improve accuracy (Fig. 2A-B). During training and inference this 
network uses information from the preceding video frame, allowing us to reduce the size of the network 
by 94% compared to the original architecture while still achieving high detection accuracy. Within one 
network we infer both the segmentation maps through pixel classification as well as the orientation 
angle of the segmented objects through regression. The segmentation maps delineate only the central 
parts of the bees’ bodies or central parts of the abdomens of bees inside of the comb cells. Each pixel 
is classified into one of the three categories: ‘background’, ‘fully visible bee’ (denoted full-bees 
throughout the text), and ‘bee inside comb cell’ (denoted cell-bees throughout the text) if only the bee 
abdomen is visible. The position of each bee is inferred as the central point of the respective foreground 
pixel group. We infer an orientation angle only for the full-bee class. The resulting segmentation maps 
allowed to find individual locations (Fig. 2C) in an independent test set with a precision of < 10% of a 
bee body width, detection true positive rate (TPR) ~ 0.96, false positive rate (FPR) ~ 0.14 and 
orientation angle error of ~ 9.7° closely matching error of human labelers (Supplemental Table T1). 
The segmentation results above were first reported in an earlier conference proceedings13. 

The accuracy of the detection method was assessed on a large set of manually labeled images. We 
additionally inspected its performance in three frames from recordings L5 and S5 after retraining on a 
set of up to five frames from recordings L1-L4 and S1-S4. In frames from the beginning, middle, and 
end parts of recordings L5 and S5 that were not included in the retraining, we estimated detection FPR 
at < 1.4 % and false negative rate (FNR) at < 1% resulting in precision and recall >= 0.98 in these 
recordings (Supplemental Fig. S1). These results confirm the capacity of our detection algorithm to 
generalize across recordings and also provide a strong foundation for further analysis and tracking 
method development. 

We devised a similar segmentation-based approach to locate brood cells. Due to the low temporal 
resolution of the background images generated for time spans of 12 h (Supplemental Movie M1), this 
solution did not include the recurrent element in the network design and relied on the original 
segmentation architecture 12 (Fig. 2D-E). We used round-shaped brood cell segmentation markers (Fig. 
2F, Supplemental Fig. S2, Supplemental Movie M2) with no overlap and achieved a detection accuracy 
of TPR ~ 0.95, FPR ~ 0.02, FNR ~ 0.05. 

We deployed both detection methods on a set of long-time video recordings (Supplemental Table T2) 
and extracted quantitative measures of demographic changes in bee colonies over periods ranging from 
two weeks to four months. In all long-term recordings (L1-L5) we found that the total population (full-
bees and cell-bees together) in each colony as well as the proportion of cell-bees undergo repetitive 
fluctuations (Fig. 3A-B, Supplemental Fig. S4-5). The period of these fluctuations is close to 24 h based 
on spectral analysis (Fig. 3A-B, Supplemental Fig. S6). Over longer times, peaks in population followed 
peaks in brood numbers (Fig. 3C) and we found a strong negative correlation between fluctuations in 
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population and brood counts (Fig. 3D, mean R2 < -0.84, P <0.0001 over the first three weeks), perhaps 
an indication of homeostatic control of colony size. 

We next investigated daily changes in the number of full-bees and cell-bees as potentially reflecting the 
daily foraging, brood nursing, and other activities in each colony. We found high numbers of cell-bees 
predominantly at night (Fig. 3E) which may represent sleeping bees 40. This regularity was not apparent 
in the full population, where the oscillations varied in their phase, perhaps due to external factors 
(Supplemental Fig. S7). We thus inspected the weather conditions during the time of recordings and, 
while no extreme events were observed (Supplemental Fig. S8), two colonies (L3 and L4) were filmed 
during particularly high temperatures exceeding 26°C at night, which can encourage bees to stay at the 
hive entrance 41 where they would not be detected. 

While we found insufficient evidence linking the phase of the population size change to the weather 
conditions, we did find that full-bee numbers shift in relationship to brood presence. During times when 
brood numbers are high, the colony population is in phase with the cell-bee population (Supplemental 
Fig. S9) with high numbers at night. Such a pattern potentially corresponds to the foraging activity of 
the bees performed uniquely during the day 2 and it is more prominent in hives with high brood numbers 
which might reflect the increased food demand of growing colonies (Supplemental Fig. S9). 

Similarly, the cell-bee population may be related to brood presence. In three of the five long-term 
recordings the proportion of cell-bees was positively correlated with the brood count (L3-L5, R2 > 0.4, 
p < 0.05). Additionally, their phase relationship suggests thermoregulatory activities aimed at 
maintaining constant brood temperature at night. We also found that the spatial distance between cell-
bees and the brood cells exhibits a 24 h periodicity (Supplemental Figures S10-S11). The cell-bees are 
significantly closer to the brood cells than other bees (Wilcoxon test p < 0.0001 in L1-L4) and this 
distance decreases during the night and increases during the day. 

In two of the long-term recordings – L3 and L5 – the colonies experienced a systematic decrease in the 
number of individuals. In L3 we noticed a moth infestation in the wax towards the end of the recording 
(Supplemental Fig. S12) which might have weakened the colony. In recording L5 each subsequent 
increase of the brood and colony size was lower than the previous one (Fig. 3C) ultimately leading to 
the gradual depletion of the colony. Despite an initial rapid increase in brood numbers, another wave of 
brood of such size did not occur and the colony never recovered its initial population size. In hives L3 
and L5 the proportion of cell-bees was noticeably lower (Fig. 3F). The cell-bees in those hives were 
additionally located much farther away from the brood cells than in the healthy colonies (Supplemental 
Figures S10-S11).  

While the specific reasons for the decline of these colonies are not clear, we show quantitative measures 
indicative of behavioral changes in unhealthy bee colonies. Indeed, the colony collapse phenomenon 
currently threatening bee populations worldwide have been ascribed to a range of factors 42,43. However, 
despite a range of theoretical models 44,45, no quantitative, data-driven assessment has yet been 
proposed. Unraveling the exact reasons for and mechanism of honey bee colonies collapse would 
require multiple comparative observations across a range of conditions. Our approach enables the study 
of this phenomenon in a time-resolved, comprehensive, and quantitative manner. 

Colony-wide tracking at single-organism resolution 
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Our high detection accuracy provides a strong foundation for reliably following objects in time. Even 
though the observation hive is designed to constrain a colony to a 2D surface, in practice many bee 
activities occur in 3D and occlusions are common. Events such as hiding inside of a comb cell, walking 
‘upside down’ on the glass covering the hive, or walking on uneven parts of the comb surface, all 
increase the difficulty of automated tracking by creating occlusions leading to identity swaps. To 
minimize the effects of the 3D events on trajectory construction we devised a trajectory linking method 
incorporating not only detection coordinates but also class and posture information together with a 
quantitative encoding of visual features of individual bees. 

Previous studies 34,35,46 have demonstrated that objects indistinguishable to human eye might 
nonetheless carry unique visual signatures, also termed ‘pixel personality’, that can be quantified and 
can importantly aid the task of simultaneous tracking of multiple highly similar objects. Notably, the 
rise of deep learning has enabled new ways of extracting such visual signatures from images. However, 
using CNNs for the quantification of pixel identities requires a set of instances of each object that can 
serve as a training set. For example, in tracking up to 100 fish such a set could be constructed if a 
segment in a video existed where no fish collisions were observed during 3,000 video frames 46. Notably 
in the much denser environment of ~1,000 individuals inside of a beehive, such collision-free segments 
are rare or nonexistent. A previously proposed solution 35 therefore extracted pixel identities of bees 
based on a smaller number of instances, re-learning these identities after each trajectory matching step. 
Unfortunately, this solution offered only limited accuracy and came with a high computational cost, 
compromising the reproducibility of the results. 

Here we present a method based on a quantitative representation of visual features of the tracked 
objects, instead of their distinct pixel fingerprints. Quantitative visual features are extracted from a CNN 
47 trained using a triplet loss objective function 48,49 – a function which enables the expression of 
similarity among entities via their vector embeddings. During training, triplets of images are fed into 
the network and we search for a solution where the Euclidian distance between vector embeddings of 
two images of the same object at different time points is as small as possible while the distance between 
vector embeddings of two different objects is large (Fig. 1B). The major hurdle in training such a 
network for bee tracking is the massive space of all possible triplets containing two instances pertaining 
to the same trajectory and a third instance pertaining to any other time point of any other trajectory. To 
address this problem and enable network loss function convergence in a reasonable time, we devised a 
dedicated training scheme. Briefly, image triplets were sampled from training set trajectories that 
included bee detections neighboring in time and space which are sources of potential identity swaps. 
Additionally, the embeddings of all triplets used during training were simultaneously tested for 
correctness and the incorrect ones – where the distance criteria between positive and negative matches 
were not met – were used again in the network training.  

The network was trained on a large, incrementally constructed set of validated bee trajectories. We used 
four 5 min-long recordings (S1-S4) captured in different locations on the campus with cameras of 
varying pixel resolutions (Supplemental Table T2). While the hives were all the same spatial size, the 
colonies varied in number of organisms, ranging from N=805 to N=1,316, and in their dynamics 
(Figures 4A, 5A). All videos were recorded during daytime, under good weather conditions, and within 
the foraging season of Okinawa. 
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We first applied a “pixel personality” approach 35 on recordings S1-S4. The trajectories resulting from 
this approach were manually validated, and the correct trajectories formed the ’initial dataset’ for the 
learning of visual features’ embeddings as described above. Visual feature embeddings extracted from 
the CNN incorporate similarity among individuals (Fig. 4B, Supplemental Movies M3-M7) and hence 
allow the linking of bee detections across video frames in presence of temporary object occlusions. We 
implemented a detection matching solution exploiting both position and visual features, and matchings 
are done in a greedy manner on a sorted list of all pairs satisfying predefined time and space proximity 
criteria (see Methods).  

Embedding-based trajectories in videos S1-S4 were next manually validated. Compared to the pixel 
identity approach, our solution offered an important increase in accuracy at a low computational cost 
(Fig. 4C). Visual feature-based matching resulted in a higher number of correct trajectories over the 
pixel personality approach as well as over a position only-based solution (Fig. 4C, Supplemental 
Figures S13-S14). Even though some trajectories belonging to these recordings were part of the training 
set, this result suggests the method’s capacity to generalize to other, trajectories not included in the train 
set within the same colonies. 

Next, we used the entire set of trajectories validated as correct in videos S1-S4 to form the ‘final 
dataset’. Embeddings derived from the network trained on the expanded training set delivered an 
increase in tracking performance in videos S1-S4 (Fig. 4C), emphasizing the role of the training set size 
in producing more precise and distinct embeddings. Importantly, we also tested a range of data 
augmentation scenarios as well as background masking (Supplemental Fig. S3) that did not positively 
affect tracking accuracy (Supplemental Fig. S15). We attribute this to the fact that data augmentation 
importantly increases data complexity hindering network convergence. Poorer results on images not 
including background additionally suggest that it plays an important role in allowing for correct 
matching.  

To test the capacity of our method to generalize to other recordings, we used the recording S5. No 
images of this colony were used in the training of the detection or tracking method. Recording S5 is 
additionally characterized by vibrations due to neighboring construction site and flickering of the lights, 
creating particularly challenging tracking conditions. We found that 77% of bees were correctly tracked 
(Fig. 4C), a result comparable to the recordings that were part of the training set (Supplemental Table 
T3). Such high accuracy provides a strong foundation for the study of colony dynamics and we expect 
improvements as more validated trajectories are incorporated in the training set. The entire set of correct 
trajectories assembled during development of this method includes 4,642 trajectories from the short-
term recordings S1-S5 and is provided with this manuscript as an important resource for further study 
and method development. 

Quantitative analysis of colony behavior 

The large set of trajectories generated through our detection and tracking approach covers an extensive 
proportion of the recorded colonies (Supplemental Movies M9-M13) enabling a broad, comparative 
study of honey bee colony dynamics. While our emphasis here has been on the techniques of detection 
and tracking, we can already offer a variety of quantitative observations.  

We first compared aggregate dynamics using the distributions of individuals’ speed, angular speed, 
diffusion coefficient, as well as motion span defined as the diagonal of the minimal rectangle fitting the 
trajectory (Fig. 5A-B, Supplemental Fig. S16). Colonies S1 and S3, despite differing in the number of 
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individuals (1,316 and 839, respectively), are characterized by a large proportion of motionless 
individuals and individuals moving over only limited areas of the hive (8% of the colony diagonal on 
average in S1). Whereas colonies S2 and S5 showed a high proportion of fast-moving bees and bees 
traversing larger portions of the surface of the hive (~24% of the high diagonal on average). 
Additionally, colonies S2 and S5 contained a higher proportion of individuals moving at high angular 
speed (Fig. 5B) which could be indicative of the foragers performing waggle dance 1. 

We next inspected the spatial localization of the individuals showing the highest values in each motion 
attribute (speed, angular speed, area of motion, etc.). Most prominently, bees showing the highest 
angular speed tend to be located at the bottom part of the hive in proximity of its entrance (Fig. 5C). 
The colocalization of these individuals, most noticeable in S3, is present across all colonies, suggesting 
that relatively high angular speed is a characteristic of foragers performing and following the waggle 
dance at the hive entrance 50.  

To corroborate this hypothesis, we inspected trajectories showing high mean values of single motion 
attributes as well as their combinations. Trajectories with high angular and translational motion indeed 
belong to bees performing waggle dance (Fig. 5D). The high angular speed of these individuals is 
displayed during the fast looping dance motion of the foragers indicating to other colony members 
locations of food sources (Supplemental Movies M14-M16). In contrast, individuals with high 
translational motion but low angular velocity tend to visit large portions of the hive without performing 
any recognizable action (Fig. 5E), a potential sign of patrolling behavior 51. Lastly, we quantified the 
number of times a bee in each trajectory visits a comb cell and identified bees that clean or search 
through comb cells sometimes across long distances (Fig. 5F, Supplemental Movies. M17-M19). These 
examples demonstrate that the collected metrics group together similar and potentially meaningful 
individual bee behaviors. 

Discussion 

Recent machine vision advances in the precise posture tracking of individual animals 17,18,52 as well as 
of the positions of highly-similar organisms in groups 46 are enabling new quantitative studies of 
behavior 53,54. In collective behavior specifically, the use of CNNs for the pixel-based identification of 
individual organisms has significantly advanced markerless, long-time tracking in 2D, from more 
modest assemblies (~10 individuals) 34 to large groups (~100 individuals) 46. However, while network-
learned identities can resolve confounding occlusions and overlaps, a principal challenge of individual-
resolution group tracking, there must also be enough isolated instances to train the identification 
network. These conditions do not exist in the dense and cluttered setting of a honey bee colony, where 
occlusions and overlaps are perpetual. Here we have described a detection-to-dynamics solution which 
expands behavioral tracking to large and dense collective systems.  

Our markerless detection and tracking techniques offer new possibilities for the quantitative study of 
honey bee colonies on the collective scale at single-organism resolution and are complementary to 
existing approaches 11. Both the brood and adult populations change over time (Fig. 3), a challenge for 
manual marking, and (with improved lighting of the observation hive) our detection technique can be 
readily extended to include capped and uncapped honey as well as pollen cells. The dynamics and 
spatial arrangement of these variables provide new quantitative data for sociometric analysis 36–39 and 
will be particularly interesting in the context of a collapsing colony. Colony-wide, high-resolution 
tracking augments larger-scale measures such as weight 55 and can be combined with additional hive 
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sensors for a novel surveillance system 56. The automatic nature of our approach also facilitates the 
imaging of multiple hives 57, an important consideration due to colony-to-colony variability.   

Our trajectory construction method currently spans over five minutes, an interval chosen to enable 
extensive manual validation of the results (Fig. 4). We expect that this interval can be increased with 
more training data (trajectories from more colonies), advanced validation techniques (such as using 
markers invisible in the infrared), as well as with improved matching procedures. In particular, learning 
motion patterns via a recurrent neural network 58 can improve matching accuracy over the heuristic 
approach proposed here. Combining motion and appearance learning, while still underexplored 59, has 
potential to result in a single and powerful tracking solution. Indeed, an important outcome of this work 
is to provide first techniques together with rich trajectory data for further improvement as machine 
vision methods accelerate. 

A wealth of behavioral information is already accessible within our current tracking window. While not 
a target of our study, we could readily detect bees performing the waggle dance based on their motion 
(Fig. 5B). Other possibilities include detection of trophallaxis 60, fanning and scenting 61, for which 
additional appearance cues can be used, such as the extension of the proboscis and wings. Additionally, 
the quantitation of behavior and aggregate colony dynamics over short time scales could be used in 
combination with the long term sociometric observation of the same colonies. The accuracy of CNNs 
in detection of visual detail together with the large numbers of trajectories of unmarked bees offered by 
our methods present vast new opportunities for behavior analysis of bees and open avenues for more 
quantitative approaches to modeling colony dynamics 62–66. We also see no obvious obstacles in 
generalizing our approach to other dense insect collectives such as ants.  

Across the organizational scales of living systems, from molecular, through neural 67, to animal groups 
and societies 68,69, including humans 70, our ability to understand emergent collective behavior has been 
significantly enhanced by modern precision measurements and analysis across large portions of the 
ensembles. With the advances reported here, we expect accelerated progress in our understanding of 
the behavior of honey bee colonies and other crowded systems. 

Methods 

We provide code, tutorials, and links to our honey bee datasets: 

- dataset: https://groups.oist.jp/bptu/honeybee-tracking-dataset#tra 

- code and tutorial:  https://github.com/kasiabozek/bee_tracking 

- segmentation labeling: https://github.com/oist/DenseObjectAnnotation  

Imaging setup 

We situated observation hives in two distinct locations: location 1 on the rooftop of an OIST building 
(approximately 4th-floor elevation), and location 2 in a ground-level shipping container which was also 
surrounded by greenery. Both locations were equipped with infrared LEDs and a heating system which 
maintained a constant room temperature of 31°C. The observation hives were 47 × 47 cm in size, fitting 
two honeycomb frames placed one above the other. The back side of the comb was fixed to a wooden 
surface constraining the bees to only one side of the frames. In location 1, images were obtained with a 
5,120 × 5,120 pixel Vieworks Industrial Camera VC-25MX-M72D0-DIN-FM, at 30 FPS. In location 
2, images were obtained with two lower resolution cameras Panasonic Lumix GH5 4K and Blackmagic 
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Design Production Camera 4K at 30 FPS with a typical 4k resolution of 3,840 × 2,160 or 2,560 × 2,560 
pixel for the long timespan recordings (Supplemental Fig. S1). Images of recordings from location 1 
(S1, S2) were spatially down-sampled by a factor of two resulting in a similar pixel-per-bee resolution 
for the recordings from both locations. All cameras were modified for infrared imaging by removing 
the infrared filter. 

Detection dataset 

For the development of our detection method we generated two recordings in location 1 (D1, D2) with 
spatial resolution of 5,120 × 5,120 pixel. Two sequences of 360 images from each of these recordings, 
spaced in time by 0.5 sec, were used for training and testing. We devised a custom labelling interface 
(https://github.com/oist/DenseObjectAnnotation) for manual annotation of bee locations and 
orientations. Through the interface the user defines a position and orientation of a fully visible bee (full-
bee) by dragging, dropping and rotating an arrow symbol in an image. An additional round symbol with 
no orientation information was used to mark the abdomens of bees partially hidden inside a comb cell 
(cell-bees).  

We used our interface to generate a labeled dataset through Amazon Mechanical Turk (AMT). We 
selected regions of size 3,072 × 2,048 pixel and of 3,072 × 3,072 pixel in images from recordings D1 
and D2 respectively containing most of the colony bees against various backgrounds. These image 
regions were then submitted for annotation. We also submitted a subset of four frames – two from each 
recording – with 2,034 bees for labeling 10-times by independent workers to obtain an estimate of 
human error in position and orientation labeling. This error was calculated as the standard deviation of 
distance of each of the 10 labels to the reference label obtained in the main labeling task. 

As a result of the labeling we obtained a dataset containing 375,698 labeled bees. Every bee in this set 
was assigned (𝑥, 𝑦, 𝑏, 𝛼) denoting the coordinates of the central point of a bee against the top-left corner 
of the image, type of the label (b=1 for full-bees and b=2 for cell-bees), and the body rotation angle	𝛼 
against the vertical pointing upwards and calculated clockwise (𝛼 = 0	𝑖𝑓	𝑏 = 2). To use this 
information for segmentation-based individual localization we generated regions centered over the 
central point of each bee. For full-bees the regions were ellipse-shaped with axes r1=20 pixels and 
r2=35 pixels, roughly a third of the bee dimensions in the image. For cell-bees the regions were circular 
with r=20 pixels. Such regions cover central parts of each bee and are non-adjacent to regions covering 
neighboring bees in the image.  

These foreground regions were assigned values of class b in the classification segmentation maps. 
Background pixels were assigned value 0. For learning of the orientation angles, each foreground pixel, 
instead of class label, was set at the value of the bee rotation angle and the background pixels were 
labeled as -1. 

To compensate for the class imbalance between foreground bee regions and the non-bee background, 
we generated weights used for balancing the loss function at every pixel. For every bee region a 2D 
Gaussian of the same shape was generated, centered over the bee central point, and scaled by proportion 
in the training set of the background pixels to the number of bee-region pixels.  

For training and testing the images were organized in 60 sequences of 360 images of 512 × 512 pixel 
size. In this time-resolved data the first 324 images of each sequence were used for training and the 
remaining 36 for testing.  
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Detection network and training  

We used the U-Net segmentation network12 and expanded its functionality to take advantage of 
regularities in the image time series patterns. In each pass of the network training or prediction the 
penultimate layer was kept as a prior for the next pass of the network (Fig. 2B). In the following pass 
the next image in the sequence was used as input and the penultimate layer was concatenated with the 
prior representation before calculating network output.  

We used two loss functions in the last network layers. The first loss function, the 3-class softmax 
function, allowed for performing foreground-background segmentation. The second loss function was 

defined as 𝐿 = 𝑠𝑖𝑛	(1231
4
) where 𝛼5 and	𝛼 are the predicted and labeled orientation angle respectively. 

In the network output, each contiguous foreground region was interpreted as an individual bee. 
Foreground patches smaller than 10 and larger than 1,000 pixels were discarded as potentially wrong. 
The centroid location was calculated as the mid-point of all x and y coordinates of points in each region. 
Region class was assigned as the class identity of the majority of pixels within given region. We also 
calculated the main body axis full-bee regions as the angle of the first principal component of the points 
in each region. The predicted orientation angle of the pixels within a given regions was used to assign 
back and front to the region principal axis. Due to the higher prediction errors in the image margins, 
where objects are not fully visible, we discarded results within a 50 pixel margin of the image 
boundaries.  

Recordings  

We performed long-term time-lapse imaging of five colonies (L1-L5) for a timespan between two 
weeks to four months (Supplemental Table T2) with sampling frequency of once per minute (colony 
L5) and once every two minutes (colonies L1-L4). We additionally imaged five colonies (S1-S5) with 
a sampling frequency of 30 FPS. For the tracking analysis we used five-minutes segments, which we 
down-sampled to 10 FPS. 

All image data was collected from spring to fall in favorable weather conditions when foraging activity 
was observable. For each recording we typically selected from the hives in our apiary two honeycomb 
frames with even surface, one containing brood and one containing food stores. We removed comb 
cells and other content on one side of each frame and left them for another day inside of the apiary hive 
to allow the bees to clean the damaged surface. Next, after ensuring that the queen is located on one of 
the frames we transferred them into the observation beehive and fixated their empty sides to the back 
surface of the hive. Before recording, we allowed each colony to adjust for two weeks after the transfer 
from the apiary to the observation hive.  

To adapt the detection method to the new set of recordings we spatially scaled down the labeled images 
from D1 and D2 by a factor of 2. The labeled positions were adjusted accordingly, the sizes of 
foreground regions were equally scaled down to cover similar proportion of bee body surface in the 
smaller images. We retrained the same approach on the rescaled data and generated predictions of this 
way trained network on several initial frames of recordings L1-4 and S1-4. To compensate for potential 
noise introduced by image rescaling and to incorporate images of empty parts of the hives in the training 
set we used the labelling interface (https://github.com/oist/DenseObjectAnnotation) to correct the 
predictions in up to five initial frames of each recording. We then retrained the detection model for 10 
training iterations on the additional set of labels. This way, with relatively small amount of manual 
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labeling, we adjusted the method to the new recordings reaching comparable accuracy to the one 
achieved on images on which the method was developed (Supplemental Fig. S1).  

During inference, we used windows of size 256 × 256 pixels, which overlapped by a margin of 50 
pixels. Any objects in the image margin were discarded. 

Brood Detection 

We additionally devised a method for detecting brood cells in a colony. We first used a background 
extraction method71,72 applied to a range of images spanning 12 h. One background image was generated 
for each consecutive 12 h (Supplemental Movie M1). We then adopted our bee annotation tool 
(https://github.com/oist/DenseObjectAnnotation) to annotate center points of each brood cell in the 
generated background images. With the use of this tool we labelled three initial background images 
from recordings L1-4 (Supplemental Fig. S3). 

Based on position labels we generated segmentation labels, in which pixels within circles of radius of 
10 pixels around each position label were labeled as foreground. The U-Net segmentation network12 
was trained to reproduce these segmentation labels. We applied a weighing scheme in which a 2D 
gaussian scaled by a factor of 10 was generated and centered over each foreground pixel patch. Such 
weighing was designed to compensate for the class imbalance between the foreground and background 
pixels and allowed the accurate detection of the centers of each segmentation label. 

The network was trained for 1000 epochs with batch size = 16 after which foreground pixel detection 
accuracy was > 90%, resulting in detection accuracy in the train set of TPR ~ 0.95, FPR ~ 0.02, FNR ~ 
0.05. Given the relative ease of the detection task and our extensive previous analysis of the testing 
accuracy for bee bodies, no further analysis of the brood detection accuracy was performed. Based on 
manual inspection however, the method generalized to the remaining parts of the recordings as well as 
to the recording L5 (Supplemental Fig. S2, Supplemental Movie M2).  

Position matching algorithm 

For the short-term recordings, we devised a position matching procedure for linking object detections 
in consecutive video frames into object trajectories. We used both position coordinates as well as the 
posture categories full-bees and cell-bees. In the first step, all detections are considered as trajectories 
of length one forming the initial set of assembled trajectories 𝑇 = {𝑇8: 𝑖 = 1. . 𝑛}. In each following 
step, detections in consecutive video frames are considered as potential extensions of the trajectories 𝑇. 
In step 𝑖, we calculate the Euclidian distances of the last position of each of the assembled trajectory to 
detections in the frame at time 𝑡8. For a given trajectory 𝑇>  with its last position at time point 𝑡>  only 
detections below a given distance cutoff 𝑐@ are considered as a match. We define the cutoff as: 𝑐@ =
𝑎B𝑡8 − 𝑡>  if more than 5 of the last 10 positions in a trajectory are a full-bee and 𝑐@ =

D
E
  otherwise, 

where 𝑎 is half of a bee longest dimension, that is 40 px in our recordings. For all detections below this 
cutoff an additional length factor is added to the Euclidian distance: 

𝑙 = 𝐴 H1 −
IJKI

LDM	({|JO|:	83P..Q})
R,	

where 𝐴 = 30 is a scaling factor chosen based on accuracy of matching. The length factor prioritizes 
longer trajectories instead of short trajectories that might arise as an effect of false positive detections. 
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After all pairs between detections in frame at time 𝑡8 and last positions of the assembled trajectories are 
found and their distances calculated, the matchings are generated in the incremental order of distances 
until no more matched pairs are found. Matched detections are added to the respective trajectories. 
Unmatched detections in frame at time 𝑡8 are added as potential starting points of new trajectories. 
Unmatched trajectories are kept until the time between the last detection in that trajectory and the 
current time is below a predefined gap cutoff. We define the gap cutoff as 10 sec if more than five of 
the last 10 positions in a trajectory are classified as cell-bee, 1 sec if the last detection in that trajectory 
is close to the hive entrance, and 3 sec otherwise. This choice of cutoffs is based on the observations 
that bees inside of the honeycomb cells can be occluded for long timespans and that large densities and 
fast motion near the entrance can lead to wrong matching if longer gaps are allowed. Assembled 
trajectories that exceed the gap cutoff are considered as finished and stored for further analysis if their 
length is above 1 min and discarded otherwise.  

We parallelized the matching procedure by splitting the short-term recordings into segments of 1 min. 
Results of matching within these segments are then matched based on the criteria above. With this 
parallelization our approach can scale to recordings of arbitrary length with lower computational cost. 

Visual features learning 

To improve the accuracy of the trajectory reconstructions, we devised a novel method to exploit the 
visual features of bee detections via a CNN architecture 47 previously shown to perform well in the bee 
recognition task 35, and which we altered by adding a triplet loss in the objective function 48,49. The 
triplet function was originally designed for learning vector embeddings capturing similarity among 
entities. In the tracking context it is a function where a correct (positive) matching of detections is 
compared to an incorrect (negative) one. During training, triplets of bee detections are used as input 
including: (1) anchor image: bee detection in a frame at a time point 𝑡, (2) positive match: the same bee 
detection in frame at a time point 𝑡 + ∆𝑡, (3) negative match: a different bee in the frame at a time point 
𝑡 + ∆𝑡. The objective function penalizes representations that set the positive match further apart in terms 
of the Euclidian distance between the vector embedding of the images (1) and (2) than the distance of 
the negative match between vector embeddings of the images (1) and (3). To ensure separation of the 
positive and negative matches a margin 𝛼 is added to the loss: 

𝐿(𝑖P, 𝑖4, 𝑖E) = 𝑚𝑎𝑥	(‖𝑓(𝑖P) − 𝑓(𝑖4)‖
4 − ‖𝑓(𝑖P) − 𝑓(𝑖E)‖

4 + 𝛼, 0)	

where 𝑖P, 𝑖4, 𝑖E are the input images (1), (2), (3), 𝑓 is the embedding and the margin 𝛼 = 0.5. The loss 
value in a training batch is defined as mean loss of all triplets over the number of correct triplets with 
𝐿 = 0. 

The number of possible triplet bee images in colonies of ~1,000 bees filmed with high temporal 
resolution prohibits training the network within a reasonable time. Therefore, we implemented two 
elements in the training procedure to accelerate the learning process. First, the sampling of image 
triplets is done according to the criteria of the position matching algorithm described above. For a given 
anchor image only those negative matchings are generated that lie within the time and space distance 
limit to the anchor image as defined by the criteria of the matching procedure. Corresponding positive 
matching image is selected from the same video frame as the negative one. Second, in each step of the 
training, input triplets that show positive value of the triplet loss are fed back into training. All other 
input triples are randomly sampled according to the rules above.  
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We tested a range of dimensionalities of the image embeddings (from 16 to 4,096) and chose 64 as the 
dimensionality offering the best performance in trajectory matching, assessed as a proportion of 
correctly reconstructed reference trajectories, described below. We also included several data 
augmentation procedures including random 90° rotations and mirror random flip along both axes. 
Finally, we implemented background masking and this way trained a model capturing visual features 
of the bee only, excluding background (Supplemental Fig. S3).  

Training comprised 5,000 epochs of 128,000 batches where batch size is 32. After this number of 
iterations, value of the loss function and the number of incorrect matchings in each batch did not show 
a decreasing trend. The network was implemented in TensorFlow73, trained with Adam optimizer 74 
using a base learning rate of 0.0001. 

Matching procedure with visual features 

Quantitative representations of visual features of bee detections were integrated in the trajectory 
matching procedure as follows. Trajectories were assembled via analogous sequential video frame 
processing applying the same time and space distance cutoffs as in the position-based approach 
described above. For a given trajectory 𝑇>  composed of detections {𝑝P. . 𝑝Q}, detections in the following 
video frame below the distance cutoff 𝑐@ to 𝑝Q are considered. For each detection 𝑑8 the visual similarity 
to trajectory 𝑇>  is quantified as: 

𝑉 = 𝑚𝑖𝑛	(‖𝑓(𝑝>) − 𝑓(𝑑8)‖
4: 𝑗 = 𝑛. . 𝑛 − 10)	

where 𝑓 is vector embedding. Detections with 𝑉 < 𝑐^ where 𝑐^ = 1.75 is a cutoff for the appearance 
similarity, are considered as potential extensions of 𝑇> .  

For all detections below the distance and appearance similarity cutoffs the distance between 𝑇>  and a 
detection 𝑑8	 is defined as 

𝐷 = 𝐵𝐸 + 𝑉 + 𝑙	
where 𝐸 is the Euclidian distance between last trajectory position 𝑝Q	and 𝑑8,	𝑙 is the length factor as 
described above, and 𝐵 = 0.033 is a scaling factor chosen based on accuracy of the assembled 
trajectories. In each step of the matching process matching of trajectories to detections is done in and 
increasing order of 𝐷. The matching procedure exploiting visual features follows the same time gap 
logic and parallelization as the matching based on positions only. 

Training Dataset 

To obtain the initial set of trajectories for network training we applied the previously devised “pixel 
personality”-based method 35 on recordings S1-S4 and the results were manually validated. Correct 
trajectories were then used as the “initial dataset” for training the network on the visual feature 
embeddings described above. 

The trained network was used to infer the vector embeddings of bee detections in videos S1-S4, which 
we were then used in constructing a new set of trajectories. These trajectories were again manually 
validated and the correct ones together with the “initial dataset” formed the “final dataset” of 
trajectories. 

The network trained on this way expanded train set was used to derive quantitative representations of 
bee detections in videos S1-S4 as well as video S5. Images of video S5 were not used in training neither 
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of the detection nor the representation learning network. Trajectories were next constructed based on 
the visual representations derived via this network and the results were manually validated. 
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Figure Legends 

 

Figure 1. Schematic of the detection and tracking methods 

A. A segmentation architecture was adapted for the detection of bees and brood cells in the dense 
environment of a bee colony. We use this architecture to infer bee and brood positions (yellow and red 
marks, respectively), bee posture type – bee inside of a comb cell (yellow round symbols, denoted later 
as cell-bees) and fully visible bee (yellow arrows, denoted later as full-bees) – and the orientation angle 
of the fully visible bees (angle of the yellow arrows). Bee and brood locations, as well as within-cell 
state, allow for detailed sociometric analyses over long timespans and across multiple colonies (right). 

B. CNN-derived embeddings of visual bee features are used to link detections across video frames into 
trajectories. The network is trained to maximize the Euclidean distance between detections belonging 
to different trajectories and minimize this distance between detections of the same bee within one 
trajectory. This visual similarity metric allows for accurate construction of trajectories of unmarked 
bees and analysis of dynamic aspects of bee colonies. (right) For illustration we show ten tracked 
trajectories, likely corresponding to forager bees. The red trajectory belongs to a bee that entered the 
hive around minute 2 of the recording and performed rapid back-and-forth dancing motion for the next 
2 minutes. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 27, 2020. ; https://doi.org/10.1101/2020.03.26.007302doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.007302
http://creativecommons.org/licenses/by/4.0/


16 
 

 

Figure 2. Dense object detection 

A. Our manual annotation consists of the central points of each body, object class – full-bees (yellow 
arrows) or cell-bees (yellow round symbol) – and the body orientation of full-bees (arrows). 
Segmentation maps are created with foreground pixels denoting central parts of bee bodies. The upper 
segmentation map indicates class information, the bottom segmentation map indicates the orientation 
angle (color wheel).  

B. We modified the U-Net architecture12 by including a recurrent component which exploits temporal 
information from the preceding video frame in the penultimate network layer. The recurrent component 
allowed us to reduce the number of parameters by ~94% from the original U-Net (shown in E) without 
compromising accuracy. We added two loss functions to the network, one for class and one for 
orientation angle estimation, and their example output is shown to the right. 

C. Position, class, and orientation information is inferred from the network output. Red markers indicate 
inferred detections, labels are in yellow. 

D. Segmentation maps created for the training of brood cell detection. Similar to body detections, the 
foreground pixels cover only the central parts of the cells, allowing for object counting and localization. 

E. The original U-Net architecture is used for brood cell detection.  

F. Inferred brood cell positions. 
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Figure 3. Colony sociometry 

A. Daily fluctuations of the total population (full-bees + cell-bees) in hives L1-L5. The period of the 
fluctuations is approximately 24 h in all hives which is indicated by the power spectral density (right). 
Vertical lines denote midnight. 

B. Analogous to (A), daily fluctuations in the numbers of cell-bees and the respective power spectral 
density. 

C. Total population (full bees + cell-bees, gray and black lines) and brood population (orange line) in 
bee colony L5. Colony L5 was imaged for over four months and exhibited a population decline and 
ultimately colony collapse. After an initial rise in brood population, another increase of such amplitude 
did not occur, and the population steadily declined from week 10. The black line indicates the daily 
average population size while the exact count in each image is shown in gray. 

D. Fluctuations in bee and brood populations are anti-correlated. Total population averaged over 
consecutive 12 h windows is plotted against the brood counts in the same time window in the 5 colonies 
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for the period of up to three weeks. For each time series, the mean of the series was subtracted from the 
plotted values.  

E. The nightly presence of cell-bees. We divide each 24 h of a recording into 24 1-hour bins and count 
how often the number of cell-bees is above the daily median number. High numbers of cell-bees occur 
predominantly in the evening, between 21 h and 6 h. 

F. Distribution of the proportion of cell-bees relative to the total population in hives L1-L5. Hive L3 
and L5 show markedly lower proportion of cell-bees, which may be related to colony declines during 
our recording. 

 

 

 

 

Figure 4. Leveraging visual features for enhanced detection matching across frames 

A. Recordings from five different beehives were used for tracking method development and testing. 
The hives contained varying total populations and of bees in comb cells (cell-bees). 

B. CNN-derived vector embeddings are used to better match bee detections across video frames. The 
embeddings encode similarity among detections. Originally 64-dimensional, an example projection of 
the embeddings in 3D is shown in the panels on the right obtained with the use of t-SNE 75. Red dots 
represent embeddings in 10 consecutive video frames of the bees marked by red squares in the left 
panels. Embeddings of other bee detections in these images that occurred over consecutive 3 video 
frames are marked by yellow dots in the panel on the right. Even though bees appear identical to a 
human observer, the embeddings belonging to one trajectory (red) are distant from embeddings of all 
other bees neighboring in time and space, thus aiding the correct stitching of individual detections. 

C. The accuracy of the tracking method obtained for test recording S5 matched the accuracy reached in 
recordings S1-S4 used for network training and method design. We show the proportion of extracted 
trajectories relative to the average detected number of bees in hives S1-S5. The proportion of extracted 
trajectories is shown for an earlier approach (`pixel personality’, gray bars), the current method but 
trained only the initial dataset (pink bars) and for the current method but trained on the final dataset 
(red bars). 
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Figure 5. Colony dynamics at single-organism resolution 

A. The distribution of individual mean speed computed from trajectories in hives S1-S5. Large 
differences across hives include a significant proportion of immobile bees in S1 and increased number 
of fast-moving bees in S2 and S5. 

B. The distribution of individual mean angular speed of trajectories in hives S1-S5. Low angular speeds 
are seen primarily in S1 while the largest proportion of trajectories with high angular speed is present 
in S2. Trajectories in the tail of these distributions are excellent candidates for forager bees performing 
or following a waggle dance. 

C. The spatial distribution of trajectories characterized by large linear and angular motion. We show 
100 trajectories from each hive which have large linear and angular speed. Across all hives these 
trajectories are located near the entrance, which is at the bottom of each hive. This localization may 
reflect a forager recruitment site. 

D. Example trajectories of individuals with large linear and angular motion. Three trajectories are 
plotted individually and combined in the bottom-right panel. The densely overlapping parts of these 
trajectories indicate the location of the waggle dance performed by these individuals. 

E. Example trajectories showing large linear but low angular motion. Such individuals tend to move 
rapidly over large portions of the hive.  

F. Example trajectories of bees exhibiting a large number of comb-cell visits.   
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